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OPTIMAL QUANTUM ERROR CORRECTION FROM

HAMILTONIAN MODELS OR PROCESS TOMOGRAPHY∗

ROBERT L. KOSUT†

Abstract. A method is presented to integrate a complete “black-box” error correction scheme,

that takes quantum process tomography as input and iterates until it finds an optimal error correcting

encoding and recovery, thus tying theory to experimental decoherence control. The use of tomography

in conjunction with optimal error correction has the potential to provide an effective and practical

tool for the engineering development of a quantum computer.

“In a machine such as this there are very many other problems due to

imperfections. . . . Until we propose a complete implementation of this, it

is very difficult to analyze. At least some of these problems can be remedied

in the usual way by techniques such as error correcting codes and so forth,

that have been studied in normal computers. But until we find a specific

implementation for this computer, I do not know how to proceed to analyze

these effects. However, it appears that they would be very important in

practice. This computer seems to be very delicate and these imperfections

may produce considerable havoc.”

– R. P. Feynman [11]

1. Introduction. The current theory of quantum error-correction (QEC) [25,

13, 26, 20, 15, 22] assumes that a known class of statistical correlation exists be-

tween the decoherence processes afflicting different qubits. A major limitation of this

approach is that it does not address the decoherence processes that take place in

the specific quantum computer implementation. Moreover, in non fault-tolerant QEC

one implicitly assumes that the encoding and recovery operations can be implemented

via the controls without any error, as if they were uncoupled from the environment.

The environment, however, by definition, is always active. As a result, the encoding

and/or recovery cannot be separated from their interactions with the environment [2].

In fault-tolerant QEC this problem is addressed by working with certain discrete sets

of quantum gates which can be made fault-tolerant via concatenation [3]. While this

approach has led to the celebrated threshold theorem of quantum computation [1],

the result is extremely costly in terms of qubit resources.

In this paper we develop QEC that corresponds directly to measured errors ob-

tained from estimating a model of the quantum system. This circumvents the need for

hypothetical modeling, and is directly applicable to the specific system architecture.
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The QEC is iteratively modified by applying it to the system, taking measurements,

and optimizing the QEC accordingly. This approach is a simultaneous direct attack

on all of the underlying physical decoherence mechanisms, and is in sharp contrast

with the “traditional” QEC approach which deals with one source of decoherence at

a time.

The iterative procedure combines previous work in optimal QEC and quantum

system identification. It is shown in [23, 28, 12, 17, 18] that noisy quantum channels

which do not satisfy the standard assumptions for perfect correction [25, 13, 26, 20,

15, 22] can be optimized for the best possible encoding and/or recovery. In these

papers, QEC design is cast as a bi-convex optimization problem to maximize channel

fidelity, iterating between encoding and recovery, each being a semidefinite program

(SDP) [4].

Quantum system identification and/or estimation generally refers to quantum

state tomography (QST), quantum process tomography (QPT), or quantum parameter

estimation (QPE). For a quantum system whose measurable state is of dimension n,

QST estimates the n×n density matrix ρ which is constrained by physical principles

to the convex set {ρ ≥ 0,Trρ = 1}. In QPT an n2 × n2 matrix known as the process

matrix is estimated which characterizes the state-to-state dynamics over a fixed time

interval. Specifically, under mild conditions the quantum channel which maps an

input state ρ to an output state ρ̂ can be expressed in a form known as the Kraus

operator-sum-representation (OSR) [22]: ρ̂ =
∑

µ SµρS†
µ where the Sµ are the n × n

OSR elements which typically satisfy
∑

µ S†
µSµ = In known as the completion relation

which insures that Tr ρ̂ = 1, hence preserving probability. In QPT each element is

expanded in terms of a set of basis matrices for Cn×n, that is, linear combinations

of the (usually orthonormal set of) matrices {Bi ∈ Cn×n}n2

i=1. This leads to the

equivalent input-output form: ρ̂ =
∑n2

i,j=1 XijBiρB†
j where X is the process matrix

consisting of all the linear coefficients and as a result of the completion relation is

constrained to the convex set {X ≥ 0,
∑n2

i,j=1 XijB
†
i ρBj = In}. In both QST and

QPT, probability outcomes are linear in the parameters to be estimated. (This is

not the case for QPE where the uncertain parameters in a Hamiltonian model are

estimated, e.g., [19, 29].)

Since both the quantum state (density matrix) and the process matrix are con-

strained by the physics to convex sets, approaches to both QPT and QST have natu-

rally gravitated towards the well established methods of least-squares and maximum

likelihood, e.g.[22, 8]. The resulting estimation problem is a convex optimization

problem [19], and thus in principle, is tractable [4]. Unfortunately, however, the di-

mension of the parameter space for QST, and especially for QPT, can be prohibitive:

for Hilbert space dimension n, QST scales with n2 and QPT with n4. For q-qubits,

n = 2q, and hence scaling for both is exponential in the number of qubits. Although

this places a burden on computation, this also places the same burden on resources,
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Fig. 2.1. Standard model of error correction system in operator-sum-representation form.

e.g., the number of applied inputs and measurement devices, as well as the number

of experiments to achieve a desired accuracy. A number of approaches have been

developed to alleviate this scaling burden. Of note are the various forms of ancilla

assisted QPT (see [21] for a review), the use of symmetrization to estimate selected

process properties [10], and approaches which use prior modeling to simplify process

matrix parameters [5, 6]. With ancilla assistance the scaling power is reduced but is

still exponential. Furthermore, ancilla assisted methods may require entangled inputs

which are very sensitive to noise and decoherence.

Recently, the use of Compressive Sensing (CS) methods of estimation [9, 7] have

been applied to QPT [24, 16]. CS predicts a scaling of measurement resources of order

s log N where s is the sparsity level of the N -dimensional signal to be estimated. In

addition, the CS procedure requires solving a convex optimization problem. For QPT

with q-qubits, N = (2q)4, hence, CS heralds a scaling on the order of sq which is

an exponential reduction in resources over standard methods. Recent application

with experimental data confirms the simulations [24]. As posited their and in [16],

for an initially well designed system whose dynamics are close to a desired unitary (a

primary goal in quantum computation) the process matrix, in a basis corresponding to

the ideal unitary, is almost sparse, i.e., an s-sparse estimate exists which produces an

estimation error below any desired level, modulo measurement noise. In other words,

the process matrix in this basis is compressible, which makes CS methods feasible. It

is clear in quantum information processing that the goal is a desired unitary. In other

applications of quantum engineering there may be different criteria, thus requiring

selecting a basis for which the estimation is compressible.

Here we will show the efficacy of combining QPT and QEC optimization problems

into a single process: iterating between the encoding, the process matrix, and the

recovery. Because each step is a convex optimization, the fidelity of encoding and

recovery, as well as the fidelity of the process matrix estimate, are all guaranteed

to improve through this iteration. Moreover, this approach is particularly appealing

because of its potential to directly couple to experiments. An example is presented

assuming perfect tomography which illustrates the method and one of the fundamental

tradeoff between codespace dimension and number of tomographies.

2. QEC System. The standard model [25, 13, 26, 20, 15, 22] of an error cor-

rection system, shown in the block diagram of Fig. 2.1 is composed of three quantum

operations: encoding C, error E , and recovery R. Each of the three operations is
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Fig. 2.2. Error correction system showing encoding and recovery unitaries and error system.

The input state ρQ, a tensor product of ρS the information state and |0A〉 the encoding ancilla, is

transformed by UC into the codespace. The encoded state is then corrupted by the error channel E

and then recovered by UR to produce the final state ρ̂
Q

.

described as an OSR. Hence, the relation between the input state ρS and the output

state ρ̂S is given by the OSR,

(2.1) ρ̂S =
∑

r,e,c

(RrEeCc)ρS(RrEeCc)
†

The encoding and recovery operation elements are the nC ×nS matrices {Cc}m
C

c=1 and

the nS × nC matrices {Rr}m
R

r=1. These map between the system Hilbert space (of

dimension nS) and the system + ancillae Hilbert space (of dimension nC). The error

elements are the nC ×nC matrices {Ee}m
E

e=1 which represent the effects of decoherence

and noise. All the OSRs are assumed to be trace-preserving. Thus,

(2.2)

m
R

∑

r=1

R†
rRr = IC ,

m
E

∑

e=1

E†
eEe = IC ,

m
C

∑

c=1

C†
cCc = IS

Any OSR can be implemented as a unitary with ancilla states [22, Thm.8.2] – the

Stinespring dilation. Fig. 2.2 depicts one such configuration where the encoding OSR

C is implemented by the nC×nC encoding unitary, UC , which maps the tensor product

of the nS × nS system state ρS and the nA × 1 encoding ancilla state |0A〉 into the

codespace with dimension nC = nSnA. Similarly, the recovery OSR is implemented

by the nC × nC recovery unitary, UR, operating on the codespace corrupted by the

error system E . This model differs from some of the standard models where additional

ancilla are used directly in the recovery without passing through the error system.

Here we bring all the ancilla together so that the recovery receives a corrupted version

of the encoded state.

To relate the encoding and recovery OSR elements to the unitary implementations

it is convenient, and without loss of generality, to use the tensor product ordering

|0A〉〈0A| ⊗ ρS, and set |0A〉 as an nA × 1 vector with a one in the first element and

zeros elsewhere. It follows that the nC × nS encoding matrix C is formed from the

first nS columns of UC :

(2.3) UC =
[

C C̃
]

Referring to Fig. 2.2 the noise-free encoded state is given by ρ̄C = UC(|0A〉〈0A| ⊗
ρS)U †

C = CρSC†. This type of encoding is often referred to as a unitary encoding [15]
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because C has only a single OSR element (mC = 1), the nC × nS encoding matrix

C, whose nS columns are the codewords. Because the columns of C are columns of a

unitary, they are orthonormal, which is equivalent to satisfying the trace-preserving

condition C†C = IS . A simple way to make the unitary UC (2.3) from the encoding

matrix C is via the SVD of C:

(2.4) C = U

[

S

0

]

V † ⇒ C̃ = last nC − nS columns of U

These last columns of U are an orthonormal basis for the nullspace of C.

The nS ×nC recovery OSR matrices, {Rr}m
R

r=1 form the nC ×nC recovery unitary

UR:

(2.5) UR =









R1

...

Rn
A









Observe that because UR is unitary, mR = nA. We refer to the matrix UR as the recov-

ery matrix. Because UR is unitary, the trace preserving condition follows: U †
RUR = IC .

3. Optimal QEC. The error correction objective is to design the encoding C
and recovery R so that, for a given error system E , the map ρS → ρ̂S is as close as

possible to a desired nS × nS unitary US . A common measure of performance is the

average entanglement fidelity between the channel REC and the ideal US :

(3.1) f =
1

n2
s

∑

r,e

|Tr U †
SRrEeC|2

From [15, 22], f = 1 if and only if there are constants αre such that RrEeC = αreUS

with
∑

r,e |αre|2 = 1. This suggests the indirect measure of fidelity, the “distance-like”

error (using the Frobenius norm, ‖X‖2
fro = Tr X†X),

(3.2)
d =

∑

r,e ‖RrEeC − αreUS‖2
fro

= ‖URE(IE ⊗ C) − α ⊗ US‖2
fro

with α the nA×mE matrix with elements αre, E the nC×mEnC error system matrix,

(3.3) E = [E1 · · · EmE
]

and UR the recovery matrix as defined in(2.5). As shown in [18], (3.1) and (3.2)

motivate two optimization problems:

(3.4)

Direct Fidelity Optimization

maximize f = 1
n2

s

∑

r,e |Tr U †
SRrEeC|2

subject to U †
RUR = IC , C†C = IS
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ρE

ρQ ρ̂Q

Q-System
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Fig. 4.1. Physical representation of system. The Q-system state is accessible: ρQ and ρ̂Q are

states of Q at different times. The E-system state, the environment, is not accessible. The controls

may have on effect on both of these systems.

(3.5)

Indirect Fidelity Optimization

minimize d = ‖URE(IE ⊗ C) − α ⊗ US‖2
fro

subject to U †
RUR = IC , C†C = IS , ‖α‖2

fro = 1

The relation between fidelity and distance is,

(3.6)
d̂ = min {d | ‖α‖fro = 1} = 2nS(1 −

√
f)

f =
(

1 − d̂/2nS

)2

This establishes that minimizing the distance d is equivalent to maximizing the fidelity

f .

4. Optimal QEC: iterative OSR modeling . The standard models of error

correction such as those shown shown in Fig. 2.1-Fig. 2.2 are not made easily with

an OSR obtained directly from a process tomography. Likewise, if the OSR is based

on a Hamiltonian model such as depicted in Fig. 4.1. In any case, the standard

error models implicitly assume that the encoding and recovery operations (the Q-

subsystem of UQE) can be implemented via the “controls” without any error, as if they

were uncoupled from the environment (the E-subsystem of UQE). The environment,

however, by definition, is always active. As a result, the encoding and/or recovery

are not readily separated from their interactions with the environment [2]. To see

this more clearly, we will compare the two input/output maps from ρQ → ρ̂Q for the

system of Fig. 2.2 and Fig. 4.1.

First, for the system of Fig. 2.2,

(4.1) ρ̂Q =

m
E

∑

e=1

(UREeUC)ρQ(UREeUC)†

For the system of Fig. 4.1, let the nC × nC matrices {Ae}m
E

e=1 be the OSR of the map
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ρQ → ρ̂Q. Thus,

(4.2) ρ̂Q =

m
E

∑

e=1

AeρQA†
e,

∑

e

A†
eAe = IC

The Ae could be obtained from either a process tomography or from a Hamiltonian

model which gives rise to UQE . For a Hamiltonian model representation of Fig. 4.1,

assume that ρE is the pure state |0E〉, an mE ×1 vector with a one in the first element

and zeros elsewhere. Then the OSR elements of the map ρQ → ρ̂Q are formed from

the first nC columns of UQE . Specifically,

(4.3) UQE =
[

A Ã
]

, A =









A1

...

Am
E









Since A are the columns of a unitary, the trace preserving condition holds. Equating

(4.1) and (4.2) term by term gives the transform pairs,

(4.4)
Ae = UREeUC

Ee = U †
RAeU

†
C

}

e = 1, . . . , mE

This clearly shows the very complicated interactions among the idealized encoding and

recovery, (Uc, UR) , which are based on an error model with OSR elements {Ee}m
E

e=1,

and the actual OSR elements {Ae}m
E

e=1. The latter, in turn, clearly depend on the

encoding and recovery, which in turn depend on the error model, and so on.

Since performance (fidelity or distance) is defined for the map ρS → ρ̂S, we need

also to compare these maps for the two system representations. For the system of

Fig. 2.2, the OSR elements are {RrEeC}n
A

,m
E

r,e=1,1 and the corresponding fidelity is given

by (3.1). For the system of Fig. 4.1, the OSR elements are obtained from UQE using

a different arrangement of the columns than that of (4.3), i.e.,

(4.5) UQE =
[

B B̃
]

, B =









B1

...

Bm
E

n
A









Thus {Bi}m
E

n
A

i=1 are the nS × nS OSR elements of the map ρS → ρ̂S. Observe that

these can be determined directly from the OSR elements {Ae}m
E

e=1.

The interconnected relations between the two model types motivate an iterative

process to balance the two models. Suppose either the Ae can be perfectly found

from a process tomography or from a Hamiltonian model. The transformation to the

Ee via (4.4) can be used in an iterative manner to design a new set of encoding and

recovery.

Optimal QEC via Iterative OSR Modeling
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Initialize encoding UC and recovery UR

Repeat 1-3

1. OSR Modeling

(a) Estimate or compute OSR

{Ae}m
E

e=1 → {Bi}n
A

m
E

i=1

(b) Compute achieved fidelity

fach = 1
n

S
2

∑

i |Tr Bi|2

2. Update error model {Ee = U †
RAeU

†
C}

m
E

e=1

3. Update QEC

(a) Optimize encoding and recovery

{Ee}m
E

e=1 → (UR, UC)

(b) Compute predicted fidelity

fpre = 1
n

S
2

∑

r,e |Tr U †
SRrEeC|2

Until fach − fpre is small

This algorithm has several interesting aspects and also highlights some important

open problems:

• The fidelity computed in Step 1b, fach, is the achieved fidelity using the

OSR from either the Hamiltonian model or from the process tomography.

The fidelity in Step 3b, fpre, is the predicted fidelity based on the errors in

the form required for the optimal QEC in Step 3. When the achieved and

predicted fidelities are close, the algorithm terminates. There is no guaranty

at present that this algorithm is convergent, although in all the cases we have

run performance improves in a few steps.

• Step 3a requires actually solving two optimization problems. First, finding

the optimal encoding and recovery pair (UC , UR). Secondly, finding a means

to implement them via the available controls. Specifically:

– The optimal pair (UC , UR) is obtained from the bi-convex iterative al-

gorithm described in [18].

– The optimal unitaries provide a target for determining the controls which

implement these unitaries. This requires solving a control problem.

• The computational cost using the above iteration consists of the cost to find

the optimal encoding and recovery pair in Step 3a, the cost of finding an opti-

mal control to meet these target unitaries, and the cost of obtaining the OSR

in Step 1a. The optimal control problem need only be solved in Q-space (the

codespace) which is considerably smaller than solving for the optimal control

over the entire QE-space. The cost to find the OSR depends on whether the

procedure is from a Hamiltonian model or from process tomography. In a

pure model-based design, the cost is the simulation of the QE-system. In
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a data-based design, the cost of process tomography can be prohibitive. As

already mentioned this burden can be greatly relieved using methods from

compressive sensing [24].

5. Example: Perfect Tomography. To illustrate the algorithm suppose the

QE-system Hamiltonian is,

(5.1) HQE(t) = IE ⊗ HQ(t) + Herr(t)

where HQ(t) is the time-dependent control Hamiltonian, and Herr(t) is the time-

dependent error Hamiltonian which includes the environmental dynamics and the

coupling to the environment. Assume we have complete control over HQ(t) and set

it to the piece-wise constant Hamiltonian,

(5.2) HQ(t) =

{

HC = i log(UC) 0 ≤ t < 1

HR = i log(UR) 1 ≤ t ≤ 2

where (UR, UC) are the ideal recovery and encoding operations with UR = exp(−iHR)

and UC = exp(−iHC). Here we have normalized time so that at the end of each unit

time interval, the evolution of the control Hamiltonian produces exactly the ideal

recovery and encoding unitaries. For purposes of illustration, assume further that the

error Hamiltonian is constant and identical over each interval. Then the QE-system

unitary, defined at the normalized final time t = 2, is,

(5.3)

UQE = exp(−iHRE) exp(−iHCE)

HRE = IE ⊗ HR + Herr

HCE = IE ⊗ HC + Herr

For the specific example we want to preserve two qubits (nS = 22 = 4) in an environ-

ment of fixed dimension, mE = 4. We set the number of encoding ancilla qubits from

{0, 1, 2, 3, 4}. Hence, the number of codespace qubits is {2, 3, 4, 5, 6}, and the Hilbert

space of the QE-system is mEnC ∈ {16, 32, 64, 128, 256}. We run the iterative algo-

rithm 100 times. In each run we let the algorithm go through 10 iterations starting

from encoding and recovery unitaries which are identities. In each of the 100 runs

we set the mEnC × mEnC error Hamiltonian Herr randomly and normalized so that

‖Herr‖ = 0.25.

Fig. 5.1 shows plots of achieved fidelity vs. the number of codespace qubits.

The error bars correspond to 1-standard deviation. The dotted-line is for no iter-

ations (using identity as encoding and recovery), the dot-dashed line is for a single

iteration, and the dashed line is for 10 iterations. Each of these iterations requires

a tomography. There is clearly a tradeoff between number of codespace qubits and

number of tomography iterations. For example, to achieve a fidelity of 0.98 will cost

either 1 tomography and 4 codespace qubits, or 10 tomographies and 3 codespace
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Fig. 5.1. Fidelity vs. number of codespace qubits. The errorbars are 1-standard deviation from

100 runs with Herr chosen randomly for each case shown.

qubits. Similarly, to achieve a fidelity of 0.99 will cost either 1 tomography and 5

codespace qubits, or 10 tomographies and 4 codespace qubits. If tomography can be

computationally inexpensive, then minimizing the number of codespace qubits takes

priority. A remaining issue, then, is finding a way to do inexpensive quantum system

identification.

6. Concluding Remarks. The example illustrating the proposed iterative pro-

cedure between QPT and QEC shows an important design tradeoff between codespace

size and number of tomographies. There are, however, some caveats. The example

does not constrain the control Hamiltonian. Even allowing it to be any arbitrary

constant is a stretch in a laboratory setting. However, if the Hamiltonian is, as usual,

a linear combination of control variables, it may indeed be possible to achieve the

desired unitary in the time allowed. Formulating the problem as a complete optimal

control problem in QE-space is, as we mentioned, formidable [14]. Designing the con-

trol from process tomography, i.e., from an OSR representation, has not been solved.

Learning control, which does require a model of the system, like QPT, requires re-

peated experimental iterations [27]. Consequently, it is not clear at this time what

is the best approach. The example does show that there is an efficacy in separating

the control design in Q-space from the tomography. Moreover, the advantage of the

proposed iteration is that it is data-driven, and hence, amenable to implementation

in a laboratory setting.
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