
COMMUNICATIONS IN INFORMATION AND SYSTEMS c© 2011 International Press
Vol. 11, No. 3, pp. 225-236, 2011 002

AR SYSTEMS AND AR PROCESSES: THE SINGULAR CASE∗

M. DEISTLER† , A. FILLER‡ , AND B. FUNOVITS§

Abstract. We deal with singular multivariate AR systems and the corresponding AR processes.

An AR system is called singular if the variance of the white noise innovation is singular. AR

processes are the stationary solutions of AR systems. In the singular case AR processes consist of a

linearly regular and a linearly singular component. The corresponding Yule-Walker equations and in

particular the possible non-uniqueness of their solutions are discussed. A particular canonical form

is presented. Singular AR systems naturally arise as models for latent variables in dynamic factor

analysis.

1. Introduction. Autoregressive (AR) systems and autoregressive systems with

exogenous variables (ARX) are perhaps the most widely used model classes in time

series analysis. Here we deal with the multivariate AR case. Whereas it is usually

assumed that the one-step-ahead prediction error variance is non-singular, the focus

of this paper is on the case where this variance is singular. This singular case has

been discussed in detail in [11], [4], [8], [3].

We consider AR systems

(1.1) a(z)yt = νt

where yt are observed s-dimensional outputs, z is a complex variable as well as the

backward-shift on the integers Z, i.e. z(yt|t ∈ Z) = (yt−1|t ∈ Z),

a(z) = I − a1z − ... − apz
p, aj ∈ R

s×s

and (νt|t ∈ Z) is an unobserved s-dimensional stochastic process. Throughout we

assume that

(A1) a0 is non-singular

(A2) νt is white noise, i.e.

• Eνt = 0

• Σ = Eνtν
′
t does not depend on t

• Eνsν
′
t = 0, s 6= t and that

(A3) νt are the one-step-ahead forecast errors, i.e. Eysν
′
t = 0 for s < t.
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To be more explicit, here we do not consider solutions of (1.1) with general white

noise inputs, but construct the inputs from the outputs as their one-step-ahead fore-

cast errors.

We call an AR system regular if Σ > 0 holds, otherwise an AR system is called

singular. We can write

(1.2) Σ = bb′

where b ∈ Rs×r, rk(Σ) = r and where b is unique up to post-multiplication by orthog-

onal matrices. Accordingly, (1.1) can be written as

(1.3) a(z)yt = bεt, b ∈ R
s×r

where (εt) is white noise with Eεtε
′
t = I.

Singular AR systems naturally occur in linear dynamic factor models [2], [5], [8].

Linear dynamic factor models are used to compress information contained in high-

dimensional time series both in time and cross-sectional dimension. In such models

the observations are split into one part called latent variables, representing the co-

movements between the observed variables, and into a noise part representing the

individual movements. The latent variables result from a linear dynamic transforma-

tion of a lower dimensional dynamic factor process, which can be chosen as white noise.

Thus, the latent variables have a singular spectral density showing that co-movements

between the variables exist. Under suitable assumptions the latent variables may also

be obtained from a linear static transformation of a static factor process. In general

the dimension of the static factor process will be larger or equal to the dynamic factor

process, but of smaller dimension than the latent variables. As can be shown, a static

factor process has the same dynamics as the latent variables, see [5].

Moreover, it can be shown, [1], that in an appropriate rational setting the AR

case is generic, i.e. the stable mini-phase factor of the spectral density of the latent

variables has generically no zeros.

The paper is organized as follows: In section II we discuss stationary solutions of

AR systems, which in general consist of a linearly singular and a linearly regular part.

In section III we deal with the Yule-Walker equations, which may have non-unique

solutions. In section IV we choose a canonical representative as a particular unique

solution of the Yule-Walker equations.

2. Solutions of AR systems. A solution of (1.3) (on Z) is a stochastic process

(yt|t ∈ Z) satisfying (1.3) for given (a(z), b) and (εt). It is well known and easy to see

that the set of all solutions of (1.3) consists of one particular solution plus the set of

all solutions of the homogeneous equation

(2.1) a(z)yt = 0.
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A special particular solution, depending only on the transfer function a−1(z)b and

(εt) will be discussed below.

Clearly, the solution set is not changed by premultiplying (1.3) by a constant

non-singular matrix. In this sense, the normalization

(A4) a0 = I

is no restriction of generality and will be used throughout the paper. Also note,

that, due to (A1), for any initial conditions y−1, ..., y−p, a forward solution on N0 =

{0, 1, 2, ...} can be calculated by iteration.

(A1) implies, but is not equivalent to det a(z) 6≡ 0; the latter is equivalent to say that

there are no redundant equations in (1.3).

Without imposing (A3), stationary non-causal solutions may occur. However, this

is ruled out by (A3). If the stability condition

(2.2) det a(z) 6= 0, |z| ≤ 1

holds, then a−1(z) can be expanded into a power series converging in a disc containing

the unit circle

(2.3) a−1(z) =

∞∑

j=0

hjz
j

Note that (2.3), defined in this way, gives a causal and stationary solution

(2.4) yr
t =

∞∑

j=0

kjεt−j

To be more general, note that the pair (a(z), b) is always left co-prime for regular

AR systems, but not necessarily so for singular AR systems. However, (see [3]) there

always exist left co-prime (ã(z), b) such that a−1(z)b = ã−1(z)b holds and the degree

of ã(z) is smaller than or equal to the degree of a(z). The zeros of ã are the poles of

the transfer function a−1(z)b =
∞∑

j=0

kjz
j . From the discussion above it is clear that if

det ã(z) 6= 0, |z| ≤ 1

holds, then a stationary solution (2.4) exists and this solution is causal and stable Note

that det ã(z) is independent of the special choice of the left co-prime pair (ã(z), b) and

that det ã(z) divides det a(z) (see e.g. [10]).

We call a (weakly) stationary solution of an AR system an AR process. Note that

the solution (2.4) has a rational spectral density

(2.5)

fy(λ) = (2π)−1(

∞∑

j=0

kje
−iλj)(

∞∑

j=0

kje
−iλj)∗ = (2π)−1a−1(e−iλj)bb′

(
a−1(e−iλj)

)∗
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where * denotes the conjugate transpose. The spectral density fy is regular if the AR

system is regular and singular if the AR system is singular.

Note that the spectral density (2.5) of the solution (2.4) has constant rank r for all

λ. Thus, if we commence from the spectral density fy, fy can be factorized (see e.g.

[12], [9]) as

(2.6) fy(λ) = k(e−iλ)k∗(e−iλ)

where

k(z) =

∞∑

j=0

kjz
j , kj ∈ R

s×r

is rational, has no poles for |z| ≤ 1, and has no finite zeros at all. Thus the solution

process (2.4) corresponds to Wold representation. In particular, this shows that (yr
t )

is linearly regular. In addition, for given fy, k(z) is unique up to right multiplication

by a constant orthogonal matrix.

Proposition 1. A regular AR system (a(z), b) has a stationary solution (which

is causal with respect to the inputs satisfying (A3)) if and only if det a(z) 6= 0, |z| ≤ 1.

If a stationary solution exists, it is unique and linearly regular.

Proof. If det a(z) 6= 0, |z| ≤ 1, then a solution is given by (2.4). In this case, the

homogeneous solutions consist only of exponential decays (for t → ∞) or increasing

parts (for t → −∞) thus a non trivial stationary solution of the homogeneous equation

(2.1) does not exist.

Now assume that det a(z) has a zero of unit modulus. Assume that there exists a

stationary solution yt consisting of a linearly regular yr
t and linearly singular part ys

t .

Applying a(z) from the left on yt, we obtain a(z)yt = a(z)yr
t since the right hand side

of (1.3) is linearly regular and a(z)ys
t is linearly singular. In addition the spectral

density of a(z)yr
t would be singular at the frequencies corresponding to the zeros on

the unit circle, whereas the spectral density of εt is non-singular for all frequencies,

which is a contradiction. If det a(z) has a zero inside of the unit circle then a−1(z)

has no convergent power series expansion containing the unit circle and thus (A3) is

not satisfied.

Proposition 2. A singular AR system (a(z), b) has a stationary solution (which

is causal with respect to the inputs satisfying (A3)) if and only if

det ã(z) 6= 0, |z| ≤ 1

where a−1b = ã−1b and (ã(z), b) is left co-prime.

Proof. If det ã(z) 6= 0, |z| ≤ 1 then there exists the stationary solution yr
t =
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a−1(z)bεt. On the other hand, if (a(z), b) has a stationary solution, yt say, then

(2.7) xt =







yt

...

yt−p+1







=













a1 a2 . . . ap−1 ap

I 0 . . . · · · 0

0 I 0
...

...
. . .

. . .
. . . 0

0 · · · 0 I 0













︸ ︷︷ ︸

A







yt−1

...

yt−p







+









b

0
...

0









︸ ︷︷ ︸

B

εt

holds and thus, since xt is stationary too, the Ljapunov-equation

(2.8) Extx
′
t = Γx = AΓxA′ + BB′

holds. Assume that A is not stable, i.e. it has at least one eigenvalue λ, |λ| ≥ 1, and

a corresponding eigenvector x such that

(2.9) (1 − |λ|2)x′Γxx = x′BB′x.

If |λ| > 1 were true then for the equation (2.9) to hold x′Γxx has to be zero and

hence x′BB′x as well. Accordingly, if |λ| = 1, it is trivial that x′BB′x is zero.

Therefore, x′B = 0 must hold for |λ| ≥ 1. Subsequently, (I − Aλ−1, B) is not of full

rank or equivalently (a(λ−1), b) is not of full rank and thus not left co-prime. Let

u(z) be a (polynomial) greatest common left divisor of (a(z), b) such that (a(z), b) =

u(z)(ā(z), b̄(z)), with (ā(z), b̄(z)) left co-prime, then b̄(z) is of full column rank for all

z ∈ C since a−1(z)b = ā−1(z)b̄(z). Thus we find a left co-prime pair (ã(z), b) (see [5])

with a−1(z)b = ā−1(z)b̄(z) = ã−1(z)b.

Now let us consider general (stationary) solutions of equation (1.3) (compare to

[6]). Remember that every stationary process yt has, according to Wold decomposi-

tion, a uniquely defined linearly regular part yr,w
t as well as a uniquely defined linearly

singular part ys,w
t , where (yr,w

t ) and (ys,w
t ) are stationary, mutually uncorrelated and

obtained by linear causal transformations of (yt).

Theorem 2.1. Consider a general (stationary) solution of equation (1.3) of the

form yt = a(z)−1bεt + yh
t , where yh

t is an arbitrary solution of the homogeneous equa-

tion (2.1). Then the right hand side corresponds necessarily to Wold decomposition,

i.e. a(z)−1bεt = yr,w
t and yh

t = ys,w
t .

Proof. As it is immediate to see, the one-step-ahead prediction errors of yt and

a(z)−1bεt are the same, as the homogeneous solution can be predicted without error.

Thus εt in yr,w
t and in a(z)−1bεt can be chosen to be the same. Let yr,w

t =
∑∞

j=0 wjεt−j

and a(z)−1bεt =
∑∞

j=0 kjεt−j , then, as k0εt is the one-step-ahead prediction error for

a(z)−1bεt and w0εt is the one-step-ahead prediction error for yr,w
t , we have w0 = k0.

Considering the two-step-ahead prediction errors we obtain w1 = k1, and so on. Thus

yr,w
t = a(z)−1bεt.
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Remark 1. Note that we have not assumed a-priori that the homogeneous so-

lution yh
t is stationary. By the proposition above however this solution has to be

stationary and orthogonal to a(z)−1bεt whenever yt is stationary.

Now we consider stationary solutions of the homogeneous equation (2.1). The ho-

mogeneous equation (2.1) has (non trivial) stationary solutions if and only if det a(z) =

0 for some z with |z| = 1. From the formula for the transformation of spectral mea-

sures corresponding to linear transformations of the underlying processes (see e.g.

[12]), we obtain

(2.10) 0 = a(e−iλ)Fy(dλ)a(e−iλ)∗,

where Fy(dλ) denotes the spectral measure of a homogeneous solution. From this

it is immediate to see that a stationary solution must have a spectral distribution

function which can only have jumps at frequencies λj corresponding to the zeros of

det a(z) = 0 on the unit circle and is constant elsewhere. Thus the solution must be

a so called harmonic process (see [7]). A real-valued (weakly) stationary harmonic

process is of the form

(2.11) ys
t =

h∑

j=0

e−iλj twj

for Cs valued random values wj satisfying

Ew∗
j wj < ∞, j = 1, ..., h;(2.12)

Ewj =







0 λj 6= 0

Eys
t λj = 0

(2.13)

λ1+j = −λh−j(2.14)

w1+j = w̄h−j(2.15)

Such a process here in addition satisfies a(zj)wj = 0 with zj = e−iλj , compare

(2.10). Thus we have shown the following.

Proposition 3. For the given system (1.3) the set of all weakly stationary real

valued homogeneous solutions is the set of all harmonic processes of the form (2.11)

such that a(zi)wi = 0, ∀zi with det a(zi) = 0, |zi| = 1.

Now, from (2.11) we directly obtain







ys
t−1

...

ys
t−h







=







e−iλ1(t−1)I ... e−iλh(t−1)I
...

...

e−iλ1(t−h)I ... e−iλh(t−h)I







︸ ︷︷ ︸

V ′







w1

...

wh









AR SYSTEMS AND AR PROCESSES 231

where V ′ is nonsingular as the transposed of a generalized Vandermonde matrix. Thus

(2.16)







w1

...

wh







= V
′−1







ys
t−1

...

ys
t−h







3. The Yule-Walker Equations. Here we commence from an AR process,

which in general consists of a linearly regular and an orthogonal linearly singular part

corresponding to Wold decomposition

(3.1) yt = yr
t + ys

t .

The Yule-Walker equations are of the form

(3.2) (a1, ..., ap)Γp = (γ1, ..., γp)

where γj = Eyt+jy
′
t and Γm =










γ0 · · · · · · γm−1

... γ0

...
...

. . .
...

γ′
m−1 · · · · · · γ0










= Γr
m + Γs

m, where

Γr
m corresponds to the linearly regular part and Γs

m to the linearly singular part

respectively, and

(3.3) Σν = bb′ = γ0 − (a1, ..., ap)(γ1, ..., γp)
′.

Here e.g. the first row of (a1, ..., ap) gives the coefficients of the projection of y
(1)
t ,

i.e. the first element of yt, on the space spanned by the entries of yt−1, ..., yt−p in

the Hilbert space of square integrable random variables and Σν is the variance of the

one-step-ahead forecasting error, i.e. of νt = yt − (a1, ..., ap)(y
′
t−1, ..., y

′
t−p)

′. Clearly

(a1, ..., ap) is uniquely determined from γ0, ..., γp if and only if Γp is non-singular (or

equivalently if all (one dimensional) components of yt−1, ..., yt−p are linearly indepen-

dent). In the case of singular systems, Γp may be singular; then, for every row of

(a1, ..., ap) the solution set is one particular solution plus the kernel of Γp. On the

other hand, νt, whose components are the perpendiculars of orthogonal projections,

and thus Σν are always unique and b is unique up to post-multiplication by constant

orthogonal matrices. Note that νt is orthogonal to all ys, s < t (and not only to

yt−1, ..., yt−p). A matrix (a1, ..., ap, b) satisfying (3.2) and (3.3) (for given γ0, ..., γp) is

called a solution of the Yule-Walker equations. Note that the word solution used in

this paper has two meanings, namely a solution of an AR system, which is a stationary

process and a solution of the Yule-Walker equations which gives an AR system.

Proposition 4. Let the given sequence of covariances γ0, ..., γp correspond to a

solution of a singular AR system, then any solution (a1, ..., ap, b) of the Yule-Walker

equations gives the same (true) sequence γj , j ∈ Z.



232 M. DEISTLER, A. FILLER, AND B. FUNOVITS

Proof. Let j ≥ p + 1 then γj = Eyty
′
t−j = E(a1yt−1 + ... + apyt−p + νt)y

′
t−j =

E(a1yt−1 + ... + apyt−p)y
′
t−j which is the same for all solutions of the Yule-Walker

equations. As γj = γ′
−j holds, the result follows.

As has been stated, if Γp is singular, the solutions of the Yule-Walker equations

are not unique. As can be seen from the following proposition, all solutions of the

Yule-Walker equations result in the same transfer function.

Proposition 5. For given (yt)t∈Z, for any two solutions (a(z), b), (ã(z), b) of the

Yule-Walker equations, the transfer functions a(z)−1b and ã(z)−1b coincide.

Proof. Let (a(z), b) and (ã(z), b) denote two solutions of the Yule-Walker equa-

tions, then the original process (yt)t∈Z is a solution of both systems. By theorem 2.1

a(z)−1bεt = ã(z)−1bεt and thus a(z)−1b = ã(z)−1b holds.

4. A Canonical Form for Singular AR Systems. Note that in general for

a given system its solution is not unique, in the sense that the linearly regular part

is uniquely determined by the transfer function and the εt, but the linearly singular

part in general depends on the choice of the initial values. On the other hand, a given

process yt does not yield a unique AR system if Γp is singular. For given covariances

γ0, ..., γp consider the class of all AR systems (a(z), b) for which initial values exist,

such that the corresponding solution of the AR system yields again the same covari-

ances. Here the problem of selecting a unique representative will be discussed.

We commence from an AR model

(4.1) yt = a1yt−1 + ... + apyt−p + bεt

where bεt are the one-step-ahead prediction errors. The vector xt−1 = (y′
t−1, ..., y

′
t−p)

′

is a state for the state space system

xt = Axt−1 + Bεt(4.2)

yt = Cxt−1 + bεt

where A =












a1 a2 . . . ap

I 0 . . . 0

0 I 0 . . .
...

. . .
. . .

I 0












, B =













b

0
...
...

0













and C = (a1, ..., ap). The state process

(xt) is stationary, since (yt) is stationary by assumption. Now we select a state of

smaller dimension in two steps.

Step 1:

Select the first basis of elements y
(i)
t−j (where y

(i)
t−j denotes the i-th element of the

vector yt−j) for the space spanned by the elements of xt−1 in the Hilbert space of
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square integrable one dimensional random variables. This corresponds to selecting

the first basis rows in terms of rows of Γp for the row space of Γp. Such a selection is

“nice” in the sense that if y
(i)
t−j−1 is contained in such a selection then also y

(i)
t−j , i.e.

there are no “holes”. This can be seen as follows. Suppose that y
(i)
t−j can be expressed

as a linear combination of preceding basis elements, then y
(i)
t−j−1 can be expressed by

the same linear combination of the corresponding shifted elements and thus also by

its preceding basis elements.

Let S1 be a selector matrix such that S1xt−1 forms the basis described above.

Using the corresponding rows in Γp, a unique solution of the Yule-Walker equations,

say (a1, ..., ap) is obtained, where the columns of aj not corresponding to basis rows

are set equal to zero. The corresponding a(z) is uniquely defined in this way, because

the elements of S1xt−1 are linearly independent.

Step 2:

Now note that we may still reduce the dimension of S1xt−1 because some of its

elements may not be used in expressing any predictor, no matter what prediction

horizon (actually, only prediction horizons from 1 to p have to be checked). The state

obtained by omitting these never used elements from the basis is denoted by Sxt−1.

Again, there are no “holes”: Consider

ŷt|t−1 = a1yt−1 + ... + apyt−p

ŷt+1|t−1 = a1ŷt|t−1 + ... + apyt−p+1(4.3)

where ŷt+j|t−1 denotes the predictor of yt+j from yt−1, yt−2, .... Consider the case

where e.g. y
(i)
t−1 is not an element of Sxt−1, then observe that

• the j-th column of a1 has to be zero

• and ŷt+1|t−1 = (a2
1 + a2)yt−1 + ... and thus the j-th column of a2

1 + a2 has to

be zero etc.

Now we define indices n1, ..., ns such that the selected state consists of the elements

(reordered) y
(1)
t−1, ..., y

(1)
t−n1

, ..., y
(s)
t−1, ..., y

(s)
t−ns

. Note that the corresponding a(z) has

not been changed by the second step, because only certain zero coefficients have been

removed; of course now ni is the degree of the i-th column of a(z). For future refer-

ence, the AR system defined above will be denoted by (ā(z), b), where ā(z) is unique

and b is unique up to post-multiplication by orthogonal matrices.

Note that this procedure results in the same ā(z) for any Γp, p sufficiently large.

This selection procedure with state

(4.4) x̄t = Sxt
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leads to a “quasi companion form” Ā obtained from (4.2) by deleting the correspond-

ing rows and columns which corresponds to the system

x̄t = Āx̄t−1 + B̄εt(4.5)

yt = C̄x̄t−1 + bεt

Clearly, ā(z) is a solution of the Yule-Walker equations. Note that by the definition

of x̄t we have

(4.6) Γx̄ = Ex̄tx̄
′
t > 0

We have the following result for the system (4.5).

Theorem 4.1. The system (4.5) is stable and reachable if and only if the Yule-

Walker equations contain a stable solution.

Proof. If the Yule-Walker equations contain a stable solution then the correspond-

ing AR process must be linearly regular and thus Γp must be equal to Γr
p. Thus also

x̄t is a linearly regular process and thus

Γx̄ = (B̄, ĀB̄, ...)(B̄, ĀB̄, ...)′

and therefore by (4.6) the system (4.5) must be reachable.

On the other hand, if there is no stable solution of the Yule-Walker equations then

the special solution ā(z) is not stable and thus Ā has an eigenvalue of modulus larger

than or equal to one. From (4.5) we get

Γx̄ = ĀΓx̄Ā′ + B̄B̄′

Let x be an eigenvector of Ā corresponding to the eigenvalue λ, then

(4.7) (1 − |λ|2)x′Γx̄x = x′B̄B̄′x

It follows from |λ| ≥ 1 that x′B̄ = 0 and thus (I − Āz, B̄) does not have full rank for

all z ∈ C.

Corollary 4.2. The system (ā(z), b) is stable and left co-prime if and only if

the Yule-Walker equations contain a stable solution.

Proof. The proof easily follows from the fact that the eigenvalues of Ā correspond

to the zeros of the determinant of a left co-prime matrix fraction description of the

transfer function ā−1(z)b and that by construction the degree of det ā(z) is smaller or

equal to n =
∑s

i=1 ni.

Remark 2. Note that the state space system (4.5) is not necessarily minimal.

This is true for two reasons.

First, the usual notion of minimality of state space systems is related to observational

equivalence via transfer functions and does not take into account the linearly singular
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component of the observed process. For example, if yt is purely linearly singular

(and non-trivial) our corresponding state space system would necessarily have state

dimension larger than zero but can never be reachable and thus not minimal.

Second, even if yt is purely linearly regular, the case in which the system (4.5) is

reachable by theorem 4.1, then the system (4.5) is still not necessarily observable

since in our construction we have only removed zero columns from the observability

matrix. This can be seen from the following example.

Example 1. Let

yt =

[

yt,1

yt,2

]

=

[

1/4 1/6

1/3 1/5

]

yt−1 +

[

1/8 1/8

1/8 1/8

]

yt−2 + εt

be a regular stable AR(2) process (Σ = Eεtε
′
t regular) which can be represented as

xt = Axt−1 + Bεt(4.8)

yt = Cxt−1 + εt(4.9)

A =









1/4 1/6 1/8 1/8

1/3 1/5 1/8 1/8

1 0 0 0

0 1 0 0









, B =

[

I

0

]

, C =

[

1/4 1/6 1/8 1/8

1/3 1/5 1/8 1/8

]

,

xt =









yt,1

yt,2

yt−1,1

yt−1,2









.

It is easy to see that the system (4.8) (4.9) is reachable, but not observable as [0, 0, 1,

−1]′ is in the right kernel of [C′, A′C′, ...]′. As yt is a regular AR(2) process, Γ2 is

regular and thus the steps 1 and 2 are irrelevant. A minimal system would be

Ā =






1/4 1/6 1/8

1/3 1/5 1/8

1 1 0




 , B̄ =






1 0

0 1

0 0




 , C̄ =

[

1/4 1/6 1/8

1/3 1/5 1/8

]

,

x̄t =






yt,1

yt,2

yt−1,1 + yt−1,2




 .

5. Conclusions. In this contribution we have discussed certain aspects of mul-

tivariate singular AR systems. In particular we analyzed the set of solutions of such

systems and the set of solutions of the corresponding Yule-Walker equations. Finally

we suggested a special unique solution for the case where the Yule-Walker equations

have no unique solution.
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