
COMMUNICATIONS IN INFORMATION AND SYSTEMS c© 2011 International Press
Vol. 11, No. 2, pp. 105-118, 2011 001

A SIMPLE EXAMPLE OF AN ADAPTIVE CONTROL SYSTEM∗

A. S. MORSE†

Abstract. This paper describes and analyzes a switched adaptive control system which on the

one hand is simple enough to allow for a fairly transparent analysis while on the other, is formidable

enough to explain how one might deal with two of the most challenging attributes associated with

any adaptive control problem, namely noise and un-modeled dynamics.

1. Introduction. With the development of many clever and innovative ideas,

adaptive feedback control has come a very long way over the past forty years. Despite

this, it is fair to say that the methodology has not achieved widespread acceptance in

practice or within the broader control research community. Two of the main reasons

for this are (1) the methodology is not articulated clearly enough so that non-experts

can easily grasp key concepts and (2) there is no convincing performance theory

upon which to base designs. In this paper we try to address the first of these issues

by focusing on an example which on the one hand is simple enough to allow for

a fairly transparent analysis, while on the other is formidable enough to exemplify

how one might deal with two of the most challenging attributes associated with any

adaptive control problem, namely noise and un-modeled dynamics. Although all of

the ideas in the paper can be found in earlier work, especially in [1] and [2], it is hoped

that this simple example will stimulate much needed further research addressing the

aforementioned issues.

We begin in Section 2 with a detailed description of the overall system to be

considered. The system consists of the process to be controlled, a multi-controller,

a multi-estimator, a monitor and a dwell-time switching logic. For the sake of con-

ciseness, we spend little time on motivation. Readers interested in a broader picture

are referred to [2] and the references therein. In Section 3 we carry out a complete

analysis of the system with the ultimate goal of obtaining an explicit bound on the

response of the system to a bounded noise input. The bound appears in the inequality

in (3.29) at the end of Section 3. Simulation results are presented in Section 4. The

simulations suggest that an improvement in performance can be achieved with smaller

dwell times. A partial explanation of why this is so is given in Section 5.

2. The System. The system to be considered consists of the process to be

controlled P, a linear multi-controller C, a linear multi-estimator E, a monitor M and
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a dwell time switching logic S. In this section we define each of these sub-systems.

2.1. The Process P. The process P is assumed to be accurately modeled by a

linear system of the form

ẏ = .1y + bu+ n + δ ◦ y b ∈ {−1, 1}(2.1)

where b is an uncertain parameter whose value might be either 1 or −1, n is L∞

bounded noise and δ is a linear operator representing un-modeled dynamics. We

assume that δ has a rational transfer function whose poles have real parts smaller

than the value −0.05. It will be convenient to parameterize the system in (2.1) by

setting b = 3 − 2q where q’s value is in the parameter space {1, 2}. Thus with the

new parameterization

ẏ = .1y + (3 − 2q)u+ n + δ ◦ y,(2.2)

for some q ∈ {1, 2}.

2.2. The Multi-Controller C. The multi-controller to be considered is de-

scribed by the switched output-feedback law

u = −3(3 − 2σ)y(2.3)

where σ is a piecewise-constant switching signal taking values in the parameter space

{1, 2}. Note that if the “correct” value of q were known and σ were set equal to q,

then this control would result in the closed-loop model ẏ = −2.9y of the nominal

open-loop subsystem ẏ = .1y+ (3− 2q)u. Since the correct value of q is not assumed

to be known, an alternative procedure must be developed to generate σ. Towards this

end, let we will consider a supervisory control system consisting of three subsystems

which we describe next.

2.3. The Multi-Estimator E. The first subsystem, called a multi-estimator E,

is described by the linear system

ẋ1 = −2.9x1 + 3y + u, x1(0) = 0(2.4)

ẋ2 = −2.9x2 + 3y − u, x2(0) = 0(2.5)

together with the output estimation errors

e1 = x1 − y e2 = x2 − y(2.6)

Recognize that the multi-estimator consists of two observers, one for the nominal

model ẏ = .1y + u and the other for the nominal model ẏ = .1y − u. Thus if δ and n

were both zero, the qth output estimator error would satisfy ėq = −2.9eq, and thus

would tend to zero exponentially fast. Of course with n 6= 0, convergence of eq to zero

cannot be concluded. Nonetheless the multi-estimator is useful because it provides

guidance for selecting the value of σ.
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2.4. The Monitor M. In order to keep track of the relative sizes of the output

estimation errors, use is made of the two “monitoring” signals µ1 and µ2 which are

generated by the equations

µ̇1 = −2λµ1 + e21, µ1(0) = 0 µ̇2 = −2λµ2 + e22, µ2(0) = 0(2.7)

where

λ = 0.05(2.8)

Here λ is a design parameter which has been chosen to be smaller than the assumed

stability margin of δ.

2.5. The Switching Logic S. The switching logic to be considered is a simpli-

fied version of the dwell-time switching logic discussed in [2]. The logic is a hybrid

dynamical system whose inputs are µ1 and µ2, and whose state is the ordered pair

{τ, σ} where τ is a continuous-time variable called a timing signal. τ takes values in

the closed interval [0, τD] where τD is a pre-specified positive design parameter called

a dwell time. In the sequel we will discuss what needs to be considered in picking τD.

The function of S is described by the computer flow diagram shown in Figure 2.1.

Fig. 2.1. Dwell-Time Switching Logic

Here p∗(t) is a value of p ∈ {1, 2} which minimizes µp(t). The diagram can be

explained as follows. Initially τ is set equal to zero and σ is set equal to one of the
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values in {1, 2}. Over the next τD time units, τ increases linearly to τD and σ is held

fixed at its initial value. After τD time units have elapsed, µp∗ is compared with µσ

and τ is held fixed at τD. A switch in the value of σ occurs only if a time ts is reached

at which the value of the smallest µp(ts), p ∈ {1, 2} drops below the value of µσ(ts).

If this occurs σ(ts) is set equal to p∗(ts) and held fixed at this value while τ is reset to

zero and then increased linearly to τD; τ is then held constant until σ again switches

which is just when the value of the smallest µp, p ∈ {1, 2} again drops below the

value of µσ(t−s )(ts) where t−s is the time instant just before ts. And so on.

By the switching times of S are meant the times at which σ changes value. It

will be convenient to regard time t = 0 as a switching time. We say that S is dwelling

at time t if t ∈ (ts, ts + τD) where ts is a time at which S switches. Note that if t

is such a time, it is impossible to draw a conclusion about the relative sizes of µ1(t)

and µ2(t) from properties of S. On the other hand, if t is not a time at which S is

dwelling, then as a consequence of the definition of S,

µσ(t)(t) ≤ µk(t), k ∈ {1, 2}(2.9)

Let us note that the outputs which S produces are piecewise constant signals tak-

ing values in {1, 2}, which have the property that the time between any two successive

switching times is bounded below by τD. We write S for the set of all such switching

signals.

3. Analysis. The interconnection of the process P, the multi-controller C, the

multi-estimator E, the monitor M and the dwell-time switching logic S can be viewed

as a hybrid dynamical system with input n and output y. In this section we analyze

the behavior of this system.

3.1. The Injected System. Observe that application of the multi-controller

described by (2.3) to the multi-estimator equations (2.4) and (2.5) results in the

system

ẋ1 = −2.9x1 − 6(1 − σ)y(3.1)

ẋ2 = −2.9x2 + 6(σ − 2)y(3.2)

Note that

xσ = (2 − σ)x1 + (σ − 1)x2(3.3)

and that

eσ = xσ − y(3.4)

These two equations show that y can be written as

y = [ (2 − σ) (σ − 1) ]

[

x1

x2

]

− eσ(3.5)
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Substitution of this expression for y into (3.1) and (3.2) thus yields the equation

[

ẋ1

ẋ2

]

=

[ −2.9 6(1 − σ)2

6(2 − σ)2 −2.9

] [

x1

x2

]

+ 6

[

1 − σ

2 − σ

]

eσ(3.6)

In deriving (3.6) we have used the fact that (1− σ)(σ − 2) = 0 for σ ∈ {1, 2}. By the

injected system for the problem under consideration is meant the system described

by (3.5) and (3.6). The injected system is thus a switched linear system depending

on σ ∈ S, with input eσ, output y and input-output map hI ; i.e. y = hI ◦ eσ. This

system will play a central role in describing the behavior of the overall hybrid system

under consideration.

3.2. Choosing τD. A key consideration in the selection of τD it to make sure

that it is large enough so that for any switching signal σ ∈ S, the injected system is

exponentially stable. In this section we explain how this might be carried out.

We begin with the observation that the state equation (3.6) is a switched linear

system of the form ẋ = Aσx+ bσeσ where

x =

[

x1

x2

]

, A1 =

[−2.9 0

6 −2.9

]

, A2 =

[−2.9 6

0 −2.9

]

A simple calculation shows that

∣

∣eApt
∣

∣ = (6t+ 1)e−2.9t, t ≥ 0 p = 1, 2

where | · | denotes the induced infinity norm. From this it is easy to verify that

∣

∣eApt
∣

∣ ≤ e(.466−1.0t), p ∈ {1, 2}

Lemma 2 of [1] states that if τD > .466
1.0 , then for all σ ∈ S, the state transition matrix

of Aσ must satisfy |φ(t, τ)| ≤ e.466−ωt, t ≥ τ ≥ 0 where ω = 1.0 − .466
τD

. Thus if we

pick

τD = .5(3.7)

then

|φ(t, τ)| ≤ e{.466−.068(t−τ)}, t ≥ τ ≥ 0, σ ∈ S(3.8)

3.3. Analyzing Dwell-time Switching. In the sequel we view the combina-

tion of the monitor M and the dwell time switching logic S as a hybrid dynamical

system with continuous inputs e1, e2 and piecewise constant output σ. It will be

convenient to introduce the notation

||s||T =

√

∫ T

0

(eλts(t))
2
dt, T ≥ 0
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where s : [0,∞) → Rm is a piecewise continuous signal and λ is the design parameter

defined by (2.8) ; for T > 0, || · ||T is thus an exponentially weighted L2[0, T ] norm.

Note that because of the definition of µp in (2.7) and the variation of constants formula

µp(t) = e−2λt||ep||2t , t ≥ 0, p ∈ {1, 2}

This and (2.9) imply that

||eσ(T )||T ≤ ||ek||T , k ∈ {1, 2}(3.9)

for every value of T at which S is not dwelling. It is worth emphasizing at this point

that ||eσ||T and ||eσ(T )||T are different quantities. The former is the norm of the signal

eσ(t)(t), t ∈ [0, T ) while the latter is the norm of the signal eσ(T )(t), t ∈ [0, T ).

The following lemma is the key to deriving a relationship between eσ and eq.

The lemma is a direct consequence of (3.9) and the fact that σ is constant when S is

dwelling.

Lemma 3.1. Let σ be the response of the interconnection of M and S to inputs e1

and e2. For any time T > 0 and any p ∈ {1, 2}, there is a piecewise constant signal

ψ : [0,∞) → {0, 1} such that

||eσ − ψ(eσ − ep)||T ≤
√

2||ep||T ,(3.10)

where

∫ ∞

0

|ψ|dt ≤ τD(3.11)

Proof. Note first that if σ(t) = p for all t ∈ [0, T ), then (3.10) and (3.11) both

hold with any ψ(t). To complete the proof, it is enough to consider the case when

σ(t) = p̄ for some t ∈ [0, T ) where p̄ is the complement of p in {1, 2}. We do this next.

Suppose σ(t) = p̄ for some t ∈ [0, T ) and let t̄ be the supremum of the values

of t ≤ T for which σ(t) = p̄. For k ∈ {1, 2} let Ik denote the union of the intervals

within [0, T ) on which σ = k. We claim that ψ can be chosen so that (3.11) holds,

and in addition so that

||(1 − ψ)ep̄||t̄ ≤ ||ep||t̄(3.12)

and

I∗ ⊂ Ip̄(3.13)

where I∗ is the set of values of t for which ψ(t) = 1. To prove that this is so, first

consider the case when ||ep̄||t̄ ≤ ||ep||t̄. In this case, (3.11) - (3.13) clearly hold with

ψ = 0, t ∈ [0,∞). Consider next the case when ||ep̄||t̄ > ||ep||t̄; in other words
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||eσ(t̄)||t̄ > ||ep||t̄. In this case (3.9) implies that S must be dwelling at t̄; therefore

σ(ts) = p̄ where ts is the last switching time before t̄. Thus ||ep̄||ts ≤ ||ep||ts because of

(3.9). Thus if we define ψ = 1 on the interval [ts, t̄) and ψ = 0 elsewhere, then (3.11)

and (3.13) hold and ||(1 − ψ)ep̄||t̄ = ||(1 − ψ)ep̄||ts . Therefore ||(1 − ψ)ep̄||t̄ ≤ ||ep||ts .
But ||ep||ts ≤ ||ep||t̄ because ts ≤ t̄ so (3.12) is true. Thus the claim is proved.

To proceed note that ||eσ − ψ(eσ − ep)||2T = ||(1 − ψ)eσ||2T + ||ψep||2T because

ψ(1 − ψ) = 0. Thus

||eσ − ψ(eσ − ep)||2T =

∫

Ip̄

(eλt(1 − ψ)ep̄)
2dt+

∫

Ip

(eλt(1 − ψ)ep)
2dt+

∫ T

0

(eλtψep)
2dt

=

∫

Ip̄

(eλt(1 − ψ)ep̄)
2dt+

∫

Ip

(eλtep)
2dt+

∫

I∗

(eλtep)
2dt

But Ip and I∗ are disjoint because of (3.13) so

||eσ − ψ(eσ − ep)||2T =

∫

Ip̄

(eλt(1 − ψ)ep̄)
2dt+

∫

Ip∪I∗

(eλtep)
2dt

Therefore

||eσ − ψ(eσ − ep)||2T ≤
∫ t̄

0

(eλt(1 − ψ)ep̄)
2dt+

∫ T

0

(eλtep)
2dt

so ||eσ − ψ(eσ − ep)||2T ≤ ||(1 − ψ)ep̄||2t̄ + ||ep||2T . But ||(1 − ψ)ep̄||2t̄ || ≤ ||ep||2t̄ because

of (3.12) and ||ep||2t̄ ≤ ||ep||2T so ||eσ − ψ(eσ − ep)||2T ≤ 2||ep||2T . It follows that (3.10)

is true.

3.4. The Block Diagram. In analyzing the overall hybrid system, we will make

use of a block diagram which captures the essential features of the hybrid system. To-

wards this end let us note that the definitions of the output estimation errors in (2.6),

together with the process model equation (2.2) and the multi-estimator equations

(2.4) and (2.5) imply that eq must satisfy

ėq = −2.9eq − n− δ ◦ y(3.14)

This equation plus the injected system lead to the partially complete block diagram

shown in Figure 3.1. Observe that each of the three subsystems shown in the block

diagram is exponentially stable with stability margin greater than the value of λ given

by (2.8). Thus if eσ were related to eq by for example a gain {e.g., eσ = geq}, then

one would have an exponentially stable closed loop system provided δ were small in

some suitably defined norm. Although no such gain exists, it is nonetheless possible

to derive a relationship between eq and eσ which serves much the same purpose. In

particular we will show that

||eσ||t ≤ 2eγτD ||eq||t, t ≥ 0(3.15)
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Fig. 3.1. Block Diagram

where

γ = sup
σ∈S

sup
t>0

sup
p∈{1,2}

∫ t

0

(

eλ(t−τ)hp(t, τ)
)2

dτ,(3.16)

hp(t, τ) = (p− σ(t)) [ 1 −1 ]φ(t, τ)6

[

1 − σ(τ)

2 − σ(τ)

]

(3.17)

and φ is the state transition matrix of Aσ. Note that γ is finite because λI +Aσ is a

stability matrix.

To derive the inequality in (3.15) we will need to first develop a relationship

between the signal eσ − eq which appears on the left side of the inequality in (3.10),

and the signal eσ. To do this, first note that eσ − eq = xσ − xq because of (2.6) and

(3.4). Using the expression for xσ in (3.3) we thus obtain the formula

eσ − eq = (q − σ)(x1 − x2)(3.18)

The signal eσ − e1 is thus an output of the injected system. In particular

eσ − e1 = hq ◦ eσ(3.19)

where hp is as in (3.17). Fix T > 0 and σ ∈ S and let ψ be as in Lemma 3.1. In view

of the preceding we may therefore write

||ψ(eσ − eq)||2t =

∫ t

0

(

eλsψ(s)

∫ s

0

hq(s, τ)eσ(τ)(τ)dτ

)2

ds

=

∫ t

0

ψ2(s)

(
∫ s

0

eλ(s−τ)hq(s, τ)e
λτeσ(τ)(τ)dτ

)2

ds

From this, the Cauchy-Schwartz inequality and the fact that ψ is idempotent it follows

that

||ψ(eσ − eq)||2t ≤
∫ t

0

ψ(s)

{

(
∫ s

0

eλ(s−τ)hq(s, τ)

)2

dτ

∫ s

0

(

eλτeσ(τ)(τ)dτ
)2

}

ds

Thus

||ψ(eσ − eq)||2t ≤ γ

∫ t

0

ψ(s)||eσ||2sds, t ∈ [0, T ](3.20)



ADAPTIVE CONTROL SYSTEM 113

where γ is given by (3.16).

To proceed, suppose we set

ē = eσ − ψ(eσ − eq)(3.21)

in which case

||ē||T ≤
√

2||eq||T(3.22)

because of (3.10). But if we re-write (3.21) as eσ = ē+ ψ(eσ − eq) we obtain

||eσ||2t ≤ 2||ē||2t + 2||ψ(eσ − eq)||2t , t ∈ [0, T ]

Therefore

||eσ||2t ≤ 2||ē||2T + 2||ψ(eσ − eq)||2t , t ∈ [0, T ]

so by (3.22)

||eσ||2t ≤ 4||eq||2T + 2||ψ(eσ − eq)||2t , t ∈ [0, T ]

Hence by (3.20)

||eσ||2t ≤ 4||eq||2T + 2γ

∫ t

0

ψ||eσ||2sds, t ∈ [0, T ]

Therefore by the Bellman-Gronwall Lemma

||eσ||2t ≤
(

4e2γ
∫

t

0
ψds

)

||eq||2T , t ∈ [0, T ]

so

||eσ||2T ≤ 4e2γ
∫

T

0
ψds||eq||2T

Hence by (3.11)

||eσ||2T ≤ 4e2γτD ||eq||2T

so finally

||eσ||T ≤ 2eγτD ||eq||T

Since T is arbitrary, this inequality holds for all T and so (3.15) is true.

3.5. Completing the Analysis. Let us define the gains g1, g2, g3

g1 = sup
σ∈S

||hI ||∞ g2 = ||δ||∞ g3 = 2eγτD ||hE ||∞(3.23)

where || · ||∞ is the induced exponentially weighted L2[0,∞] norm and hI and hE are

respectively the input-output maps of the injected system and the linear system with
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transfer function 1
s+2.9 . These gains are all finite because the subsystems to which

they correspond all have stability margins larger than λ. In view of (3.15) and the

block diagram in Figure 3.1, we have the inequalities

||eσ||t ≤ g3(||n||t + g2||y||t) t ≥ 0

||y||t ≤ g1||eσ||t, t ≥ 0

Thus

||eσ||t ≤ g3(||n||t + g2g1||eσ||t) t ≥ 0

At this point we make the small gain assumption

g3g2g1 < 1(3.24)

which provides a bound on how large the un-modeled dynamics can be. In other

words, the “gain” around the loop in the “feedback” system described by the block

diagram and (3.15) is less than 1. As a result

||eσ||t ≤
g3

(1 − g1g2g3)
||n||t, t ≥ 0(3.25)

Our next goal is to show that the L∞[0,∞] norm of y, namely |y|∞, is bounded

above by a constant times the L∞[0,∞] norm of n. To do this we will make use of the

following easily verified facts. First, for any piecewise-continuous signal w : [0,∞) →
R

e−λt||w||t ≤
1√
2λ

|w|∞, t ≥ 0(3.26)

Second, if h is the input-output map of a strictly causal linear system with stability

margin larger than λ, then the gain

〈h〉 ∆
= sup

t>0
sup
w

|{h ◦ w}t|
e−λt||w||t

(3.27)

is finite; here {h ◦ w}t denotes

{h ◦ w}t =

∫ t

0

h(t, τ)w(τ)dτ

The definition of 〈h〉 implies that

|{h ◦ w}t| ≤ 〈h〉e−λt||w||t t ≥ 0

To proceed note first that

|eσ − eq|t ≤ sup
τ≤t

〈hq〉e−λτ ||eσ||τ t ≥ 0
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because of (3.19). This, (3.25) and (3.26) imply that

|eσ − eq|∞ ≤ g3g4√
2λ(1 − g1g2g3)

|n|∞(3.28)

where

g4 = max
p∈{1,2}

〈hp〉

Next observe from the block diagram that

eq = hE ◦ (δ ◦ y − n)

Therefore

|eq|t ≤ sup
τ≤t

〈hE〉e−λτ (||δ ◦ y − n||τ

so

|eq|t ≤ sup
τ≤t

〈hE〉e−λτ (g2||y||τ + ||n||t)

But ||y||t ≤ g1||eσ||t and ||eσ||t ≤ g3
1−g1g2g3

||n||t so

|eq|t ≤ sup
τ≤t

〈hE〉e−λτ
(

g1g2
g3

1 − g1g2g3
+ 1

)

||n||τ )

which simplifies to

|eq|t ≤ sup
τ≤t

e−λτ
( 〈hE〉

1 − g3g2g1

)

||n||τ )

This and (3.26) imply that

|eq|∞ ≤ 〈hE〉√
2λ(1 − g3g2g1)

|n|∞

Combining this with (3.28) one thus obtains

|eσ|∞ ≤ 〈hE〉 + g3g4√
2λ(1 − g3g2g1)

|n|∞

Therefore we arrive finally at the inequality

|y|∞ ≤ |hI |∞
〈hE〉 + g3g4√
2λ(1 − g3g2g1)

|n|∞(3.29)

where |hI |∞ is the induced infinity norm of hI . This bound, while undoubtedly quite

conservative, proves that the L∞[0,∞] norm of y is bounded by a finite constant times

the L∞[0,∞] norm of n.
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4. Simulation Results. Below are graphs1 showing the response y to a sinu-

soidal noise input n = sin 5t assuming that q = 1, and that the transfer function of

δ is 3
s+5 . The graphs on the left are for a dwell time of τD = 0.5 while those on the

right are for τD = 0.1. The simulation on the right shows a modest improvement in

performance when compared with the simulation for τD = .5. Although the theory

we have developed so far does not predict this, performance improvement with faster

switching has been observed before.

t

y

t

0.5
D

y

t

t

0.1
D

Fig. 4.1. Simulation Graphs

5. Fast Switching. The theory developed in the Section 3.2 demands that τD >

.446 in order for the injected system to be stable. So why doesn’t switching with a

value of τD significantly smaller than this destabilize the overall system? The reason

for this is to some extent because the lower bound of .446 on τD is conservative. But

there is another more compelling reason which we now explain. For simplicity, we do

this assuming that the uncertain process model parameter q = 1.

Recall that

eσ − e1 = (σ − 1)(x2 − x1)(5.1)

Note that for any 2 × 1 matrix k =

[

k1

k2

]

it is possible to re-write the state equation

1These graphs document the results of simulations performed by Shaoshuai Mou.
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of the injected system (3.6) as

ẋ = Āσx+ bσeσ + k(eσ − e1)(5.2)

where

Ā1 = A1 =

[−2.9 0

6 −2.9

]

Ā2 = A2 + kc =

[−2.9 6

0 −2.9

]

+

[

k1

k2

]

[ 1 −1 ]

and c = [ 1 −1 ]. Note that the matrix pair (c, A2) is observable as is the pair

(c, λI +A2). The “squashing lemma” in [1] states that for any given τD > 0 and any

positive number α, it is possible to find a matrix k and a positive number ω so that

∣

∣

∣
e(λI+A2+kc)t

∣

∣

∣
≤ αe−ω(t−τD)

or equivalently so that

∣

∣

∣
e(A2+kc)t

∣

∣

∣
≤ αe−(λ+ω)(t−τD)

Using this fact plus the fact that λI + A1 is a stability matrix, it is not difficult to

shown that for any τD > 0, it is possible to choose k so that Āσ is exponentially stable

with stability margin greater than λ.

Suppose that for τD = .1, k is so chosen. Recall the readout equation (3.5) for y:

y = [ (2 − σ) (σ − 1) ]

[

x1

x2

]

− eσ

This plus the differential equation (5.2) define an exponentially stable system with

stability margin larger than λ whose inputs are e1 and eσ and whose output is y. We

call this the squashed system. The relevant block diagram is as follows.

±

� � s q u a s h e ds y s t e m
Fig. 5.1. Modified Block Diagram

It is important to keep in mind that we have not changed the original system in any

way other than allowing τD to be a smaller dwell time than that which is known to

stabilize the original injected system.

Note that the relationship between eq and eσ in (3.15) still holds with the original

values of γ and τD. In addition, each of the subsystems depicted in the block diagram

in Figure 4.1 have stability margin greater than λ. Thus the same type of analysis
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as in Section 3.5 can be used here to obtain a relationship between |y|∞ and |n|∞
provided ||δ||∞ is sufficiently small. In this regard, “squashing” the original injected

system with the output injection k(eσ − e1) almost certainly increases the loop gain

of the system shown in Figure 4.1, suggesting that there is a natural tradeoff between

the size of τD {or transient performance} on the one hand, and how much un-modeled

dynamics the system can tolerate on the other. Indeed these observation are consistent

with the simulation results we have observed.

6. Concluding Remarks. In this paper we have sought to explain in relatively

uncluttered terms how a particular type of switched adaptive control system works.

A reading of the paper reveals one of adaptive control’s main weaknesses, namely that

there are very few available guidelines for choosing the many design parameters needed

to actually design such a system. In order to address this weakness, a considerably

more transparent explanation of adaptive control concepts is needed. This paper takes

a step in this direction.
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