
COMMUNICATIONS IN INFORMATION AND SYSTEMS c© 2011 International Press
Vol. 11, No. 1, pp. 71-104, 2011 005

EIGENVALUES AND EIGENVECTORS OF SEMIGROUP

GENERATORS OBTAINED FROM DIAGONAL GENERATORS BY

FEEDBACK∗

CHENG-ZHONG XU† AND GEORGE WEISS‡

Abstract. We study infinite-dimensional well-posed linear systems with output feedback such

that the closed-loop system is well-posed. The generator A of the open-loop system is assumed to be

diagonal, i.e., the state space X (a Hilbert space) has a Riesz basis consisting of eigenvectors of A.

We investigate when the closed-loop generator AK is Riesz spectral, i.e, its generalized eigenvectors

form a Riesz basis in X. We construct a new Riesz basis in X using the sequence of eigenvectors

of A and the control operator B. If this new basis is, in a certain sense, close to a subset of the

generalized eigenvectors of A
K , then we conclude that A

K is Riesz spectral. This approach leads to

several results on Riesz spectralness of AK where the closed-loop eigenvectors need not be computed.

We illustrate the usefulness of our results through several examples concerning the stabilization of

systems described by partial differential equations in one space dimension. For the systems in the

examples we show that the closed-loop generator is Riesz spectral. Our method allows us to simplify

long computations which were necessary otherwise.

Key words: strongly continuous semigroup, eigenvalues and eigenvectors, well-posed linear sys-

tem, static output feedback, characteristic equation, exact controllability, Riesz basis, wave equation,

beam equation.

1. Introduction. In this paper we consider a well-posed linear system Σ

with input u and output y connected in a feedback loop, as shown in Figure 1. If

the bounded feedback operator K is admissible for Σ, then the feedback connection

u = Ky+v gives rise to a new well-posed linear system with input v, called the closed-

loop system and denoted by ΣK . We refer to Weiss [42] for the concepts mentioned

above. We denote by A and AK the semigroup generators of Σ and ΣK . We denote

by G and GK the transfer functions of Σ and ΣK , so that

(1.1) GK = (I − GK)−1G = G(I −KG)−1 .

We now introduce some terminology. Denote the state space of Σ by X . The

operator A and the semigroup T on X generated by A are called diagonal if there

is a sequence (λn) of eigenvalues of A and a corresponding sequence of eigenvectors

(en) (i.e., (λnI − A)en = 0) such that (en) is a Riesz basis in X . A nonzero ξ ∈ X

is called a generalized eigenvector of A if (λI − A)mξ = 0 for some λ ∈ C and some
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Fig. 1. A well-posed linear system Σ with output feedback via K. If K is admissible, then this

is a new well-posed linear system ΣK , called the closed-loop system.

m ∈ N. A is called Riesz spectral if there is a sequence of generalized eigenvectors of

A which form a Riesz basis in X , see Dunford and Schwartz [7].

In this paper, A is assumed to be diagonal. The aim of the paper is to find

sufficient conditions for AK to be Riesz spectral. These investigations were motivated

by the study of wave and beam equations with stabilizing output feedback, which have

a rich literature, see for example [2, 3, 4, 5, 24, 27, 31, 44, 45]. If either the control

operator or the observation operator of Σ is bounded and if certain estimates are

satisfied, then the Riesz basis property is preserved by output feedback, see Xu and

Sallet [44]. Here we are concerned with the case where both the control operator and

the observation operator are possibly unbounded. The general framework in which

we look at the feedback system is as in [42]. For easy reference, the formulas needed

from [42] will be written down in Sections 1 and 3.

We denote by U the input space of Σ and by Y its output space; X , U and Y

are Hilbert spaces. We denote by B and BK the control operators of Σ and ΣK , and

by C and CK their observation operators. Thus, the state of the feedback system,

denoted by x(t), satisfies both of the equations

ẋ(t) = Ax(t) +Bu(t) , ẋ(t) = AKx(t) +BKv(t) ,

where u = Ky + v. We have x(t) ∈ X for all t ≥ 0, u, v ∈ L2
loc([0,∞), U), y ∈

L2
loc([0,∞), Y ) and K ∈ L(Y, U). If we denote X−1 = D(A∗)′ and XK

−1 = D((AK)∗)′,

both with respect to the pivot space X , then B ∈ L(U,X−1) and BK ∈ L(U,XK
−1)

(see also Section 3 for other details on ΣK).

If u = 0 and x(0) ∈ D(A), then y(t) = Cx(t) (for all t ≥ 0), while if v = 0 and

x(0) ∈ D(AK), then y(t) = CKx(t) (for all t ≥ 0). If we denote X1 = D(A) and

XK
1 = D(AK), both with the graph norm, then C ∈ L(X1, Y ) and CK ∈ L(XK

1 , Y ).

For general u (or v) and x(0), the formula for y is more complicated (see [35]), but in

terms of Laplace transforms we have the simple relationships

ŷ(s) = C(sI −A)−1x(0) + G(s)û(s) ,

ŷ(s) = CK(sI −AK)−1x(0) + GK(s)v̂(s) .
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Our paper [43] is also concerned with the spectral properties of AK , but without

assuming that A is diagonal. The theorem below is taken from [43] and related results

were given earlier by Salamon [33] and Rebarber and Townley [28].

We need the notation σp(A) for the point spectrum (the set of eigenvalues) of A.

Recall that for any λ ∈ σp(A), dim {Ker (λI −A)} is called the geometric multiplicity

of λ, while supk∈N dim{Ker (λI − A)k} is called the algebraic multiplicity of λ (see

Kato [18]). The transfer function G is extended to ρ(A), the resolvent set of A, as in

[35, 36], and similarly GK is extended to ρ(AK) (see also Section 3).

Theorem 1.1. We use the notation Σ, U, X, Y, A, B, C,G for an open-loop

well-posed system, and K, ΣK , AK , BK , CK , GK for an admissible feedback operator

and the corresponding closed-loop system, as introduced earlier in this section (now,

A is not assumed to be diagonal). Assume that KerB = {0} and λ ∈ ρ(A).

Then the following statements are equivalent:

(1) λ ∈ σp(A
K), i.e., Xλ = Ker (λI −AK) ⊂ D(AK) is non-trivial.

(2) Uλ = Ker [I −KG(λ)] ⊂ U is non-trivial.

If the above statements are true, then Xλ and Uλ are isomorphic, via an invertible

operator Tλ : Uλ→Xλ. The operator Tλ and its inverse T−1
λ are given by

(1.2) Tλv = (λI −A)−1Bv , T−1
λ x = KCKx.

This theorem enables us to find all the eigenvalues of AK which are in ρ(A), by

solving the “characteristic equation” (with unknowns λ and v)

[I −KG(λ)] v = 0, v 6= 0 ,

and then we can find the corresponding eigenvectors of AK using (1.2). For various

related results we refer again to [43].

Systems with a diagonal semigroup have been studied extensively, and many

results about the admissibilty of control (or observation) operators and various con-

trollability (or observability) concepts have been obtained, see for example Avdonin

and Ivanov [1], Hansen and Weiss [12], Ho and Russell [14], Jacob and Zwart [16],

Jaffard et al [17], Rebarber and Weiss [29], Rebarber and Zwart [30] and Russell and

Weiss [32]. Feedback perturbations of diagonal semigroups have been studied in Chen

et al [3], Guo [9], Guo and Chan [10], Lasiecka and Triggiani [20], J.Q. Liu [21], K.

Liu et al [22], Rebarber [25], Xu and Sallet [44] and many others.

Several papers deal with the problem of spectral assignability by state feedback

for systems with a diagonal semigroup: see (in historical order) Sun [37], Liu [21],

Ho [13], Lasiecka and Triggiani [20], Rebarber [25], Xu and Sallet [44], Sklyar and

Rezounenko [34]. They all assume that the input space is one-dimensional (in [20],

also finite-dimensional). They also give various sufficient conditions for the closed-

loop semigroup to be diagonal or Riesz spectral, and in this respect, our results
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in this paper complement their results. Recently, Guo and Luo [11] have studied

systems described by a second order undamped differential equation in a Hilbert

space with a scalar collocated feedback control which adds a damping term to the

differential equation. They have derived sufficient conditions such that (i) the open-

loop system is an exactly controllable regular system and (ii) the closed-loop system

generator is Riesz spectral. They have also derived asymptotic closed-loop eigenvalue

and eigenvector estimates. Unfortunately, one of their assumptions implies that the

open-loop spectrum gap tends to infinity, which is rather restrictive.

2. Statement of the main results. First we recall the concepts of admissible

control operator and exact controllability, in the context of diagonal semigroups. Let

T be a diagonal semigroup on the Hilbert space X , with generator A. Let (λn) be the

sequence of eigenvalues of A and let (en) be the corresponding sequence of eigenvectors

(so that (en) is a Riesz basis). Since (by the definition of a Riesz basis) there exists

an invertible operator H ∈ L(X) such that (Hen) is an orthonormal basis in X , it

follows that A∗ is also diagonal, with eigenvalue sequence (λn) and the corresponding

eigenvectors

(2.1) ẽn = H∗Hen.

Recall that X−1 is the dual of D(A∗) with respect to the pivot space X . If A

is diagonal and the sequence (ẽn) is as in (2.1), then any B ∈ L(U,X−1) can be

decomposed using a sequence (bn) in U , as follows:

(2.2) Bv =
∑

n∈N

〈bn, v〉U en, bn = B∗ẽn

and we have

∑

n∈N

|〈bn, v〉|2

1 + |λn|2
< ∞ ∀ v ∈ U .

B is called an admissible control operator for T if the X−1-valued equation

(2.3) ẋ(t) = Ax(t) +Bu(t) , t ≥ 0 , x(0) = 0 ,

has a continuous X-valued solution for any u ∈ L2([0,∞), U), see for example Ho and

Russell [14] or Hansen and Weiss [12] for details. If B is admissible, then (A,B) is

called exactly controllable if there exists a τ > 0 with the following property: for any

x1 ∈ X , u in (2.3) can be chosen such that x(τ) = x1.

If B is an admissible control operator for T, then there is an M > 0 such that

‖bn‖2 ≤M (1 + |Reλn|) ∀ n ∈ N .

This is [32, Proposition 4.1], stated in dual form (and without the exponential stability

condition). The above condition is not sufficient for admissibility. For a detailed
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discussion of various sufficient conditions in terms of the sequence (bn) we refer to

Hansen and Weiss [12]. If B is admissible and moreover, (A,B) is exactly controllable,

then there is an L > 0 such that

(2.4) ‖bn‖2 ≥ L (1 + |Reλn|) ∀ n ∈ N .

This is [32, Proposition 4.2], stated in dual form (and without the exponential stability

condition). Condition (2.4) is not sufficient for exact controllability. For various nec-

essary and sufficient conditions in terms of the sequence (bn) (with finite-dimensional

U) we refer to Jacob and Zwart [16] and Tucsnak and Weiss [39].

With the notation of Theorem 1.1, assume that A is diagonal and (A,B) is ex-

actly controllable. The following theorem tells us how to generate another Riesz basis

for X using A and B. Our motivation is that this new Riesz basis has a good chance

of being quadratically close to a sequence of linearly independent generalized eigen-

vectors of AK . When this happens, then this enables us to prove the existence of a

finite number of additional generalized eigenvectors of AK which, together with the

considered sequence of generalized eigenvectors of AK , form a Riesz basis for X . The

details of this construction will be in Theorems 2.7 and 2.9.

Theorem 2.1. Let A be the generator of a diagonal semigroup T on X, with the

sequence of eigenvalues (λn). Let B be an admissible control operator for T such that

(A,B) is exactly controllable. Then, for each r ∈ R such that supn∈N Reλn < r/2,

the sequence (fn) defined below is a Riesz basis in X:

(2.5) fn =
[
(r − λn )I −A

]−1
Bbn ,

where bn is the sequence representing B, as in (2.2).

Remark 2.2. There is a version of Theorem 2.1 in which we replace admissi-

bility by infinite-time admissibility and exact controllability by exact controllability in

infinite time (as defined in [12] and [32]). In this case, we may take r = 0 in (2.5) and

(after a change of sign) we obtain that the sequence (fn) with fn =
(
λn I +A

)−1
Bbn

is a Riesz basis in X. The proof is similar to the proof of Theorem 2.1.

If we assume that T is invertible, i.e., T can be extended to a group acting on

X , then we can apply Theorem 2.1 to −A. In particular, if T can be extended to a

unitary group, then we obtain the following.

Corollary 2.3. Suppose that A : D(A)→X has a sequence of eigenvalues (iωn)

with ωn ∈ R such that a corresponding sequence of eigenvectors (en) is an orthonormal

basis in X (thus, in particular, A∗ = −A). Let B be an admissible control operator

for T such that (A,B) is exactly controllable. Then the sequence (hn) given by

(2.6) hn = [(iωn − r)I −A]
−1
Bbn

(where bn is as in (2.2)), is a Riesz basis in X, for every choice of r > 0.
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Recall that a sequence in a Hilbert space is called linearly independent if for any

finite linear combination of its elements the following holds: if the coefficients are not

all zero then the combination is non-zero.

Theorem 2.4. Let A be a densely defined operator in a separable Hilbert space

X, with non-empty resolvent set ρ(A) and with compact resolvents. Let (ψn) be a

linearly independent sequence of generalized eigenvectors of A and let (ψ̃n) be a Riesz

basis in X such that for some m ∈ {0, 1, 2, . . .}

(2.7)
∑

n∈N

∥∥∥ψn − ψ̃n+m

∥∥∥
2

H
< ∞ .

Then there exist m generalized eigenvectors of A, denoted by φ1, φ2, . . . , φm, such that

the sequence

(2.8) ζ = (φ1, φ2, ..., φm, ψ1, ψ2, ψ3, ...)

is a Riesz basis in X (in particular, A is Riesz spectral).

This result is essentially due to B.Z, Guo, see his Theorem 6.3 in [9]. Our state-

ment is slightly stronger, since in our formulation m in (2.8) is known. For the sake

of completeness we include a proof in the next section.

Remark 2.5. The compactness of the resolvents is essential in the last theorem.

Without requiring it, the theorem is not true, even if A is bounded and (ψn) is a

sequence of eigenvectors of A. Take for exampleX = l2 with its canonical orthonormal

basis {en|n ∈ N}. Consider A defined as follows: Ae1 = (1, 12 ,
1
3 , . . .) and Aen =

n− 1
n en for n = 2, 3, 4 . . .. Then σp(A) =

{
n− 1
n

∣∣∣n = 2, 3, 4, . . .
}

. Hence, A has

a sequence of eigenvectors (ψn) with ψn = en+1 ∀n ∈ N, which satisfies (2.7) with

m = 1. However, A is not Riesz spectral.

Remark 2.6. With the notation of Theorem 2.4, let (λn) be the sequence of

eigenvalues of A which corresponds to (ψn) (there may be repetitions in the sequence

(λn)). Similarly, for j = 1, ...,m, let µj be the eigenvalue corresponding to φj . Then

σ(A) = σp(A) = {λn | n ∈ N} ∪ {µ1, ..., µm}, as it is easy to see.

Theorem 2.7. Let Σ be a well-posed linear system with semigroup generator A

and control operator B, which satisfy the assumptions of Corollary 2.3 (in particular,

T is unitary and (A,B) is exactly controllable). The sequence (hn) is defined as in

(2.6). Assume that K is an admissible feedback operator for Σ such that AK has

compact resolvents. Let Λ = {σn ∈ C | n ∈ N} denote a subset of σ(AK) contained

in ρ(A). Let (ψn) be a linearly independent sequence of generalized eigenvectors of

AK corresponding to Λ. If there are some integer m ∈ {0, 1, 2, . . .} and some r > 0

in (2.6) such that

(2.9)
∑

k∈N

‖ψk − hk+m‖2
X < ∞ ,
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then there exist m generalized eigenvectors of AK , φ1, φ2, . . . , φm which, concatenated

with (ψn) like in (2.8), form a Riesz basis in X.

Remark 2.8. From the identity (3.4) in the next section, if U or Y is finite-

dimensional, then AK has compact resolvents if and only if A does. From (3.2)–(3.4),

if B or C is bounded, then again A has compact resolvents if and only if AK does.

With the notation of the last theorem, consider the case U = C. The rank of the

observation operator C is not important here. In this case, bn in (2.6) is a non-zero

number. We may take v = bn in (1.2), obtaining the following sequence of eigenvectors

of AK :

(2.10) ψn = (σnI −A)−1Bbn .

In this case we get a practical sufficient condition from the last theorem:

Theorem 2.9. With the assumptions and the notation of Theorem 2.7, suppose

that U = C. Let Λ = {σn ∈ C | n ∈ N} be a subset of σ(AK) contained in ρ(A) such

that σn 6= σk, ∀ n 6= k. If, for some m ∈ {0, 1, 2, . . .} and some r > 0, the following

holds:

(2.11)
∑

n∈N

|−r + iωn+m − σn|2 <∞ ,

then AK is Riesz spectral. Moreover, in this case there exist m eigenvalues of AK ,

σ̃1, . . . , σ̃m, such that

σ(AK) = Λ
⋃

{σ̃1, . . . , σ̃m} .

Remark 2.10. If A,B and ωn are as in Corollary 2.3 and U = C, then the

numbers ωn must have a uniform gap (this is easy to check, see also [16]). This

implies that A has compact resolvents. By Remark 2.8, the same is true for AK , so

that there is no need to verify this condition in Theorem 2.7.

In some applications the set σ(AK) may asymptotically approach σ(A) shifted

to the left by r (for example, in the stabilization of vibrating systems by collocated

output feedback, see Sections 4 and 5). If the control input is scalar (i.e., U = C),

then Theorem 2.9 can be useful. However, for some feedback stabilized hyperbolic

systems, such as in Rebarber [27], the spectrum of AK may not even approach any

vertical line. Nevertheless σ(AK) asymptotically remains in a vertical strip: for large

n, δ1 ≤ Re (σn) ≤ δ2 with δ1 < δ2. The next theorem has been developed in order to

prove Riesz spectralness for such feedback systems.

Theorem 2.11. Let Σ be well-posed with input space U = C, state space X,

semigroup generator A and control operator B. Suppose that A is diagonal, σ(A) =

{±iωn | ωn ∈ (0,∞), n ∈ N} (in increasing order: ωn+1 > ωn) satisfying

(2.12)
∑

n∈N

1

(ωn+1 − ωn)2
< ∞ ,
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(A,B) is exactly controllable and K is an admissible feedback operator for Σ. Let

ΣK be the corresponding closed-loop system, with semigroup generator AK . Let (σn)

be a sequence in σ(AK) ∩ ρ(A) such that Imσn > 0, σn 6= σk ∀ n 6= k and σn ∈
σ(AK) ∩ ρ(A). If, for some integer m ≥ 0,

(2.13)
∑

n∈N

(Im σn − ωn+m)
2
< ∞ ,

then AK is Riesz spectral and there are 2m complex numbers σ̃1, . . . , σ̃2m such that

σ(AK) = {σ̃1, . . . , σ̃2m} ∪ {σn | n ∈ N} ∪ {σn | n ∈ N}.
We will illustrate the usefulness of these results through several examples con-

cerning the stabilization of systems described by partial differential equations (PDEs)

in one dimension. For these systems we show that the closed-loop generator is Riesz

spectral. Our approach leads to some generalizations of existing results and a unified

treatment of different cases which have been studied separately, see the references

already mentioned. It also enables us to simplify certain computations. The exact

controllability (or the exact observability) condition which needs to be verified in our

approach can be tested by powerful methods such as the multiplier method, see for

example Komornik [19], or the recent criteria of Jacob and Zwart [16]. Our method

is very efficient in dealing with systems governed by PDEs coupled with ordinary

differential equations, leading to positive answers to several open questions in the

literature, see the examples in Sections 4 and 5.

3. Proof of the main results. Throughout this section, X is a Hilbert space

and A : D(A)→X is the generator of a strongly continuous semigroup T on X . The

Hilbert space X1 is D(A) with the norm ‖z‖1 = ‖(βI −A)z‖, where β ∈ ρ(A) is fixed

(this norm is equivalent to the graph norm). The Hilbert space X−1 is the completion

of X with respect to the norm ‖z‖−1 = ‖(βI − A)−1z‖. This space is isomorphic to

D(A∗)′, the dual space of D(A∗) and

X1 ⊂ X ⊂ X−1 ,

densely and with continuous embeddings. T extends to a semigroup on X−1, denoted

by the same symbol. The generator of this extended semigroup is an extension of A,

whose domain is X , so that A : X→X−1. We consider a well-posed linear system Σ

with input space U , state space X , output space Y , semigroup generator A, control

operator B, observation operator C and transfer function G. Thus, B ∈ L(U,X−1) is

an admissible control operator for T and C ∈ L(X1, Y ) is an admissible observation

operator for T. For the various concepts mentioned above we refer to [36, 40, 41, 42]

and the references therein. B is called bounded if B ∈ L(U,X), and C is called bounded

if it can be extended such that C ∈ L(X,Y ).

Denote the growth bound of T by ω0(T). Originally, G is defined on the right
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half-plane where Re s > ω0(T). For all s, β in this half-plane, we have

(3.1) G(s) − G(β) = C
[
(sI −A)−1 − (βI −A)−1

]
B.

Using the above formula with Reβ > ω0(T) but allowing s ∈ ρ(A), we extend G

to an analytic function defined on ρ(A). Then, this function G satisfies (3.1) for

all s, β ∈ ρ(A). This extension of G has been used in [33, 35, 36] and it may be

different from the extension by analytic continuation, adopted in [41, 42] (see [41,

Remark 4.8]). However, if ρ(A) is connected, then this extension of G is the same

as its analytic continuation. The function G is well-posed, which means that it is a

bounded and analytic L(U, Y )-valued function on some right half-plane (in particular,

on any half-plane which is strictly to the right of ω0(T)).

An operator K ∈ L(Y, U) is called an admissible feedback operator for Σ (or for

G) if I−GK is invertible on some right half-plane and its inverse is well-posed (here,

I − GK may be replaced equivalently by I − KG). If this is the case, then the

feedback system from Figure 1 is a new well-posed linear system ΣK . We use the

notation AK , BK , CK and GK as introduced in Section 1, so that in particular (1.1)

holds on some right half-plane. What is less obvious is that (1.1) remains valid for

all s ∈ ρ(A) ∩ ρ(AK) (in particular, I −KG(s) is invertible for all such s). Indeed,

this follows from Corollary 5.3 and Remark 5.5 in [36]. Let T
K

denote the strongly

continuous semigroup generated by AK . The following identities, proved in [42], will

be useful:

(3.2) [I − G(s)K]CK(sI −AK )−1 = C(sI −A)−1,

(3.3) (sI −AK)−1BK [I −KG(s)] = (sI −A)−1B,

(3.4)
(sI −AK )−1 − (sI −A)−1 = (sI −A)−1BKCK(sI −AK )−1

= (sI −AK)−1BKKC(sI −A)−1.

According to [42], these identities are valid on the right half-plane where Re s >

max {ω0(T), ω0(T
K

)}. We remark that, using again [36, Section 5], it follows that

(3.2)–(3.4) remain valid for all s ∈ ρ(A)∩ρ(AK). Note that (3.3) implies that KerB =

{0} if and only if KerBK = {0}. It is worth noting that (3.4) implies (via an easy

computation) that for all x ∈ D(AK) and for all z ∈ D(A),

(3.5) AKx =
(
A+BKCK

)
x, Az =

(
AK −BKKC

)
z .

It is not difficult to prove, using (3.2), that CK is bounded if and only if C is bounded.

Similarly, (3.3) implies that BK is bounded if and only if B is bounded.
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An important subclass of the well-posed linear systems are the regular linear

systems, see for example [41, 42]. The system Σ is called regular if for each v ∈ U ,

the limit

(3.6) Dv = lim
λ→+∞

G(λ)v

exists (in Y ). The operator D ∈ L(U, Y ) is then called the feedthrough operator of Σ.

We define the Λ-extension of C by

(3.7) CΛx = lim
λ→+∞

Cλ(λI −A)−1x ∀ x ∈ D(CΛ) ,

where D(CΛ) is the space of those x ∈ X for which the above limit exists. The system

Σ is regular if and only if (sI−A)−1BU ⊂ D(CΛ) for some (hence, for every) s ∈ ρ(A)

and, if this is the case, then G(s) = CΛ(sI −A)−1B +D for all s ∈ ρ(A). Moreover,

for a regular system, y(t) = CΛx(t) +Du(t) holds for almost every t ≥ 0 (for every

initial state x(0) ∈ X and every input signal u ∈ L2
loc([0,∞), U)).

If Σ is regular, K is an admissible feedthrough operator for Σ and I − DK is

invertible, then ΣK is also regular and the relationship between the open and closed-

loop systems becomes more transparent. Indeed, in this case AK , BK , CK and DK

can be expressed in terms of A, B, C and D, see [42], in particular

(3.8) AKx =
[
A+BK(I −DK)−1CΛ

]
x, CKx = (I −DK)−1CΛx,

for all x ∈ D(AK). Thus, regularity simplifies matters, and it will be useful in the

examples, however, in general we will only assume the well-posedness of Σ.

The following simple facts from Russell and Weiss [32] will be needed.

Proposition 3.1. Let X and Y be Hilbert spaces. Assume that A is the generator

of a C0-semigroup T on X and C : D(A)→Y is an admissible observation operator

for T. Then the following statements hold:

1. For any λ ∈ C, the pair (A,C) is exactly observable if and only if the trans-

lated pair (A+ λI, C) is exactly observable.

2. If T is exponentially stable, then (A,C) is exactly observable if and only if it

is exactly observable in infinite time.

3. If T is exponentially stable, then the observability Gramian of (A,C), defined

by

(3.9) Px =

∫ ∞

0

T
∗
tC

∗CTtxdt ∀ x ∈ D(A)

can be extended so that P ∈ L(X). P is invertible if and only if (A,C) is

exactly observable.

4. If T is a C0-group on X and (A,C) is exactly observable, there exist some

positive constants α and β such that the following holds: For any normalized

eigenvector ek of A,

α ≤ ‖Cek‖Y ≤ β .
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Proof of Theorem 2.1. We introduce the “shifted” generator Ã = A− r
2I, which

generates an exponentially stable semigroup. For simplicity we denote this semigroup

by eÃt and similarly for Ã∗. The pair (A,B) is exactly controllable if and only if

(A∗, B∗) is exactly observable. From our assumptions and point 1 of Proposition 3.1,

(Ã∗, B∗) is exactly observable. Hence, (Ã∗, B∗) is exactly observable in infinite time.

The observability Gramian P of (Ã∗, B∗) is invertible (point 3 of Proposition 3.1).

Hence, applying P to each ẽn we obtain a new basis:

P ẽn =

∫ ∞

0

eÃtBB∗eÃ∗tẽn dt =

∫ ∞

0

e−t(r−λn)TtBB
∗ẽn dt.

Using the Laplace transform of Tt we get P ẽn = fn, for all n ∈ N.

Remark 3.2. Without assuming that T is exponentially stable, suppose that C

is infinite-time admissible for T, so that t→CΛTtx is a function in L2([0,∞), Y ). By

duality, the infinite-time admissibility of C implies two facts: (a) For each T > 0, the

mapping ΦT : u→
∫ T

0
T

∗
tC

∗u(t)dt is continuous from L2([0,∞), Y ) to X and (b) The

operators ΦT converge strongly as T→ + ∞. Thus, the integral in (3.9) should now

be considered as an improper integral in X , and P is invertible if and only if (A,C) is

exactly observable in infinite time. As a consequence, if (A,C) is exactly observable

in infinite time (3.2) gives us a Riesz basis with r = 0, see Remark 2.2.

Lemma 3.3. Let R be a densely defined operator in a separable Hilbert space

X with compact resolvents and let C be the closed linear span of all the generalized

eigenvectors of R. If C is of finite codimension in X, then C = X.

Proof. An operator R as in the lemma is called a discrete operator in Dunford and

Schwartz [7], and C is called the spectral span of R. It is easy to see that σ(R) = σp(R)

and σ(R∗) = σp(R
∗). According to [7, Lemma 5 on p. 2355], the following orthogonal

decomposition holds:

X = σ∞(R∗) ⊕ C,

where σ∞(R∗) = {x | Pλx = 0 ∀ λ ∈ σ(R∗)} and Pλ is the eigen-projector of R∗

corresponding to λ. Hence, C = X if and only if σ∞(R∗) = {0}. However, by [7,

Lemma 5 on p.2295], σ∞(R∗) is either {0} or infinite-dimensional. Therefore, the

codimension of C is finite if and only if σ∞(R∗) = {0}.

A sequence (en) in a Hilbert space X is called ω-independent if the equality
∑

k∈N akek = 0 with ak ∈ C implies that ak = 0 for all k (see [8, p. 317]). Here,

the series
∑

k∈N akek is supposed to converge in norm, but not necessarily absolutely.

Two sequences (φn) and (ψn) inX are called quadratically close if
∑

n∈N ‖φn−ψn‖2
X <

+∞. A sequence (en) in X called a Riesz basis in X if for each x ∈ X there exists a

unique sequence (ak) ∈ l2 such that x =
∑

k∈N akek and

c1‖(ak)‖l2 ≤ ‖x‖ ≤ c2‖(ak)‖l2 ,
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where c1, c2 > 0 are independent of x. For another characterization of Riesz bases see

the text before (2.1). We recall Bari’s theorem: an ω-independent sequence quadrat-

ically close to a Riesz basis is itself a Riesz basis (see [8, p.317]).

Proof of Theorem 2.4. Let m be as in (2.7). For some integer J ≥ 0 which will

be chosen later, we define the sequence ξ = (ξn) in X by

ξ =
(
ψ̃1, ψ̃2, . . . ψ̃m+J , ψJ+1, ψJ+2, . . .

)
.

Note that for n > m+ J we have ξn = ψn−m, which is close to ψ̃n by (2.7).

We claim that (ξn) is a Riesz basis in X for sufficiently large J . Indeed, define

T : X→X such that T ψ̃n = ξn ∀ n ∈ N. It suffices to prove that T is continuous and

invertible. We decompose T = I + Θ, where

Θ ψ̃n =

{
0 for 1 ≤ n ≤ J +m

ψn−m − ψ̃n for n > J +m.

Since ‖Θ‖ ≤ K̃
(∑

k∈N ‖Θψ̃k‖2
) 1

2

for some constant K̃ > 0, by the quadratic close-

ness condition (2.7) we have Θ ∈ L(X) and ‖Θ‖L(X) < 1 for all sufficiently large J .

This means that for some J , T is boundedly invertible. Therefore, by the definition

of T , (ξn) is a Riesz basis in X .

In the sequel, we assume that J has been chosen such that ξ is a Riesz basis. Then

it follows that the closed linear space CJ spanned by (ψn)n>J has finite codimension

in X , equal to J + m. In particular, the closed linear space C spanned by all the

generalized eigenvectors of A has finite codimension in X , so that C = X by Lemma

3.3. Thus, the closed linear span of all the generalized eigenvectors of A is X .

Since the codimension of the closed linear span CJ of the linearly independent

subsequence (ψn)n>J is equal to J+m, there must exist J+m generalized eigenvectors

of A which, concatenated with the subsequence (ψn)n>J , form a linearly independent

sequence. In fact, for the first J generalized eigenvectors of A we may take ψk,

k = 1, 2, . . . , J . The existence of the other m generalized eigenvectors, denoted by

φk, k = 1, 2, . . . ,m, is guaranteed by C = X , which was proved earlier. Note that by

construction the sequence ζ from (2.8) is linearly independent. Since A has compact

resolvents, the sequence ζ is necessarily ω-independent (see Xu and Sallet [44, Section

3]). Obviously, the sequence ζ is quadratically close to ξ. From Bari’s theorem ζ is

also a Riesz basis in X .

Proof of Theorem 2.9. Denote bk = B∗ek. From point 4 of Proposition 3.1 and

the exact controllability of (A,B) there exist α, β > 0 such that α ≤ |bk| ≤ β ∀k ∈ N.

We have Λ ⊂ ρ(A) ∩ σp(A
K). By (2.10) and σn 6= σk for n 6= k the sequence (ψn)

defined below is a linearly independent sequence of eigenvectors of AK :

(3.10) ψn = (σn I −A)−1Bbn+m.
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By Corollary 2.3 the sequence (hn) given in (2.6) is a Riesz basis in X . Recall the

following identity:

(3.11) ψn − hn+m = (iωn+m − r − σn)(σnI −A)−1 [(iωn+m − r)I −A]−1Bbn+m .

Because of (2.11) we have limn→∞ Re (σn) = −r. By r > 0 and admissibility of B,

sup
n∈N

‖(σn I −A)−1‖L(X) < ∞ , sup
n∈N

∥∥[(iωn − r)I −A]−1B
∥∥

X
< ∞ .

Thus, the condition (2.11) and (3.11) imply that (2.9) holds. According to Theorem

2.7 and Remarks 2.6 and 2.8, the conclusions of Theorem 2.9 hold.

A sequence (λn) in C is called properly spaced if

sup Reλn = α < ∞ and inf
k,n∈N

k 6=n

|λk − λn|
1 + |Reλn|

> 0 .

Note that if α < 0, then the term 1 in the denominator above can be omitted without

affecting the meaning of the condition: inf
k,n∈N

k 6=n

|λk − λn|
|Reλn| > 0. This is how the

concept was defined in [32, Section 4], while investigating exact observability for

systems with an exponentially stable diagonal semigroup. If we write the condition

like this but allow α = 0, as in Jacob and Zwart [16], then the meaning changes (the

points could be very close to each other near the imaginary axis).

Proposition 3.4. Let A be the generator of a diagonal semigroup T on X, with

the sequence of its eigenvalues (λn) properly spaced. Assume that U is finite-dimen-

sional and B ∈ L(U,X−1) is an admissible control operator for T. Let (bn) be the

sequence in U representing B, as in (2.2). Then (A,B) is exactly controllable if and

only if there exists an L > 0 such that (2.4) holds.

Proof. Without loss of generality, we may assume that T is exponentially stable.

Indeed, if it not, then replace A by A − ωI for some sufficiently large ω > 0. The

admissibility of B for T is equivalent to the admissibility of B for the semigroup

generated by A−ωI, and the exact controllability of (A,B) is equivalent to the exact

controllability of (A−ωI,B). Now, with the exponential stability, (2.4) is equivalent

to:

‖bn‖2 ≥ L |Reλn| ∀ n ∈ N .

By [32, Theorem 4.4] (which assumes that (λn) is properly spaced), the above estimate

is equivalent to

1

|Re s|2 ‖(sI −A∗)x‖2
+

1

|Re s| ‖B
∗x‖2 ≥ q‖x‖2

for some q > 0, for all x ∈ D(A∗) and all s in the open left half-plane in C. Now

by Theorem 2 in Jacob and Zwart [16] (which assumes that A is diagonal and U is
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finite-dimensional), the last estimate is equivalent to

(3.12)

∫ ∞

0

∥∥B∗T
∗
tx

∥∥2
dt ≥ p ‖x‖2

for some p > 0, for all x ∈ D(A∗). By part 2 of Proposition 3.1, (3.12) is equivalent

to (A∗, B∗) being exactly observable, i.e., (A,B) is exactly controllable.

As already mentioned, (2.4) is a necessary condition for exact controllability also if

(λn) is not properly spaced, and for any Hilbert space U . We suspect that Proposition

3.4 remains valid also for an infinite-dimensional Hilbert space U .

Remark 3.5. A sequence (λn) in the open left half-plane satisfies the Carleson

condition if

∏

j∈N, j 6=k

∣∣∣∣
λk − λj

λk + λj

∣∣∣∣ ≥ δ > 0 , ∀ k ∈ N.

For sequences (λn) with Reλn < 0, this condition is a little more restrictive than

being properly spaced. Under the assumptions of Proposition 3.4, if T is exponentially

stable and (A,B) is exactly controllable, then (λn) satisfies the Carleson condition.

The outline of the proof of this fact is as follows. By [12, Theorem 1.2], B satisfies

the operator Carleson measure criterion for T, as defined there. Let v1, . . . , vp be an

orthonormal basis in U (we have denoted p = dim U). It is not difficult to prove that

for any finite set J ⊂ N

sup
‖v‖≤1

∑

k∈J

|〈bk, v〉|2 ≥ 1

p

∑

k∈J

‖bk‖2

and this implies that the sequence (‖bn‖) satisfies the Carleson measure criterion for

T. By the scalar Carleson measure criterion (see Ho and Russell [14]), this sequence

defines an admissible control operator for T, for scalar inputs. By (2.4), the same is

true for the sequence (b1k) defined by b1k =
√
|Reλk|. Now the claim made earlier in

this remark follows from results in Nikolskii [23], as explained in [29, Remark 2.3].

Theorem 3.6. Let A be the generator of a diagonal semigroup T on X, with the

sequence of eigenvalues (λn). Let (µn) be a properly spaced sequence in C such that

sup
n∈N

|Re (µn − λn)| < ∞.

Let Aµ be the generator of a diagonal semigroup T
µ

on X, so that the sequence of

eigenvalues of Aµ is (µn) and the corresponding eigenvectors are the same as for

A. Assume that U is finite-dimensional and B ∈ L(U,X−1) is an admissible control

operator for both T and T
µ
, such that (A,B) is exactly controllable. Then also (Aµ, B)

is exactly controllable.

Proof. Since B is admissible for T and (A,B) is exactly controllable, by [32,

Proposition 4.2] (applied to (A∗ − ωI,B∗) with ω > 0 sufficiently large) we have
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(2.4). The fact that sup |Re (µn − λn)| <∞ implies that for some L0 > 0,

‖bn‖2 ≥ L0 (1 + |Reµn|) ∀ n ∈ N .

Now by Proposition 3.4, (Aµ, B) is exactly controllable.

Remark 3.7. With the assumptions and the notation of the above theorem, it

follows from Theorem 2.1 that the sequence

f̃n = [(r − µn)I −Aµ]
−1
Bbn

is a Riesz basis in X . Here, r ∈ R is such that supn∈N Reµn < r/2 and (ẽn) is the

sequence of eigenvectors of A∗ in the correct order, as in (2.1). If it is possible to take

r = 0 (for exemple, if Aµ is exponentially stable), then we may consider the Riesz

basis defined by

(3.13) fn = (µn I +Aµ)
−1
Bbn.

It is an unpleasant feature of Theorem 3.6 that we have to check the admissibility

of B also for T
µ
. This inconvenience disappears if the eigenvalues are in a vertical

strip. Note that a sequence (µn) in a vertical strip (i.e., γ ≤ Reµn ≤ α) is properly

spaced if and only if infk 6=n |µk − µn| > 0. The following theorem is a version of

Theorem 3.6 for eigenvalues in a vertical strip.

Theorem 3.8. Let A be the generator of a diagonal semigroup T on X, with the

sequence of eigenvalues (λn) in a vertical strip. Let (µn) be a properly spaced sequence

in a vertical strip. Let Aµ be the generator of a diagonal semigroup T
µ

on X, so that

the sequence of eigenvalues of Aµ is (µn) and the corresponding eigenvectors are the

same as for A (in the same order).

Assume that U is finite-dimensional and B ∈ L(U,X−1) is an admissible control

operator for T such that (A,B) is exactly controllable. Then the following holds:

(1) B is admissible for T
µ
,

(2) (Aµ, B) is exactly controllable.

Proof. Since B is admissible for T, it follows from [32, Proposition 4.1] (applied

to (A∗ − ωI,B∗) with ω > 0 sufficiently large) that we have ‖bn‖2 ≤ M for some

M > 0 and all n ∈ N. Since (µn) is properly spaced, it follows from [12, Theorem 2.6]

that B is an admissible control operator for T
µ
. The exact controllability of (Aµ, B)

follows from Theorem 3.6.

Remark 3.9. For A diagonal and skew-adjoint such that Aen = iωn en, we

consider the diagonal Aµ such that Aµen = µnen for all n ∈ N. We choose (µn) such

that

(3.14) µn+m = − iωn+m + (σn − iωn+m)/2 ∀ n ∈ N
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and such that the whole sequence is properly spaced in a vertical strip contained in

the open left half-plane. Let G be the diagonal operator such that Aµ = −A+ G. By

(3.13) the sequence (fn) defined below is a Riesz basis in X :

(3.15) fn = [µn I + G −A]
−1
Bbn .

If we consider (ψn) as in (2.10), then under some conditions on (σn) and (iωn), (fn)

and (ψn) will be quadratically close. This is the idea behind Theorem 2.11.

Proof of Theorem 2.11. The proof is similar to that of Theorem 2.9. Let (en)

be the sequence of eigenvectors of A which is an orthonormal basis in X and let

bn = B∗en. By exact controllability δ = infn6=k |ωn −ωk| > 0. By (2.13) the sequence

(σn) is properly spaced as well as (µn+m). (The proof is elementary but tedious.)

We add to (µn+m) m complex numbers µ1, . . . , µm of negative real part such that

(µk) is properly spaced. The sequence (ψn) given by (3.10) is a linearly independent

sequence of eigenvectors of AK . By Theorem 3.8 and Remark 3.9 the sequence (fn)

(as defined in (3.15)) is a Riesz basis in X . As A and Aµ commute, the following

identity is easy to prove:

(3.16) ψn − fn+m = Fn

(
µn+m I +Aµ

)−1
Bbn+m,

where

(3.17) Fn =
[
(µn+m − σn)I + G

]
(σn I −A)−1 .

Note that supn∈N ‖(µn+mI +Aµ)−1Bbn+m‖X < ∞. It is sufficient to prove that for

some ñ > m,

(3.18)
∑

n>ñ

‖Fn‖2
L(X) < ∞ .

Recall that G is diagonal as defined in Remark 3.9:

Gek =





(µk + iωk)ek, 1 ≤ k ≤ m,

(σk−m − iωk)ek/2, k > m.

The reader can check that (2.12) and (2.13) imply (3.18) (cf. [44]). So Theorem 2.4

and Remark 2.6 can be applied to complete the proof.

4. Examples based on the one-dimensional wave equation.

4.1. A 1-D wave equation with boundary feedback. This example is a

homogeneous string with tangential force feedback control. The open-loop system is

described by

(4.1)





wtt(x, t) = wxx(x, t) , x ∈ [0, 1], t ≥ 0,

w(0, t) = 0 ,

wx(1, t) = u(t), (input signal)

y(t) = wt(1, t) , (output signal)



EIGENVALUES AND EIGENVECTORS OF SEMIGROUP GENERATORS 87

where w(x, t) denotes the displacement of the point x of the string at time t. Define the

Hilbert space H1
L[0, 1] = {f ∈ H1[0, 1] | f(0) = 0} , with the inner product 〈f, g〉 =∫ 1

0
fx(x)gx(x)dx. Let X = H1

L[0, 1] × L2[0, 1] and let ‖(f, g)‖2
X =

∫ 1

0
[|fx(x)|2 +

|g(x)|2]dx . It is not difficult to check that (4.1) defines a regular system with input

u, output y (both scalar) and state space X . The open-loop transfer function G is

(4.2) G(s) =
1 − e−2s

1 + e−2s
.

We consider the feedback operator K = −κ, with κ > 0, which is easily seen to

be admissible. The closed-loop generator AK described below is exponentially stable:

D(AK) =
{

[f1 f2]
⊤ ∈ X | f1 ∈ H2[0, 1], f2 ∈ H1

L[0, 1], f1x(1) = −κf2(1)
}

and

(4.3) AKf =

[
0 I
∂2

∂x2 0

][
f1

f2

]
∀ f ∈ D(AK) .

We apply Theorem 2.9 for reproving a result of Rideau [31]: for κ 6= 1, AK is

diagonal. As a first step, using the notation ψ(t) = [w(·, t) wt(·, t)]⊤, we rewrite the

open-loop system in operator form:

(4.4)

{
ψ̇(t) = Aψ(t) +Bu(t) ,

y(t) = CΛψ(t) +Du(t) ,

where A is the skew-adjoint operator defined by

D(A) = {[f1 f2]⊤ ∈ X | f1 ∈ H2[0, 1], f2 ∈ H1
L[0, 1], f1x(1) = 0}

and for all [f1 f2]
⊤ ∈ D(A), A[f1 f2]

⊤ = [f2 f1xx]⊤. In (4.4), C ∈ L(X1,C) is defined

by Cf = f2(1), B = C∗ ∈ X−1, CΛ is the Λ-extension of C (see (3.7)) and D = 1

(see (3.6)). We study the two different cases 0 < κ < 1 and κ > 1, respectively. The

following lemma is contained in the thesis of Rideau [31].

Lemma 4.1. The open-loop generator A has compact resolvents,

σ(A) =
{
λn = i(n− 1/2)π | n ∈ N

}⋃{
λ−n = λn

∣∣ n ∈ N
}
,

the corresponding eigenvectors (e±n) form an orthonormal basis in X and the closed-

loop generator AK has for eigenvalues σ(AK) with simple algebraic multiplicity:

σ(AK) =

{
σ±n = − σ ± i(n− 1/2)π

∣∣∣∣ σ =
1

2
ln

∣∣∣∣
1 + κ

1 − κ

∣∣∣∣ , n ∈ N

}
.

We claim that (A,B) is exactly controllable. Note that this is equivalent to

(A,B∗) being exactly observable. To prove this, let u = 0 in (4.1). Multiplying both

sides of (4.1) by xwx(x, t) and integrating by parts, we obtain

∫ T

0

w2
t (1, t)dt =

∫ T

0

∫ 1

0

[
w2

t (x, t) + w2
x(x, t))

]
dxdt
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+2

∫ 1

0

[wt(x, T )xwx(x, T ) − wt(x, 0)xwx(x, 0)] dx.

Using the conservation of energy and the Cauchy inequality, we get the admissibility

of B together with the exact observability of (A,B∗):

(T − 2)

∥∥∥∥∥

[
w(·, 0)

wt(·, t)

]∥∥∥∥∥

2

X

≤
∫ T

0

w2
t (1, t)dt ≤ (T + 2)

∥∥∥∥∥

[
w(·, 0)

wt(·, t)

]∥∥∥∥∥

2

X

.

From (3.8), the closed-loop generator is AK = A+ BK(1 −K)−1CΛ, which was

defined equivalently in (4.3). The spectrum of AK , given by the zeros of 1 −KG(s),

is the spectrum of A shifted to the vertical line Reλ = −σ. Hence, (2.11) is trivially

satisfied with r = σ and m = 0. By Theorem 2.9, AK is Riesz spectral. In fact, it is

easy to see that the eigenvalues of AK are algebraically simple.

For κ > 1 the same reasoning works by inverting the flow of information in the

system, i.e., exchanging the roles of u(t) and y(t) in (4.1). We can see that

σ(AK) =
{
σ±n = −σ ± inπ | n ∈ {0, 1, 2, . . .}

}
.

The spectrum of the closed-loop system, given by the zeros of 1 −K−1G−1(s) is the

spectrum of the open-loop system shifted to the vertical line Reλ = −σ. Hence,

(2.11) is trivially satisfied with r = σ and m = 0. Again by Theorem 2.9, AK is Riesz

spectral. In fact each eigenvalues of AK is again algebraically simple. Thus, for all

κ > 0 except κ = 1, AK is diagonal. For κ = 1 the spectrum of AK is empty (and

then T
K

2 = 0).

4.2. A 1-D wave equation coupled with a boundary integrator. We

consider a system governed by a partial differential equation coupled with an ordinary

differential equation, with two inputs and two outputs.

The open-loop system Σ is described by the 1-D wave equation which is cascaded

with one integrator on the boundary:

(4.5)






wtt(x, t) = wxx(x, t) , x ∈ [0, 1], t ≥ 0,

w(0, t) = ξ(t) ,

ξt(t) = u1(t) , wx(1, t) = u2(t) , (inputs)

y1(t) = wx(0, t) − w(0, t) , y2(t) = − wt(1, t) , (outputs)

The system has two inputs u1 and u2 and two outputs y1 and y2. We consider the

closed-loop system obtained by the following output feedback:

(4.6)

[
u1(t)

u2(t)

]
= K

[
y1(t)

y2(t)

]
+

[
v1(t)

v2(t)

]
, K =

[
κ1 0

0 κ2

]
, κi > 0 .

We write L2, H1, H2 instead of L2[0, 1], H1(0, 1), H2(0, 1). The state of our system

is ψ = [w wt ξ]
⊤

and the state space is

X =
{
[z1 z2 ξ]

⊤ ∈ H1 × L2 × R | z1(0) = ξ
}
,
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with the norm

‖[z1 z2 ξ]⊤‖2 =

∫ 1

0

[
|z1x(x)|2 + |z2(x)|2

]
dx+ |ξ|2 .

The system Σ in (4.5) is regular with U = Y = R
2
. The matrix K in (4.6) is an

admissible feedback operator for Σ. Let AK denote the closed-loop generator (defined

below). We prove that AK is Riesz spectral.

Define the skew-adjoint operator A : D(A)→X such that

D(A) = {[z1 z2 ξ]⊤ ∈ X ∩
(
H2 ×H1 × R

)
| z1x(1) = 0, z2(0) = 0}

and A[z1 z2 ξ]
⊤ = [z2 z1xx 0]⊤. Define C1, C2 ∈ L(X1,R) by

C1



z1

z2

ξ


 = z1x(0) − z1(0), C2



z1

z2

ξ


 = − z2(1)

and set C =
[

C1

C2

]
. By direct computation we can find that B = [B1B2] ∈ L(R

2
, X−1)

and B = −C∗. The system (4.5) can be written as

(4.7)

{
ψ̇(t) = Aψ(t) +Bu(t) ,

y(t) = CΛψ(t) +Du(t) ,

where D = −I. The transfer function of the system (4.5) is given by

G(s) =



e−s − es

e−s + es − 1
s

2
e−s + es

−2
e−s + es

e−s − es

e−s + es




and the system is regular.

Lemma 4.2. For s ∈ ρ(A), (sI −A)−1 is compact,

σ(A) =

{
λ±n = ± i

(
n− 1

2

)
π

∣∣∣ n ∈ N

}⋃{
λ0 = 0

}

and the corresponding eigenvectors (e±n) form an orthonormal basis of X :

ek(x) =




sin (k − 1
2 )πx

i(k − 1
2 )π

sin (k − 1
2 )πx

0



, e−k(x) = ek(x), e0(x) =




1

0

1


 .

Remark 4.3. It is easy to check that Ce0 =

[
−1

0

]
and Ce±k =

[
∓i

(−1)k

]
,

∀ k ∈ N. By Proposition 3.4, (A,C) is exactly observable as well as (A,C1). However
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(A,C2) is not. By duality, similar results are true for the exact controllability of

(A,B1) and (A,B2).

The operators AK and CK are given in (3.8). It is easy to see that

D(AK) =

{
[z1 z2 ξ]

⊤ ∈
(
H2 ×H1 × R

)
∩X

∣∣∣∣
z1x(1) = −κ2z2(1)

z2(0) = κ1(z1x(0) − ξ)

}
,

AK



z1

z2

ξ


 =




z2

z1xx

κ1 (z1x(0) − ξ)


 ∀



z1

z2

ξ


 ∈ D(AK).

The following lemmas can be proved by direct computation using Theorem 1.1.

Lemma 4.4. A number λ 6= 0 is in σ(AK) if and only if it satisfies

(4.8) e2λ =

(
κ2 − 1

κ2 + 1

) [
κ1 + (1 − κ1)λ

κ1 + (1 + κ1)λ

]
.

By ηn = O(ξn) is meant that |ηn| < C̃|ξn|, ∀ n ∈ N, for some constant C̃ > 0.

Without loss of generality we study only the case when κ1, κ2 ∈ (0, 1).

Lemma 4.5. Assume that κ1, κ2 ∈ (0, 1). Then there exists some integer m ≥ 0

such that σk ∈ σp(A
K) for all k ∈ N, where

(4.9) σk = −β ± i αk+m + O
(

1

αk+m

)
,

αk =

(
k − 1

2

)
π, β = ln

√
(1 + κ1)(1 + κ2)

(1 − κ1)(1 − κ2)
.

Moreover, the eigenvector φn of AK corresponding to σn is

(4.10) φn(x) =




fn(x)

σnfn(x)

fn(0)


 ,

where

fn(x) =
1

i σn

{
eσn x +

[
(κ1 − 1)σn − κ1

(κ1 + 1)σn + κ1

]
e−σn x

}
.

Theorem 4.6. The closed-loop generator AK is Riesz spectral.

Proof. The sequence (σk) is easily computed using Rouché’s theorem for some

large m. Recall that AK = A+BK(I +K)−1CΛ. From (4.10) and using Lemma 4.4

we get easily:

CΛφn = S B∗en+m + O
(

1

αn+m

) [
1

1

]
,
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where

S =




2
κ1 + 1 0

0
2(1 − κ1)e

β

(1 + κ1)(1 + κ2)


 .

It follows that

(4.11) φn = (σn −A)−1BK(I +K)−1

{
SB∗en+m + O

(
1

αn+m

)[
1

1

]}
.

The matrix K̃ = K(I+K)−1S being diagonal and positive definite, the pair (A,BK̃
1
2 )

is exactly controllable. Applying Corollary 2.3 to (A,BK̃
1
2 ) proves that the following

sequence (φ̃n) is a Riesz basis in X :

(4.12) φ̃n = − [(−β + iαn) I −A]
−1
B K̃B∗en.

An argument similar to the proof of Theorem 2.9 tells us that the first sequence in

(4.11) is quadratically close to (φ̃n+m). The second one is quadratically close to zero,

because the sequence (‖(σn − A)−1B‖L(U,X)) is bounded. Hence there exists some

integer m ≥ 0 such that

∑

n∈N

∥∥∥φ̃n+m − φn

∥∥∥
2

X
< ∞ .

By Theorem 2.7, AK has m other generalized eigenvectors which, concatenated with

(φn) like in (2.8), form a Riesz basis in X .

Remark 4.7. If κ2 = 0 then AK is Riesz spectral using Theorem 2.9 with r = β.

4.3. Homogeneous string with variable viscous damping. This exam-

ple has an infinite-rank control operator. We consider the homogeneous string with

variable viscous damping:

(4.13)

{
wtt(x, t) − wxx(x, t) + 2a(x)wt(x, t) = 0, x ∈ [0, 1], t ≥ 0,

w(0, t) = w(1, t) = 0,

where a ∈ H1(0, 1). The eigenvalues and eigenvectors of this system have been stud-

ied in detail by Cox and Zuazua [6] in the case a(x) ≥ 0 for all x ∈ [0, 1] and

a0 =
∫ 1

0
a(x)dx > 0. One of the open questions in [6] is whether some sequence of

generalized eigenvectors of (4.13) forms a Riesz basis in the state space. They needed

this Riesz basis property to determine an a(·) resulting in the optimal decay rate of the

solutions (see Rao [24] for another result in this direction). Here, using our Theorem

2.4 we prove that the closed-loop generator for (4.13) has a sequence of generalized

eigenvectors which is a Riesz basis in the state space.

Consider H1
0 (0, 1) = {f ∈ H1(0, 1) | f(0) = f(1) = 0}. The natural state space

for (4.13) is X = H1
0 (0, 1) × L2[0, 1] with ‖f‖2

X =
∫ 1

0

[
f2
1x + f2

2

]
dx. Setting ψ(t) =
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[ψ1(t) ψ2(t)]
⊤ = [w(·, t) wt(·, t)]⊤, we associate to (4.13) the following controlled and

observed open-loop system:

(4.14)

{
ψ̇(t) = Aψ(t) +Bu(t) , ψ(0) = ψ0 ,

y(t) = Cψ(t)

Here, A is the skew-adjoint operator with compact resolvents given by

D(A) =
{
[f1 f2]

⊤ | f1 ∈ H2(0, 1) ∩H1
0 (0, 1), f2 ∈ H1

0 (0, 1)
}

and for all f = [f1 f2]
⊤ ∈ D(A), Af = [f2 f1xx]⊤. The operator B is linear and

bounded from U = L2[0, 1] to X , it has infinite rank and it is given by

Bv(x) =

[
0

v(x)

]
.

The observation operator C is also linear and bounded from X to Y = L2[0, 1] such

that C[f1 f2]
⊤(x) = 2a(x)f2(x). Thus, (A,B,C) is regular with D = 0 and every

bounded feedback operatorK is admissible. The closed-loop system (4.13) is obtained

from the open-loop system (4.14) via u(t) = Ky(t) with K = −I, and AK = A−BC.

The following result is easy to prove.

Proposition 4.8. The open-loop generator A has the spectrum σ(A) = σp(A),

σp(A) =

{
λn = iωn

λ−n = −iωn

∣∣∣∣∣ ωn = nπ, ∀ n ∈ N

}

and the corresponding eigenvectors (en) form an orthonormal basis in X :

en(x) =

[
1
nπ
i

]
ẽn(x)√

2
, e−n(x) =

[
1
nπ
−i

]
ẽn(x)√

2
, n ∈ N ,

where ẽn(x) =
√

2 sin(nπx), n ∈ N, form an orthonormal basis in L2[0, 1].

Note that B∗en(x) = i sinπnx and B∗e−n(x) = −B∗en(x) for all n ∈ N.

Since (iω±n) is properly spaced, (A,B) is exactly controllable because (‖B∗e±n‖U )

is bounded from below by a positive number (see [32]). Similarly, we have that

Ce±n(x) = ±i
√

2a(x)ẽn. (A,C) is exactly observable if and only if on some interval

[a, b] ⊂ [0, 1] with b − a > 0, infx∈[a,b] |a(x)| > 0. Using Fourier series in (4.14), we

can show that this is equivalent to the existence of a L̃ > 0 such that

∫ 2

0

‖Cψ(t)‖2
L2[a,b]dt ≥ L̃‖ψ0‖2

X ∀ ψ0 ∈ X .

In (4.13) the feedback operator is infinite-rank and depends on the space variable

x ∈ [0, 1]. To apply Bari’s theorem, we have to construct a Riesz basis with which

we compare a sequence of generalized eigenvectors. However, this Riesz basis is not
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so easy to obtain as in the case U = C. Therefore, some asymptotic estimates of

eigenvalues and eigenvectors of the closed-loop system are necessary.

It is easy to see that λ ∈ σ(AK) if and only if the following equation has a

non-trivial solution:

(4.15)

{
λ2w(x) − wxx(x) + 2λa(x)w(x) = 0

w(0) = w(1) = 0.

We set

(4.16) a0 =

∫ 1

0

a(ξ)dξ , ξ(x) =

∫ x

0

a(ξ)dξ − a0x.

As m is sufficiently large, the closed-loop system has an eigenvalue in each of the

disjoint disks Dn centered at −a0 + i(n +m)π, n ∈ N, with radius small enough to

make them disjoint. We denote by σn the eigenvalue in Dn and by σ−n the eigenvalue

in D−n. Let wn(s) denote the non-trivial solution of (4.15) corresponding to λ = σn.

The eigenvector of AK corresponding to σn is written as

(4.17) φn(x) =

[
wn(x)

σnwn(x)

]
.

The following result has been obtained in [6].

Proposition 4.9. There exist some positive integer m and some K > 0 such

that the following estimates hold for all n ∈ N :





|σ±n − (−a0 ± i(n+m)π)| ≤ K
(n+m)

,

|w±nx(x) − cosh(σ±nx+
∫ x

0
a(ξ)dξ)| ≤ K

|σ±n| ,

|σ±nw±n(x) − sinh(σ±nx+
∫ x

0 a(ξ)dξ)| ≤ K
|σ±n| .

Using Proposition 4.9 and our Theorem 2.4 we show that some sequence of gen-

eralized eigenvectors of AK forms a Riesz basis in X .

Theorem 4.10. With the notation of Proposition 4.9, there exists a positive

integer m such that AK has m generalized eigenvectors, denoted by ψ̃1, ψ̃2, . . . , ψ̃m,

so that the sequence (ψ̃1, ψ̃2, . . . , ψ̃m, φ1, φ2, . . .) is a Riesz basis in X. Here, φk is the

eigenvector of AK defined in (4.17).

Proof. Denote L2
0[0, 1] = {f ∈ L2[0, 1] |

∫ 1

0
f(x)dx = 0}. Put X̃ = L2

0[0, 1] ×
L2[0, 1], with the usual inner product. Let Λ1 : X→X̃ be defined by Λ1[f g]⊤ =

[fx g]
⊤. Then Λ1 is an isometric isomorphism. It transforms the orthonormal basis

(e±n) in X into the following orthonormal basis in X̃:

(̟±n) = [cos(nπx),±i sin(nπx)]⊤ , n ∈ N .

Define Λ2 : X̃→X̃ such that for all f = [f1 f2]
⊤ ∈ X̃ ,

(Λ2f)(x) =

[
cosh ξ(x) sinh ξ(x)

sinh ξ(x) cosh ξ(x)

]
f(x) −

〈
f,

[
cosh ξ(·)
sinh ξ(·)

]〉

L2×L2

·
[

1

0

]
,
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with ξ(x) defined as in (4.16). We claim that Λ2 is continuous and invertible from X̃

onto X̃. Indeed, it is not difficult to check that Λ2 is bounded, one-to-one and onto.

Hence, the sequence (ψn) = (Λ2̟n) is a Riesz basis in X̃. Integrating by parts we

see that the following two sequences are both in l2 :
∫ 1

0

cosh(ξ(x)) cos(nπx)dx,

∫ 1

0

sinh(ξ(x)) sin(nπx)dx.

Note also that ‖f‖X = ‖Λ1f‖X̃
. By these facts and the estimates in Proposition 4.9,

there exists some integer m > 0 such that

(4.18)
∑

n∈N

∥∥φ±n − Λ−1
1 ψ±(n+m)

∥∥2

X
< +∞.

Now applying Theorem 2.4 finishes the proof.

In Cox and Zuazua [6, Section 6], Theorem 4.10 is proved by a different method,

with the less restrictive assumption that a(x) has bounded variation. However, they

impose a(x) ≥ 0 (which we do not assume) and one step in their proof is unclear

(applying Rouché’s theorem on an unbounded domain).

5. Examples based on the beam equation.

5.1. An Euler-Bernoulli beam with boundary force feedback. Consider

the beam equation with boundary shear force feedback control:

(5.1)






wtt(x, t) + wxxxx(x, t) = 0 ,

w(0, t) = wx(0, t) = wxx(1, t) = 0 ,

wxxx(1, t) = κwt(1, t), κ > 0.

We prove that a sequence of generalized eigenvectors of the semigroup generator

associated to the system (5.1) forms a Riesz basis in the state space. This answers an

open question raised by Chen et al in [4] and studied by Conrad and Morgul [5]. Our

approach gives a complete positive answer to this question.

The associated open-loop system Σ with input u and output y is described by

(5.2)






wtt(x, t) + wxxxx(x, t) = 0 ,

w(0, t) = wx(0, t) = wxx(1, t) = 0 ,

wxxx(1, t) = − u(t)

y(t) = wt(1, t).

The state of Σ is [w wt]
⊤ and the state space is the separable Hilbert space

X =
{
[f g]⊤ ∈ H2(0, 1) × L2[0, 1] | f(0) = fx(0) = 0

}

with the norm ‖[f g]⊤‖2
X =

∫ 1

0
[|fxx(x)|2 + |g(x)|2]dx. With the notation x(t) =

[w(·, t) wt(·, t)]⊤ we write (5.2) as follows:

(5.3)

{
ẋ(t) = Ax(t) +Bu(t) ,

y(t) = CΛx(t),
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where A is the skew-adjoint operator with compact resolvents defined by

D(A) =

{
[f g]⊤ ∈ X ∩

(
H4(0, 1) ×H2(0, 1)

)
∣∣∣∣∣
g(0) = gx(0) = 0,

fxx(1) = fxxx(1) = 0

}

and for all [f g]⊤ in the domain, A[f g]⊤ = [g −fxxxx]⊤, C[f g]⊤ = g(1) and B = C∗.

The formulation (5.3) is possible because Σ is regular, see Rebarber [26]. We

know from [27, Theorem 2.7] that everyK = −κ, with κ > 0 is an admissible feedback

operator for Σ. The closed-loop generator corresponding to (5.1) is AK = A+BKB∗
Λ

with a suitable domain (see [42]). Notice that (A,B∗) is exactly observable. Indeed,

multiplying (5.2) (with u(t) = 0) by xwx(x, t) and integrating, we obtain

∫ T

0

w2
t (1, t)dt =

∫ T

0

∫ 1

0

[w2
t (x, t) + 3w2

xx(x, t)]dxdt

+ 2

∫ 1

0

[wt(x, T )xwx(x, T ) − wt(x, 0)xwx(x, 0)]dx.

Since ‖x(t)‖X is constant, there exist positive constants k1, k2 and T0 such that

k1‖(w(·, 0), wt(·, 0))‖2
X ≤

∫ T0

0

w2
t (1, t)dt ≤ k2‖(w(·, 0), wt(·, 0))‖2

X .

Hence, (A,B) is exactly controllable.

Theorem 5.1. For all κ > 0, the generator AK for (5.1) is Riesz spectral.

Proof. λ ∈ σp(A) if and only if λ = iω2 (or −iω2) and ω > 0 satisfying

(5.4) f(ω) = cos ω +
1

cosh ω
= 0.

A number σ ∈ σp(A
K) if and only if σ = iτ2 (or −iτ2) and the complex number τ 6= 0

satisfies f(τ) − g(τ) = 0, where

(5.5) g(τ) =
iκ

τ

[
tanh τ cos τ − sin τ

]
.

Setting αk = kπ+π
2 and rk = 1 + κ

αk
we consider the set of open disksDk = D(αk, rk),

k ∈ N (centered at αk with radius rk). Both f(z) and f(z)−g(z) are analytic in each

disk Dk and

lim
k→+∞

sup
z∈∂Dk

∣∣∣∣
f(z)

g(z)

∣∣∣∣ =
1 + κ

κ
> 1.

For k sufficiently large, by Rouché’s theorem, f(z)−g(z) has one and only one zero in

each disk Dk, just as f(z). Let (λn) be the sequence in C such that σp(A) = {λ±n =

±iωn | n ∈ N}. Thus there exist an integer m > 0 and a constant K1 > 0 such that

(5.6)
∣∣ωn − α2

n

∣∣ ≤ K1

αn

∀ n > m.
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Set βn = −2κ + iα2
n+m. Using Rouché’s theorem we prove that for some integer

m > 0, there exists a sequence (σn) such that Λ = {σn| n ∈ N} ∪ {σn | n ∈ N} is

a subset of σp(A
K) and such that |σn − βn| ≤ K2

αn+m
for some constant K2 > 0 and

all n ∈ N. Clearly σk 6= σl ∀ k 6= l. Each σn, n ∈ N is algebraically simple for some

m > 0 (see Conrad and Morgul [5]), but we do not need this fact. It is easy to see

that
∑

n∈N | − 2κ+ iωn+m − σn|2 <∞. By Theorem 2.9, AK is Riesz spectral.

5.2. Coupled beams with a dissipative joint. Consider the following

Euler-Bernoulli beam equation with the stabilizing feedback u(t) = −κwt(d, t) + v(t)

acting at the junction point d ∈ (0, 1). The open-loop system is described by

(5.7)





wtt(x, t) + wxxxx(x, t) = 0, x ∈ (0, d) ∪ (d, 1),

w(0, t) = wxx(0, t) = 0, wx(1, t) = wxxx(1, t) = 0,

w(d+, t) = w(d−, t), wx(d+, t) = wx(d−, t),

wxx(d+, t) = wxx(d−, t),

wxxx(d+, t) − wxxx(d−, t) = u(t) .

Here, u is the input signal and κ > 0 is a constant. We consider also the output

function y(t) = wt(d, t).

A necessary and sufficient condition for the exponential stability of the closed-loop

system corresponding to (5.7) has been proved in Rebarber [27], using a frequency

domain approach. In [27] Rebarber asked whether the spectrum-determined growth

condition is satisfied for this closed-loop system. Here, we show that a set of gen-

eralized eigenvectors of this closed-loop system form a Riesz basis in the state space

if d belongs to a certain (dense) subset R of (0, 1). This R (which is defined in the

next lemma) is the same set for which the systems (open and closed loop) are exactly

controllable and the closed-loop system is exponentially stable. It follows that the

spectrum-determined growth condition is satisfied for the closed-loop system when

d ∈ R. This gives a positive answer to a question asked in [27].

We consider the system (5.7) in the state space X = H2
LR(0, 1) × L2[0, 1], where

H2
LR(0, 1) = {f ∈ H2[0, 1] | f(0) = fx(1) = 0}. With ψ(t) = [ψ1(t) ψ2(t)]

⊤ =

[w(·, t) wt(·, t)]⊤, the open-loop system associated with (5.7) is written as

(5.8)

{
ψ̇(t) = Aψ(t) +Bu(t) ,

y(t) = B∗
Λψ(t) ,

where

D(A) =

{[
f

g

]
∈

(
H4(0, 1) ×H2

LR(0, 1)
)
∩X | fxx(0) = fxxx(1) = 0

}
,

A

[
f

g

]
=

[
0 I

−∂4
x 0

]
∀

[
f

g

]
∈ D(A),
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and B∗[f g]⊤ = g(d). Recall that A is the generator of a unitary group on X , the

triple (A,B,C) is regular and every K ∈ R is an admissible feedback operator for Σ

(see [27, Lemma 2.6]).

Lemma 5.2. Let A and B be defined as above. Then

(5.9) σ(A) = σp(A) = {λ±n = iω±n | ω±n = ±(n− 1/2)2π2, n ∈ N} ;

and (A,B) is exactly controllable if and only if d ∈ R, where R is the set of rational

numbers in (0, 1) with coprime factorization d =
p
q , with p odd.

Proof. Note that A has compact resolvents. Direct computation proves (5.9) and

the corresponding eigenvectors are given by

(5.10) Φ±n =
1√
2

[
1

λ±n

1

]⊤

φn,

where φn(x) = sin(ωnx). The sequence (Φ±n) forms an orthonormal basis in X and

|B∗Φn| = | sin((n − 1/2)πd)|. From Ingham [15], (A,B∗) is exactly observable (or,

(A,B) is exactly controllable) if and only if there is some constant c > 0 such that

| sin((n− 1/2)πd) |≥ c ∀ n ∈ N .

This is true if and only if d = p/q with odd p (see [27, Lemma 2.9]).

Now we take the Laplace transform in (5.7) with respect to time. Using Mathe-

matica the transfer function G(s) is computed with s = iτ2 :

G(iτ2) =
i

2τ

[
cos(d− 1)τ sindτ cosh τ − cos τ cosh(d− 1)τ sinhdτ

cosh τ cos τ

]
.

The closed-loop system corresponding to (5.8) with the feedback K = −κ, i.e., u =

−κy + v, is governed by

(5.11) ψ̇(t) = Aψ(t) +BKB∗
Λψ(t) +Bv = AKψ(t) +Bv,

where

D(AK) =






[
f

g

]
∈

H2
LR(0, 1)

×
H2

LR(0, 1)

∣∣∣∣∣∣∣

f |(0,d) ∈ H4(0, d), f |(d,1) ∈ H4(d, 1),

fxx(0) = fxxx(1) = 0, fxx(d−) = fxx(d+),

fxxx(d+) − fxxx(d−) = −κg(d)






and

AK [f g]
⊤

= [g − fxxxx]
⊤
.

From Theorems 1.1, the eigenvalues of AK are the solutions of

1 −KG(s) = 0 .
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The solutions are of the form s = iτ2, where

iκ

2τ
[cos(d− 1)τ sin dτ cosh τ − cos τ cosh(d− 1)τ sinh dτ ]

(5.12) + cosh τ cos τ = 0 .

Theorem 5.3. If d ∈ R, then AK has a set of generalized eigenvectors which

forms a Riesz basis in X. Moreover, the eigenvalues of AK are algebraically simple,

possibly with the exception of a finite number of them.

Proof. It is sufficient to prove (2.13) in Theorem 2.11 because (2.12) is evident.

Let m ∈ N and let the numbers αn (n ∈ N) be defined by

αn = iω(n+m) − κ sin2(n+m− 1/2)dπ,

where iωn+m ∈ σp(A) ∀ n ∈ N. Using Rouché’s theorem we can prove that for some

large integer m > 0, there exists a sequence (σn) such that σn and σn are eigenvalues

of AK and such that |αn − σn| ≤ K̃/(n+m) for some constant K̃ > 0 (see also Guo

and Chan [10]). It is obvious that σl 6= σk for l 6= k when m is large enough. Hence

(2.13) is satisfied. Thus the proof is complete.

5.3. Coupled beams with two dissipative controls. The system consists

of coupled beams with both a force and a torque feedback at the coupling joint.

With the simultaneous feedback of force and torque present in action the system

is always exponentially stabilized as proved in Tucsnak and Weiss [38] using the

Huang-Prüss theorem. This prevents the well-known lack of robustness of exponential

stabilization by force feedback or by torque feedback alone (cf. Rebarber [27] and see

also Subsection 5.2). In this subsection we prove that the exponentially stabilized

system is Riesz spectral. As a consequence of our result not only is the system always

exponentially stabilized but also may its decay rate be assigned arbitrarily by means

of a simultaneous feedback.

The system of coulped beams controlled by both force control and torque control

is described by the following PDE:

(5.13)
Wtt +Wxxxx = 0, x ∈ (0, 1) \ {ξ},

W (0, t) = W (1, t) = 0, Wxx(0, t) = Wxx(1, t) = 0,
[
W

]

ξ
=

[
Wx

]

ξ
= 0,

where ξ is some constant belonging to (0, 1) and
[
W

]

ξ
denotes the jump of W at

ξ:
[
W

]

ξ
= W (ξ+, t) −W (ξ−, t). The boundary condition for (5.13) is complemented

by the controls

(5.14)

[[
Wxxx

]

ξ
Wxt(ξ, t)

]⊤

= [u1 u2]
⊤
.
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The output measure that we consider is as follows

(5.15) y(t) =

[
Wt(ξ, t) −

[
Wxx

]

ξ

]⊤

.

The exponentially stabilizing output feedback law is given by u = Ky where

(5.16) K = −
[
κ1 0

0 1
κ2

]
, κ1, κ2 > 0.

On computing formally the time derivative of the total mechanic energy E(t) =∫ 1

0
(W 2

t +W 2
xx)dx we observe that the energy is decreasing in time for the closed-loop

system:

Ė(t) = − κ1 [Wt(ξ, t)]
2 − 1

κ2

([
Wxx

]

ξ

)2

≤ 0.

Let H2
0 (0, 1) = {f ∈ H2(0, 1) | f(0) = f(1) = 0} and let X = H2

0 (0, 1) × L2(0, 1)

with the inner product < f, g >X=
∫ 1

0 (f1xxg1xx + f2g2)dx. The closed-loop system is

exponentially stable for any ξ ∈ (0, 1) (see Tucsnak and Weiss [38]). The main result

that we will prove in this subsection is concerned with the case ξ = 1/2. The general

case is an open question to the best of our knowledge.

Theorem 5.4. Assume that κ1, κ2 > 0 and ξ = 1/2. Then the generator AK of

the closed-loop system (5.13)–(5.16) is Riesz spectral in the state space X.

From now on we set ξ = 1/2. Define the unbounded operator A by

D(A) =




f =

[
f1

f2

]
∈ X

∣∣∣∣∣∣∣∣∣

χ[0,ξ]f1 ∈ H4(0, ξ), χ[ξ,1]f1 ∈ H4(ξ, 1)

f2 ∈ H2
0 (0, 1), f1xx(0) = f1xx(1) = 0

[f1xxx]ξ = 0, f2x(ξ) = 0




,

and for all f ∈ D(A), Af = [f2 − f1xxxx]⊤. It is easy to see that A is skew-adjoint

and diagonal. It is the generator of a C0 semigroup on X and has compact resolvents.

Define the observation operator C : X1 → R
2

such that

(5.17) Cf = [C1f C2f ]⊤ = [f2(ξ) − [f1xx]ξ]
⊤.

The control operator B : R
2 → X−1 is collocated: B = C∗. As proved in Rebarber

[27] (A,B,C) is a regular triple with the feedthrough operator D = 0 and K in (5.16)

is admissible. Hence the closed-loop generator AK = A+ C∗KCΛ is described by

D(AK) =




f =

[
f1

f2

]
∈ X

∣∣∣∣∣∣∣∣∣

χ[0,ξ]f1 ∈ H4(0, ξ), χ[ξ,1]f1 ∈ H4(ξ, 1)

f2 ∈ H2
0 (0, 1), f1xx(0) = f1xx(1) = 0

[f1xxx]ξ = −κ1f2(ξ), f2x(ξ) = (1/κ2)[f1xx]ξ




,
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and for all f ∈ D(AK), AKf = [f2 − f1xxxx]⊤. As AK = A for κ1 = 1/κ2 = 0 their

eigenvalues and eigenvectors are computed on the same time.

Indeed λ ∈ σp(A
K) if and only if λ = iω2 with Reω ≥ 0 and the following

differential equation has a non-trivial solution:

ϕxxxx = ω2ϕ, x ∈ (0, 1) \ {ξ},(5.18)

ϕ(0) = ϕ(1) = ϕxx(0) = ϕxx(1) = 0,(5.19)

[ϕ]ξ = [ϕx]ξ = 0, ϕx(ξ) =

(
1

κ2 i ω
2

)
[ϕxx]ξ , [ϕxxx]ξ = − κ1 i ω

2ϕ(ξ).(5.20)

Moreover, if we approximately normalize a such ϕ in L2[0, 1] such that 0 < |ϕ|L2 <∞
then the corresponding eigenvector of AK is given by

(5.21) φ =




ϕ
iω2

ϕ



 .

We compute directly eigenvalues and eigenvectors for AK because those of A can

be obtained by taking K = 0.

Lemma 5.5. For some integer m̃ > 0 the two sequences (iω2
2n) and (iω2

2n+1) are

in σp(A
K), where

ω2n = 2(n+ m̃)π +
π

2
+

i2

(n+ m̃)πκ2
+ O

(
1

(n+ m̃)2

)
∀ n ∈ N,(5.22)

ω2n+1 = (2(n+ m̃) + 1)π +
iκ1

4(n+ m̃)π
+ O

(
1

(n+ m̃)2

)
∀ n ∈ N.(5.23)

Moreover the corresponding eigenvectors are given via (5.21) by

(5.24) ϕ2n(x) =





sinhω2nx
cosh(ω2n/2)

−
[
1 + O( 1

ω2n
)
]

sinω2nx
cos(ω2n/2)

, x ∈ (0, 1/2),

sinhω2n(x− 1)
cosh(ω2n/2)

−
[
1 + O( 1

ω2n
)
]

sinω2n(x − 1)
cos(ω2n/2)

, x ∈ (1/2, 1),

(5.25)

ϕ2n+1(x) =






O( 1
ω2n+1

)
sinhω2n+1x

cosh(ω2n+1/2)
−

[
1 + O( 1

ω2n+1
)
]
sinω2n+1x, x ∈ (0, 1/2),

O( 1
ω2n+1

)
sinhω2n+1(x− 1)

cosh(ω2n+1/2)
+ sinω2n+1(x− 1), x ∈ (1/2, 1).

Proof. General solution of (5.18)–(5.20) is given by

(5.26) ϕ(x) =





c1 sinhωx+ c2 sinωx, x ∈ (0, 1/2),

c3 sinhω(x− 1) + c4 sinω(x− 1), x ∈ (1/2, 1),

where the constants cl, l = 1, . . . , 4 satisfy the following linear algebraic equations:

(5.27) c1 sinhωξ + c2 sinωξ − c3 sinhω(ξ − 1) − c4 sinω(ξ − 1) = 0,



EIGENVALUES AND EIGENVECTORS OF SEMIGROUP GENERATORS 101

c1

(
coshωξ − i sinhωξ

ωκ2

)
+ c2

(
cosωξ +

i sinωξ

ωκ2

)
+
c3i sinhω(ξ − 1)

ωκ2

−c4i sinω(ξ − 1)

ωκ2
= 0,(5.28)

−c1i sinhωξ

ωκ2
+
c2i sinωξ

ωκ2
+ c3

(
coshω(ξ − 1) +

i sinhω(ξ − 1)

ωκ2

)

+c4

(
cosω(ξ − 1) − i sinω(ξ − 1)

ωκ2

)
= 0,(5.29)

c1

(
coshωξ − iκ1 sinhωξ

ω

)
− c2

(
cosωξ +

iκ1 sinωξ

ω

)
− c3 coshω(ξ − 1)

+c4 cosω(ξ − 1) = 0 .(5.30)

The solution (5.26) is non-trivial if and only if the determinant of the coefficient

matrix is zero. The determinant is equal to the following:

det(ω) =

{
sinhωξ cosωξ − sinωξ coshωξ +

4i sinhωξ sinωξ

ωκ2

}
·

·
{

4 coshωξ cosωξ +
iκ1(coshωξ sinωξ − cosωξ sinhωξ)

ω

}
.(5.31)

Using Rouché’s theorem we find zeros of det(ω) of large module, as estimated in (5.22)

and (5.23).

When ω = ω2n, the equations (5.28)–(5.30) are linearly independent for some m̃

sufficiently large, and the solutions form a one-dimensional linear space:

c2 = [−1 + O(1/ω2n)] secω2nξ coshω2nξ c1, c3 = [1 + O(1/ω2n)] c1,

c4 = [−1 + O(1/ω2n)] secω2nξ coshω2nξ c1.

Taking c1 = 1/ coshω2nξ we get (5.24).

Let ω = ω2n+1 and c4 = 1. First we solve (5.27) for c2 and then sustitute it into

(5.28) and (5.29) to obtain c1 and c3. This proves (5.25).

Proof of Theorem 5.4. The reader proves easily that A is skew-adjoint and has

compact resolvents. A purely imaginary number λ is an eigenvalue of A if and only

if λ = iω2 where ω ≥ 0 satisfies (5.31) for κ1 = 1/κ2 = 0. We denote the sequences

in (5.22) and (5.23) by (ω̃2n) and (ω̃2n+1) when κ1 = 1/κ2 = 0. There exists some

integer m̃ such that all the zeros of det(ω) that are larger than 2m̃ are given by these

two sequences. Moreover each eigenvalue λ = iω̃2n or iω̃2n+1 is geometrically simple

as proved above. Since det(ω) is analytic, (5.31) has only a finite number of zeros in
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[0, 2m̃], denoted by z1, . . . , zm. We order the eigenvalues of A as well as some of AK

as follows:

λk = iz2
k ∀ 1 ≤ k ≤ m, λ2n−1+m = iω̃2

2n+1, λ2n+m = iω̃2
2n ∀ n ∈ N,

and

σ2n−1 = iω2
2n+1, σ2n = iω2

2n, ∀ n ∈ N.

We denote by en+m and ϕn, respectively, their eigenvectors ordered accordingly for

n ∈ N as defined in (5.22)-(5.23). Using the trigonometric and hyperbolic function

relations we prove easily the following:

|en+m(x) − ϕn(x)| ≤ O
(

1

n+ m̃

)
.

Using (5.21) we check that the condition (2.7) is satisfied. Applying Theorem 2.4

completes the proof of Theorem 5.4.

The pair (A,C) is exactly observable but neither (A,C1) nor (A,C2) is. With the

same notation as in the proof of Theorem 5.4, let φn and φK
n be the eigenvectors for

the open-loop and close-loop systems, respectively:

φn =




en

iω̃2
n

en



 , φK
n =




ϕn

iω2
n

ϕn



 .

Remark that AK = A + C∗KCΛ and |CΛφ
K
n − Cφn+m| = O(1/(n+ m̃)). The same

reasoning as in the proof of Theorem 4.6 allows us to prove Theorem 5.4. It seems

that for the beam examples the sequence of eigenvectors of the closed-loop system is

quadratically close to that of the open-loop system. However it is not the case for the

string examples.
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