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DECISION DYNAMICS IN COOPERATIVE SEARCH BASED ON

EVOLUTIONARY GAME THEORY∗

MAMORU SAITO† , TAKESHI HATANAKA‡, AND MASAYUKI FUJITA‡

Abstract. This paper investigates a search problem for a robotic group to find a target which

appears randomly and stays for a fixed time interval. We assume that there are two search areas and

the target appears in either of them. Under the situation, it is required to make a decision on which

room to search while determining a control input. For the problem, we present an evolutionary game

theoretic method to decide the action of each robot and show that the method eventually achieves

two types of orders: macro and micro orders. The macro order means that the population share of

robots converges to an ordered value, and the micro one means that the robots’ motions converge to

periodic trajectories. The macro order is achieved by a probabilistic decision-making model called

Win-Stay-Lose-Shift. Then, convergence of the expectation value of population share is proved for

two typical payoff structures by employing knowledge of evolutionary game theory. Once the area

to search is decided by the decision-making model, each robot determines a control input aiming at

reduction of control energy. Finally, simulation results show the validity of the proposed method.

1. Introduction. Recently, Professor John Baillieul actively study decision dy-

namics in mixed human/robot teams as a key member of the project Center for

Human and Robot Decision Dynamics. Motivated by his talk in Japan [1], we started

to study decision dynamics in cooperative control. In this paper, we investigate deci-

sion dynamics in cooperative search problems, which is also motivated by one of his

research works [2], and this paper presents a new search strategy including decision

dynamics based on evolutionary game theory. As another works on decision dynam-

ics, a joint human-robot decision-making task is recently studied in [3] and [4], where

they design a model for sequential binary decision-making to decide whether to keep

the current choice (exploit) or switch (explore), and discuss its asymptotic property.

In addition, [5] presents a decision-making algorithm for a group of robots to share

the information on task completion by using a consensus-like algorithm.

Search theory addresses a problem of how to deploy an agent in order to find

a target within limited resources. This theory is motivated by several practical ap-

plications such as detection of lost objects, rescue operations and medical services.

Early works on search theory was given by Koopman [6] and Stone [7] and a large

amount of research works have been devoted to the problem in some research fields

such as operations research, artificial intelligence and so on, which are summarized

in the survey paper [8]. This theory is also extended to the cooperative search in the

multi-agent case [9, 10, 11, 12].

∗Dedicated to John Baillieul on the Occasion of His 65th Birthday.
†Sony Corporation, 1-7-1 Konan, Minato-ku, Tokyo 108-0075, JAPAN.
‡Department of Mechanical and Control Engineering, Tokyo Institute of Technology, Tokyo 152-

8552, JAPAN. E-mail: fujita@ctrl.titech.ac.jp

57



58 MAMORU SAITO, TAKESHI HATANAKA, AND MASAYUKI FUJITA

Meanwhile, swarm robotics considers design problems of agents to achieve desired

collective behaviors [13, 14]. Givigi et al. uses game theory for the modeling of the

agents’ behaviors [15, 16]. Inspired by the conventional game theory, evolutionary

game theory has been developed to clarify a biological evolution of agents’ behav-

iors [17], which is expected to be applied to some research areas such as economics,

cognitive science and so on.

In this paper, we consider a search problem by a group of robots under the

assumption that the target appears randomly and stays for a fixed time interval. For

this type of target, in [12], we formulate an optimal search control problem maximizing

the probability of finding the target while minimizing the energy consumption, and

give its approximate solution. In this paper, we consider the situation where there

are two areas in which the target can appear. In such a case, each robot has to

decide which region to search at each time instant before determining control input.

It is assumed in this paper that each agent selfishly (in the absence of consensus)

chooses either of areas at a prescribed time step according to the interaction with

the other robots. Under the situation, the objective of this paper is to achieve two

types of orders: macro and micro orders. The former means that the population

share of robots converges to an ordered value, and the latter means that the robots’

motion converges to an ordered one. In order to achieve macro order, we first present

a probabilistic decision-making model on which area to search called Win-Stay-Lose-

Shift. Then, we prove convergence of the expectation value of population share based

on the knowledge of evolutionary game theory when two specific payoff structures

are taken. In order to achieve micro order, we next present a search strategy used

after the area to be searched is decided, and prove that robots’ trajectories converge

to periodic ones respectively. Finally, simulation results show the validity of the

proposed method.

The organization of this paper is as follows. In section 3 we describe a probabilistic

decision-making model of search strategy and discuss convergence of the population

share. Next, quoted from [12], a necessary and sufficient condition for the robot’s

behavior to converge to a periodic trajectory is derived in section 4. In section 5 the

above ordered structures are shown by numerical simulations.

2. Problem Setting. Let the search area E ⊂ Rn (n ∈ {1, 2, 3}) be a bounded

set. In this paper we will mainly consider the planar cases, i.e., n = 2. We assume

that the target to be found appears randomly and stays at constant time interval

gh[s] (g ∈ {1, 2, . . .} and h[s] is a sampling period). The function φ(z) is a density

satisfying
∫

E
φ(z)dz = 1, which represents the probability that the target appears in

z ∈ E .

We consider the situation where a group of robots try to find the target. Suppose

that each robot equips a sensor and makes an observation of a target at prescribed
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time step tk = kh[s], k ∈ {1, 2, . . .} which is called observation time. Let y(t) ∈ Rn

be the robot’s position at time t ∈ R+, where R+ is the set of nonnegative reals.

For simplicity, the position at discrete time tk is represented by yk := y(tk). Let the

observation point set from time tk1
to tk2

(t0 < tk1
≤ tk2

) be denoted by Yk1:k2
:=

{yk}k=k1,k1+1,...,k2
, where Y1:0 = ∅. Similarly, the observation point sequence from

tk1
to tk2

is described as Yk1:k2
:= (yk1

, yk1+1, · · · , yk2
). Furthermore, we introduce

a sensor model by a monotonically increasing differentiable function p : R+ → [0, 1),

where p(||z−yk||) is the probability that a target at z is undetected by an observation

at yk.

Suppose that if the target appears in E at time t (tj ≤ t < tj+1, j ∈ {0, 1, . . .}),

then it remains to be at the same location for all tk, k = j+1, j+2, . . . , j+g. Then,

the search level S(Yj+1:j+g, E) which represents the probability of missing the target

detection through observations from yk ∈ Yj+1:j+g is defined by

S(Yj+1:j+g, E) :=

∫

E

φ(z)
∏

yk∈Yj+1:j+g

p(||z − yk||)dz.

It should be now noted that the robots know no information on the time when

the target appears, i.e., j. In [12], we show that a cyclic path satisfying Y1:g =

argminS(Y1:g, E) and yk+g = yk, k = 1, 2, . . . achieves a local minimum of the proba-

bility of missing the target detection under appropriate assumptions.

In this paper, we consider two subareas E1 and E2 (E = E1 ∪E2) where the target

can appear. We assume that observation points achieving a local minimum of the

search level and a direction of routing them are computed a priori and shared by

all the robots. In addition, we assume that there exist some paths between E1 and

E2. Namely, the routes that the robots can take are represented by a directed graph

as in Fig. 1, where each node of the directed graph expresses the observation point.

Notice that the graph consists of two subgraphs (blue and red colored graphs). Each

subgraph consists of a cyclic path with g nodes to search Ei and switching paths

which bring the robots from another path to this cyclic path. Namely, if a robot

moves only through the blue subgraph, then it reaches E1 in a finite time and never

escape from the area. Conversely, in case of the red subgraph, the robot will be in E2.

Now, suppose that each robot chooses either of strategies 1 and 2, which respectively

correspond to searching E1 and E2, every prescribed time step ∆h[s] . If a robot

chooses strategy 1, then it moves through the blue subgraph and otherwise moves

through the red graph. The event that a robot chooses strategy 1 (strategy 2) at time

t is represented by v(t) = 1 (v(t) = 2). Furthermore, the target detection probability

of strategy i is denoted by Pi, which can be easily computed once the observation

points are determined.

Throughout this paper we assume that the robot motion is represented by a
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Fig. 1. Directed graph for search

second order mass-spring-damper system

(1) ẋ(t) = Ax(t) +Bu(t), x(t) =

[

y(t)

ẏ(t)

]

where x(t) ∈ R2n is the state, ẏ(t) ∈ Rn is the velocity, u(t) ∈ Rm is the control

input, and the pair (A,B) is controllable. Here, the state and the velocity at time tk

are represented by xk := x(tk) and ẏk := ẏ(tk), respectively.

3. Decision-making Model of Search Strategy.

3.1. Evolutionary Game and Evolutionarily Stable Strategy. We first

explain evolutionary game briefly (please see [17] for more details).

Evolutionary game theory investigates models of evolutionary processes under

interactions between the robots. Suppose that robots are repeatedly drawn at random

to play a symmetric 2 × 2 game. Given a payoff table as in Table 1, a payoff matrix

is defined as

Ψ :=

[

Ψ1

Ψ2

]

:=

[

ψ11 ψ12

ψ21 ψ22

]

.

Moreover, let a population state be denoted by ξ := [ξ1, ξ2]
T , where each component

ξi, i = 1, 2 represents the population share of robots programmed to pure strategy i

and ξ ∈ Ω0 :=
{

ξ
∣

∣0 ≤ ξ1 ≤ 1, 0 ≤ ξ2 ≤ 1, ξ1 +ξ2 = 1
}

. Then the replicator dynamics
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Table 1

Payoff table

H
H

H
H

H
A

B
v(t) = 1 v(t) = 2

v(t) = 1
ψ11 ψ21

ψ11 ψ12

v(t) = 2
ψ12 ψ22

ψ21 ψ22

representing how each population share changes is described as

(2) ξ̇i = ri(ξ,Ψ)ξi, i = 1, 2,

(3) ri(ξ,Ψ) := Ψiξ − ξT Ψξ,

where Ψiξ and ξT Ψξ respectively represent the expected payoff to strategy i and

average payoff over the group (which is equivalent to the average of the payoff of

a randomly chosen robot). Hence those subpopulations that are associated with

better-than-average strategies grow, while those associated with worse-than-average

strategies decline. We can analyze the stable equilibrium points of (2), which is called

evolutionarily stable strategies.

3.2. Probabilistic Decision-making Model. In this subsection, we present

a probabilistic decision-making model of search strategy based on the replicator dy-

namics (2) and Win-Stay-Lose-Shift.

Let a state of strategy i at time t be defined by

η(i, t) :=







WIN if ri
(

ξ(t),Ψ
)

≥ 0,

LOSE if ri
(

ξ(t),Ψ
)

< 0,

where η(i, t) = WIN and η(i, t) = LOSE respectively mean that strategy i is better-

than-average and worse-than-average at time t. We propose the following decision-

making model.

[Decision-making Model of Search Strategy ]
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The search strategy at time t−∆h is chosen at time t with the following probability:

Pr
(

v(t) = i
∣

∣

∣
η(i, t)=WIN

)

= 1

Pr
(

v(t)=switch(i)
∣

∣

∣
η(i, t)=WIN

)

=0

Pr
(

v(t) = i
∣

∣

∣
η(i, t)=LOSE

)

= 1 + ∆hri
(

ξ(t),Ψ
)

Pr
(

v(t)=switch(i)
∣

∣

∣
η(i, t)=LOSE

)

=−∆hri
(

ξ(t),Ψ
)

where switch(i) = 2 if i = 1, and switch(i) = 1 if i = 2.

Namely, each robot keeps the current strategy i if η(i, t) = WIN, and switches with

the probability −∆hri
(

ξ(t),Ψ
)

if η(i, t) = LOSE. Here, ∆h is assumed to satisfy

−∆hri
(

ξ(t),Ψ
)

< 1. Then the expectation value of population state is updated by

(4)

[

ξ1(t+∆h)

ξ2(t+∆h)

]

=



































ξ1(t) − ∆hr2
(

ξ(t),Ψ
)

ξ2(t)

ξ2(t) + ∆hr2
(

ξ(t),Ψ
)

ξ2(t)



 if η(1, t)=WIN, η(2, t)=LOSE,





ξ1(t) + ∆hr1
(

ξ(t),Ψ
)

ξ1(t)

ξ2(t) − ∆hr1
(

ξ(t),Ψ
)

ξ1(t)



 if η(1, t)=LOSE, η(2, t)=WIN.

In the following, we analyze the stable equilibrium points of the dynamics (4).

Lemma 1. ξ = [1, 0]T , [0, 1]T are equilibria of (4).

Proof. Immediate from (3).

In addition, we have the following lemma.

Lemma 2. The set Ω :=
{

ξ
∣

∣0 < ξ1 < 1, 0 < ξ2 < 1, ξ1 + ξ2 = 1
}

is positively

invariant for system (4), i.e. if ξ(t) ∈ Ω for some t then ξ(τ) ∈ Ω, ∀τ ≥ t.

Proof. Suppose that ξ(t) ∈ Ω. In case of η(1, t) = WIN and η(2, t) = LOSE, we

have

0 < ξ1(t) − ∆hr2
(

ξ(t),Ψ
)

ξ2(t) < ξ1(t) + ξ2(t) = 1,

0 = ξ2(t) − ξ2(t) < ξ2(t) + ∆hr2
(

ξ(t),Ψ
)

ξ2(t) < 1

from 0 < −∆hr2
(

ξ(t),Ψ
)

< 1 and ξ(t) ∈ Ω. Conversely, in case of η(1, t)=LOSE and

0 = ξ1(t) − ξ1(t) < ξ1(t) + ∆hr1
(

ξ(t),Ψ
)

ξ1(t) < 1,

0 < ξ2(t) − ∆hr1
(

ξ(t),Ψ
)

ξ1(t) < ξ2(t) + ξ1(t) = 1

hold from 0 < −∆hr1
(

ξ(t),Ψ
)

< 1 and ξ(t) ∈ Ω. Thus, in all cases, we get 0 <

ξ1(t+∆h) < 1 and 0 < ξ2(t+∆h) < 1 and ξ1(t+∆h) + ξ2(t+∆h) = 1 is clear, which

leads to ξ(t+∆h) ∈ Ω. This completes the proof.

�
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Moreover r1
(

ξ(t),Ψ
)

and r2
(

ξ(t),Ψ
)

satisfy

r2
(

ξ(t),Ψ
)

= −r1
(

ξ(t),Ψ
)ξ1(t)

ξ2(t)

for ξ(t) ∈ Ω and (4). This yields

(5) ξi(t+ ∆h) =
(

1 + ∆hri
(

ξ(t),Ψ
)

)

ξi(t), i = 1, 2,

which corresponds to the first order approximation of the discrete replicator dynamics.

3.3. Search Scenarios and Convergence of Population State. In this pa-

per, we consider two typical payoff matrices and the asymptotic properties of the

expected population state.

Example 1 (competition): We consider that the robots compete with each other to

forage or to find a rare animal. Let the payoff to strategy i be described as Pi(1− ξi),

where the payoff becomes large as the target detection probability increases and the

population share to strategy i decreases. Then, the payoff matrix Ψ, r1
(

ξ(t),Ψ
)

and

r2
(

ξ(t),Ψ
)

are given by

(6) Ψ=

[

0 P1

2

P2

2
0

]

,

r1
(

ξ(t),Ψ
)

=
P1

2
ξ2(t) −

P1+P2

2
ξ1(t)ξ2(t)=−

P1+P2

2

(

ξ1(t)−
P1

P1+P2

)

ξ2(t),(7)

r2
(

ξ(t),Ψ
)

=
P2

2
ξ1(t) −

P1+P2

2
ξ1(t)ξ2(t)=−

P1+P2

2

(

ξ2(t)−
P2

P1+P2

)

ξ1(t),(8)

Notice here that because of ξ(t) ∈ Ω we have

−
P 2

2

8(P1+P2)
≤ r1

(

ξ(t),Ψ
)

<
P1

2
,−

P 2
1

8(P1+P2)
≤ r2

(

ξ(t),Ψ
)

<
P2

2
.

To satisfy −∆hri
(

ξ(t),Ψ
)

< 1, we assume

(9) ∆h < min

{

8(P1+P2)

P 2
1

,
8(P1+P2)

P 2
2

}

.

Then, we have the following theorem.

Theorem 1. Given the payoff matrix Ψ by (6), expected population shares ξ1(t)

and ξ2(t) respectively converge to

ξ1e :=
P1

P1+P2

, ξ2e :=
P2

P1+P2
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as t→ ∞ if ξ(0) ∈ Ω and

(10) ∆h <
16

P1 + P2

.

Proof. Lemma 2 and ξ(0) ∈ Ω yields ξ(t) ∈ Ω, t = 0,∆h, 2∆h, · · · . Now, we

consider the Lyapunov function candidate V
(

ξ(t)
)

= (ξ1(t) − ξ1e)
2 + (ξ2(t) − ξ2e)

2,

which satisfies V
(

[ξ1e, ξ2e]
T
)

= 0 and V
(

ξ(t)
)

> 0, ξ(t) ∈ Ω\{[ξ1e, ξ2e]
T }. Define

U11(t), U12(t) and U2(t) by

U11(t) := ξ1(t) − ξ1e, U12(t) := ξ2(t) − ξ2e, U2(t) := −
∆h(P1+P2)

2
ξ1(t)ξ2(t),

respectively. Then, from (5), (7) and (8), we get

V
(

ξ(t+ ∆h)
)

− V
(

ξ(t)
)

= (ξ1(t+∆h)−ξ1e)
2
+(ξ2(t+∆h)−ξ2e)

2 −(ξ1(t) − ξ1e)
2−(ξ2(t) − ξ2e)

2

=
(

U11(t) + U11(t)U2(t)
)2

+
(

U12(t) + U12(t)U2(t)
)2

− U2
11(t) − U2

12(t)

=
(

U2
11(t) + U2

12(t)
)

U2(t)
(

2 + U2(t)
)

.

Since U2
11(t)+U2

12(t) > 0, U2(t) < 0 and 0 < ξ1(t)ξ2(t) ≤ 1/4 if ξ(t) ∈ Ω\{[ξ1e, ξ2e]
T },

a necessary and sufficient condition for V
(

ξ(t+ ∆h)
)

−V
(

ξ(t)
)

< 0 is given by

2 + U2(t) ≥ 2 −
∆h(P1+P2)

2

1

4
> 0 ⇒ ∆h <

16

P1+P2

.

Thus, it is proved from Lyapunov Theory that limt→∞ ξ1(t) = ξ1e and limt→∞ ξ2(t) =

ξ2e if ξ(0) ∈ Ω and ∆h < 16/(P1 + P2).

�

Remark 1 : Theorem 1 gives an interesting and useful result in a practical point

of view. It proves that an ideal division of labor according to the quality of each

area is achieved not by performing bothersome negotiations for consensus but by just

choosing strategy selfishly according to the other robots’ payoffs.

Example 2 (penalty avoidance): Next, we consider the situation that a penalty is

imposed on the robots if they cannot find the target. Let the payoff to strategy i be

described as −Pi(1 − ξi), where the regret of a strategy with small population share

becomes large even if the target detection probability is high. Then the payoff matrix

Ψ, r1
(

ξ(t),Ψ
)

and r2
(

ξ(t),Ψ
)

are given by

(11) Ψ =

[

0 −P1

2

−P2

2
0

]

,
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r1
(

ξ(t),Ψ
)

=−
P1

2
ξ2(t) +

P1+P2

2
ξ1(t)ξ2(t)=

P1+P2

2

(

ξ1(t)−
P1

P1+P2

)

ξ2(t),(12)

r2
(

ξ(t),Ψ
)

=−
P2

2
ξ1(t) +

P1+P2

2
ξ1(t)ξ2(t)=

P1+P2

2

(

ξ2(t)−
P2

P1+P2

)

ξ1(t).(13)

Here, for ξ(t) ∈ Ω,

−
P1

2
< r1

(

ξ(t),Ψ
)

≤
P 2

2

8(P1+P2)
,−

P2

2
< r2

(

ξ(t),Ψ
)

≤
P 2

1

8(P1+P2)
.

In order to fulfill −∆hri
(

ξ(t),Ψ
)

< 1, we assume

∆h < min

{

2

P1

,
2

P2

}

.

Theorem 2. Given the payoff matrix Ψ by (11), expected population shares ξ1(t)

and ξ2(t) respectively converge to







ξ1e = 1, ξ2e = 0, if P1

P1+P2
< ξ1(0) < 1, 0 < ξ2(0) < P2

P1+P2

ξ1e = 0, ξ2e = 1, if 0 < ξ1(0) < P1

P1+P2
, P2

P1+P2
< ξ2(0) < 1

as t→ ∞ if

(14) ξ(0) ∈ Ω\

{

[

P1

P1+P2

,
P2

P1+P2

]T
}

.

Proof. From (5), (12) and (13),



















ξ1(t+∆h) > ξ1(t), ξ2(t+∆h) < ξ2(t) if P1

P1+P2
< ξ1(t) < 1, 0 < ξ2(t) <

P2

P1+P2

ξ1(t+∆h) < ξ1(t), ξ2(t+∆h) > ξ2(t) if 0 < ξ1(t) <
P1

P1+P2
, P2

P1+P2
< ξ2(t) < 1

ξ1(t+∆h) = ξ1(t), ξ2(t+∆h) = ξ2(t) if ξ1(t) = P1

P1+P2
, ξ2(t) = P2

P1+P2
.

holds true. (14) completes the proof.

�

4. Robot’s Behavior in Continuous Space.

4.1. Control Law for Observation Point Transition. In this subsection,

we show that, given the current state xk and the observation point sequence Yk+1:k+f

(f ∈ {1, 2, . . .}) from the directed graph, the optimal control input u(t) ∈ PCm, where

PC denotes the set of all piecewise continuous functions, t ∈ [tk, tk+f ] minimizing the
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cost

Jk:k+f :=

k+f−1
∑

i=k

Ju

(

u(·), ti
)

(15)

Ju

(

u(·), ti
)

:=

∫ ti+1

ti

uT(t)Ru(t)dt, R > 0(16)

while routing Yk+1:k+f is given in an explicit form [12]. To be concrete, for fixed xi and

xi+1, the optimal input u∗(t) minimizing (16) and the corresponding state trajectory

x∗(t), t ∈ [ti, ti+1], and the minimal cost J∗
u

(

u∗(·), ti
)

are given in the form of

[

u∗(t)

x∗(t)

]

= Z(t)

[

xi

xi+1

]

, zwt ∈ [ti, ti+1],(17)

J∗
u

(

u∗(t), ti
)

=

[

xi

xi+1

]T

M

[

xi

xi+1

]

,(18)

respectively (see e.g., [18]). Here, Y and Ẏ denote the vertical concatenation of

vectors [yT
k+1, y

T
k+2, · · · , y

T
k+f ]T and [ẏT

k+1, ẏ
T
k+2, · · · , ẏ

T
k+f ]T , respectively. Thus, (15) can

be rewritten as

(19) Jk:k+f

(

u(t)
)

=













yk

Y

ẏk

Ẏ













T

[

H1 H2

HT
2 H3

]













yk

Y

ẏk

Ẏ













where H1, H2, H3 are matrices of dimensions n(f+2) × n(f+2), n(f+2) × nf and

nf × nf , respectively. Hence the optimal vector Ẏ ∗ minimizing (19) is given by

(20) Ẏ ∗ =













ẏ∗k+1

ẏ∗k+2

...

ẏ∗k+f













= −H−1
3 HT

2







yk

Y

ẏk






.

From (17) and (20), the optimal control input u∗(t), t ∈ [tk, tk+f ] is given in an explicit

form with respect to the initial state xk and the observation point sequence Yk+1:k+f .

A receding horizon policy is used for control of each robot, that is, at time tk

the optimal control sequence u(t), t ∈ [tk, tk+f ] is computed, and it is applied only for

t ∈ [tk, tk+1).

4.2. Convergence to Periodic Trajectory. In this subsection, we give a nec-

essary and sufficient condition for the robot to converge to a periodic trajectory with

a period T = gh[s]. A similar result is also given in [12]. Let us now define the matrix
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G by

G := −













In

On

...

On













T

H−1
3 HT

2













On

...

On

In













where In and On are an identity and a zero matrix of dimensions n× n, respectively.

Roughly speaking, this matrix represents the effect of ẏk on ẏk+1.

Theorem 3. Suppose that there exists t′ such that v(t) is constant for all t ≥ t′

and the robot moves according to the present control scheme. Then, the trajectories of

the robot’s state and control input converge to periodic ones with a period T = gh[s]

as t→ ∞ if and only if maxi |λi| < 1, where λi, i = 1, 2, . . . , n are the eigenvalues of

G.

Proof. Let the error vector e[k] be defined by e[k] := ẏk+g − ẏk. Then, the

evolution of e[k+1] is described as e[k+1] = Ge[k]. This immediately implies that

limk→∞ e[k] = limk→∞

(

ẏk+g − ẏk

)

= 0 holds if and only if maxi |λi| < 1. From

yk+g = yk, k = 1, 2, . . ., we have limk→∞

(

xk+g −xk

)

= 0. Since u(t) and x(t) are given

in an explicit with respect to xk, this proof is complete.

5. Simulations. The team of 200 robots try to search the area E = [0, 4]× [0, 5]

consisting of two rooms E1 = [0, 2.5]× [0, 4] and E2 = [2.5, 5]× [0, 4]. The areas E1 and

E2 respectively contain four (g = 4) observation points [1.25, 1], [0.625, 2], [1.25, 3],

[1.875, 2] and [3.75, 1], [3.125, 2], [3.75, 3], [4.375, 2], and the directed path is given as

in Fig. 1. Suppose that each target detection probability is given by P1 = 0.5 and

P2 = 0.2. The dynamics of the robot (1) is described by

ẋ(t) =













0 0 1 0

0 0 0 1

0 0 −1 0

0 0 0 −1













x(t) +













0 0

0 0

1 0

0 1













u(t).

Let the observation interval be h = 1[s], the decision-making interval be ∆h = 0.02[s],

the prediction step be f = 10 and the cost parameter be given by R = diag(1, 1).

Under this setting, we have λi = −0.2534 (multiplicity 2), and the robots’ behaviors

converge to periodic trajectories (period T = 4[s]) from Theorem 3 once the strategies

are fixed. Here the initial states of the robots are given randomly, and y1 is the nearest

observation point to the initial position.

In Example 1, Figs 2(a) - 2(i) and Fig. 2(j) respectively show the robots’ po-

sitions and the evolution of the population share for ξ1(0) = ξ2(0) = 0.5, where

the blue square nodes, the red symbol × and the green nodes respectively describe
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(a) 1[s] (b) 2[s] (c) 3[s]

(d) 4[s] (e) 6[s] (f) 10[s]

(g) 15[s] (h) 23[s] (i) 32[s]

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

sh
ar

e 
of

 e
ac

h 
st

ra
te

gy

 

 

ξ
1

ξ
2

(j) Population share

Fig. 2. Example 1 (competition)

the robots of strategy 1 and of strategy 2, and the observation points. As shown

in Fig. 2(j), each population share converges to ξ1(t) = P1/(P1 +P2) ≈ 0.7143 and

ξ2(t) = P2/(P1+P2) ≈ 0.2857, which demonstrates the validity of Theorem 1. Figs 3

illustrates the simulation result of Example 2 for ξ1(0) = 0.6 and ξ2(0) = 0.4. We see

from Fig. 3(j) that each population share converges to ξ1(t) = 0 and ξ2(t) = 1 from

ξ1(0) < P1/(P1+P2) ≈ 0.7143, ξ2(0) > P2/(P1+P2) ≈ 0.2857, which demonstrates

the validity of Theorem 2. We see from Figs 2 and 3 that the position trajectory

of each robot converges to a periodic one. The movies of Examples 1 and 2 can be

downloaded http://fujita.fl.ctrl.titech.ac.jp/researches/movie/movie5/ani1.mpg and

http://fujita.fl.ctrl.titech.ac.jp/researches/movie/movie5/ani3.mpg respectively.
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(a) 1[s] (b) 2[s] (c) 3[s]

(d) 4[s] (e) 6[s] (f) 10[s]

(g) 15[s] (h) 23[s] (i) 32[s]
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Fig. 3. Example 2 (penalty avoidance)

6. Conclutions. In this paper, we have considered the situation where a group

of robots tries to search an area consisting of two subareas in which a target can

appear. Throughout this paper, we assume that the target appears randomly and

stays for a fixed time interval. We first have presented a probabilistic decision-making

model of search strategy based on evolutionary game theory and Win-Stay-Lose-Shift.

Then, we have proved convergence of the expected value of the population share

for two specific payoff structures. We also have derived a necessary and sufficient

condition for the robots’ behaviors to converge to periodic trajectories. Finally, two

ordered structures are shown thorough numerical simulations.
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