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OPTIMAL NATURAL FRAMES∗

ERIC W. JUSTH† AND P. S. KRISHNAPRASAD‡

Abstract. Problems of optimal control on Lie groups are of broad interest and application

dating back to the early days of geometric control theory. We study a class of such problems de-

fined on the special Euclidean group and demonstrate by appealing to reduction methods that the

extremals in these problems admit special structure associated to the nonlinear Schrödinger equation.

Key words: natural frames, optimal control on Lie groups, Lie-Poisson reduction, nonlinear

Schrödinger equation, vortex filament

1. Intoduction. In this paper, we discuss a class of optimal control problems

on Lie groups, focusing on the special Euclidean groups SE(n). The models we

discuss arise in the dynamics and control of unmanned aerial vehicles (Justh & Krish-

naprasad 2002, 2004, 2005), in continuum models in biophysics (Wiggins 2001) and in

fluid mechanics (Newton 2001). In his Ph.D. thesis (Baillieul 1975, 1978), John Bail-

lieul investigated optimal control problems on matrix Lie groups using the Maximum

Principle of Pontryagin and methods from the calculus of variations, emphasizing in

Chapter 3 of the thesis the details of the special case of SO(3). The present pa-

per is somewhat in the spirit of that chapter, seeking explicit solutions while finding

common patterns in a wider class of problems.

In Section 2 of this paper we set up a notation explaining the natural framing of

twice differentiable curves in R
3. In Section 3 we discuss optimal control problems

with symmetry on a Lie group and state the reduction of the Maximum Principle

to the dual of the Lie algebra. With this as the starting point we show, with the

help of examples, that in SE(n) the extremals are stationary solutions to a nonlinear

Schrödinger equation. Connections to vortex filament equations associated with sin-

gular solutions in fluid mechanics (Newton 2001, Ricca 1996) are also indicated. In

the work of Langer and Perline (1991, 1996) connections between the vortex filament

equation and the nonlinear Schrödinger equation are discussed using natural frames

and generalizations.

2. Natural frame representation of curves. Given a curve γ : R → R
3

which is at least twice continuously differentiable, we can associate with it a natural
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Frenet frame {T,M1,M2} which evolves according to (Bishop 1975)

γ
′ = T,

T′ = k1M1 + k2M2,

M′
1 = −k1T,

M′
2 = −k2T,(2.1)

where prime denotes differentiation with respect to the arc length parameter s, T

is the unit tangent vector to the curve, M1 and M2 are unit normal vectors, and

[T M1 M2] ∈ SO(3). The natural curvatures k1 and k2 can be thought of as controls:

given an initial position γ(0), velocity γ
′(0), and initial choice M1(0) and M2(0), the

functions k1 : R → R and k2 : R → R completely determine the curve.

The natural Frenet frame equations (2.1) can be written as a left-invariant system

on SE(3) as

(2.2) g′ = gξ,

with

g =

[

T M1 M2 γ

0 0 0 1

]

∈ SE(3),

ξ =













0 −k1 −k2 1

k1 0 0 0

k2 0 0 0

0 0 0 0













∈ se(3).(2.3)

Curves and natural Frenet frames have proved useful for designing coordinated

vehicle trajectories for tasks such as pursuit (Justh & Krishnaprasad 2006; Reddy,

Justh & Krishnaprasad 2006), formation flight (Justh & Krishnaprasad 2004, 2005),

and boundary tracking (Zhang, Justh & Krishnaprasad 2004). They have also been

applied to gather evidence for particular pursuit strategies in nature (Reddy, 2007).

An alternative framing of the curve γ (when γ is three times continuously differ-

entiable and γ
′′ 6= 0) is the Frenet-Serret frame

γ
′ = T,

T′ = κN,

N′ = −κT + τB,

B′ = −τN,(2.4)

where κ is the curvature, τ is the torsion, N is the unit normal vector, and B is the

unit binormal vector. The Frenet-Serret equations (2.4) can also be expressed as a
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left-invariant system on SE(3), and there are formulas which relate κ and τ to the

natural curvatures k1 and k2. For example,

(2.5) κ2 = k2
1 + k2

2 , τ =
d

ds
[arg(k1, k2)] =

d

ds

[

tan−1(k2/k1)
]

.

Circular helical curves are easily described using the Frenet-Serret frame, because

κ and τ are constant. The corresponding natural curvatures k1 and k2 are sinusoidal

functions of s (in phase quadrature). A right circular helix with radius ρ, pitch 2πr,

and initial point γ(0) = (ρ, 0, 0) is described by

(2.6) γ(s) =







ρ cos(s/
√

ρ2 + r2)

ρ sin(s/
√

ρ2 + r2)

rs/
√

ρ2 + r2






,

so that

(2.7) T(s) = γ
′ =

1
√

ρ2 + r2







−ρ sin(s/
√

ρ2 + r2)

ρ cos(s/
√

ρ2 + r2)

r






,

and corresponding explicit formulas for M1(s) and M2(s) can also be derived. The

curvature and torsion are given by

(2.8) κ = |γ ′′| = ρ/(ρ2 + r2)

and

(2.9) τ = γ
′ · (γ′′ × γ

′′′)/κ2 = r/(ρ2 + r2).

3. Maximum Principle and Poisson Reduction. The use of the Maximum

Principle and Lie-Poisson Reduction for left-invariant systems on finite dimensional

Lie groups is discussed in (Krishnaprasad 1993). Here we summarize the main points,

as they apply to the problems analyzed below. Given a controlled left-invariant system

(3.1) ġ = gξu,

where g ∈ G, a Lie group, and ξu ∈ g, the corresponding Lie algebra, we assume that

ξu is affine in the control vector u, i.e.,

(3.2) ξu = ξ0 +

m
∑

i=1

ui(t)ξi, i = 0, 1, ...,m.

In (3.2), u = (u1, u2, ..., um) ∈ R
m, ξi ∈ {X1, X2, ..., Xn}, a set of basis vectors for g,

and m < n where n is the dimension of G. Thus, the system is underactuated. In

particular, we assume that

ξ0 = σ0Xq for some q ∈ {m+ 1, ..., n}, σ0 ∈ {−1, 0, 1},
ξi = σiXi, σi ∈ {−1, 1}, i = 1, ...,m,(3.3)
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and we take L to have the form

(3.4) L(u) =
1

2

m
∑

i=1

u2
i .

If σ0 = 0 then the system is drift-free; otherwise, the system has drift. We consider

the fixed-endpoint problem

(3.5) min
u

∫ T

0

L(u(t))dt

subject to g(0) = g0 and g(T ) = gT , T > 0, and note that L given by (3.4) is clearly

G-invariant (i.e., L depends only on u and not on g). Assuming that controls exist

which will drive the system from g0 at t = 0 to gT at t = T , and restricting attention

to regular extremals of the fixed endpoint problem, we define the pre-hamiltonian

(3.6) H(g, p, u) = 〈p, TeLg · ξu〉 − L(u),

where p ∈ T *
gG, and TeLg denotes the tangent map of left translation by g on G. The

Maximum Principle then states that for optimal u(·) = uopt(·), the trajectory in G is

a base integral curve of the canonical hamiltonian system on T *G with hamiltonian

(3.7) H(g, p) = sup
u
H(g, p, u), for a.e. t ∈ [0, T ].

If H is differentiable with respect to u, we have

(3.8)
∂H

∂ui
(g, p, u)

∣

∣

∣

∣

ui=uopt

i

=

(

∂

∂ui
〈p, TeLg · ξu〉 −

∂L

∂ui

) ∣

∣

∣

∣

ui=uopt

i

= 0, i = 1, ...,m.

Defining µ ∈ g
∗, the linear dual of g, by µ = TeL

*
g · p, and substituting (3.4) for L,

(3.8) becomes

(

∂

∂ui
〈µ, ξu〉 −

∂L

∂ui

) ∣

∣

∣

∣

ui=uopt

i

=

〈

µ,
∂

∂ui

(

ξ0 +

m
∑

i=1

uiξi

)

∣

∣

∣

∣

ui=uopt

i

〉

− uopt
i

=
m
∑

i=1

〈µ, ξi〉 − uopt
i

=

m
∑

i=1

σi 〈µ,Xi〉 − uopt
i

= σiµi − uopt
i = 0,(3.9)

where µ is expressed in the dual basis {X♭
1, X

♭
2, ..., X

♭
n} to that of g, as

(3.10) µ =

n
∑

i=1

X♭
iµi.

Thus, optimal controls uopt
i satisfy

(3.11) uopt
i = σiµi, i = 1, ...,m.
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Substituting the optimal controls back into the hamiltonian then gives

H(g, p) = 〈p, TeLg · ξuopt〉 − L(uopt)

= 〈µ, ξuopt〉 − L(uopt)

=

〈

µ, ξ0 +

m
∑

i=1

σiµiξi

〉

− 1

2

m
∑

i=1

µ2
i

= σ0 〈µ,Xq〉 +
m
∑

i=1

σ2
i 〈µ,Xiµi〉 −

1

2

m
∑

i=1

µ2
i

= σ0µq +
1

2

m
∑

i=1

µ2
i .(3.12)

Clearly H is independent of g, and thus permits reduction. In fact, we are able to use

Lie-Poisson reduction to take the original system on T *G and reduce it to a system

on g
∗, with the reduced variables defined as µ1, ..., µn. The machinery of Lie-Poisson

reduction (technical details may be found in Krishnaprasad, 1993) then allows us to

write the reduced hamiltonian

(3.13) h = σ0µq +
1

2

m
∑

i=1

µ2
i ,

along with the dynamics for µ,

(3.14) µ̇i = −
n
∑

j=1

n
∑

k=1

µkΓk
ij

∂h

∂µj
, i = 1, 2, ..., n,

where Γk
ij are structure constants of g. We can express (3.14) in the form

(3.15) µ̇ = Λ(µ)∇h = −













n
∑

k=1

µk













Γk
11 Γk

12 · · · Γk
1n

Γk
21 Γk

22 · · · Γk
2n

...
...

...

Γk
n1 Γk

n2 · · · Γk
nn





































∂h/∂µ1

∂h/∂µ2

...

∂h/∂µn













,

which turns out to be more illuminating.

Remark: We focus on extremal solutions, i.e., solutions which satisfy the necessary

condition (3.8) for optimality. Because we have not considered (second-derivative-

based) sufficient conditions, or analyzed conjugate points, we cannot assert that these

solutions are truly optimal without doing more work. However, we shall continue to

refer to the controls uopt
i defined by (3.11) and (3.15) as the “optimal controls.”

4. Optimal framing. We apply the Maximum Principle and Lie-Poisson re-

duction to fixed-endpoint optimal control problems on SO(3), SE(3), SE(4), and

generalize to SE(n), n > 4. For SO(3), we obtain explicit equations for not only
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the optimal controls, but also the corresponding base integral curves. For SE(3), we

show that the optimal controls are stationary solutions to a nonlinear Schrödinger

(NLS) equation. For SE(4), the optimal controls are stationary solutions to a three-

dimensional generalization of the stationary NLS (SNLS) equation, a pattern which

also holds for SE(n), n > 4.

4.1. An optimal control problem on SO(3). Consider the left-invariant sys-

tem

(4.1) ġ = gξu, g ∈ SO(3), ξu = X1u1 −X2u2,

where

(4.2) X1 =







0 −1 0

1 0 0

0 0 0






, X2 =







0 0 1

0 0 0

−1 0 0






.

Suppose that the endpoints for a fixed-endpoint optimal control problem are given by

g(0) = g0, g(T ) = gT , and we seek (regular extremals which)

(4.3) min
(u1,u2)∈R2

∫ T

0

L(u1(t), u2(t))dt,

where

(4.4) L(u1, u2) =
1

2

(

u2
1 + u2

2

)

.

This problem clearly fits within the class of problems described in the previous section,

with σ0 = 0 since there is no drift term in ξu. In the absence of drift, by the

Lie Algebra Rank Condition (LARC) (Jurdjevic, 1997), it is easily verified that the

system is controllable, and therefore controls exist which will steer the system from

g0 at t = 0 to gT at t = T . Thus, we may apply the Maximum Principle and Poisson

reduction to obtain the reduced hamiltonian

(4.5) h =
1

2

(

µ2
1 + µ2

2

)

,

and the reduced dynamics (3.14), where n = 3. The structure constants are easily

found from

(4.6) [X1, X2] = −X3, [X1, X3] = X2, [X2, X3] = −X1,

to be

(4.7) Γ3
12 = −1, Γ2

13 = 1, Γ1
23 = −1,

with Γk
ij = −Γk

ji and Γk
ii = 0 for all 1 ≤ i, j, k ≤ 3. The reduced dynamics are thus

(4.8)







µ̇1

µ̇2

µ̇3






= −







0 −µ3 µ2

µ3 0 −µ1

−µ2 µ1 0













µ1

µ2

0






=







µ2µ3

−µ1µ3

0






.
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It is clear that the reduced hamiltonian (4.5) is conserved, as is the Casimir

(4.9) c =
1

2

(

µ2
1 + µ2

2 + µ2
3

)

.

Conservation of h and c imply that 2(c − h) = µ2
3 is also conserved, which is easily

seen from (4.8). The optimal controls thus take the form

(4.10) u1(t) =
√

2h cos(ωt+ φ), u2(t) =
√

2h sin(ωt+ φ),

where ω ∈ R and φ ∈ S1 (the circle group).

It is possible to write down explicit solutions for the corresponding trajectories in

SO(3) by identifying time t with arc length parameter s, noting that the sinusoidal

optimal controls (4.10) are in phase quadrature, and interpreting the optimal controls

as the natural curvatures for a circular helix in R
3. If we assume that ω > 0 (the

ω < 0 case may be treated similarly), we can use the formulas for a right circular

helix from section 2 to derive

(4.11) g̃ =
[

T M1 M2

]

,

with

T = ω1







−ρ sin(ω1t)

ρ cos(ω1t)

r






,

M1 = −ω1

√
2h







ρ
2(ω1+ω) cos(ω1t+ ωt+ φ) + ρ

2(ω1−ω) cos(ω1t− ωt− φ)
ρ

2(ω1+ω) sin(ω1t+ ωt+ φ) + ρ
2(ω1−ω) sin(ω1t− ωt− φ)

r
ω sin(ωt+ φ)






,

M2 = −ω1

√
2h







ρ
2(ω1+ω) sin(ω1t+ ωt+ φ) − ρ

2(ω1−ω) sin(ω1t− ωt− φ)

− ρ
2(ω1+ω) cos(ω1t+ ωt+ φ) + ρ

2(ω1−ω) cos(ω1t− ωt− φ)

− r
ω cos(ωt+ φ)






,

(4.12)

where ω1 = 1/
√

ρ2 + r2, ρ/(ρ2 + r2) =
√

2h and r/(ρ2 + r2) = ω. Thus, (4.11) and

(4.12) can be written as functions of h, ω, φ, and t alone. The parameters h, ω, and

φ need to be chosen to satisfy g̃(T ) = g̃(0)g−1
0 gT .

4.2. An optimal control problem on SE(3). Now consider the fixed endpoint

problem ġ = gξu, where ξu is given by

(4.13) ξu = X4 +X1u1 −X2u2,
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where

(4.14)

X4 =













0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0













, X1 =













0 −1 0 0

1 0 0 0

0 0 0 0

0 0 0 0













, X2 =













0 0 1 0

0 0 0 0

−1 0 0 0

0 0 0 0













,

and m = 2, n = dim(SE(3)) = 6. The fixed endpoints in SE(3) are denoted by

g(0) = g0 and g(T ) = gT , L(u) is given by (4.4), and we note that ξu does have a

drift term. We can view ġ = gξu as the natural Frenet frame system (2.1), where we

identify the controls (u1, u2) with the natural curvatures (k1, k2). Since the coefficient

of X4 is 1 in (4.13), we are dealing with unit-speed curves, and hence time is equal to

arc length parameter.

Remark: We assume, but do not verify, that controls (u1, u2) exist which will take

the system from g0 at t = 0 to gT at t = T . Because drift is present in this system,

proving the existence of such controls is more complicated than in the SO(3) example

above, even though the local strong accessibility condition is met (Jurdjevic, 1997).

For example, we must have

(4.15) |(g−1
0 gT )e4|2 − 1 ≤ T,

where e4 = [ 0 0 0 1 ]T , or it will be impossible to find any (u1, u2) which satisfies

the endpoint conditions. In terms of curves, (4.15) simply states that the distance (in

arc length) between the initial and final position (in R
3) must not exceed the time T

(multiplied by unit speed).

We now compute the Lie-Poisson reduced equations. Using the completion of

(4.14) to a basis for SE(3), we compute the structure constants

Γ3
12 = −1, Γ2

13 = 1, Γ1
23 = −1,

Γ5
14 = Γ4

26 = Γ6
35 = 1,

Γ4
15 = Γ6

24 = Γ5
36 = −1,(4.16)

Γk
ji = −Γk

ij , and Γk
ij = 0 for all other 1 < i, j, k < 6. The dynamics for µj , j = 1, ..., 6,

found from (3.14) are thus

(4.17)






















µ̇1

µ̇2

µ̇3

µ̇4

µ̇5

µ̇6























= −























0 −µ3 µ2 µ5 −µ4 0

µ3 0 −µ1 −µ6 0 µ4

−µ2 µ1 0 0 µ6 −µ5

−µ5 µ6 0 0 0 0

µ4 0 −µ6 0 0 0

0 −µ4 µ5 0 0 0













































µ1

µ2

0

1

0

0























=























µ3µ2 − µ5

−µ3µ1 + µ6

0

µ5µ1 − µ6µ2

−µ4µ1

µ4µ2























.
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Conserved quantities include the (reduced) hamiltonian,

(4.18) h = µ4 +
1

2
(µ2

1 + µ2
2),

and the two Casimir functions

c1 =
1

2

(

µ2
4 + µ2

5 + µ2
6

)

,

c2 = µ1µ6 + µ2µ5 + µ3µ4.(4.19)

As in the optimal control problem on SO(3) described in the previous subsection, µ3

is constant, as can be seen directly from (4.17).

4.2.1. Connection to the nonlinear Schrödinger equation. Defining

(4.20) a =

[

µ1

µ2

]

, b =

[

−µ5

µ6

]

, ω = µ3 = constant,

we have

h = µ4 +
|a|2
2
,

c1 =
1

2

(

µ2
4 + |b|2

)

,

c2 = ωµ4 + bTJa,(4.21)

where

(4.22) J =

[

0 −1

1 0

]

.

The dynamics (4.17) become

ȧ = −ωJa + b,

ḃ =

(

h− |a|2
2

)

a,(4.23)

which can be written in terms of a alone as

(4.24) ä + ωJ ȧ−
(

h− |a|2
2

)

a = 0.

We can now use a change of variables to eliminate the ȧ term from (4.24). Defining

ã by

(4.25) a = exp

(

−1

2
ωJt

)

ã,

we have

(4.26) ȧ = − exp

(

−1

2
ωJt

)

1

2
ωJ ã + exp

(

−1

2
ωJt

)

˙̃a,
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and

(4.27) ä = exp

(

−1

2
ωJt

)

1

4
ω2J2ã − exp

(

−1

2
ωJt

)

ωJ ˙̃a + exp

(

−1

2
ωJt

)

¨̃a.

Substituting into (4.24) and multiplying through by exp
(

1
2ωJt

)

, we obtain

1

4
ω2J2ã − ωJ ˙̃a + ¨̃a + ωJ

[

−1

2
ωJ ã + ˙̃a

]

−
(

h− |ã|2
2

)

ã

= ¨̃a +
1

4
ω2ã −

(

h− |ã|2
2

)

ã = 0.(4.28)

Defining h̃ = h− 1
4ω

2, we finally obtain

(4.29) ¨̃a − h̃ã +
1

2
|ã|2ã = 0.

Consider the (focusing cubic) nonlinear Schrödinger equation (NLS) (with an

additional linear term),

(4.30) −i∂ψ
∂t

=
∂2ψ

∂x2
− h̃ψ +

1

2
|ψ|2ψ,

where ψ(t, x) is a complex function of time t and position x ∈ R. Identifying the

variable x in (4.30) with t in (4.29) and [ Re(ψ) Im(ψ) ]T in (4.30) with ã in (4.29),

we see that (4.29) can be viewed as a stationary NLS (SNLS).

4.2.2. Special solutions of SNLS. Among the solutions to (4.29) are two

easily obtained classes: sinusoidal solutions and (Jacobi) elliptic function solutions.

For the sinusoidal solutions, we have

(4.31) ã = α

[

cos(ω̃t+ φ)

sin(ω̃t+ φ)

]

,

where α = |ã| is a constant amplitude, and φ is a constant phase. Then α must satisfy

(4.32) −αω̃2 − h̃α+
1

2
α3 = 0,

or

(4.33) α =

√

2(ω̃2 + h̃),

where ω̃, h̃, and φ are determined by the specified endpoints g0 and gT (assuming that

there exist curves in SE(3) corresponding to these sinusoidal solutions which actually

interpolate g0 and gT ).

To describe the elliptic function solutions, we represent ã as

(4.34) ã =

[

cos θ

sin θ

]

ã,



OPTIMAL NATURAL FRAMES 27

where θ is constant and ã is a scalar-valued function. For this class of solutions, (4.29)

implies

(4.35) ¨̃a− h̃ã+
1

2
ã3 = 0.

Equation (4.35) has solutions of the form

(4.36) ã(t) = (2ν
√
m)cn(ν(t− η),m), m =

1

2

(

1 +
h̃

ν2

)

,

where η, ν, and m are constant, and ν satisfies ν2 ≥ |h̃| (Davis, 1962). To connect

back to the original optimization problem, these elliptic function solutions correspond

to optimal controls for ġ = gξu, with ξu given by (4.13), of the form

(4.37)

[

u1

−u2

]

= a = exp

(

−1

2
ωJt

)

[

cos θ

sin θ

]

ã,

where ã given by (4.36), h̃ = h − 1
4ω

2, and the constants ω, h, θ, η, and ν are

determined by the endpoints g0 and gT (if such constants exists). Of course, we could

have written an analogous expression for the optimal u1 and u2 corresponding to the

sinusoidal solutions, as well. The point is that we can work with the Lie-Poisson

reduced equations to ultimately obtain explicit formulas (for the controls) for certain

extremal solutions to the fixed-endpoint optimal control problem on SE(3), and a key

step is recognizing that the reduced equations can actually be re-cast into the form

of a stationary NLS equation.

4.3. An optimal control problem on SE(4). It turns out that the techniques

used above for the fixed-endpoint problem on SE(3) can be generalized to higher

dimensions. We first use SE(4) for illustration, and then proceed to the general case.

Consider the fixed endpoint problem ġ = gξu for g ∈ SE(4), where

(4.38) ξu = X7 +X1u1 +X2u2 +X3u3,

with

X1 =

















0 −1 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

















, X2 =

















0 0 −1 0 0

0 0 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

















,

X3 =

















0 0 0 −1 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

0 0 0 0 0

















, X7 =

















0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

















,(4.39)
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and

(4.40) L(u) =
1

2

(

u2
1 + u2

2 + u2
3

)

.

Extending (4.39) to a particular basis for the Lie algebra se(4) (in particular, {X1, ...,

X6} correspond to infinitesimal rotation while {X7, ..., X10} correspond to transla-

tion), we have

(4.41) h = µ7 +
1

2

(

µ2
1 + µ2

2 + µ2
3

)

,

and the Lie-Poisson reduced equations are computed to be

(4.42)











































µ̇1

µ̇2

µ̇3

µ̇4

µ̇5

µ̇6

µ̇7

µ̇8

µ̇9

µ̇10











































= Λ(µ)











































µ1

µ2

µ3

0

0

0

1

0

0

0











































=











































−µ4µ2 − µ5µ3 − µ8

µ4µ1 − µ6µ3 − µ9

µ5µ1 + µ6µ2 − µ10

0

0

0

µ8µ1 + µ9µ2 + µ10µ3

−µ7µ1

−µ7µ2

−µ7µ3











































,

where

(4.43)

Λ(µ) = −











































0 µ4 µ5 −µ2 −µ3 0 µ8 −µ7 0 0

−µ4 0 µ6 µ1 0 −µ3 µ9 0 −µ7 0

−µ5 −µ6 0 0 µ1 µ2 µ10 0 0 −µ7

µ2 −µ1 0 0 µ6 −µ5 0 µ9 −µ8 0

µ3 0 −µ1 −µ6 0 µ4 0 µ10 0 −µ8

0 µ3 −µ2 µ5 −µ4 0 0 0 µ10 −µ9

−µ8 −µ9 −µ10 0 0 0 0 0 0 0

µ7 0 0 −µ9 −µ10 0 0 0 0 0

0 µ7 0 µ8 0 −µ10 0 0 0 0

0 0 µ7 0 µ8 µ9 0 0 0 0











































.

Defining

(4.44) a =







µ1

µ2

µ3






, b = −







µ8

µ9

µ10






, Ω̂ =







0 µ4 µ5

−µ4 0 µ6

−µ5 −µ6 0






,

we have from (4.42)

ȧ = −Ω̂a + b,

ḃ =

(

h− |a|2
2

)

a,(4.45)
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where the optimal controls are given by

(4.46)







u1

u2

u3






= a.

Note that the form of (4.45) is analogous to (4.23), except that now a and b are

3-dimensional vectors. Indeed, (4.45) leads to a generalization of the SNLS equation

(see the next subsection). Among the solutions to (4.45) are sinusoidal and elliptic

function solutions analogous to those obtained in the SE(3) example of the previous

subsection.

4.4. An optimal control problem on SE(n). More generally, we can consider

the fixed endpoint problem ġ = gξu for g ∈ SE(n), where se(n) is parameterized such

that {X1, ..., Xn(n−1)/2} correspond to infinitesimal rotation and {X[n(n−1)/2+1], ...,

Xn(n+1)/2} correspond to translation, and

(4.47) ξu = X[n(n−1)/2+1] +X1u1 +X2u2 + · · · +Xn−1un−1.

In particular, X1, ..., Xn−1 take the following form: the [1, (1 + k)] component of Xk

is −1, the [(1 + k), 1] component of Xk is 1, and all other components of Xk are

zero, k = 1, ..., n − 1. Furthermore, the [1, (1 + n)] component of X[n(n−1)/2+1] is

1, and all other components of X[n(n−1)/2+1] are zero. We then extend X1, ..., Xn−1

and X[n(n−1)/2+1] to a basis for se(n) in a manner analogous to the se(4) case of the

previous subsection. We consider the cost function

(4.48) L(u) =
1

2

(

u2
1 + u2

2 + ...+ u2
n−1

)

,

and we have

(4.49) h = µ[n(n−1)/2+1] +
1

2

(

µ2
1 + µ2

2 + ...+ µ2
n−1

)

.

We define

(4.50) a =













µ1

µ2

...

µn−1













, b = −













µ[n(n−1)/2+2]

µ[n(n−1)/2+3]

...

µn(n+1)/2













, Ω̂ = Ω̂(µn, ..., µn(n−1)/2)

where a and b are vectors of length n−1 and Ω̂ is an (n−1)×(n−1) skew-symmetric

matrix. That Ω̂ is constant follows from a calculation which makes use of the form

of the gradient of h, as well as the form of Λ(µ), which in turn involves the structure

constants for se(n). We then have, analogously to the calculation for SE(4), that a
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and b obey (4.45) with optimal controls given by

(4.51)













u1

u2

...

un−1













= a.

Writing (4.45) In terms of a alone, we have

(4.52) ä + Ω̂ȧ −
(

h− |a|2
2

)

a = 0.

Defining ã by

(4.53) a = exp

(

−1

2
Ω̂t

)

ã,

we use a calculation analogous to the one for SE(3) to obtain

(4.54) ¨̃a − H̃ ã +
1

2
|ã|2ã = 0,

where

(4.55) H̃ = hI(n−1)×(n−1) +
1

4
Ω̂2

is a constant, symmetric matrix. Equation (4.54) can be considered a vector version

of the stationary NLS, and among its solutions are classes of solutions analogous to

the sinusoidal and elliptic function solutions identified in the analysis for SE(3).

Remark: In place of (4.13) and X2 given by (4.14) for the analysis in Section 4.2 of

the optimal control problem on SE(3), we could have used

(4.56) ξu = X4 +X1u1 +X2u2,

with

(4.57) X2 =













0 0 −1 0

0 0 0 0

1 0 0 0

0 0 0 0













,

in order to adhere to the pattern followed in Section 4.3 for SE(4) and Section 4.4

for SE(n), n > 4. The choice (4.56) with (4.57) is more natural for framed curves,

but (4.13) with (4.14) is used in Section 4.2 to more smoothly segue from SO(3) to

SE(3).
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5. Physics. The nonlinear Schrödinger equation appears in the study of the

DaRios-Betchov, or vortex filament equation (Betchov, 1965). Vortex filaments are

persistent slender filamentary structures observed in three-dimensional fluid flows, and

they exhibit self-induced motion (and shape change) due to the curvature distribution

along the filament. The identification of vortex filament shapes and their stability has

been studied extensively over the past half-century due to the aeronautical importance

of vortices in fluid flow over airfoils.

Vortex filaments can be modeled using curves and natural Frenet frames, where

the vortex filament is modeled as a curve in three-dimensional space which does not

change length, but which can move and change shape with time. In place of (2.1), we

have the partial differential equation

γs = T,

Ts = k1M1 + k2M2,

M1s = −k1T,

M2s = −k2T,(5.1)

where γ and {T,M1,M2} are functions of both time t and arc-length parameter s.

The DaRios-Betchov equation (or vortex filament equation) is

(5.2) γt = γs × γss,

and it describes the evolution of the curve representing the vortex filament evolving

in three-dimensional space. Note that (5.2) is length-preserving, i.e.,

(5.3)
d

dt
|γs| =

γs · γst

|γs|
=

γs · γts

|γs|
=

γs · (γss × γss + γs × γsss)

|γs|
= 0.

Equation (5.2) possesses even more structure: the Hasimoto transformation shows

that the natural curvatures (k1, k2) in (5.1), evolving according to (5.2), are given by

the nonlinear Schrödinger equation (Hasimoto, 1972). Analysis of the DaRios-Betchov

equation from a geometric point of view, using natural frames and the nonlinear

Schrödinger equation, can be found in the work of Langer and Perline (1991, 1996).

5.1. DaRios-Betchov equation and NLS. Using the fact that mixed partial

derivatives commute, i.e., γst = γts and Tts = Tst, after some calculation we obtain

(5.4) k2t =

(

1

2

(

k2
1 + k2

2

)

−A(t)

)

k1 + k1ss,

where A(t) is a constant of integration. An analogous calculation gives

(5.5) k1t =

(

−1

2

(

k2
1 + k2

2

)

+A(t)

)

k2 − k2ss.
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To show the connection between (5.4), (5.5) and the nonlinear Schrödinger equation,

we let

(5.6) ψ = k1 + ik2,

where i =
√
−1, so that

ψt = k1t + ik2t = i (k1 + ik2)ss + i

[

1

2

(

k2
1 + k2

2

)

−A(t)

]

(k1 + ik2)

= i

[

∆ +

(

1

2
|ψ|2 −A(t)

)]

ψ,(5.7)

where ∆ denotes the Laplacian operator with respect to s.

In fact, (5.7) can be simplified somewhat by introducing a change of variables

based on a phase factor, as observed by Hasimoto (1972). We let

(5.8) ψ̃ = exp

(

i

∫ t

0

A(σ)dσ

)

ψ,

so that

ψ̃t = iA(t) exp

(

i

∫ t

0

A(σ)dσ

)

ψ + exp

(

i

∫ t

0

A(σ)dσ

)

ψt

= iA(t)ψ̃ + exp

(

i

∫ t

0

A(σ)dσ

) [

i∆ψ + i

(

1

2
|ψ|2 −A(t)

)

ψ

]

= exp

(

i

∫ t

0

A(σ)dσ

)(

i∆ψ + i
1

2
|ψ|2ψ

)

= i

(

∆ +
1

2
|ψ̃|2

)

ψ̃.(5.9)

We have thus obtained

(5.10) iψ̃t = −
(

∆ +
1

2
|ψ̃|2

)

ψ̃,

the focusing cubic nonlinear Schrödinger equation (without the additional term in-

volving A(t) in (5.7).

5.2. Steady vortex filaments. The NLS (5.7) thus describes how the natural

curvatures of the vortex filament evolve with time. There are a variety of solutions to

(5.7), including ones which move (i.e., rotate about their axis or translate) without

changing their form - such solutions are traveling wave solutions of (5.7). One such

class of solutions, whose stability properties have been extensively analyzed, are helical

vortex filaments (Widnall, 1972). Others include circular rings, closed coils, planar

sinusoidal curves, and curves described by elliptic functions (Kida, 1981).

Thus, the solutions to the fixed-endpoint optimal control problem on SE(3) in

Section 4.2 are related to the steady vortex filament solutions, in the sense that both
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satisfy restricted versions of the NLS equation. There are also cosmetic differences

between (5.7) and (4.30), such as the role of fixed endpoint conditions versus the

DaRios-Betchov equation for determining the constants which appear in the solu-

tions. Nevertheless, there is clearly a close relationship in terms of the form of the

solutions. A more subtle question is to establish direct links between the underly-

ing variational principle for the vortex filament equation and optimal control that

explains the connection between these problems at a deeper level.

6. Conclusion. The present paper is inspired by earlier work of Baillieul on

optimal control problems. We have shown that the equations governing extremals

have interesting structure that appears to be previously unknown. Furthermore, the

extremal solutions for a particular optimal control problem on SE(n) are associated

with stationary solutions to the usual nonlinear Schrödinger equation (for n = 3)

and its higher-dimensional analogs (for n ≥ 4). Connections to similar solutions

which appear in the study of vortex filament equations have also been described. A

generalization of the methods used here to multiple particles in SE(2) interacting

through a fixed communication graph can be found in Justh & Krishnaprasad (2010).
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