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ANALYSIS OF TWO-CLASS DISCRETE PACKET QUEUES WITH

HOMOGENOUS ARRIVALS AND PRIORITIZED SERVICE∗

HAMED NASSAR† AND YASSER FOUAD‡

Abstract. In this article we analyze the system occupancy of a discrete time queue of packets,

where each packet is either of class-1 or of class-2, with class-1 receiving higher service priority than

class-2. Such a queue is naturally formed in many computer and digital communications systems, e.g.

multiuser computers, multiprocessing computers, file servers, ATM multiplexers, and ATM switches,

when the packet sources are multimedia applications. The analysis considers both priority disci-

plines, nonpreemptive and preemptive, and identifies the relation between them. It demonstrates

mathematically the intuitive fact that when service time is deterministically 1 slot, both priority

disciplines result in the same system occupancy. The analysis is carried out under the assumption

that the service time is geometric, and that the packets arrive in batches of general size, at the rate

of one batch per slot. These batches are homogeneous in the sense that each batch is either totally of

class-1 packets or totally of class-2 packets. Two special cases are given at the end where the batch

size is assumed once binomial and once Poisson.

Keywords. Multimedia, ATM, nonpreemptive and preemptive priority, discrete queueing, sys-

tem occupancy

1. Introduction. Discrete time two-class queues of packets are formed in many
computer and digital communications systems when the sources of these packets are of
multimedia applications. In computer systems they are found in such installations as
multiprogramming computers, multiuser computers, and multiprocessors. In digital
communications systems they are found in such installations as asynchronous transfer
mode (ATM) multiplexers and switches. Due to the multimedia nature of the sources,
the packets are usually of two classes: class-1 and class-2. Class-1 packets, typically
representing real time traffic, e.g. live audio and video, require higher service priority
over class-2 packets, typically representing nonreal time traffic, e.g. file transfers.

Given their timely nature, class-1 packets need to be served more rapidly than
class-2. This can be done by implementing a priority scheme for the queue, where
class-1 packets are given higher priority over class-2. Two disciplines may be used
if such a scheme is implemented, based on what is supposed to happen to a class-2
packet being served when a class-1 packet arrives. In the nonpreemptive discipline,
the arriving class-1 packet will have to wait until the class-2 packet is served. In the
preemptive discipline, on the other hand, the class-1 packet will enter service in the
next slot, ejecting the class-2 packet back to the buffer. When there are no more
class-1 packets in the queue, the ejected class-2 packet will reenter service. It can be
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seen that the preemptive discipline is favorable to class-1 packets, since they always
find the server available. However, this discipline is time wasteful since it throws
away partial service time already expended on class-2 packets. The nonpreemptive
discipline, by contrast, is still favorable to class-1 packets, albeit to a lesser extent,
but is time conservative in that not even a single slot already expended by the server
is thrown away.

Analyses of single class discrete time queueing system are available in the litera-
ture in abundance (see e.g. [1], [2], [3], [4], and [5]). By contrast, analyses of two-class
discrete queues are less available. Only in recent years have such analyses begun to
proliferate. For example, [6], [7], [8], and [9] study two-class discrete-time systems,
with service time assumed deterministically 1 slot. Also, [10], [11], and [12] study
systems with nonpreemptive priority and general service times with nonhomogeneous
packet arrivals. Additionally [13], [14], and [15] study systems with preemptive prior-
ity. In [16], a preemptive priority system was considered but with two service rates,
one geometric and one deterministically 1 slot. This work is generalized in [17] where
the two service rates are made geometric.

Our analysis in this article is characterized by the two assumptions of homoge-
neous arrivals, in the sense that each arriving batch contains only one class and never
the two classes, and geometric service time. In particular, the homogeneous arrival
assumption cannot be generated as a special case of the above cited works. Further-
more, our analysis is characterized by the comparison between the system occupancy
under the preemptive and nonpreemptive priority disciplines, and by quantifying this
comparison through the derivation of relationships between the expected occupancy
under both disciplines.

The article is organized as follows. The exact assumptions of our system are
stated in the next section. In section 3 we analyze the joint PGF and in section 4
we analyze the marginal PGF. In section 5 we analyze the expected occupancies. A
special case is considered in Section 6, where the size of the arriving batch is assumed
once Binomial and once Poissonian, while in Section 7 some conclusions are drawn.

2. Model Assumptions and Notations. The queueing system to be analyzed
in this article has the following assumptions.

1. The time axis is divided into equal intervals called slots. Each slot is exactly
equal to the transmission time of one packet. Nonnegative integers k = 0,
1, . . ., are assigned to individual slot boundaries. Time interval [k, k + 1) is
referred to as slot k + 1.

2. The system has an infinite waiting room.
3. The system has a single server which serves packets at the rate of s packets

per slot. Stated differently, provided the system is nonempty, its departure
rate is s packets per slot. This implies that a packet being served in a certain
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slot will depart the server by the end of that slot with probability s and will
not depart with probability s = 1− s. It also implies that the service time of
each packet is geometrically distributed with parameter s. There should be
no confusion between the fact that the transmission time of one packet is 1
slot and that its service time is geometrically distributed. It is true that in
some applications, the service time of a packet is just its transmission time,
but this is not necessarily always the case. There can be some preprocessing
for the packet before it is transmitted (e.g. encryption or error detection and
correction calculations). Also, in acknowledged communications systems, a
packet may need to be transmitted repeatedly if the output communications
channel is unreliable (e.g. in wireless communications), making the service
time many times the transmission time [16].

4. Arriving packets are of fixed size. These packets are queued in the buffer
until they enter the server.

5. Packets arriving into the system are of two classes, class-1 and class-2. Class-
1 packets have service priority over class-2. That is, no class-2 packet can
enter service while a class-1 packet is present in the buffer. Thus we can look
at the system as having two queues, one of class-1 packets and one of class-2
packets.

6. The discipline of service priority is nonpreemptive.
7. In each slot k, either a batch of Ak

1 = 0, 1, . . ., class-1 packets arrives with
probability λ, or a batch of Ak

2 = 0, 1, . . ., class-2 packets arrives with proba-
bility λ = 1−λ. In other words, λ and λ are the batch arrival rates for class-1
and class-2, respectively. Both Ak

1 and Ak
2 are random variables (RVs) with

arbitrary distributions. The Ak
1 are independent and identically distributed

(iid) and so are the Ak
2 . Speaking about the packets, let r denote the total

packet arrival rate. Then the class-1 packet arrival rate is r1 = λE[Ak
1 ] and

the class-2 packet arrival rate is r2 = λE[Ak
2 ], where the E[·] operator denotes

the expected value of the random variable between brackets.
8. Each arriving batch is placed at the end of its appropriate queue, i.e. class-

1 or class-2, on a first come first serve (FCFS) basis. With respect to the
packets inside the batch, the placement in the queue is of random order.

9. A packet may start service only at the beginning of a slot, and may end
service only just before the end of a slot.

10. A packet can not enter queue or service in its arrival slot. This implies that
a packet that arrives at an empty system in a certain slot will still not enter
the server before the beginning of the next slot. It also implies that a packet
that has arrived in a system in a given slot will not be seen by the system till
the beginning of the next slot.

The RVs used in the analysis are all both nonnegative and integral valued.
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3. Joint PGF. In this section we analyze the steady state system occupancy,
i.e. the number of packets in the system at the end of an arbitrary slot during steady
state. The analysis will be done by looking not at all points in time but rather at
a select set of points, namely the set of departure instants. Our analysis then is to
focus upon the number of packets left behind by a departing packet. We are therefore
describing a semi Markov process [18], where we define the imbedded Markov chain
to be the number of packets present in the system immediately following a departure.

To this end, let Hk
1 = 0, 1, be a RV denoting the number of class-1 batches that

arrive at the system in slot k. That is,

(1) Pr
[
Hk

1 = n
]

=





λ if n = 1
λ if n = 0
0 otherwise

Similarly, let Hk
2 = 0, 1, be a RV denoting the number of class-2 batches that arrive

at the system in slot k. That is,

(2) Pr
[
Hk

2 = n
]

=





λ if n = 1
λ if n = 0
0 otherwise

From the homogeneity assumption, the RVs Hk
1 and Hk

2 are dependent with the
following conditional distribution.

(3) Pr
[
Hk

1 = n | Hk
2 = m

]
=





1
if n = 1, m = 0
or n = 0, m = 1

0 otherwise

Let V n
1 be the number of class-1 packets that arrive at the system during the

service time of a packet that leaves the system at departure instant n, n = 0, 1, . . ..
Similarly, let V n

2 be the number of class-2 packets that arrive at the system during the
service time of a packet that leaves the system at departure n. Clearly, V n

1 is given
by

(4) V n
1 =

∑PXn

j=1 H
(j)
1

i=0
A

(i)
1

where H
(j)
1 denotes the number of class-1 batches to enter the system in the jth slot

of the service time X of the packet that leaves the system at departure instant n.
Similarly, V n

2 is given by

(5) V n
2 =

∑PXn

j=1 H
(j)
2

i=0
A

(i)
2

where H
(j)
2 denotes the number of class-2 batches to enter the system in the jth slot

of the service time X of the packet that leaves the system at departure instant n.
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Let Pn
1 = 0, 1, · · · , be a RV denoting the class-1 system occupancy just after de-

parture n. Similarly, let Pn
2 = 0, 1, · · · , be a RV denoting the class-2 system occupancy

just after departure n. Also, let Dn
1 = 0, 1, · · · , be a RV denoting the number of class-

1 packets that depart from the system at departure n. The conditional distribution
of Dn

1 is given by

(6) Pr
[
Dn+1

1 = i|Pn
1 = j

]
=





1
if i = 1, j > 0
or i = 0, j = 0

0 otherwise

Similarly, let Dn
2 = 0, 1, · · · , be a RV denoting the number of class-2 packets that

depart from the system at departure n. The conditional distribution of Dn
2 is given

by

(7) Pr
[
Dn+1

2 = i|Pn
1 = j, Pn

2 = l
]

=





1
if i = 1, j = 0, l > 0
or i = 0, j = 0, l = 0
or i = 0, j > 0, l ≥ 0

0 otherwise

Using the RVs defined above, taking into account their stated conditional dis-
tributions and referring to the assumptions in section 2, the system occupancy at
departure n + 1 is given by

(8) Pn+1
i = Pn

i −Dn+1
i + V n+1

i , i = 1, 2.

Note that the pairs (Pn
1 , Pn

2 ), n = 0, 1, · · · , define a two-dimensional Markov chain
[3], with Pn

1 and Pn
2 being dependent for each n. Now we will embark on deriving the

PGF of the (Pn
1 , Pn

2 ), from which the stationary PGF will be obtained.

Let pn
i,j be the joint distribution of the pair (Pn

1 , Pn
2 ). That is, pn

i,j = Pr [Pn
1 = i ,

Pn
2 = j]. And let Pn (z1, z2) be the PGF of pn

i,j . That is,

(9) Pn(z1, z2) ,
∞∑

i=0

∞∑

j=0

pn
i,jz

i
1z

j
2 = E

[
z

P n
1

1 z
P n

2
2

]
,

where the notation E [·] denotes the expectation of the RV between the brackets.
Using (8) in (9), we get

(10) Pn+1 (z1, z2) = E
[
z

V n+1
1

1 z
V n+1

2
2

]
E

[
z

P n
1 −Dn+1

1
1 z

P n
2 −Dn+1

2
2

]
.

The separation of the expectations in (10) is a consequence of the fact that both An+1
1

and An+1
2 are independent of Pn

1 , Dn+1
1 , Pn

2 and Dn+1
2 .

The first factor in (10) is just V n+1 (z1,z2). The second factor can be evaluated
using the conditional distributions given in (6) and (7), and employing some tedious,
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but straightforward, first probability principles. After substituting for the first factor
and evaluating the second, (10) becomes

Pn+1 (z1, z2) =
V n+1 (z1,z2)Pn(z1, z2)

z1
+ V n+1 (z1,z2)Pn (0, z2)

(
1
z2
− 1

z1

)

+V n+1 (z1,z2) pn
0,0

(
1− 1

z2

)
(11)

If the arrival rate into the system is strictly less than the service rate, then the
system will reach steady state after a large number of slots. That is if r < s, then as
n →∞, the PGFs Pn (z1, z2) will converge to the PGF P (z1, z2), the PGFs V n (z1,z2)
will converge to the common PGF V (z1,z2), the functions Pn (0, z2) will converge to
the function P (0, z2), and the sequence pn

0,0 will converge to p0,0. Thus, in steady
state (11) becomes

(12) P (z1, z2) =
V (z1,z2) (p0z1 (z2 − 1) + P (0, z2) (z1 − z2))

z2 (z1 − V (z1,z2))

where p0 = p0,0.
Now, we can find V (z1, z2) in (12) by using (4) and (5) as follows.

V (z1, z2) , E
[
z

V n
1

1 z
V n
2

2

]

= E

[
z
PPXn

j=1 H
(j)
1

i=0 A
(i)
1

1 z
PPXn

j=1 H
(j)
2

i=0 A
(i)
2

2

]
.

By expanding the expectation into a conditional expectation, we get

V (z1, z2) =E

[
z
PPXn

j=1 H
(j)
1

i=0 A
(i)
1

1 z
PPXn

j=1 H
(j)
2

i=0 A
(i)
2

2

∣∣∣H(j)
1 = 1, H

(j)
2 = 0

]

·Pr[H(j)
1 = 1,H

(j)
2 = 0]

+E

[
z
PPXn

j=1 H
(j)
1

i=0 A
(i)
1

1 z
PPXn

j=1 H
(j)
2

i=0 A
(i)
2

2

∣∣∣H(j)
1 = 0, H

(j)
2 = 1

]

·Pr[H(j)
1 = 0,H

(j)
2 = 1].(13)

From (1), (2) and (3), we can see that Pr[H(j)
1 = 1, H

(j)
2 = 0] = λ and Pr[H(j)

1 =
0,H

(j)
2 = 1] = λ, for each j = 1, 2, · · · , Xn. Using these probabilities in (13), we get

after some straightforward manipulation that

(14) V (z1, z2) = λX (A1 (z1)) + λX (A2 (z2)) ,

where X(.) is the common PGF of the Xk, the RV denoting the service time of the
packet that enters service in slot k, A1(.) the common PGF of the Ak

1 , and A2(.) the
common PGF of the Ak

2 . It should be noted from the assumptions that X(.) is

X (z) ,
∞∑

n=1

Pr
[
Xk = n

]
zn

=
sz

1− sz
(15)
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Second, we can find p0 in (12) by arguing as follows. The probability that a
queueing system, regardless of whether one-class or two-class, is empty is always the
complement of the probability that it is busy, and the latter is known (see e.g. [19])
to be just the utilization ρ, defined as the ratio of packet arrival rate to packet service
rate. That is, the probability p0 that a queueing system is empty is always given by

(16) p0 = 1− r

s
,

where r in our system is

r = λA′1 (1) + λA′2 (1) ,

where A′1 (1) = dA1(z)/dz|z=1 denotes the expected class-1 batch size, and A′2 (1) the
expected class-2 batch size.

Substituting for V (z1,z2) from (14) and for p0 from (16) into (12), we get
(17)

P (z1, z2) =

(
λX (A1 (z1)) + λX (A2 (z2))

)
[(s− r) z1 (z2 − 1) + sP (0, z2) (z1 − z2)]

sz2

(
z1 − λX (A1 (z1))− λX (A2 (z2))

) ,

To find the function P (0, z2) in (17), we proceed as follows. First, it can be easily
shown using Rouche’s Theorem [20, p.123] that the denominator of (17) has exactly
one zero on the unit disk |z1| < 1. Let this zero be denoted by ξ (a function of z2).
Then, since P (z1, z2) is a generating function, it must be analytic on the unit disk.
That is, ξ must also be a zero of the numerator of (17). As a consequence, setting
z1 = ξ in that numerator makes the latter equal to zero, which enables us to get

(18) P (0, z2) = − (s− r) (z2 − 1) ξ

s (ξ − z2)
, ξ − z2 6= 0.

Using (18) in (17), we get

(19) P (z1, z2) =

(
λX (A1 (z1)) + λX (A2 (z2))

)
(s− r) (z2 − 1) (z1 − ξ)

s
(
z1 − λX (A1 (z1))− λX (A2 (z2))

)
(z2 − ξ)

The zero ξ can itself be found using Lagrange’s Theorem [20, p.123] as follows.

(20) ξ =
∞∑

k=1

1
k!

[
∂k−1

∂zk−1
1

{−λX (A1 (z1))− λX (A2 (z2))}k

]

z1=0

For comparison purposes, it should be noted that the corresponding joint PGF as-
suming preemptive priority can be found using the same procedure (but at the slot
boundaries, rather than the departure instants) to be

(21) P (z1, z2) =

(
λA1 (z1) + λA2 (z2)

)
(s− r) (z2 − 1) (z1 − ξ)[

z1 −
(
λA1 (z1) + λA2 (z2)

)
(s + sz1)

]
(z2 − ξ)

It is worth noting that if we set s = 1 either in the nonpreemptive result (19) or
the preemptive result (21) we get exactly the same occupancy function, namely



108 HAMED NASSAR AND YASSER FOUAD

(22) P (z1, z2) =
r
(
λA1 (z1) + λA2 (z2)

)
(z2 − 1) (z1 − ξ)(

z1 − λA1 (z1)− λA2 (z2)
)
(z2 − ξ)

,

where r = 1 − r. It is also worth noting that this is a mathematical demonstration
of the fact that when the service time is deterministically 1 slot (or equivalently the
service rate is 1 packet per slot), it does not make a difference whether the priority
discipline used is preemptive or nonpreemptive. This fact is by the way usually
justified intuitively as follows. The service of a class-2 packet cannot be preempted
so as the packet is sent in the next slot back to the queue, since by the next slot that
packet will have ended service and departed any way. It is further worth noting that
(22) is just Equation 7 in [21] after substituting c = 1 (i.e. one server). It is lastly
worth noting that the PGF P(z) of the occupancy P of a system equivalent to ours
but with a single class of packets can be easily obtained from (19) by setting λ = 1
and z1 = z2 = z, which amounts to assuming that only class-1 packets arrive into
the queue. Denoting the size of each batch by A (instead of A1), we get the classical
GeoA/Geo/1 result [19].

P (z) = P (z1, z2)|λ=1,z1=z2=z,A1=A

=
A (z) (z − 1) (s−A′ (1))

z −A (z) (s + sz)
.(23)

4. Marginal PGFs. In this section, the joint PGF (17) will be used to obtain
the marginal PGFs of class-1 and class-2 occupancies. First, the marginal PGF of the
class-1 occupancy P1 can be obtained from (17) as follows

P1 (z) = P (z, 1)

=

(
λA1 (z)− sA1 (z) + λ

)
P (0, 1) (z − 1)

z − λ−A1 (z) (λ + sz − s)
(24)

Noting that P (0, 1) denotes the probability that the system is class-1 empty, this
probability can be obtained by employing the normalization condition P1(1) = 1,
getting

(25) P (0, 1) =
s− r1

s

Substituting in (24), we get

(26) P1 (z) =

(
λA1 (z)− sA1 (z) + λ

)
(s− r1) (z − 1)

s
(
z − λ−A1 (z) (λ + sz − s)

) .

For comparison purposes, the marginal PGF of the class-1 occupancy P̂1 in a pre-
emptive system equivalent to ours can be shown, using the same procedure, to be

(27) P̂1 (z) =

(
λ + λA1 (z)

)
(s− r1) (z − 1)

z − (
λ + λA1 (z)

)
(s + sz)

.
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It is worth noting that if we set λ = 1 in either (26) to (27) we should get the same
result since we would be talking about the same one-class system. Sure enough, in
either case we get (23) above.

Similarly, the marginal PGF of the class-2 system occupancy P2(z) can be obtain
by putting z1 = 1 and z2 = z in (17), yielding

P2(z) = P (1, z)

=
[λ− sλA2 (z) + sλA2 (z)] (z − 1) [(s− r)− sP (0, z)]

szλ (1−A2 (z))
.(28)

Substituting for P (0, z) from (18), then (28) yields

(29) P2(z) =

(
λ− sλA2 (z) + sλA2 (z)

)
(s− r) (1− ξ) (z − 1)

sλ (1−A2 (z)) (z − ξ)
.

For comparison purposes, the marginal PGF of the class-2 occupancy P̂2 in a pre-
emptive system equivalent to ours can be shown, using the same procedure, to be

(30) P̂2 (z) =

(
λ + λA2 (z)

)
(s− r) (1− ξ) (z − 1)

λ (1−A2 (z)) (z − ξ)
.

5. Expected Occupancies. In this section we obtain expressions for the expec-
tation of the class-1 and class-2 occupancies. First, the expected class-1 occupancy
can be obtained from (26) by evaluating the first derivative at 1 as follows.

(31) E [P1] = P ′1 (1) =
r1 − sA′1(1)

s
+

λA′′1 (1) + 2sA′1 (1)
2 (s− r1)

.

For comparison purposes, the expected class-1 occupancy in the preemptive case can
be obtained from (27) yielding

(32) E
[
P̂1

]
= r1 +

λA′′1 (1) + 2sr1

2 (s− r1)
.

By comparing (31) with (32), we find that the relation between the class-1 occupancies
in the nonpreemptive and preemptive cases to be as follows.

(33) E [P1] = E
[
P̂1

]
+

sr1λA′1 (1)
s (s− r1)

That is, the expected number of class-1 packets in a nonpreemptive system is higher
than that in an equivalent preemptive system. This result is intuitively true, as class-1
packets will have to wait in a nonpreemptive system until the class-2 packet currently
in service departs, growing in number during the wait due to the continued arrivals
of packets of the same class.

Second, the expected class-2 occupancy can be obtained indirectly as follows.

(34) E [P2] = E [P ]− E [P1] ,
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where E [P ] denotes the expected total system occupancy and can be obtained from
(17) as follows. First, the PGF P (z) of total number of packets existing in the system
in steady state can be obtained by putting z1 = z2 = z in (17), to get

(35) P (z) =

[
λA1 (z) + λA2 (z)− sA1 (z) A2 (z)

]
(s− r) (z − 1)

z (1− sA1 (z)) (1− sA2 (z))− sλA1 (z)− sλA2 (z) + ssA1 (z) A2 (z)

With some effort it can be shown that

E [P ] = P ′ (1)

=
r − s(A′1(1) + A′2(1))

s

+
2ss (A′1 (1) + A′2 (1)) + s

(
λA′′1 (1) + λA′′2 (1)

)− 2sA′1 (1)A′2 (1)
2s (s− r)

(36)

Substituting for E [P1] and E [P ] from (31) and (36) in (34), we get

E [P2] =
r2 − sA′2(1)

s
− λA′′1 (1) + 2sA′1 (1)

2 (s− r1)

+
2ssA′1 (1) + 2ssA′2 (1) + sλA′′1 (1) + sλA′′2 (1)− 2sA′1 (1) A′2 (1)

2s (s− r)
(37)

For comparison purposes, the expected class-2 occupancy E
[
P̂2

]
in the preemptive

case can be obtained from (21), (32) and (34) using the same procedure getting

(38) E
[
P̂2

]
= r2 +

2sr + λA′′1 (1) + λA′′2 (1)
2 (s− r)

− λA′′1 (1) + 2sr1

2 (s− r1)

By comparing (37) with (38) we find the relation between the class-2 occupancies
in the nonpreemptive and its counterpart in the preemptive case to be

(39) E [P2] = E
[
P̂2

]
− s

s

(
r1λA′1 (1)

s− r1
+

A′1 (1) A′2 (1)− r
(
λA′1 (1) + λA′2 (1)

)

s− r

)

That is, the expected number of class-2 packets in a nonpreemptive system is less
than that in an equivalent preemptive system. This result is intuitively true, as class-
2 packets will not be preempted during service by arriving class-1 packets, decreasing
in number as more of them leave the system without returning back to the queue.

As a final observation in this section, it can be seen from the above that while
the expected class-2 occupancy is a function of both the class-1 and the class-2 arrival
rates, the expected class-1 occupancy is a function of only the class-1 arrival rate

6. Special Cases. In this section, we consider special cases for the distribu-
tion of the arriving batch sizes. Specifically, we will first assume that the batches
have binomial distribution, then later we will assume that the batches have Poisson
distribution.
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6.1. Binomial distribution. Let us assume that the batch sizes A1 and A2

have Binomial distribution with parameters µ1 and µ2, respectively. That is

(40) Pr [A1 = i] =
(

N

i

)
µi

1µ
N−i
1 , i ≤ N

and

(41) Pr [A2 = i] =
(

N

i

)
µi

2µ
N−i
2 , i ≤ N

The PGF A1 (z) is

(42) A1 (z) = (µ1 + µ1z)N

Similarly, the PGF A2 (z) is

(43) A2 (z) = (µ2 + µ2z)N

From (42), (43) and (31), we get

(44) E [P1] =
r1 − sNµ1

s
+

r1µ1 (N − 1) + 2sNµ1

2 (s− r1)
.

where r1 = λNµ1 is the class-1 arrival rate. In the preemptive case we find from (32)
that

(45) E
[
P̂1

]
= r1 +

r1 ((N − 1)µ1 + 2s)
2 (s− r1)

.

For visual illustration, we now plot for these binomial arrivals some of the class-1
expected occupancies for both the nonpreemptive and preemptive disciplines. First in
Figure (1) we plot the expected occupancy of class-1 packets both in the preemptive
and nonpreemptive cases against the class-1 packet arrival rate, r1. It can be seen
that as the rate increases, both occupancies increase which is logical.

Note that we will not repeat the same plot against r2 since, as we noted above,
the class-1 occupancy is not a function of r2. Lastly, in Figure (2) we plot the
expected class-1 occupancy both in the preemptive and nonpreemptive cases against
the service rate, s. As can be seen, both occupancies decrease as the service rate
increases, which is logical. The interesting observation is that the two curves get ever
nearer as s approaches 1, meaning that the difference between the two disciplines
becomes immaterial at high service rates. When s = 1, the two curves should meet
at a point as was proven above mathematically.

The average of class-2 system occupancy can be obtained from (37) as follows.

E [P2] =
r2 − sNµ2

s
− r1µ1 (N − 1) + 2sµ1N

2 (s−Nr1)

+
2ssN (µ1 + µ2) + s (N − 1) (r1µ1 + r2µ2)− 2sµ1µ2N

2

2s (s− r)
(46)
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Fig. 1. Class-1 system occupancy against class-1 packet arrival rate.
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Fig. 2. Class-1 system occupancy against service time
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Fig. 3. Class-2 system occupancy against class-1 arrival rate

where r2 = λNµ2 is the class-1 arrival rate. In the preemptive case we find from (38)
that

E
[
P̂2

]
= r2 +

2sr + (N − 1) (r1µ1 + r2µ2)
2 (s− r)

− r1 ((N − 1)µ1 + 2s)
2 (s− r1)

.

For visual illustration, we now plot for these binomial arrivals some of the class-2
expected occupancies for both the nonpreemptive and preemptive disciplines. First in
Figure (3) we plot the expected occupancy of class-2 packets both in the preemptive
and nonpreemptive cases against the class-1 packet arrival rate, r1.

It can be seen that as the rate increases, both occupancies increase which is logical.
Second, in Figure (4) we plot the expected class-2occupancy both in the preemptive
and nonpreemptive cases against the class-2 arrival rate, r2.

It can be seen that as the rate increases, both occupancies increase which is also
logical. Lastly, in Figure (5) we plot the expected class-2 occupancy both in the
preemptive and nonpreemptive cases against the service rate, s.

As was noted in the class-1 occupancy plots, it can be seen that both occupancies
decrease as the service rate increase, with the observation that the two curves get
ever nearer as s approaches 1, making the choice of either discipline irrelevant at high
service rate.
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6.2. Poisson distribution. Let us now assume that the batch sizes A1 and A2

have Poisson distribution with parameters µ1 and µ2 respectively. That is

(47) Pr [A1 = n] =
(µ1)

n

n!
e−µ1 for n = 0, 1, . . .

and

(48) Pr [A2 = n] =
(µ2)

n

n!
e−µ2 for n = 0, 1, . . .

The PGFs are then

(49) A1 (z) = eµ1(z−1)

and

(50) A2 (z) = eµ2(z−1)

Thus, from (49), (50) and (31), we get

(51) E [P1] =
r1 − sµ1

s
+

r1µ1 + 2sµ1

2 (s− r1)
.

where r1 = λµ1 is the class-1 arrival rate.
In the preemptive case we find from (32) that

(52) E
[
P̂1

]
= r1 +

r1µ1 + 2sr1

2 (s− r1)
.

The average of class-2 system occupancy can be obtained from (37), as follows

(53) E [P2] =
r2 − sµ2

s
+

2ss (µ1 + µ2) + s (r1µ1 + r2µ2)− 2sµ1µ2

2s (s− r)
− r1µ1 + 2sµ1

2 (s− r1)

where r2 = λµ2 is the class-2 arrival rate. In the preemptive case we find from (38)
that

(54) E
[
P̂2

]
= r2 +

2sr + r1µ1 + r2µ2

2 (s− r)
− r1µ1 + 2sr1

2 (s− r1)
.

7. Conclusion. We have analyzed the system occupancy of a two-class discrete
queue suitable for modelling computers and digital communications systems handling
packets whose sources are multimedia applications. The queue arrivals are batches of
homogenous packets where the batch size is a random variable of arbitrary distribu-
tion, and the queue service time is geometric, with priority for class-1 packets over
class-2 packets. Two priority disciplines are considered, the nonpreemptive and the
preemptive. We have shown the relations between them, and also shown that as the
service rate approaches 1 packet per slot, the two disciplines act identically the same.

This work can be extended in many ways as follows. The packet waiting room
can be made finite. The service time can be assumed general. The server can serve
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the packets with two service rates, one for each class. The arriving batches can be
nonhomogeneous, i.e. of mixed classes. The arrival and service rates can be taken
state dependent. In all these variations, the present work can serve as a basis.
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