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ON THE DISCRETE-TIME ROBUST NONLINEAR

SERVOMECHANISM PROBLEM∗

WEIYAO LAN† AND JIE HUANG†

Abstract. The paper addresses the robust servomechanism problem for nonlinear discrete-time

systems. The solvability conditions for the discrete-time kth-order robust servomechanism prob-

lem is first established by using the internal model principle. Then it is further shown that, under

an additional assumption on the solution of the discrete regulator equations, the solvability of the

discrete-time kth-order robust servomechanism problem leads to the solvability of the discrete-time

robust servomechanism problem. The results of this paper give a discrete-time counterpart of the

results on the continuous-time robust servomechanism problem.

Keywords: discrete-time system, robust control, servomechanism problem, internal model prin-

ciple.

1. Introduction. Servomechanism problem, alternatively, output regulation
problem, is one of the most fundamental problems in control theory. It aims to design
a feedback control law for a system such that the output of the system can asymp-
totically track a class of reference inputs and/or reject a class of disturbances while
maintaining the closed-loop stability. Here both the class of reference inputs and
the class of disturbances are generated by an autonomous system called exosystem.
For linear systems, the problem has been thoroughly studied since 1970s [5], [7] and
[8]. For nonlinear systems without uncertainty, the problem is extensively studied
since 1990s for both the continuous-time systems [15], [16], [17] and the discrete-time
systems [4], [11], [18]. However, the attentions for the robust servomechanism prob-
lem, which takes into account the uncertainties in the plant, are only limited to the
continuous-time systems [1], [10], [12], [13], [19] and [20]. In particular, the notion of
kth-order robust control was introduced in [12] and [13]. The resultant controller is
such that, regardless of small parameter perturbations in the plant, the closed-loop
system will induce a stable center manifold with the error-map zero up to kth-order
at each point of the manifold. The controller features the internal model principle
in that it contains an internal model of a system generated by the exosystem. This
result coupled with the performance analysis of a kth-order approximate controller as
introduced in [15] guarantees that the steady state tracking error of the closed-loop
system is of kth-order in the exogenous signal regardless of small parameter pertur-
bations in the plant. Moreover, under an additional assumption on the solution of
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the regulator equations, the controller that solves the kth-order robust servomecha-
nism problem also solves the robust servomechanism problem. In this paper, we will
develop a discrete-time counterpart of the results in [12] and [13] for discrete-time
nonlinear systems with parameter uncertainties.

This paper is organized as follows. In Sections 2, both the discrete-time kth-
order robust servomechanism problem and the discrete-time robust servomechanism
problem are formulated, and then some of the preliminaries about the linear internal
model and the power series solution of the discrete regulator equations are presented.
Section 3 establishes the solvability conditions for the discrete-time kth-order robust
servomechanism problem. Section 4 shows that, under some additional assumption
on the solution of the discrete regulator equations, the solvability of the discrete-time
kth-order robust servomechanism problem leads to the solvability of the discrete-time
robust servomechanism problem. In Section 5, we illustrate our approach using the
inverted pendulum on a cart system, and compare the tracking performance of the
closed-loop systems resulting from the kth-order robust controller introduced in this
paper and resulting from the kth-order approximate controller introduced in [21].
Finally, Section 6 concludes this paper with some remarks.

2. Problem Formulation and Preliminaries. Consider a discrete-time non-
linear system described by

x(t + 1) = f(x(t), u(t), v(t), w),
e(t) = h(x(t), u(t), v(t), w),

x(0) = x0, t = 0, 1, 2, · · ·(1)

where x(t) ∈ <n is the plant state, u(t) ∈ <m the plant input, e(t) ∈ <p the plant
output representing the tracking error, w ∈ <N the plant uncertain parameters, and
v(t) ∈ <q the exogenous signal representing the disturbance and/or the reference
input. It is assumed that v(t) is generated by an autonomous system

v(t + 1) = a(v(t)), v(0) = v0, t = 0, 1, 2, · · · .(2)

We will consider the following two classes of feedback control laws, namely,

(i). Dynamic state feedback control law,

u(t) = φ(x(t), z(t))
z(t + 1) = g(z(t), e(t)), z(0) = z0.

(3)

(ii). Dynamic output feedback control law,

u(t) = φ(z(t))
z(t + 1) = g(z(t), e(t)), z(0) = z0

(4)

where z(t) is the compensator state vector of dimension nz to be specified later.
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Letting xc = (x, z), the closed-loop system under the control law (3) can be
written as follows

xc(t + 1) = fc(xc(t), v(t), w), xc(0) = xc0 = (x0, z0)
v(t + 1) = a(v(t)), v(0) = v0

e(t) = hc(xc(t), v(t), w)

(5)

where

fc(xc, v, w) =

[
f(x, φ(x, z), v, w)

g(z, h(x, φ(x, z), v, w))

]

hc(xc, v, w) = h(x, φ(x, z), v, w).

(6)

(5) can also represent the closed-loop system under the dynamic output feedback
control law (4) if we replacing φ(x, z) by φ(z) in (6).

For simplicity, all the functions involved in this setup are assumed to be sufficiently
smooth and defined globally on the appropriate Euclidean spaces, with the value zero
at the respective origins. It is also assumed that 0 is the nominal value of the uncertain
parameter w, and f(0, 0, 0, w) = 0 and h(0, 0, 0, w) = 0 for all w ∈ <N .

The discrete-time kth-order robust servomechanism problem and the discrete-time
robust servomechanism problem are formulated as follows.
Discrete-time kth-order Robust Servomechanism Problem. Find a controller
of the form (3) or (4) such that the closed-loop system (5) satisfies

R1: The matrix ∂fc

∂xc
(0, 0, 0) is Schur, i.e., all the eigenvalues of the matrix ∂fc

∂xc
(0,

0, 0) are located strictly inside the unit disk.
R2: For all sufficiently small xc0, v0 and w, the trajectory xc(t) of the closed-loop

system (5) satisfies

lim
t→∞

(e(t)− ok(v(t))) = 0(7)

where k is some given positive integer, and ok(v) is some sufficiently smooth
function of v zero up to kth-order .

Discrete-time Robust Servomechanism Problem. Find a controller of the form
(3) or (4) such that the closed-loop system (5) satisfies R1 and

R3: For all sufficiently small xc0, v0 and w, the trajectory xc(t) of the closed-loop
system (5) satisfies

lim
t→∞

e(t) = 0.(8)

In this paper, we make the following assumptions,
A1: The equilibrium of exosystem (2) at the origin is stable at v = 0 and all the

eigenvalues of ∂a
∂v (0) are located on the unit circle.

A2: The pair {∂f
∂x (0, 0, 0, 0), ∂f

∂u (0, 0, 0, 0)} is stabilizable.
A3: The pair {∂h

∂x (0, 0, 0, 0), ∂f
∂x (0, 0, 0, 0)} is detectable.
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A4: For l = 1, 2, · · · ,

rank

[
∂f
∂x (0, 0, 0, 0)− λI ∂f

∂u (0, 0, 0, 0)
∂h
∂x (0, 0, 0, 0) ∂h

∂u (0, 0, 0, 0)

]
= n + p(9)

for all λ given by

{λ | λ = λl1
1 × λl2

2 × · · · × λlq
q , l1 + l2 + · · ·+ lq = l,(10)

l1, l2, · · · , lq = 0, 1, 2, · · · }

where λ1, λ2, · · · , λq are eigenvalues of the matrix ∂a
∂v (0).

Remark 2.1. The two problems defined above are extended, respectively, from
the discrete-time kth-order servomechanism problem ([21]) and the discrete-time ser-
vomechanism problem ([3], [4], [11] and [14] etc.) by considering the uncertain param-
eters w in the plant. Assumption A1 is made so that the center manifold theorem for
map can be used to guarantee the closed-loop system stability [2]. Assumptions A2 to
A3 guarantee that the given plant can be locally stabilized by state feedback and output
feedback, respectively. Assumption A4 guarantees that the discrete regulator equations
(15) as will be introduced shortly admit a formal power series solution which is crucial
for the solvability of the kth-order robust servomechanism problem.

From the results of the discrete-time servomechanism problem in [11], [14] and
[21], it is not difficult to deduce that, under assumption A1, and suppose that the
close-loop system (5) satisfies R1, then,

(i) the closed-loop system (5) satisfies R3 if there exists a sufficiently smooth
function xc(v, w) with xc(0, 0) = 0 such that

xc(a(v), w) = fc(xc(v, w), v, w)(11)

0 = hc(xc(v, w), v, w)(12)

(ii) the closed-loop system (5) satisfies R2 if there exists a sufficiently smooth
function x(k)

c (v, w) with x(k)
c (0, 0) = 0 such that

x(k)
c (a(v), w) = fc(x(k)

c (v, w), v, w)(13)

ok(v) = hc(x(k)
c (v, w), v, w).(14)

Further, Equations (11) and (12) can be made satisfied only if the following as-
sumption hold.

A5: There exist sufficiently smooth functions x(v, w) and u(v, w) with x(0, 0) = 0
and u(0, 0) = 0 such that for v ∈ V , w ∈ W ,

x(a(v), w) = f(x(v, w),u(v, w), v, w)
0 = h(x(v, w),u(v, w), v, w)

(15)

where V ⊂ <q, W ⊂ <N are some neighborhoods of the origin of <q and <N ,
respectively.
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Equations (15) are called the discrete regulator equations. ¤
Next, let us summarize some results about the linear internal model principle

described in [5], [8], and [10].

Consider a linear system

x(t + 1) = Ax(t) + Bu(t) + Ev(t)

e(t) = Cx(t) + Du(t) + Fv(t)

v(t + 1) = A1v(t)

where x ∈ <n, u ∈ <m, e ∈ <p and v ∈ <q, and a pair of constant matrices (G1,G2)
of the form

G1 = T

[
S1 S2

0 G1

]
T−1, G2 = T

[
S3

G2

]

where T is a nonsingular matrix with the same dimension of G1, S1, S2, and S3 are
arbitrary constant matrices with appropriate dimensions, and G1 and G2 are given
by

G1 = block diag{β1, · · · , βp}, G2 = block diag{σ1, · · · , σp}(16)

where βi is constant square matrix of dimension ni and σi is constant column vector
of dimension ni. For any square matrix A1, the pair of matrices (G1,G2) are said to
incorporate an internal model of the matrix A1 if

(i). βi and σi are controllable.
(ii). The minimal polynomial of A1 divides the characteristic polynomial of βi.
(iii). For all λ that are the eigenvalues of G1,

rank

[
A− λI B

C D

]
= n + p.

Remark 2.2. If (S1, S2, S3) are zero dimensional matrices and T = I, then the
pair (G1, G2) itself incorporates an internal model of the matrix A1. ¤

Remark 2.3. Given any matrix A1, if

rank

[
A− λI B

C D

]
= n + p

for all λ that are the eigenvalues of A1, then it is always possible to find an internal
model of the matrix A1. In fact, let

αm(λ) = λnm + α1λ
nm−1 + · · ·+ αnm−1λ + αnm
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be the minimal polynomial of A1, and let

βi =




0 1 · · · 0
0 0 · · · 0
...

...
...

...
0 0 · · · 1

−αnm −αnm−1 · · · −α1




, σi =




0
0
...
0
1




, i = 1, · · · , p.(17)

Then, clearly, the pair (G1, G2) defined by (16) incorporates an internal model of the
matrix A1. ¤

Remark 2.4. It is known from [6] that, if (A,B) is stabilizable and (G1, G2)
incorporates an internal model of A1, then the pair

[
A 0

G2C G1

]
,

[
B

G2D

]

is also stabilizable. As a result, there exist matrices K1 and K2 such that the matrix
Ac,

Ac =

[
A + BK1 BK2

G2(C + DK1) G1 + G2DK2

]
,(18)

is Schur. Therefore, if σ(A1)
⋂

σ(Ac) = ∅, the following linear matrix equations

XA1 = (A + BK1)X + BK2Z + E

ZA1 = G1Z + G2((C + DK1)X + DK2Z + F )
(19)

have a unique solution in X and Z. Moreover, the solution of (19) is such that [10],

(C + DK1)X + DK2Z + F = 0.(20)

¤
Finally, we close this section by giving the solvability conditions of the discrete

regulator equations in terms of a power series. For this purpose, the following notation
will be defined first.

For any matrix K, we will use Kronecker product notation

K(0) = 1, K(1) = K, K(i) = K ⊗K · · · ⊗K︸ ︷︷ ︸
i factors

.

For the q × 1 vector v, let v[l] denote the vector

v[l] =
[
vl
1 vl−1

1 v2 · · · vl−1
1 vq vl−2

1 v2
2 vl−2

1 v2v3 · · · vl−2
1 v2vq · · · vl

q

]T
.

It is clear that the dimension of v[l] and v(l) are, respectively,
(

q + l − 1
l

)
× 1, ql × 1
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and that there exist matrices of appropriate dimensions such that

v[l] = Mlv
(l)

v(l) = Nlv
[l]

where MlNl is an identity matrix.

Then we can expand any smooth functions f(x, u, v, w), h(x, u, v, w) and a(v) in
terms of power series as follows,

f(x, u, v, w) =
∑

l≥1

∑
i+j+k=l

i,j,k≥0

Fijk(w)x(i) ⊗ u(j) ⊗ v(k),

h(x, u, v, w) =
∑

l≥1

∑
i+j+k=l

i,j,k≥0

Hijk(w)x(i) ⊗ u(j) ⊗ v(k),

a(v) =
∑

i≥1 Aiv
(i).

(21)

Lemma 2.1. The power series

x(v, w) =
∑

l≥1 Xlwv[l]

u(v, w) =
∑

l≥1 Ulwv[l]
(22)

formally satisfies the discrete regulator equations

x(a(v), w) = f(x(v, w),u(v, w), v, w)
0 = h(x(v, w),u(v, w), v, w)

(23)

if and only if the following linear equations are satisfied for l = 1, 2, · · · ,

XlwA[l] = F100(w)Xlw + F010(w)Ulw + Elw

0 = H100(w)Xlw + H010(w)Ulw + Flw

(24)

where A[l] = MlA
(l)
1 Nl, for l = 1, 2, · · · , E1w = F001(w), F1w = H001(w) and for

l = 2, 3, · · · , k,

Elw =




l∑
n=2

∑

i+j+k=n
i,j,k≥0

Fijk(w)Gij
l−n −

l−1∑

k=1

XkwMkξk,l


Nl(25)

Flw =




l∑
n=2

∑

i+j+k=n
i,j,k≥0

Hijk(w)Gij
l−n


Nl(26)
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where

ξi,j =
∑

j1+j2+···+ji=j
j1,j2,··· ,ji≥1

Aj1 ⊗Aj2 ⊗ · · · ⊗Aji , i = 1, 2, · · · , j ≥ i(27)

Gij
m =





0, i = j = 0,m > 0
1, i = j = 0,m = 0

δi,i+m, j = 0, i = 1, 2, · · ·
λj,j+m, i = 0, j = 1, 2, · · ·∑m

k=0 δi,i+k ⊗ λj,j+m−k, i, j = 1, 2, · · ·

(28)

δi,j =
∑

j1+j2+···+ji=j
j1,j2,··· ,ji≥1

Xjw1Mj1 ⊗Xjw2Mj2 ⊗ · · · ⊗XjwiMji ,(29)

i = 1, 2, · · · , j ≥ i

λi,j =
∑

j1+j2+···+ji=j
j1,j2,··· ,ji≥1

Ujw1Mj1 ⊗ Ujw2Mj2 ⊗ · · · ⊗ Ujwi
Mji

,(30)

i = 1, 2, · · · , j ≥ i.

Proof. The proof of this lemma is similar to its continuous-time counterpart,
Lemma 5.1 of [15], and is thus omitted here.

Remark 2.5. Equations (24) are a set of Sylvester equations. They have a
unique solution for any Elw and Flw if and only if Assumption A4 holds [15]. In fact,
it is shown that the eigenvalues of the matrix A[l] = MlA

(l)
1 Nl are given by

{λ | λ = λl1
1 × λl2

2 × · · · × λlq
q , l1 + l2 + · · ·+ lq = l, l1, l2, · · · , lq = 0, 1, 2, · · · },

where λ1, λ2, · · · , λq are the eigenvalues of the matrix A1 [11]. Thus assumption A4
simply says that the transmission zeros of the linearization of the given plant do not
coincide with the eigenvalues of the matrix A[l] for all l = 1, 2, · · · . ¤

3. Solvability of Discrete-time kth-Order Robust Servomechanism

Problem. Let

f(x, u, v, w) = A(w)x + B(w)u + E(w)v + f2(x, u, v, w)

h(x, u, v, w) = C(w)x + D(w)u + F (w)v + h2(x, u, v, w)

φ(x, z) = K1x + K2z + φ2(x, z)

g(z, e) = G1z + G2e + g2(z, e)

fc(xc, v, w) = Ac(w)xc + Bc(w)v + fc2(xc, v, w)

a(v) = A1v + a2(v)
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where

A(w) =
∂f

∂x
(0, 0, 0, w), B(w) =

∂f

∂u
(0, 0, 0, w), E(w) =

∂f

∂v
(0, 0, 0, w)

C(w) =
∂h

∂x
(0, 0, 0, w), D(w) =

∂h

∂u
(0, 0, 0, w), F (w) =

∂h

∂v
(0, 0, 0, w)

K1 =
∂φ

∂x
(0, 0), K2 =

∂φ

∂z
(0, 0), G1 =

∂g

∂z
(0, 0), G2 =

∂g

∂e
(0, 0)

Ac(w) =
∂fc

∂x
(0, 0, w), Bc(w) =

∂fc

∂v
(0, 0, w), A1 =

∂a

∂v
(0).

For convenience, in the sequel, we will use the shorthand notation A, B, and so forth
to denote A(0), B(0), and so forth.

Now, assume a control law of the form (3) with g(z, e) = G1z + G2e renders the
closed-loop system (5) has property R1. Then by the center manifold theorem for
map [2][11], there exists a locally defined sufficiently smooth function x̄c(v, w) with
x̄c(0, 0) = 0 such that, for v ∈ V , w ∈ W ,

x̄c(a(v), w) = fc(x̄c(v, w), v, w)(31)

By partitioning x̄c(v, w) = (x̄(v, w), z̄(v, w)), (31) becomes

x̄(a(v), w) = f(x̄(v, w), φ(x̄(v, w), z̄(v, w)), v, w)
z̄(a(v), w) = G1x̄(v, w) + G2e(v, w)

(32)

where

e(v, w) = h(x̄(v, w), φ(x̄(v, w), z̄(v, w)), v, w).(33)

Express x̄(v, w), z̄(v, w), and e(v, w) uniquely as

x̄(v, w) =
k∑

l=1

Xlwv[l] + ok(v)

z̄(v, w) =
k∑

l=1

Zlwv[l] + ok(v)(34)

e(v, w) =
k∑

l=1

Ylwv[l] + ok(v)

where (Xlw and Zlw) are constant matrices of appropriate dimensions depending
perhaps on w. By Lemma 2.1, for l = 1, 2, · · · , k,

XlwA[l] = Āc(w)Xlw + B̄c(w)Zlw + Elw

ZlwA[l] = G1Zlw + G2(C̄c(w)Xlw + D̄c(w)Zlw + Flw)
(35)

and

Ylw = C̄c(w)Xlw + D̄c(w)Zlw + Flw(36)
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where

Āc(w) = A(w) + B(w)K1, B̄c(w) = B(w)K2

C̄c(w) = C(w) + D(w)K1, D̄c(w) = D(w)K2

for l = 1, · · · , k, A[l] = MlA
(l)
1 Nl, (E1w, F1w) = (E(w), F (w)), and for l = 2, 3, · · · , k,

(Elw, Flw) are described in (25) and (26).
Lemma 3.1. Under assumption A1, assume a control law of the form (3) with

g(z, e) = G1z + G2e renders the closed-loop system (5) property R1. Then,
(i). Ylw = 0 for all w ∈ W if the pair (G1, G2) incorporates an internal model of

the matrix A[l].
(ii). The kth-order robust servomechanism problem is solved if the pair (G1, G2)

incorporates an internal model of the matrix Akf where

Akf =




A[1] 0 · · · 0
0 A[2] · · · 0
...

...
...

...
0 0 · · · A[k]




.(37)

Proof. (i) Since the closed-loop system (5) satisfies R1, the matrix

Ac =

[
A + BK1 BK2

G2(C + DK1) G1 + G2DK2

]

is Schur. Under assumption A1, we have σ(A[l])
⋂

σ(Ac) = ∅. Thus, by Remark 2.4,
Ylw = 0 for all w ∈ W if the pair (G1, G2) incorporates an internal model of the
matrix A[l].

(ii) By definition of Akf , if the pair (G1, G2) incorporates an internal model
of the matrix Akf , it also incorporates an internal model of all the matrix A[l] for
l = 1, 2, · · · , k. Therefore, the control law renders Ylw = 0 for all l = 1, 2, · · · , k. As
a result, by Remark 2.1, the controller solves the kth-order robust servomechanism
problem.

Remark 3.1. It is interesting to know that if v(t) satisfies v(t + 1) = A1v(t),
then we have v[l](t + 1) = A[l]v[l]. Let

vkf =




v[1]

v[2]

...
v[k]




.(38)

Then the matrix Akf is such that

vkf (t + 1) = Akfvkf .(39)
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The system (39) can be considered as a generalized exosystem which not only generates
the exogenous signal v (when a(v) = A1v), but also the higher order terms of the
exogenous signal v up to order k. The system (39) is called a k-fold exosystem. Lemma
3.1 asserts that designing a discrete-time kth-order robust controller for a nonlinear
system (1) is equivalent to designing a linear discrete-time robust controller for the
linear system consisting of the linear approximation of (1) and the k-fold exosystem
(39). ¤

As pointed out in Remark 2.3, under assumption A4, it is always possible to find
two matrices G1 and G2 such that they incorporate an internal model of the matrix
Akf . Thus we can define an augmented system as follows

x(t + 1) = f(x(t), u(t), v(t), w)

z(t + 1) = G1z(t) + G2e(t)(40)

e(t) = h(x(t), u(t), v(t), w)

where the pair (G1, G2) incorporates an internal model of the matrix Akf . By Lemma
3.1, the discrete-time kth-order robust servomechanism problem is solvable by a con-
trol law of the form (3) with g(z, e) = G1z+G2e if the state feedback control law of the
form u = φ(x, z) can exponentially stabilize the equilibrium point of the augmented
system (40). Thus we have the following result.

Theorem 3.1. (i) Under assumptions A1, A2, and A4, for any positive integer k,
let (G1, G2) incorporate an internal model of the matrix Akf , then there exist feedback
gains K1 and K2 such that the discrete-time kth-order robust servomechanism problem
is solvable by a linear state feedback control of the form

u(t) = K1x(t) + K2z(t)
z(t + 1) = G1z(t) + G2e(t).

(41)

(ii) Under assumptions A1 to A4, for any positive integer k, let (G1,G2) incor-
porate an internal model of the matrix Akf , then there exists a feedback gain K such
that the discrete-time kth-order robust servomechanism problem is solvable by a linear
output feedback control of the form

u(t) = Kz(t)
z(t + 1) = G1z(t) + G2e(t).

(42)

Proof. Part (i). The eigenvalues of the matrix A[l] are given by

{λ | λ = λl1
1 × · · · × λlq

q , l1 + · · ·+ lq = l, l1, · · · , lq = 0, 1, 2, · · · }

where λ1, · · · , λq are eigenvalues of A1. Under assumption A4, there exist (G1, G2)
that incorporates an internal model of Akf for any integer k > 0. Therefore, by
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Remark 2.4, the pair
[

A 0
G2C G1

]
,

[
B

G2D

]
(43)

is stabilizable because of assumption A2. Thus there exist feedback gains K1 and K2

such that the matrix
[

A + BK1 BK2

G2(C + DK1) G1 + G2DK2

]
(44)

is Schur, i.e., under the control law (41), the closed-loop system satisfies R1. With
assumption A1, it follows from part (ii) of Lemma 3.1 that the control law (41) solves
the discrete-time kth-order robust servomechanism problem.

Part (ii). Let (K1,K2, G1, G2) be what has been obtained from part (i). Under
assumption A3, there exists L such that A− LC is Schur. Let K = (K1,K2),

G1 =

[
A + BK1 − L(C + DK1) (B − LD)K2

0 G1

]
, G2 =

[
L

G2

]
.

Clearly, the pair (G1,G2) incorporates an internal model of the matrix Akf . Moreover,
under the control law (42), the Jacobian matrix of the closed-loop system is given by




A BK1 BK2

LC A + BK1 − LC BK2

G2C G2DK1 G1 + G2DK2


 .(45)

Subtracting the first row from the second row and then adding the second column to
the first column shows that the spectrum of (45) is given by those of (44) and A−LC.
Thus, the closed-loop system satisfies R1. Again, it follows from Lemma 3.1 that the
control law (42) solves the discrete-time kth-order robust servomechanism problem.

Remark 3.2. The solvability condition of the discrete-time kth-order robust ser-
vomechanism problem is exactly the same as that of the discrete-time kth-order ap-
proximate servomechanism problem studied in [14], [21]. But the design philosophy of
the control laws are completely different. The controller that solves the latter problem
relies on the approximation solution of the regulator equations thus demanding the
complete knowledge of the plant. On the other hand, the kth-order robust controller
is designed completely based on the linearization of the given nonlinear plant at the
origin. Regardless of the variations of the uncertain parameter w, the controller can
guarantee the zero steady state tracking error up to the order k of the exogenous signal
v. ¤

4. Solvability of Discrete-time Robust Nonlinear Servomechanism

Problem. In this section, we will further show that, under some additional assump-
tions on the solution of the discrete regulator equations, a control law solving the
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discrete-time kth-order robust servomechanism problem for the composite system (1)
and (2) also solves the discrete-time robust servomechanism problem for the same
system.

Lemma 4.1. Under assumption A1, assume a control law of the form (3) is
such that the closed-loop system satisfies R1, if there exist sufficiently smooth func-
tions (x(v, w),u(v, w), z(v, w)) locally defined in v ∈ V , w ∈ W with (x(0, 0),u(0, 0),
z(0, 0)) = (0, 0, 0) such that x(v, w) and u(v, w) are the solution of the discrete regu-
lator equations (15), and z(v, w) satisfies

u(v, w) = φ(x(v, w), z(v, w))(46)

z(a(v), w) = g(z(v, w), 0)(47)

then the control law also solves the robust servomechanism problem.
Proof. By Remark 2.1, we only need to show that there exists a sufficiently smooth

function xc(v, w) with xc(0, 0) = 0 that satisfies (11) and (12). To this end, define
xc(v, w) = (x(v, w), z(v, w)). Using (6) yields

hc(xc(v, w), v, w) = h(x(v, w), φ(x(v, w), z(v, w)), v, w)(48)

fc(xc(v, w), v, w) =

[
f(x(v, w), φ(x(v, w), z(v, w)), v, w)

g(z(v, w), hc(xc(v, w), v, w))

]
(49)

Substituting (46) into (48) and (49) gives

hc(xc(v, w), v, w) = h(x(v, w),u(v, w), v, w)(50)

fc(xc(v, w), v, w) =

[
f(x(v, w),u(v, w), v, w)

g(z(v, w), hc(xc(v, w), v, w))

]
(51)

Using equation (15) and equation (47) in (50) and (51) gives

hc(xc(v, w), v, w) = h(x(v, w),u(v, w), v, w) = 0,

fc(xc(v, w), v, w) =

[
f(x(v, w),u(v, w), v, w)

g(z(v, w), hc(xc(v, w), v, w))

]

=

[
x(a(v), w)

g(z(v, w), 0)

]
=

[
x(a(v), w)
z(a(v), w)

]
= xc(a(v), w).

To solve the robust servomechanism problem, we need to impose an additional
assumption on the exosystem (2).

A6: a(v) = A1v for some matrix A1, and all the eigenvalues of A1 are simple and
lie on the unit circle.

Theorem 4.1. (i) Under Assumptions A2, A4, A5 and A6, assume the solution
x(v, w) and u(v, w) of the discrete regulator equations (15) are kth degree polynomials
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in v. Then if the state feedback controller (41) solves the discrete-time kth-order ro-
bust servomechanism problem, it also solves the discrete-time robust servomechanism
problem.

(ii) Under assumptions A2-A6, assume the solution u(v, w) of the discrete reg-
ulator equations (15) is a kth degree polynomial in v. Then if the output feedback
controller (42) solves the discrete-time kth-order robust servomechanism problem, it
also solves the discrete-time robust servomechanism problem.

Proof. Part(i). Assume the controller (41) solves the discrete-time kth-order
robust servomechanism problem. By Lemma 4.1, it suffices to show that there exists
a sufficiently smooth function z(v, w) such that

u(v, w) = K1x(v, w) + K2z(v, w)(52)

z(A1v, w) = G1z(v, w).(53)

To this end, let x̄(v, w) and z̄(v, w) be sufficiently smooth functions satisfying (32),
and e(v, w) be as defined in (33). Again, express x̄(v, w), z̄(v, w) and e(v, w) as in (34).
Since the controller (41) solves the discrete-time kth-order robust servomechanism
problem, for l = 1, · · · , k, Xlw and Zlw satisfy (35) and (36) with Ylw = 0 where

Āc(w) = A(w) + B(w)K1, B̄c(w) = B(w)K2

C̄c(w) = C(w) + D(w)K1, D̄c(w) = D(w)K2.

Let Ulw = K1Xlw + K2Zlw. Then (35) and (36) imply, for l = 1, · · · , k,

XlwA[l] = A(w)Xlw + B(w)Ulw + Elw

0 = C(w)Xlw + D(w)Ulw + Flw.

By Lemma 2.1, there exist sufficiently smooth functions xk(v, w) = ok(v) and uk(v, w)
= ok(v) such that

x(v, w) =
k∑

l=1

Xlwv[l] + xk(v, w)

u(v, w) =
k∑

l=1

Ulwv[l] + uk(v, w).

However, by assumption of this theorem, x(v, w) and u(v, w) are kth degree polyno-
mials in v, thus

x(v, w) =
k∑

l=1

Xlwv[l]

u(v, w) =
k∑

l=1

Ulwv[l].
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Let

z(v, w) =
k∑

l=1

Zlwv[l].

Clearly, (52) is satisfied. Now using (35) and (36) yields

ZlwA[l] = G1Zlw, l = 1, 2, · · · , k.(54)

Multiplying (54) from the right by v[l] and then summarizing from l = 1 to k gives

k∑

l=1

ZlwA[l]v[l] =
k∑

l=1

G1Zlwv[l].(55)

Thus,

z(A1v, w) =
k∑

l=1

Zlw (A1v)[l] =
k∑

l=1

ZlwMl (A1v)(l)

=
k∑

l=1

ZlwMlA
(l)
1 Nlv

[l] =
k∑

l=1

ZlwA[l]v[l]

=
k∑

l=1

G1Zlwv[l] = G1z(v, w).

Part (ii). The proof of part (ii) is almost the same as that of part (i). Assume a
controller of the form (42) solves the discrete-time kth-order robust servomechanism
problem. By Lemma 4.1, we need to show the existence of a sufficiently smooth
function z(v, w) with z(0, 0) = 0 that satisfies

u(v, w) = Kz(v, w)(56)

z(A1v, w) = G1z(v, w).(57)

Let x̄(v, w) and z̄(v, w) be sufficiently smooth functions satisfying (32), and e(v, w)
be as defined in (33). Again, express x̄(v, w), z̄(v, w) and e(v, w) as in (34). Since
the controller (42) solves discrete-time kth-order robust servomechanism problem, for
l = 1, · · · , k, Xlw and Zlw satisfy (35) and (36) with Ylw = 0 where

Āc(w) = A(w), B̄c(w) = B(w)K

C̄c(w) = C(w), D̄c(w) = D(w)K.

Let Ulw = KZlw, then (35) and (36) imply, for l = 1, · · · , k,

XlwA[l] = A(w)Xlw + B(w)Ulw + Elw

0 = C(w)Xlw + D(w)Ulw + Flw.
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By Lemma 2.1, there exist sufficiently smooth functions xk(v, w) = ok(v) and uk(v, w)
= ok(v) such that

x(v, w) =
k∑

l=1

Xlwv[l] + xk(v, w)

u(v, w) =
k∑

l=1

Ulwv[l] + uk(v, w).

However, by assumption of this theorem, u(v, w) is kth degree polynomials in v, thus

u(v, w) =
k∑

l=1

Ulwv[l].

Let

z(v, w) =
k∑

l=1

Zlwv[l].

Clearly, (56) is satisfied. The proof of satisfaction of (57) is the same as that (53) in
part (i), thus is omitted.

Remark 4.1. If the exogenous signal v is available for control, it is possible
to somehow relax the restriction on x(v, w) and u(v, w) as shown by the following
theorem.

Theorem 4.2. (i). Under assumptions A2, A4, A5 and A6, and suppose that
there exists some integer k > 0 such that x(v, w) and u(v, w) take the following form

x(v, w) = x[k](v, w) + xhk(v)

u(v, w) = u[k](v, w) + uhk(v).

where x[k](v, w) and u[k](v, w) are degree k polynomials of v with coefficients depending
on w, and xhk(v) and uhk(v) are some sufficiently smooth function of v, independent
of w, vanishing at the origin together with their derivatives up to order k. If the
state feedback controller (41) solves the discrete-time kth-order robust servomechanism
problem, then the following controller

u(t) = K1(x(t)− xhk(v(t))) + K2z(t) + uhk(v(t))
z(t + 1) = G1z(t) + G2e(t)

(58)

solves the discrete-time robust servomechanism problem.

(ii). Under assumptions A2 to A6, and suppose that there exists some integer
k > 0 such that u(v, w) takes the form of

u(v, w) = u[k](v, w) + uhk(v).
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If the output feedback controller (42) solves the discrete-time kth-order robust ser-
vomechanism problem, then the following controller

u(t) = Kz(t) + uhk(v(t))
z(t + 1) = G1z(t) + G2e(t)

(59)

solves the discrete-time robust servomechanism problem.

¤
Proof. Part (i). Applying a state and input transformation x = x′ + xhk(v),

u = u′ + uhk(v) to (1) gives

x′(t + 1) = f(x′(t) + xhk(v(t)), u′(t) + uhk(v(t)), v(t), w)− xhk(A1v(t))
e(t) = h(x′(t) + xhk(v(t)), u′(t) + uhk(v(t)), v(t), w).

(60)

It can be verified that x′(v, w) = x(v, w) − xhk(v) and u′(v, w) = u(v, w) − uhk(v)
are the solution of the discrete regulator equations associated with the system (60).
It is clear that the system (60) still satisfies assumptions A2, A4, A5 and A6, and
x′(v, w) and u′(v, w) are degree k polynomials in v, by Theorem 4.1, there exists a
state feedback controller of the form (41) that solves the robust output regulation
problem for system (60). Thus, a controller of the form (58) solves the robust output
regulation problem for system (1).

Part (ii). The proof of Part (ii) is almost the same as the proof of Part (i), and
is thus omitted.

5. Example. In this section, we will consider an asymptotic tracking problem
for the inverted pendulum on a cart system. The state space model of the inverted
pendulum on a cart system is given in [9],

ẋ1 = x2

ẋ2 =
1

M + m(sinx3)2
(u + mlx2

4 sin x3 − bx2 −mg cos nx3 sin x3)

ẋ3 = x4

ẋ4 =
1

l(M + m(sinx3)2)
((M + m)g sin x3 − u cos x3 + bx2 cos x3

−mlx2
4 cos x3 sin x3)

y = x1(61)

where M is the mass of the cart, m the mass of the block on the pendulum, l the
length of the pendulum, g the acceleration due to gravity, b the coefficient of viscous
friction for motion of the cart, u the applied force. The four state variables stand for
x1 = x, x2 = ẋ, x3 = θ, x4 = θ̇ where x is the position of the cart, and θ is the angle
the pendulum makes with vertical, as shown in Figure 1. The discrete-time model is
obtained by discretizing the continuous time model (61) via Euler’s method with T
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as the sampling period [21],

x1(t + 1) = x1(t) + Tx2(t)

x2(t + 1) = x2(t) +
T

M + m(sinx3(t))2
(u(t) + mlx2

4(t) sin x3(t)

−bx2(t)−mg cos x3(t) sin x3(t))

x3(t + 1) = x3(t) + Tx4(t)

x4(t + 1) = x4(t) +
T

l(M + m(sinx3(t))2)
((M + m)g sin x3(t)− u(t) cos x3(t)

+bx2(t) cos x3(t)−mlx2
4(t) cos x3(t) sin x3(t))

y(t) = x1(t).(62)

We will consider the asymptotic tracking of the output y(t) to a sinusoidal function
yd(t) = Am sin(ωTt). Thus the exosystem is given by

(63) v(t + 1) = α(v(t)) = A1v(t)

with

A1 =

[
cosωT sin ωT

− sin ωT cos ωT

]
, v(t) =

[
v1(t)
v2(t)

]
, v(0) =

[
0

Am

]
.

It is clear that v1(t) = Am sin(ωTt). Thus, we can define the error equation as follows

e(t) = y(t)− v1(t) = x1(t)− v1(t).

The Jacobian linearization of the discrete-time inverted pendulum on a cart system
(62) can be calculated as follows

A =
∂f(0, 0, 0, 0)

∂x
=




1 T 0 0
0 1− bT

M −mgT
M 0

0 0 1 T

0 bT
lM

(M+m)gT
lM 1




, B =
∂f(0, 0, 0, 0)

∂u
=




0
T
M

0
− T

lM




C =
∂h(0, 0, 0, 0)

∂x
= [ 1 0 0 0 ], D =

∂h(0, 0, 0, 0)
∂u

= 0.

It is easy to verify that this system satisfies assumption A2 and A4. Thus, both
the discrete-time kth-order approximate servomechanism problem and the discrete-
time kth-order robust servomechanism problem are solvable by state feedback. For
comparison, we will design the third order approximate state feedback controller and
the third order robust state feedback control for this system.

Third order approximate state feedback controller. The discrete regulator
equations associated with the tracking control problem for the inverted pendulum on
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a cart system are

x1(A1v) = x1(v) + Tx2(v)
x2(A1v) = x2(v) + T

M+m(sinx3(v))2 (u(v) + mlx2
4(v) sinx3(v)

−bx2(v)−mg cosx3(v) sinx3(v))
x3(A1v) = x3(v) + Tx4(v)
x4(A1v) = x4(v) + T

l(M+m(sinx3(v))2) ((M + m)g sinx3(v)

−u(v) cosx3(v) + bx2(v) cosx3(v)
−mlx2

4(v) sinx3(v) cosx3(v))
0 = x1(v)− v1.

(64)

As shown in [21], (64) can be partially solved as follows,

x1(v) = v1(65)

x2(v) = (v1(cosωT − 1) + v2 sin ωT )/T(66)

x4(v) = (x3(A1v)− x3(v))/T(67)

u(v) =
M + m(sinx3(v))2

T 2
[cos ωT − 1 sin ωT ](A1 − I)v

−mlx2
4(v) sinx3(v) +

b

T
[cos ωT − 1 sin ωT ]v

+mg cosx3(v) sinx3(v)(68)

with x3(v) satisfying the following equation

x3(A2
1v) = 2x3(A1v)− x3(v) +

gT 2

l
sinx3(v)

+
cosx3(v)

l
[cos ωT − 1 sin ωT ](I −A1)v(69)

where I is the identity matrix. Therefore, as long as we can find out the function
x3(v) by solving (69), we can then obtain x1(v), x2(v), x4(v) and u(v) through (65)
to (68).

Denote a third-order polynomial approximation for x3(v) by x(3)
3 (v),

x(3)
3 (v) = a10v1 + a01v2 + a30v

3
1 + a21v

2
1v2 + a12v1v

2
2 + a03v

3
2 .(70)

Substituting (70) into (69) gives the coefficients of x(3)
3 (v) as follows:

a10 =
b1b3 − b2b4

b2
3 + b2

4

a01 =
b1b4 + b2b3

b2
3 + b2

4

where

b1 = (sin2(ωT )− (1− cos(ωT ))2)/l, b2 = 2(1− cos(ωT ))sin(ωT )
b3 = cos(2ωT )− 2cos(ωT ) + 1− gT 2/l, b4 = 2sin(ωT )− sin(2ωT )



94 WEIYAO LAN AND JIE HUANG

and



a30

a21

a12

a03




=




x11 x12 x13 x14

x21 x22 x23 x24

x24 −x23 x22 −x21

−x14 x13 −x12 x11




−1 


− gT 2

6l a3
10 − 1

2a2
10b1

− gT 2

2l a2
10a01 − 1

2 (2a10a01b1 + a2
10b2)

− gT 2

2l a10a
2
01 − 1

2 (2a10a01b2 + a2
01b1)

− gT 2

6l a3
01 − 1

2a2
01b2




where

x11 = cos3(2ωT )− 2cos3(ωT ) + 1− gT 2/l,

x12 = −cos2(2ωT )sin(2ωT ) + 2cos2(ωT )sin(ωT ),
x13 = cos(2ωT )sin2(2ωT )− 2cos(ωT )sin2(ωT ),
x14 = −sin3(2ωT ) + 2sin3(ωT ),
x21 = 3cos2(2ωT )sin(2ωT )− 6cos2(ωT )sin(ωT ),
x22 = (cos3(2ωT )− 2cos(2ωT )sin2(2ωT ))− 2(cos3(ωT )− 2cos(ωT )sin2(ωT ))

+ 1− gT 2/l,

x23 = (sin3(2ωT )− 2cos2(2ωT )sin(2ωT ))− 2(sin3(ωT )− 2cos2(ωT )sin(ωT )),
x24 = 3sin2(2ωT )cos(2ωT )− 6sin2(ωT )cos(ωT ).

For example, when ω = 0.5π, g = 9.8, l = 0.325 and T = 0.1,

x(3)
3 (v) = −0.2300v1 − 0.0337v2 + 0.0039v3

1 + 0.001v2
1v2 + 0.0012v1v

2
2 + 0.0003v3

2 ,

and in the case of ω = π, g = 9.8, l = 0.325 and T = 0.1,

x(3)
3 (v) = −0.7396v1 − 0.1792v2 + 0.1362v3

1 + 0.0292v2
1v2 + 0.0734v1v

2
2 + 0.0221v3

2 .

With x(3)
3 (v) at hand, we can obtain the third order approximations of x(v) and

u(v), denoted by x(3)(v) and u(3)(v), by using (65), (66), (67), and (68). Thus a third
order state feedback controller is given as follows

u(t) = u(3)(v(t)) + K(x(t)− x(3)(v(t)))(71)

where the feedback gain K is selected such that the eigenvalues of the matrix A+BK

are

0.7488± 0.4072j, 0.7679± 0.1301j

which are obtained by a bilinear transformation from the ITAE prototype design for
the continuous-time systems with the cutoff frequency equal to 4.0 rad/sec.

Third order robust state feedback controller. To design a third order robust
state feedback controller, we need to find a pair of matrices (G1, G2) that incorporates
an internal model of A3f . Since the solution of the discrete regulator equations does
not contain the second order term, the output equation of the closed-loop system
for any state feedback control law of the form (3) will not contain second order term



ROBUST NONLINEAR SERVOMECHANISM PROBLEM 95

either. Thus, it suffices to find a pair of matrices (G1, G2) that incorporates an internal
model of A[1] and A[3]. The minimal polynomials of A[1] and A[3] are computed as
follows:

α1(λ) = (λ− ejωT )(λ− e−jωT )

α3(λ) = (λ− ejωT )(λ− e−jωT )(λ− ej3ωT )(λ− e−j3ωT ).

Thus, the minimal polynomial of block diag{A[1], A[3]} is

(λ− ejωT )(λ− e−jωT )(λ− ej3ωT )(λ− e−j3ωT ).

Therefore,

G1 =




cosωT sin ωT 0 0
− sin ωT cos ωT 0 0

0 0 cos 3ωT sin 3ωT

0 0 − sin 3ωT cos 3ωT




, G2 =




0
1
0
1




.

The compensator together with the plant forms an 8-dimensional system. Again, the
feedback gain (K1,K2) is chosen such that the eigenvalues of the linearized closed-loop
system are

0.4128, 0.8283± 0.4137j, 0.8188± 0.2521j, 0.7591± 0.1740j, 0.7644

which, again, are obtained by the bilinear transformation from the ITAE prototype
design for the continuous-time systems with the cutoff frequency equal to 4.0 rad/sec.

Both the control laws are designed based on the nominal values of the system
parameters which are given as follows: b=12.98 kg/sec, M=1.378 kg, l=0.325 m,
g=9.8 m/sec2, m=0.051 kg.

First, we compare the performance of three types of controllers, namely, the
linear controller, the third order controller and the third order robust controller,
for the nominal case, i.e., for the system without parameter perturbations. The
frequency of the reference input is fixed at ω = 0.5π while the amplitude Am of the
reference input takes Am = 0.75, 1.0, 1.25, 1.5. Table 1 shows the maximal steady state
tracking errors of the closed-loop systems under various control laws for ω = 0.5π and
Am = 0.75, 1.0, 1.25, 1.5. It is seen that the tracking performance of all the controllers
are quiet good. The steady state tracking error of the third order robust controller is
much smaller than the other two controllers while the third order controller is better
than the linear controller. Figure 2 shows the tracking performance of the nominal
closed-loop system resulting from the third order controller and the third order robust
controller with Am = 1.25 and ω = 0.5π.

Next, we compare the robust performance of the various controllers in the presence
of parameter uncertainties with Am = 1.25 and ω = 0.5π. Assume that the parameter
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b is perturbed to b = 12.98+∆b with ∆b = −1.0,−0.5, 0.5, 1.0, 1.5. Table 2 shows the
steady state tracking error of the perturbed closed-loop systems. As shown in Table
2, the third order robust controller has quiet strong robust performance with respect
to the parametric uncertainties. In various cases of the parameter perturbations,
the maximal steady state tracking errors are kept small. In contrast, the tracking
performance of both the linear and the third order controller greatly deteriorates
when the parametric uncertainties are present. Also, while the third order controller
performs much better than that of the linear controller in the nominal case, it has
no advantage over the linear controller when the parameter uncertainties are present.
Figure 3 shows the tracking performance of the perturbed closed-loop system resulting
from the third order controller and the third order robust controller with Am = 1.25
ω = 0.5π, and ∆b = 1.0.

6. Conclusions. Two types of the robust servomechanism problems, namely,
the discrete-time kth-order robust servomechanism problem and the discrete-time ro-
bust servomechanism problem, are considered in this paper. While the kth-order ro-
bust control renders the closed-loop error output zero up to kth-order of the exogenous
signal in the presence of small parameter perturbations, the robust control requires
the closed-loop error output tend to zero asymptotically in the presence of small pa-
rameter perturbations. The solvability condition of the discrete-time kth-order robust
regulation problem is established first based on the Jacobian linearization of the non-
linear plant by using the internal model principle. It is further shown that, if the
solution of the discrete regulator equations is a polynomial function of the exogenous
signal, then the controller solving the discrete-time kth-order robust servomechanism
problem also solves the discrete-time robust servomechanism problem for the same
nonlinear system. The example of the inverted pendulum on a cart system demon-
strates the effectiveness of the kth-order robust controller in comparison with the
kth-order approximate controller when the parameter uncertainties exist in the plant.
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Table 1

The maximal steady state tracking errors of the nominal system.

Amplitude ω Linear Third Order Third Order Robust

0.75 0.5π 0.0095 0.0002 0.0000

1.00 0.5π 0.0226 0.0007 0.0000

1.25 0.5π 0.0446 0.0021 0.0002

1.50 0.5π 0.0788 0.0053 0.0008

Table 2

The maximal steady state tracking errors of the perturbed system with Am = 1.25 and ω = 0.5π.

∆b Linear Third Order Third Order Robust

0.00 0.0446 0.0021 0.0002

−1.00 Unstable Unstable 0.0014

−0.50 0.1502 0.1408 0.0006

0.50 0.1787 0.1792 0.0001

1.00 0.4125 0.4150 0.0001

1.50 0.7367 0.7399 0.0009

u

m

M

l
θ

x

Fig. 1. Inverted Pendulum on a cart system
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Fig. 2. Tracking performance: nominal system with Am = 1.25 and ω = 0.5π
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Fig. 3. Tracking performance: perturbed system with Am = 1.25, ω = 0.5π and ∆b = 1.0
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