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AN APPROACH TO H∞ CONTROLLER SYNTHESIS OF

PIECEWISE LINEAR SYSTEMS∗

GANG FENG† , G. P. LU†, AND S. S. ZHOU†

Abstract. This paper presents an H∞ controller synthesis method for piecewise linear systems

based on a piecewise smooth Lyapunov function. It is shown that the closed loop system is globally

stable with guaranteed disturbance attenuation performance and the control law can be obtained

by solving a set of Linear Matrix Inequalities (LMI) that is numerically feasible with commercially

available software. A simulation example is presented to demonstrate the performance of the pro-

posed method.
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1. Introduction. Piecewise linear systems have been a subject of research in
the systems and control community for some time, see for example [1-12]. In fact, the
piecewise linear systems constitute a special class of hybrid systems [8] and arise often
in practical control systems when piecewise linear components are encountered. These
components include dead-zone, saturation, relays, and hysteresis. In addition, many
other classes of nonlinear systems can also be approximated by the piecewise linear
systems. Thus the piecewise linear systems provide a powerful means of analysis and
design for nonlinear control systems.

A number of significant results have been obtained on analysis and controller
design of such piecewise linear systems during the last few years. For example, the
authors in [1] studied a basic issue, that is, the well-posedness of piecewise linear
systems. Necessary and sufficient conditions for bimodal systems to be well-posed
have been derived, and the extension to the multimodal case has also been discussed.
The authors in [2-3] presented results on stability and optimal performance analysis
for piecewise linear systems based on a piecewise continuous Lyapunov function. It has
been shown that lower bounds, as well as upper bounds, on the optimal control cost
can be obtained by semidefinite programming, and the framework of piecewise linear
systems can be used to analyze smooth nonlinear systems with arbitrary accuracy.
The authors in [4] discussed stability analysis and controller design of piecewise linear
systems which may involve multiple equilibrium points based on a common quadratic
Lyapunov function and a piecewise quadratic Lyapunov function. It has been shown
that stability and performance analysis can be cast as convex optimization problems.
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A controller design method based on a common quadratic Lyapunov function and a
linear matrix inequality has been proposed. However, it has been pointed out [4] that
the controller synthesis based on the piecewise quadratic Lyapunov function cannot
be easily cast as a convex optimization problem. In fact, there are very few results,
to our best knowledge, on effective controller synthesis methods of piecewise linear
systems based on piecewise Lyapunov functions.

Motivated from the results of piecewise continuous Lyapunov functions in [2-
5], we will first present a new stability result based on a novel piecewise Lyapunov
function and then develop a new constructive H∞ controller synthesis method. It will
be shown that global stability of the resulting closed loop system can be established,
and moreover, the controller design procedure can be cast as solving a set of LMIs
that is numerically feasible with commercially available software.

The rest of the paper is organised as follows. Section 2 introduces the piecewise
linear system model and its piecewise quadratic stability. Section 3 presents an H∞
controller synthesis method for the piecewise linear systems based on the piecewise
Lyapunov function, which is followed by a simulation example in section 4. Finally,
conclusions are given in section 5.

2. Piecewise Linear System Model and Its Piecewise Quadratic Stabil-

ity. Consider the piecewise linear systems of the form

(2.1) ẋ(t) = Alx(t) + Blu(t) + Dlv(t),

z(t) = Hlx(t) + Glu(t),

for x ∈ S̄l, l = 1, 2, ......,m,

where
{
S̄l

}
l∈L

⊆ <n denotes a partition of the state space into a number of closed
polyhedral subspaces, L is the index set of subspaces, x(t) ∈ <n the system state
variables, u(t) ∈ <p the system input variable, v(t) ∈ <q the external disturbance,
and (Al, Bl, Dl,Hl, Gl) the l-th nominal local model of the system. For the definition
of state trajectory and solution to the piecewise linear system in (2.1) please refer to
[1-3] for details. Here we assume that given any initial condition x(0) = x0, input
signal u, and disturbance v, the differential equation (2.1) has a unique solution for
all t > 0.

Our goal is to design a control law such that stability and H∞ performance of
the closed loop control system is guaranteed. We assume that each local model is
controllable.

Recently, the authors in [2] introduced a kind of piecewise Lyapunov functions
and developed a stability result based on this piecewise Lyapunov function for the
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piecewise linear systems. The key idea is to make the piecewise Lyapunov function
continuous across the subspace boundaries.

As shown in [2], in order to find the piecewise Lyapunov function continuous
across subspace boundaries, the matrices Fl = l ∈ L need to be constructed, which
is used to characterize the boundary among the subspaces,

(2.2) Flx = Fjx, x ∈ S̄l ∩ S̄j , l, j ∈ L.

Then the piecewise Lyapunov function candidates that are continuous across the sub-
space boundaries can be parameterized as,

(2.3) V (x) = xT Plx, x ∈ S̄l, l ∈ L

with

(2.4) Pl = FT
l TFl, l ∈ L,

where the free parameters of the Lyapunov function candidate are characterized by
the symmetric matrix T .

Remark 2.1. A systematic procedure for constructing these matrices Fl, l ∈ L

for a given piecewise linear system can be found in [2-3]. It is also noted that Fl, l ∈ L

can be always constructed such that they are of full column rank. The interested readers
please refer to [2-3] for details.

The stability result Theorem 1 based on the above piecewise Lyapunov function
presented in [2] can be easily used for stability checking. But unfortunately it seems
difficult for the stability result to be directly used for numerically tractable controller
synthesis discussed in the next section. In particular, with this stability result, it
seems that it is difficult to formulate the controller synthesis problem as a numerically
tractable LMI. In order to solve this problem, we develop the following alternative
stability result.

Theorem 2.1. Consider the piecewise linear system (2.1) with u ≡ v ≡ 0. If
there exists a non-singular symmetric matrix T such that with

(2.5) Pl = (FT
l Fl)−1FT

l TFl(FT
l Fl)−1, l ∈ L,

the following LMIs are satisfied,

(2.6) 0 < Pl, l ∈ L

(2.7) PlA
T
l + AlPl < 0, l ∈ L

then the piecewise linear system is globally exponentially stable, that is, x(t) tends to
the origin exponentially for every continuous piecewise trajectory in the state space.
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Proof. Consider the following Lyapunov function candidate V (t),

(2.8) V (x) = xT P−1
l x, x ∈ S̄l, l ∈ L.

It follows from (2.5) that

(2.9) P−1
l = FT

l T−1Fl, l ∈ L,

and thus the function V (t) is continuous across the subspace boundaries as the func-
tion in (2.3). It is obvious from (2.8) and (2.6) there exists constants α > 0 and
β > 0such that

(2.10) α ||x||2 ≤ V (t) ≤ β ||x||2.

In addition, (2.7) imply that there exists a constant ρ > 0such that

(2.11) AT
l P−1

l + P−1
l Al + ρI < 0.

Then along trajectories of the system, we have

(2.12)

d
dtV (t) = xT [AT

l P−1
l + P−1

l Al]x
≤ xT (−ρI)x
= −ρ||x||2.

Therefore, the desired result follows directly from (2.10) and (2.12) based on the
standard Lyapunov theory (see the Lemma 1 in [2]).

The conditions in the theorem 2.1 are linear matrix inequalities in the variable
T . A solution to those inequalities ensures V (x) defined in (2.3) to be a Lyapunov
function for the system.

Remark 2.2. The stability test of the piecewise linear system in eqn. (2.6)-(2.7)
can be easily facilitated by a commercially available software package Matlab LMI
toolbox [13,14].

The objective of this paper is to design a suitable controller for the system (2.1)
with a guaranteed performance in the H∞ sense, that is, given a prescribed level of
disturbance attenuation γ > 0, find a controller such that the induced L2-norm of
the operator from v(t) to the controlled output z(t) is less than γ under zero initial
conditions,

‖z(t)‖2 < γ ‖v(t)‖2

for all nonzero v(t) ∈ l2. In this case, the closed loop control system is said to be
globally stable with disturbance attenuation γ.
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3. H∞ Controller Design of Piecewise Linear Systems. In this section, we
will address the H∞ state feedback controller design problem for the piecewise linear
systems introduced in the last section. The proposed controller design approach is
based on the local linear model defined in each subspace. Consider the piecewise
linear system model (2.1) on every subspace,

(3.1) ẋ(t) = Alx(t) + Blu(t) + Dlv(t),

z(t) = Hlx(t) + Glu(t),

for x(t) ∈ S̄l.

For the stabilization of the piecewise linear system (2.1) or equivalently (3.1), we
consider the following piecewise continuous controller as

(3.2) u(t) = Klx(t) x(t) ∈ S̄l, l ∈ L.

With the control law (3.2), the global closed loop system is obtained by combining
the piecewise linear system (3.1) and the controller (3.2), and can be described by the
following equation in each local subspace as,

(3.3) ẋ(t) = Aclx(t) + Dclv(t), x(t) ∈ S̄l

z(t) = Hclx(t).

where

Acl = Al + BlKl, Dcl = Dl, Hcl = Hl + GlKl.

Then we are ready to present the following lemma.
Lemma 3.1. Given a constant γ > 0, the piecewise linear system (3.3) is globally

stable with disturbance attenuation γ, if there exists a non-singular symmetric matrix
T such that with

(3.4) Pl = (FT
l Fl)−1FT

l TFl(FT
l Fl)−1, l ∈ L,

the following matrix inequalities are satisfied,

(3.5) 0 < Pl,

(3.6) 0 > PlA
T
cl + AclPl + γ−2DclD

T
cl + PlH

T
clHclPl,

for l ∈ L.



250 GANG FENG, G. P. LU, AND S. S. ZHOU

Proof. It is easily seen that eqn. (3.6) implies the following inequality,

0 > PlA
T
cl + AclPl, l = 1, 2, ......,m

and thus with this inequality and (3.5), it follows from Theorem 2.1 that the closed
loop system is globally stable.

Now we show the disturbance attenuation performance. Consider the Lyapunov
function,

(3.7) V (x) = xT P−1
l x, x ∈ S̄l, l ∈ L

which is continuous across the subspace boundaries. Differentiating xT P−1
l x, x ∈

S̄l, l ∈ L and then integrating from zero to infinity, we obtain, for l ∈ L,

∞∫
0

d

dt
(xT P−1

l x) dt

=

∞∫
0

[xT (P−1
l AT

cl + AclP
−1
l )x + vT DT

clP
−1
l x + xT P−1

l Dclv] dt

<

∞∫
0

[xT (−γ−2P−1
l DclD

T
clP

−1
l −HT

clHcl)x + vT DT
clP

−1
l x + xT P−1

l Dclv] dt

=

∞∫
0

[−zT z + γ2vT v − (vT − γ−2xT P−1
l Dcl)γ2(v − γ−2DT

clP
−1
l x)] dt

≤
∞∫
0

[−zT z + γ2vT v] dt(3.8)

that is,

V (x(∞))− V (x(0)) ≤
∞∫
0

[−zT z + γ2vT v] dt

which implies that with x(0) = 0,

||z||2 ≤ γ||v||2

and thus the proof is completed.

Remark 3.1. It is noted that the state trajectory of the system may pass a num-
ber of subspaces and thus the subscript l in the integration of eqn.(3.8) may change.
However, this does not alter the result obtained in eqn.(3.8).

Then we have the following result.
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Theorem 3.1. Given a constant γ > 0, the piecewise linear system (3.3) is
globally stable with disturbance attenuation γ, if there exist a non-singular symmetric
matrix T, and matrices Ql, such that with

(3.9) Pl = (FT
l Fl)−1FT

l TFl(FT
l Fl)−1, l ∈ L

the following LMIs are satisfied,

(3.10) 0 < Pl, l = 1, 2, ......,m

(3.11) 0 >

[
Ωl PlH

T
l + QT

l GT
l

HlPl + GlQl −I

]
, l = 1, 2, ......, m

where

Ωl := PlA
T
l + AlPl + QT

l BT
l + BlQl + γ−2DlD

T
l .

Moreover, the controller gain for each local subsystem is given by

(3.12) Kl = QlP
−1
l , l ∈ L.

Proof. Based on the Lemma 3.1, we learn that the system (3.3) is globally stable
with disturbance attenuation γ, if there exists a non-singular symmetric matrix T

such that Pl defined in (3.9) is positive definite and satisfies the following inequality

(3.13) 0 > PlA
T
cl + AclPl + γ−2DclD

T
cl + PlH

T
clHclPl, l = 1, 2, ......,m.

It is noted that the right hand side of inequality (3.13) can be expressed as,

RH := PlA
T
cl + AclPl + γ−2DclD

T
cl + PlH

T
clHclPl

= Pl(Al + BlKl)T + (Al + BlKl)Pl

+γ−2DlD
T
l + Pl(Hl + GlKl)T (Hl + GlKl)Pl

= PlA
T
l + AlPl + QT

l BT
l + BlQl

+γ−2DlD
T
l + (PlH

T
l + QT

l GT
l )(HlPl + GlQl)

where Ql = KlPl. Then it follows that the following inequality

(3.14)
0 > PlA

T
l + AlPl + QT

l BT
l + BlQl

+γ−2DlD
T
l + (PlH

T
l + QT

l GT
l )(HlPl + GlQl)

is equivalent to (3.13). Using the Schur complements, it then can be easily shown
that (3.11) is equivalent to (3.14), and thus equivalent to (3.13). Therefore, it can
be concluded that the closed loop control system is globally stable with disturbance
attenuation γ, and the controller gains are given by (3.12), and thus the proof is
completed.

Remark 3.2. It should be noted that the conditions expressed in the theorem are
only sufficient and thus the closed loop control system may still be stable even if the
piecewise Lyapunov function cannot be identified from the above controller synthesis
method.
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4. Simulation Example. In this section, we will use a numerical example to
demonstrate the advantage of the proposed approach over the approach based on the
common Lyapunov function and the performance of the proposed approach.

Consider a piecewise linear system

ẋ(t) = Alx(t) + Blu(t) + Dlv(t)

(4.1) zl(t) = Hlx(t)

l = 1, · · · , 4,

with four region partitions shown in Fig. 1. The system matrices are given by

A1 = A3 =

[
1 0.1

−0.5 −1

]
, A2 = A4 =

[
1 0.5

−0.1 −1

]
,

B1 = B3 =

[
0
1

]
, B2 = B4 =

[
1
0

]
, D1 = D2 = D3 = D4 =

[
0
1

]
,

H1 = H2 = H3 = H4 = [1 0],

and v(t) = 2 sin(2πt).
The matrices characterising the regions are given as follows,

E1 = −E3 =

[
−1 1
−1 −1

]
, E2 = −E4 =

[
−1 1
1 1

]
,

F1 =

[
E1

I

]
, F2 =

[
E2

I

]
, F3 =

[
E3

I

]
, F4 =

[
E4

I

]
.

It is noted that the open loop system is unstable and that there is no solution
to the common quadratic Lyapunov function based approach. However, if using the
piecewise Lyapunov function approach proposed in this paper, then with γ = 0.2 the
following solutions have been found,

T =


17.41 −5.55 0 0
−5.55 34.78 0 0

0 0 −40.83 −22.88
0 0 −22.88 121.99

 ,

P1 = P3 =

[
0.0279 −0.6130
−0.6130 20.5864

]
, P2 = P4 =

[
2.4949 −0.6130
−0.6130 18.1194

]
,
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Fig. 1. Responses of the closed loop control system

Fig. 2. Response of the closed loop control system with disturbance

K1 = K3 =
[
−217.68 −6.54

]
, K2 = K4 =

[
−5.74 −0.59

]
.

It thus follows from the Theorem 3.1 that the stability and the disturbance per-
formance of the closed loop control system are guranteed. Simulation results of four
different initial conditions in the absence of the disturbance are reported in Fig. 1,
which illustrate the stability of the closed loop control systems.
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The simulation results in the presence of the disturbance and zero intial conditions
are also reported in Fig. 2, which clearly demonstrate the disturbance attenuation
performance of the proposed controller.

5. Conclusions. In this paper, a new method is developed to design an H∞
controller for piecewise linear systems based on a piecewise Lyapunov function. It is
shown that the controller can be obtained by solving a set of LMIs. It is believed that
the idea can be extended to the controller synthesis of piecewise linear systems based
on the discontinuous piecewise Lyapunov function proposed in [5].
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