
COMMUNICATIONS IN INFORMATION AND SYSTEMS c© 2002 International Press
Vol. 2, No. 1, pp. 29-52, June 2002 002

STRUCTURED GRAMMAR-BASED CODES FOR UNIVERSAL
LOSSLESS DATA COMPRESSION∗

JOHN KIEFFER† AND EN-HUI YANG‡

Abstract. A grammar-based code losslessly compresses each finite-alphabet data string x by

compressing a context-free grammar Gx which represents x in the sense that the language of Gx

is {x}. In an earlier paper, we showed that if the grammar Gx is a type of grammar called ir-

reducible grammar for every data string x, then the resulting grammar-based code has maximal

redundancy/sample O(log log n/ log n) for n data samples. To further reduce the maximal redun-

dancy/sample, in the present paper, we first decompose a context-free grammar into its structure and

its data content, then encode the data content conditional on the structure, and finally replace the

irreducible grammar condition with a mild condition on the structures of all grammars used to repre-

sent distinct data strings of a fixed length. The resulting grammar-based codes are called structured

grammar-based codes. We prove a coding theorem which shows that a structured grammar-based

code has maximal redundancy/sample O(1/ log n) provided that a weak regular structure condition

is satisfied.

Keywords. lossless data compression, universal codes, redundancy, context-free grammars,

grammar-based codes

1. Introduction. Universal lossless source coding first arose in the late 1960’s,
becoming systematized with Davisson’s seminal 1973 paper [2]. A universal lossless
code is a lossless source code which is asymptotically optimal for all finite-state infor-
mation sources on a given finite alphabet. The most famous class of universal lossless
codes consists of the Lempel-Ziv codes (LZ77 [13], LZ78 [14], and their many vari-
ants). In the 20+ years since the Lempel-Ziv codes were introduced, other classes of
universal lossless codes have been proposed and analyzed. One of these classes is the
class of grammar-based codes [3].

A grammar-based code can be thought of as a type of transform code. It losslessly
encodes/decodes a finite-alphabet data string x according to the following four stages:

• Analysis Stage: A context-free grammar G consisting of a set of production
rules is found which represents x in the sense that the language L(G) of the
grammar G is {x}, where the language L(G) is simply the set of all sequences
derived from G.

• Encoding Stage: A binary codeword B(G) from which the grammar G can

∗Invited paper; Received on February 19, 2002, accepted for publication on June 6, 2002. This

work was supported by National Science Foundation Grants NCR-9508282 and CCR-9902081, by

the Natural Sciences and Engineering Research Council of Canada under Grants RGPIN203035-98

and RGPIN203035-02, by the Premier’s Research Excellence Award, and by the Canada Research

Chairs Program.
†Department of Electrical & Computer Engineering, University of Minnesota, Room 4-174

EE/CSci Bldg., 200 Union Street SE, Minneapolis, MN 55455, USA. E-mail: kieffer@ece.umn.edu
‡Department of Electrical & Computer Engineering, University of Waterloo, Waterloo, Ontario,

CA N2L 3G1. E-mail: ehyang@bbcr.uwaterloo.ca

29

30 JOHN KIEFFER AND EN-HUI YANG

be reconstructed is formed and transmitted to the decoder.
• Decoding Stage: The grammar G is reconstructed from the codeword B(G).
• Synthesis Stage: The data string x is “grown” from the production rules of

G.

The most important of these four stages is the Analysis Stage, because the other
three stages are determined from it. In the paper [3], the grammar representing the
data string in the Analysis Stage was taken to be an irreducible grammar, a type of
grammar that had been used by previous workers in the applications of context-free
grammars. (Irreducible grammars are discussed thoroughly in [3]; the reader does not
need to understand what an irreducible grammar is for the purposes of this paper.)
Grammar-based codes based upon the use of irreducible grammars in the Analysis
Stage were shown in [3] to exhibit maximal redundancy/sample O(log log n/ log n),
where the parameter n is the number of data samples.

Since the paper [3] appeared, the natural question has been whether a differ-
ent type of grammar could be used in the Analysis Stage, which would bring about
grammar-based codes with maximal redundancy/sample O(1/ log n). This question
is of interest because
(i) the Lempel-Ziv codes (possibly the most popular class of universal lossless source

codes) have not yet been shown to exhibit maximal redundancy/sample
O(1/ log n), although LZ78 is known to have maximal redundancy/sample
O(log log n/ log n) [6], and

(ii) the maximal redundancy/sample of the context-tree weighting algorithm
(CTW)[10], [11] and the prediction by partial match algorithm (PPM) [1] is
bounded below by a positive constant for all large n, let alone any convergence
rate.

(The notion of the maximal redundancy/sample is much stronger than the usual def-
inition of redundancy against the so-called tree sources[9], [10], [11]. In terms of
the latter weak definition of redundancy, CTW is known to have O(log n/n) redun-
dancy/sample.) The present paper settles this question in the affirmative.

Our approach is to use structured grammars in the Analysis Stage. The precise
details concerning the notion of a structured grammar shall be presented later in this
paper. In this introduction, we can give an intuitive feeling for this concept. Roughly
speaking, a context-free grammar G representing x can be decomposed into two parts:
the structure of G and the data content of G. The structure of G is related to the
derivation tree of G—a tree via which the data string x can be grown from the pro-
duction rules of G. If x has n entries, then the derivation tree of G will have n leaf
vertices labeled with the entries of x from left to right (the internal vertices of the
derivation tree are labeled with variables of G). The data content of G is uniquely
determined by the structure of G and the data string x itself. In [3], [12], the gram-
mar G is encoded without decomposing G into its structure and data content. The
grammar encoding methods presented in [3], [12] can be applied to any context-free

STRUCTURED GRAMMAR-BASED CODES 31

grammar. In particular, the binary codewords B(G) for all context-free grammars
G form a prefix set. However, this generality does indicate that there is room to
improve as far as the compression of x is concerned. Since different grammars can
represent the same string and different grammars representing different strings can
have the same structure, the improvement of compression efficiency of x can be made
if we first decompose G into its structure and data content, then encode its struc-
ture, and finally encode its data content conditional on its structure. By imposing
certain mild conditions on the structure of each grammar used in the Analysis Stage
to represent a data string of a given length, the encoding of the structure is either
free or has a negligible overhead, and the dominating term is the encoding of the
data content conditional on the structure, thereby improving the compression per-
formance and reducing the redundancy from O(log log n/ log n) to O(1/ log n). The
resulting grammar-based codes with the new encoding method are called the struc-
tured grammar-based codes. In a special case, one may require that all grammars used
in the Analysis Stage to represent all distinct data strings of a given length have the
same structure.

1.1. Terminology. We present terminology and notation to be used throughout
the rest of the paper. Since we have to start somewhere, we assume that the reader
has had some previous exposure to the concept of a context-free grammar. (Those
readers who work in pattern recognition, machine intelligence, image processing, or
many other areas will already have some familiarity with this concept. Readers having
less familiarity are encouraged to consult the paper [3].)

• S+ denotes the set of all strings s1s2 · · · sk in which s1, · · · , sk are 1 ≤ k < ∞
entries from set S.

• ∗ denotes the concatenation operation in S+.
• |S|, card(S) denote cardinality of set S.
• |x| denotes the length of string x.
• V (G) denotes the set of variables of a grammar G.
• L(G) denotes the language of a grammar G.
• |G| denotes the total number of elements appearing in the right members of

the production rules of a grammar G.
• L(v|T) denotes the number of leaf vertices of a tree T which are equal or

subordinate to vertex v of T .
• All logarithms are to base 2.

2. Bracketed Expressions and Their Trees. A context-free grammar G is
said to represent a string x if L(G) = {x}. In the next section, we shall derive the
grammars that we shall use to represent the data strings that we wish to compress.
The most convenient way for us to derive these grammars will be through the use
of fully bracketized expressions. This section is devoted to the presentation of useful
material on fully bracketized expressions and the trees associated with them. As

32 JOHN KIEFFER AND EN-HUI YANG

shown below, fully bracketized expressions are related to multilevel refined parsing.
Let S be a finite set. The set Br(S) of fully bracketized expressions over S is

defined by

(2.1) Br(S) ∆= Brat(S) ∪Brnat(S),

where

• Brat(S) = {[s] : s ∈ S}; and
• Brnat(S) is the smallest subset U of (S ∪{[,]})+ satisfying the property that

[s1s2 · · · sk] ∈ U whenever k ≥ 2 and s1, s2, · · · , sk are members of U ∪ S.

The members of Br(S) shall be called S-expressions, the members of Brat(S) shall be
called atomic S-expressions, and the members of Brnat(S) shall be called nonatomic
S-expressions. For each left bracket in an S-expression, there is a right bracket that
is paired with it. If an S-expression σ consists of n + k entries, with n of the entries
belonging to S and k of the entries being brackets, then there corresponds to σ a
rooted tree T (σ) having exactly n leaf vertices and k/2 internal vertices; the tree
T (σ) is uniquely characterized by the following properties:

(i): There is a one-to-one correspondence between the n S-filled positions in σ and
the n leaf vertices of T (σ). Letting x1, x2, · · · , xn denote the left-to-right
entries of σ which belong to S, the correspondence is made clear by labeling
the i-th left-to-right leaf vertex of T (σ) with xi (i = 1, 2, · · · , n).

(ii): There is a one-to-one correspondence between the k/2 left-right bracket pairs in
σ and the k/2 internal vertices of T (σ). The vertex in T (σ) corresponding to
a given left-right bracket pair in σ is the vertex whose leaf vertex successors
correspond, according to (i), to the S-filled positions in σ that lie between
the left bracket and paired right bracket.

For each atomic S-expression, the corresponding tree is trivial, consisting of root
vertex and one leaf vertex. For each nonatomic S-expression σ, the tree T (σ) has at
least two children for each internal vertex (see Fig. 1); conversely, every finite rooted
tree which carries a label from S on each leaf vertex and which has two or more
children for each internal vertex corresponds to a unique nonatomic S-expression.

¡
¡

¡
¡¡

@
@

@
@@

·
·

·
·

L
L
L
L

¢
¢

¢
¢

A
A
A
A

x1

x2 x3 x4 x5 x6

Fig. 1. Tree T (σ) for the expression σ = [x1[x2x3][x4x5x6]].

STRUCTURED GRAMMAR-BASED CODES 33

For each positive integer n, let Brn(S) be the set of all S-expressions which have
exactly n S-filled positions. Let {s(n) : n = 1, 2, · · · } be the sequence

s(n) =

{
1, n = 1

n−1
∑n−2

k=0

(
2n−k−2

n−1

)(
n−2

k

)
, n ≥ 2

The numbers s(n) are called little Schröder numbers [7] [8]. The little Schröder
numbers are important to us here because

|Brn({0})| = s(n), n ≥ 1(2.2)

|Brn(S)| = |S|ns(n), n ≥ 1(2.3)

The relation (2.2) is well known [8, Ch. 6]; the relation (2.3) becomes clear by noticing
that each entry of a {0}-expression where 0 occurs can be regarded as a placeholder
for an element of S. The first few little Schröder numbers are given in Table 1.

Table 1

Little Schröder Numbers

n s(n) n s(n)
1 1 6 197
2 1 7 903
3 3 8 4279
4 11 9 20793
5 45 10 103049

Example 1: The s(4) = 11 expressions in Br4({0}) are seen to be [[00][00]], [0000],
[0[00]0], [[00]00], [00[00]], [[000]0], [0[000]], [[0[00]]0], [[[00]0]0], [0[[00]0]], [0[0[00]]].

A subexpression of an S-expression σ is defined to be any S-expression which
occurs as a substring of σ. Let σ be a fixed S-expression. The occurrences of
subexpressions in σ are in one-to-one correspondence with the internal vertices of
T (σ), since each subexpression begins with a left bracket and ends with the match-
ing right bracket. For example, the occurrence of [x4x5x6] as a subexpression of
σ = [x1[x2x3][x4x5x6]] corresponds to the vertex of T (σ) in Fig. 1 whose children are
labeled x4, x5, x6.

3. Representational Grammars. Let A be a fixed finite alphabet. We shall
call the members of A+ A-strings. Our goal in this paper is to efficiently compress
each A-string via the grammar-based approach. In order that we may do this, we
put forth in this section a set G(rep) of context-free grammars called representational
grammars which satisfy

(i): The language L(G) of each grammar G ∈ G(rep) consists of a unique string, and
that string is an A-string.

34 JOHN KIEFFER AND EN-HUI YANG

(ii): For each A-string x, there is at least one grammar G ∈ G(rep) which represents
x (in the sense that L(G) = {x}).

In the paper [3], we used context-free grammars which we called admissible grammars
to represent data strings in the sense of (i)-(ii) above. Simply put, an admissible
grammar is any context-free grammar G for which the language generated by G is
a singleton. The class of representational grammars introduced in this section is
a proper subclass of the class of admissible grammars. Since writing [3], we have
come to realize that the class of representational grammars is more suitable for data
compression purposes than the class of admissible grammars.

A context-free grammar G is uniquely specified by defining the following four
entities:

(i): The set V (G) of variables of G.
(ii): The start variable of G.
(iii): The set of terminal symbols of G.
(iv): The set of production rules of G.

Let σ be a fixed (but arbitrary) A-expression. In the rest of this paragraph, we
describe how to build from σ a unique context-free grammar Grep(σ). Recall from
the end of Sec. 2 how a subexpression of σ corresponds to each internal vertex of
the tree T (σ). Traverse each internal vertex of T (σ) in the top-down left-to-right
order (i.e., the breadth-first order), appending the subexpression corresponding to
that vertex to a list if that subexpression has not appeared previously in the list
(start with the empty list). Let

σ0, σ1, · · · , σt

be the final list of distinct subexpressions of σ after all of the internal vertices of T (σ)
have been traversed. The set of variables of Grep(σ) is

V (Grep(σ)) = {A0, A1, A2, · · · , At},

where each Ai is an abstract symbol not belonging to the data alphabet A. The start
variable of Grep(σ) is A0. The set of terminal symbols of Grep(σ) is the set consisting
of those symbols in A that appear in σ. For each i = 0, 1, · · · , t, there is exactly one
production rule

(3.1) Ai → α1α2 · · ·αk

of Grep(σ) whose left member is Ai, obtained as follows. First, form the unique
factorization

σi = [s1s2 · · · sk],

STRUCTURED GRAMMAR-BASED CODES 35

in which s1, s2, · · · , sk are members of A ∪ Brnat(A). If si ∈ A, then αi in (3.1) is
taken to be si. If si ∈ Brnat(A), then αi is taken to be Aj , where j is the unique
integer such that σj = si.

We now formally define the set of representational grammars by

G(rep) ∆= {Grep(σ) : σ ∈ Br(A)}

We list properties of representational grammars easily deduced from the construction
given in the preceding paragraph.

Properties of Representational Grammars.
Prop 1: For each representational grammar G, there is exactly one A-expression σ

such that G = Grep(σ).
Prop 2: The language of a representational grammar Grep(σ) is {x}, where x is the

A-string consisting of those entries of σ belonging to A (taken left-to-right).
Prop 3: The unique derivation tree of a representational grammar Grep(σ) yields

T (σ) when the labels on the internal vertices are removed.
Prop 4: For each positive integer n and each A-string x of length n, there are exactly

s(n) representational grammars which represent x.

Example 2: Let A = {0, 1}, and we pick

(3.2) σ = [[[01][01]][[11][01]][[11][01]]]

as an A-expression for which we construct the grammar Grep(σ). There are five
subexpressions of σ, to which we assign variables as follows:

A0 ↔ [[[01][01]][[11][01]][[11][01]]]

A1 ↔ [[01][01]]

A2 ↔ [[11][01]]

A3 ↔ [01]

A4 ↔ [11](3.3)

The production rules of our grammar Grep(σ) are then seen to be:

A0 → A1A2A2

A1 → A3A3

A2 → A4A3

A3 → 01

A4 → 11(3.4)

The derivation tree of Grep(σ) is given in Fig. 2. From the labels on the leaf vertices
of the derivation tree, we see that

L(Grep(σ)) = {010111011101}.

36 JOHN KIEFFER AND EN-HUI YANG

b
b

b
b

b
b

bb

´
´

´
´

´
´´

A
A
A
AA

¢
¢

¢
¢¢

¢
¢

¢
¢¢

A
A
A
AA

·
·

·
··

A
A
A
AA

A
A
A
A

¢
¢

¢
¢

C
C
C
C

L
L
L
L

¤
¤
¤
¤

¯
¯

¯
¯

B
B
B
B

A
A
A
A

¯
¯

¯
¯

B
B
B
B

¤
¤
¤
¤

¤
¤
¤
¤

A0

A1 A2 A2

A3 A3 A4
A3 A4 A3

0 1 0 1 1 1 1 0 11 0 1

Fig. 2. Derivation tree of Grep(σ) in Example 2.

Removing the labels on the internal vertices of the derivation tree, the tree T (σ) can
be seen to result.

Example 3: For an atomic A-expression [a], the grammar Grep([a]) has only one
production rule A0 → a.

4. Structure Grammars. We put forth in this section a set of context-free
grammars G(str) called structure grammars. We shall see that there is a useful inter-
play between the grammars in G(rep) and the grammars in G(str).

In the previous section, we explained how to form the grammar Grep(σ) for any
A-expression σ. By the same technique, we form a unique grammar corresponding to
each {0}-expression, the only difference being that we denote the set of variables of
the resulting grammar by

{U0, U1, · · · , Ut}

instead of

{A0, A1, · · · , At},

where the Ui’s are special symbols reserved for denoting variables of structure gram-
mars. The grammar corresponding to σ ∈ Br({0}) formed in this way shall be denoted
Gstr(σ). The set of structure grammars can now be formally defined as

G(str) = {Gstr(σ) : σ ∈ Br({0})}.

If σ is an A-expression, and σ′ is the {0}-expression that arises by changing to
0 each entry of σ which belongs to A, then we henceforth write σ → σ′ to denote
this fact. If G = Grep(σ) is a representational grammar, then we define G∗ to be the
grammar Gstr(σ′) for which σ → σ′. We call G∗ the structure grammar of G. Given
any representational grammar G, there is a natural mapping φG : V (G)∪A → V (G∗)∪
{0} defined as follows. Let σ, σ′ be the bracketed expressions such that G = Grep(σ)

STRUCTURED GRAMMAR-BASED CODES 37

and G∗ = Gstr(σ′). Let Ai ↔ σi be the correspondence between variables Ai of G

and subexpressions σi of σ that was used in defining the grammar G, and let Uj ↔ σ′j
be the correspondence between variables Uj of G∗ and subexpressions σ′j of σ′ that
was used in defining the grammar G∗. If Ai ∈ V (G), we define φG(Ai) = Uj , where
Uj ∈ V (G∗) is the variable of G∗ such that σi → σ′j . If a ∈ A, we define φG(a) = 0.

The proof of the following simple lemma is omitted.

Lemma 1. Let G be any representational grammar. If

Ai → α1α2 · · ·αk

is any production rule of G, then

φG(Ai) → φG(α1)φG(α2) · · ·φG(αk)

is a production rule of G∗. Conversely, every production rule of G∗ is mapped onto
by at least one production rule of G in this way.

Example 4: Let G be the representational grammar of Example 2. From the
correspondences (3.3), we see that G∗ must have three variables U0, U1, U2 with cor-
respondences

U0 ↔ [[[00][00]][[00][00]][[00][00]]]

U1 ↔ [[00][00]]

U2 ↔ [00].(4.1)

(Simply change every 1 to 0 on the right sides of (3.3) and eliminate duplications.) The
mapping φG must map the set {A0, A1, A2, A3, A4, 0, 1} onto the set {U0, U1, U2, 0}.
We see that φG is specified by

φG(A0) = U0

φG(A1) = U1

φG(A2) = U1

φG(A3) = U2

φG(A4) = U2

φG(0) = 0

φG(1) = 0

by seeing how the correspondences (4.1) arose from the correspondences (3.3). Ap-
plying the mapping φG to the production rules of G in (3.4), we automatically obtain
the following production rules of G∗ via Lemma 1:

U0 → U1U1U1

U1 → U2U2

U2 → 00

38 JOHN KIEFFER AND EN-HUI YANG

The structure grammar G∗ of G represents the structural information of G. From
the above, it follows that one can easily get G∗ from G through the mapping φG. On
the other hand, if x is the data string represented by G, then one can uniquely deter-
mine G from G∗ and x. In the next section, we will exploit this relationship to define
the unnormalized conditional entropy H(G|G∗) of the representational grammar G

given its structure grammar G∗ and conditionally encode G given G∗. If encoder
and decoder know the grammar G∗, it will be possible for the encoder to encode the
grammar G for perfect recovery by the decoder using approximately H(G|G∗) code
bits.

To conclude this section, we present a structure grammar concept that will be
useful to us later on. Let G be any structure grammar. We define the spreading
factor β(G) of G as follows. Letting T be the derivation tree of G, β(G) is the largest
ratio L(v|T)/L(v′|T) as (v, v′) ranges through all parent-child vertex pairs of T . The
spreading factor β(G) measures, to some degree, how children from an internal vertex
are spread.

Example 5: Let G be the structure grammar presented in Example 4. Its deriva-
tion tree T , stripped of all labels, coincides with the tree in Fig. 2 when it is stripped
of all labels. When v is the root of T and v′ is any of the children of v, we see that
L(v|T) = 12 and L(v′|T) = 4. The parent-child pair (v, v′) yields the largest ratio
L(v|T)/L(v′|T); hence β(G) = 12/4 = 3.

The following result is proved in Appendix A.

Theorem 1. Let n be any integer ≥ 2 and let G be any representational grammar
which represents an A-string of length n. Then

|G| ≤ 72β(G∗)2(|A|+ 2)2 log(|A|+ 2)
(

n

log n

)
.

5. Conditional Grammar Encoding. Our first task in this section is to define
the unnormalized conditional entropy H(G|G∗) of any representational grammar G

given its structure grammar G∗.
Definition: Let S = s1s2 · · · sk be any nonempty string of finite length over any

alphabet. We define the (unnormalized) entropy of the string S by

H(S) ∆=
k∑

i=1

− log p(si),

where for any s ∈ {s1, · · · , sk},

p(s) = k−1card({1 ≤ i ≤ k : si = s}).

If S is the empty string, define H(S) = 0. Let U = u1u2 · · ·uk be any string of
the same length as S. Let U = {u1, · · · , uk}, and for each u ∈ U , let S(u) be the

STRUCTURED GRAMMAR-BASED CODES 39

substring obtained from S by removing each entry si of S for which ui 6= u. We define
the unnormalized conditional entropy of S given U as

H(S|U) ∆=
∑

u∈U
H(S(u)).

From information theory, it is easy to see that H(S|U) ≤ H(S).
Let G be a fixed (but arbitrary) representational grammar. We are now ready to

define H(G|G∗). First, letting V (G) = {A0, A1, · · · , At}, form the string

(5.1) α(A0) ∗ α(A1) ∗ · · · ∗ α(At),

where α(Ai) denotes the string in (V (G) ∪ A)+ which is the right member of the
production rule of G whose left member is Ai. Let ωG = ω1ω2 · · ·ωk be the string
in (V (G) ∪ A)+ formed from the string (5.1) by striking from this string the first
left-to-right appearance of each variable in V (G). Then the unnormalized conditional
entropy H(G|G∗) of G given its structure grammar G∗ is defined as

H(G|G∗) ∆= H(ω1ω2 · · ·ωk|φG(ω1)φG(ω2) · · ·φG(ωk)).

Example 6: Let G be the representational grammar introduced in Example 2. We
compute H(G|G∗). From the production rules (3.4), we see that

(5.2) ωG = A2A3A30111.

We can apply the mapping φG derived in Example 4 to each term on the right side
of (5.2), from which we conclude that

H(G|G∗) = H(A2A3A30111|U1U2U20000) ≈ 3.25.

Remark. The quantity H(G) ∆= H(ωG) was defined in [3] as the definition of
the unnormalized entropy of a representational grammar G. It was shown in [3]
that without being decomposed into its structure G∗ and its data content, G can
be encoded by a prefix code into a codeword of roughly H(G) bits. However, this
encoding method is not efficient because
(a) given a data sequence of length n, it follows from (2.2) and Section 4 that there

are s(n) distinct representational grammars representing x and yet in the
Analysis Stage one needs just one grammar for each distinct string x; and

(b) grammars representing distinct strings may have the same structure grammar.
As a result, a better way is to conditionally encode G given G∗. The following theorem
says that given G∗, G can be losslessly encoded into a codeword of roughly H(G|G∗)
bits. By imposing some mild condition on G∗, the encoding of G∗ is either free or
has a negligible overhead. Since H(G|G∗) ≤ H(G), the compression performance is
improved, as shown in the next section. This is the essence of structured grammar-
based coding.

Theorem 2. Let G′ be any structure grammar. There are binary strings
{B(G|G′) : G ∈ G(rep), G∗ = G′} such that

40 JOHN KIEFFER AND EN-HUI YANG

• For each representational grammar G whose structure grammar is G′,

|B(G|G′)| ≤ H(G|G′) + 4|G|+ |A|.

• For each pair of distinct representational grammars G1, G2 whose structure
grammar is G′, the string B(G1|G′) is not a prefix of the string B(G2|G′).

Proof of Theorem 2. Let G′ be a fixed structure grammar. Let G be any repre-
sentational grammar such that G∗ = G′. Let

V (G) = {A0, A1, · · · , AK}

V (G′) = {U0, U1, · · · , UJ}

We show how to construct a binary codeword B(G|G′) such that G will be recoverable
from B(G|G′) and G′. By superimposing the derivation tree of G over the derivation
tree of G′, a tree T is obtained such that each of its vertices carries a label from
V (G) ∪ A (which we call the G-label of the vertex) and also carries a label from
V (G′) ∪ {0} (which we call the G′-label of the vertex). The tree T has the following
properties

(1): The root vertex of T carries G-label A0 and G′-label U0.
(2): If the G-label of a vertex of T is Ai and the G-labels of its children are a1, a2, ..., ar

from left to right, then Ai → a1a2 · · · ar is a production rule of G.
(3): If the G′-label of a vertex of T is Uj and the G′-labels of its children are

b1, b2, · · · , bs, then Uj → b1b2 · · · bs is a production rule of G′.

We now prune the tree T according to the following procedure:
Step 1 Traverse the internal vertices of T in the breadth-first order.
Step 2 If the G-label of the currently traversed internal vertex appears before, cut

the subtree rooted at this internal vertex except this internal vertex itself.
Step 3 Continue to traverse the remaining internal vertices of the pruned tree in the

breadth-first order.
Step 4 Repeat Steps 2 and 3 until all the remaining internal vertices are traversed.
(The above procedure is illustrated in Example 7 after this proof.) After pruning
T , one eventually obtains a tree T (G|G′) such that (i) T (G|G′) possesses exactly |G|
edges and |V (G)| internal vertices; (ii) the G-labels on the internal vertices of T (G|G′)
are the variables in V (G). Let B1 be a binary codeword of length 2|G| from which the
tree T (G′|G), without labels, can be recovered (an internal vertex of T (G′|G) with
k children will generate 2k consecutive bits in B1—k bits to tell how many children
the vertex has followed by k bits to tell which of these children are internal vertices
and which are leaf vertices). The codeword B1 will appear at the beginning of the
codeword B(G|G′). After the decoder has recovered the tree T (G|G′) without labels
from B1, it can then insert the G-labels on the internal vertices of T (G|G′) (because

STRUCTURED GRAMMAR-BASED CODES 41

of the numbering convention with which the variables in V (G) were generated), and
it can also insert the G′-labels on all of the vertices of T (G|G′) (since the decoder
knows G′). At this point, the decoder will not know the G-labels on the leaf vertices
of T (G|G′) (once these are known, G is determined). However, the decoder can
determine the mapping φG from V (G) ∪ A into V (G′) ∪ {0} (by seeing what label
from V (G′) is on each internal vertex of T (G|G′)). Let B2 be a binary codeword of
length |A|+ |G| which gives the frequency of each member of V (G) ∪ A in the right
members of the production rules of G (the first |A| bits of B2 identify those members
of A which are terminal symbols of G; in the remaining |G| bits, each frequency f of
a symbol lying in the right members of the production rules of G is represented by
f bits). The codeword B2 appears right after the codeword B1 at the beginning of
B(G|G′). For each U ∈ V (G′) ∪ {0}, let S(U) be the (possibly empty) sequence of
G-labels that appear on the leaf vertices of T (G|G′) whose G′-label is U . From the
mapping φG that the decoder learns from B1 and the frequencies that the decoder
learns from B2, the decoder will then know how long each sequence S(U) is, what the
alphabet of each S(U) is, and what is the frequency with which each member of the
alphabet of S(U) appears in S(U). Consequently, for each U ∈ V (G′)∪{0} there is a
binary codeword B(U) of length dH(S(U))e which will allow the decoder to recover
S(U). Once the decoder knows each S(U), the decoder will know the complete G-
labeling of T (G|G′), and therefore will know G. Our argument has shown that we
can take

B(G|G′) = B1B2B(U1)B(U2) · · ·B(UJ)B(0).

The length of B(G|G′) is

(5.3) 3|G|+ |A|+
∑

U∈V (G′)∪{0}
dH(S(U))e.

The sum comprising the last term of (5.3) has no more than |V (G′)| nonzero terms;
hence this last term is ≤ |V (G′)| + H(G|G′) ≤ |G| + H(G|G′). The conclusion of
Theorem 2 is now established.

Example 7: Let G′ be the structure grammar with production rules

U0 → U1U2

U1 → U2U2

U2 → U3U3

U3 → 00

42 JOHN KIEFFER AND EN-HUI YANG

and let G be the representational grammar with production rules

A0 → A1A2

A1 → A3A2

A2 → A4A5

A3 → A5A5

A4 → 11

A5 → 01(5.4)

The tree T (G|G′) is given by

·
·

·
·

··

A
A
A
A
AA

L
L
L
L
LL

¯
¯

¯
¯

¯̄

¢
¢

¢
¢

¢¢

L
L
L
L
LL

B
B
B
B
BB

¢
¢

¢
¢

¢¢

B
B
B
B
BB

¤
¤
¤
¤
¤¤

A
A
A
A
AA

¯
¯

¯
¯

¯̄

(A0, U0)

(A2, U2)(A1, U1)

(A3, U2)

(A5, U3) (A5, U3)(1, 0) (1, 0) (0, 0) (1, 0)

(A5, U3)
(A2, U2) (A4, U3)

where in the pair (•, •) at each vertex, the first coordinate is the G-label and the
second coordinate is the G′-label. (Note that the subtrees rooted at (A2, U2) of depth
2 and at (A5, U3) of depth 3 are deleted according to the pruning procedure mentioned
in the proof of Theorem 2.) The codeword B1 is

B1 = 01 ∗ 11 ∗ 01 ∗ 10 ∗ 01 ∗ 11 ∗ 01 ∗ 00 ∗ 01 ∗ 00 ∗ 01 ∗ 00

of length 24 = 2|G|. The frequencies of A1, A2, A3, A4, A5, 0, 1 in the right members
of (5.4) are 1, 2, 1, 1, 3, 1, 3, respectively. Thus,

B2 = 11 ∗ 1 ∗ 01 ∗ 1 ∗ 1 ∗ 001 ∗ 1 ∗ 001,

where the first two bits tell the decoder that both 0, 1 in the alphabet A = {0, 1} are
terminal symbols of G. The length of B2 is 14 = |G| + |A|. The distinct G′-labels
used on the leaf vertices of T (G|G′) are U2, U3, 0, and so the decoder can obtain the
G-labels on these vertices from the sequences S(U2), S(U3), S(0). These sequences are

S(U2) = A2

S(U3) = A5A5

S(0) = 1101

STRUCTURED GRAMMAR-BASED CODES 43

From the G′-labels on the 7 leaf vertices of T (G|G′), the decoder determines that
the sequences S(U2), S(U3), S(0) are of lengths 1, 2, 4, respectively. From the G′-
labels on the internal vertices of T (G|G′), the decoder determines that the alphabets
of S(U2), S(U3) are subsets of {A2, A3}, {A4, A5}, respectively; the decoder knows
that the alphabet of S(0) is a subset of A = {0, 1}. From the codeword B2, the
decoder determines that S(U2) consists of 1 A2 and 0 A3’s and therefore S(U2) = A2;
that S(U3) consists of 0 A4’s and 2 A5’s and therefore S(U3) = A5A5; and that S(0)
consists of 3 zeroes and 1 one. Only S(0) remains to be determined; since the alphabet
of S(0) is binary, and since the length of S(0) coincides with dH(S(0))e, S(0) can be
transmitted to the decoder as is. Thus, in this example, we can take

B(G|G′) = B1B21101,

of length 42.

6. Universal Coding Theorem. We embark upon the main section of the
paper. A formal definition of the concept of structured grammar-based code is given.
Redundancy bounds for a structured grammar-based code with respect to families of
information sources are obtained.

Information Sources. An alphabet A information source is defined to be any
mapping µ : A+ → [0, 1] such that

1 =
∑

a∈A µ(a)
µ(x) =

∑
a∈A µ(xa), x ∈ A+

That is, µ is a probability distribution induced by a random process with alphabet
A.

Finite-State Sources. Let k be a positive integer. An alphabet A information
source µ is called a k-th order finite-state source if there is a set S of cardinality k, a
symbol s0 ∈ S, and nonnegative real numbers {p(s, x|s′) : s, s′ ∈ S, x ∈ A} such that
both of the following hold:

∑
s,x

p(s, x|s′) = 1, s′ ∈ S(6.1)

µ(x1x2 · · ·xn) =
∑

s1,s2,··· ,sn∈S

n∏

i=1

p(si, xi|si−1), x1x2 · · ·xn ∈ A+.(6.2)

We let Λk denote the family of all alphabet A k-th order finite-state sources. We call
members of the set ∪kΛk finite-state sources. Note that finite-state sources defined
here are much broader than tree sources considered in [10], [11], [9].

Lossless Source Codes. We define an alphabet A lossless source code to be a
sequence of pairs C = {(εn, δn) : n = 1, 2, · · · } in which

i) For each n = 1, 2, · · · , εn is a mapping (called the n-th encoder mapping of
the code C) which maps each string x in An into a codeword εn(x) ∈ {0, 1}+,

44 JOHN KIEFFER AND EN-HUI YANG

and δn is the mapping (called the n-th decoder mapping of C) which maps
εn(x) back into x; and

ii) for each n = 1, 2, · · · , and each distinct pair of strings x1, x2 in An, the
codeword εn(x1) is not a prefix of the codeword εn(x2).

Structured Grammar-Based Codes. We define a structure transform to be
a mapping x → G′x from A+ into the set G(str) of structure grammars such that the
structure grammar G′x has |x| leaf vertices in its derivation tree for every A-string x.
Fix an arbitrary structure transform x → G′x. For each positive integer n, let

Gn ∆= {G′x : x ∈ An}.

Let C = {(εn, δn) : n = 1, 2, · · · } be an alphabet A lossless source code. We call C a
structured grammar-based code induced by the structure transform x → G′x if εn and
δn losslessly encode and decode respectively each A-string x of length n according to
the following four stages:

• Analysis Stage: Determine the structure grammar G′x corresponding to x and
then form the unique representational grammar Gx that represents x and has
G′x as its structure grammar.

• Encoding Stage: Encode the structure grammar G′x, if needed, into a binary
string B(G′x), and then conditionally encode Gx given G′x into the binary
string B(Gx|G′x), resulting in the total codeword εn(x) = B(G′x)B(Gx|G′x).

• Decoding Stage: Reconstruct G′x using B(G′x) and Gx using B(Gx|G′x) and
G′x.

• Synthesis Stage: Recover x via propagation of the derivation tree of Gx.
The manner in which G′x is encoded will depend in general on the underlying structure
transform. As shown in Theorems 3 and 4, under certain mild conditions on the
structure grammars in Gn, the encoding of G′x can be done quite naturally.

Redundancy Results. The type of redundancy we employ in this paper is
maximal redundancy/sample. Let Λ be a family of alphabet A information sources.
Let C = {(εn, δn) : n = 1, 2, . . . } be an alphabet A lossless source code. The n-th
order maximal redundancy/sample of C with respect to the family of sources Λ is the
number

Redn(C, Λ) ∆= n−1 max
x∈An

[|εn(x)| −H(x|Λ)] ,

where H(x|Λ) is defined by

H(x|Λ) ∆= inf{− log µ(x) : µ ∈ Λ}.

It should be pointed out that when the source class Λ is broad enough, the redundancy
notion defined here is very strong. For instance, it can be shown that if C is CTW or
PPM, then Redn(C, Λk) is bounded below by a positive constant for large n.

Let us now impose some mild conditions on the underlying structure transform
and analyze the redundancy of the resulting structured grammar-based code. Suppose

STRUCTURED GRAMMAR-BASED CODES 45

that

(6.3) β
∆= sup

x∈A+
β(G′x) < ∞

That is, we require that the structure grammars {G′x} have uniformly bounded spread-
ing factors. We now consider two cases. In Case 1, we assume that

(6.4) |Gn| = 1, n = 1, 2, · · ·

In this case, the encoding of G′x is free because all strings x ∈ An share a com-
mon structure grammar and hence there is no need to encode the common structure
grammar. Theorem 3, stated below and proved in Appendix B, upper bounds the
redundancy of this type of structured grammar-based code.

Theorem 3. Let C be a structured grammar-based code induced by a structure
transform satisfying (6.3) and (6.4). Let

D
∆= 72β2(|A|+ 2)2 log(|A|+ 2).

Then, for every positive integer k,

(6.5) Redn(C, Λk) ≤ |A|
n

+
(4 + log k)D

log n
, n = 2, 3, · · ·

Remark. Theorem 3 tells us that any structured grammar-based code satisfying
the regularity conditions (6.3) and (6.4) has maximal redundancy/sample O(1/ log n).
Compared to the conditions considered in [5] and [4], these are mild regularity con-
ditions because they allow the use of grammars having highly unbalanced derivation
trees. Previously considered O(1/ log n) redundancy/sample grammar-based codes
(such as the MPM code [5] and the codes in [4]) were more restrictive in that they
employed grammars with approximately balanced derivation trees.

In Case 2, we allow strings x ∈ An to have different structure grammars, but
require that structure grammars in Gn, n = 1, 2, · · · , satisfy the following condition:
Condition A: For any structure grammar G′x ∈ Gn, n = 1, 2, · · · , different variables

Uj of G′x represent distinct {0}-strings.
(If G′x = Gstr(σ′), then the {0}-string represented by Uj ∈ V (G′x) is obtained by
striking out all brackets from the subexpression σ′j of σ′ corresponding to Uj .) It is
easy to see that the structure grammar G′ in Example 7 satisfies Condition A with
U3, U2, U1, and U0 representing {0}-strings 00, 0000, 00000000, and 000000000000,
respectively. Under Condition A and (6.3), the encoding of each G′x contributes only
a negligible overhead, as shown in Theorem 4.

Theorem 4. Let C be a structured grammar-based code induced by a structure
transform satisfying (6.3) and Condition A. Assume that each structure grammar
G′x ∈ Gn is encoded into a codeword of length dlog |Gn|e. Then, for every positive
integer k,

(6.6) Redn(C, Λk) ≤ |A|
n

+
(4 + log k)D

log n
+ 12β3/2

(
log n√

n

)
, n = 2, 3, · · ·

46 JOHN KIEFFER AND EN-HUI YANG

In Theorem 4, the third term on the right hand side of (6.6) represents the over-
head per sample contributed by the encoding of the structure grammar G′x. Theorem 4
is proved in Appendix C.

Appendix A. This appendix is devoted to the proof of Theorem 1. The following
lemma is our first step towards proving Theorem 1.

Lemma 2. Let n be an integer at least 2 and let D be a finite set with at least
two elements. Let J(n,D) be the largest number of distinct strings in D+ which are
of total length at most n. Then,

J(n,D) ≤ 4|D|2 log |D|
(

n

log n

)
.

Proof. Let d = |D|. Let us assume until the end of the proof that n > d8. If
we list all strings in D+ in order of length, then the first J(n,D) strings in this list
will have total length ≤ n and the first J(n,D) + 1 strings in this list will have total
length > n. It follows that there is an integer j ≥ 2 such that

(A1) d + d2 + · · ·+ dj ≤ J(n,D) < d + d2 + · · ·+ dj+1

and

(A2) d + 2d2 + · · ·+ jdj ≤ n < d + 2d2 + · · ·+ (j + 1)dj+1.

Summing the right side of (A1), we obtain

(A3) J(n,D) < d

(
dj+1 − 1

d− 1

)
≤ d2

(
dj

d− 1

)
.

Summing the left and right sides of (A2), we obtain

d

[
jdj

d− 1
+

1− dj

(d− 1)2

]
≤ n < d

[
(j + 1)dj+1

d− 1
+

1− dj+1

(d− 1)2

]

and then

(A4)
(j − 1)dj

d− 1
≤ n < (d2)j+1

follows because

d

[
jdj

d− 1
+

1− dj

(d− 1)2

]
≥ (j − 1)dj

d− 1

and

d

[
(j + 1)dj+1

d− 1
+

1− dj+1

(d− 1)2

]
≤ (j + 1)dj+2

d− 1
≤ (d2)j+1.

STRUCTURED GRAMMAR-BASED CODES 47

The right half of inequality (A4) gives us

j > (1/2)
(

log n

log d

)
− 1

which, applied to the left half of (A4), yields

dj

d− 1
≤ n

j − 1

≤ n

(1/2)(log n/ log d)− 2

=
2n log d

log(n/d4)

Applying the preceding to (A3), we obtain

J(n,D) < d2

(
dj

d− 1

)
≤ 2d2 log d

(
n

log(n/d4)

)
.

Since we are assuming that n > d8, it follows that

n

log(n/d4)
≤ 2

(
n

log n

)

and the conclusion of Lemma 2 is true. For 2 ≤ n ≤ d8, the conclusion of Lemma 2
is also true, because

J(n,D) ≤ n ≤ 8 log d

(
n

log n

)
< 4d2 log d

(
n

log n

)
.

Proof of Theorem 1. Fix n ≥ 2 and an arbitrary representational grammar G

which represents an A-string of length n. Let σ be the A-expression such that G =
Grep(σ). Let T (G|G∗) be a tree with |G| edges and |V (G)| internal vertices, obtained
by pruning T (σ) from the bottom up, such that

Prop(1): Each vertex v of T (G|G∗) carries a label σ(v) which is either a subexpres-
sion of σ or an element of A.

Prop(2): Each label σ(v) on an internal vertex v of T (G|G∗) is a subexpression of σ,
and each distinct subexpression of σ is a label σ(v) for exactly one internal
vertex v of T (G|G∗).

Prop(3): The expression σ can be obtained via the concatenation of the labels σ(v)
on the leaf vertices v of T (G|G∗) and some left and right brackets.

Let r be the number of leaf vertices of T (G|G∗). Since |G| ≤ 2r, we may upper
bound |G| by doubling any upper bound we obtain on r. Since each internal vertex
of T (G|G∗) has at most K

∆= bβ(G∗)c children, it follows that there must exist
s ≥ r/K distinct internal vertices v1, v2, · · · , vs of T (G|G∗), such that each leaf vertex
of T (G|G∗) has one of these vertices vi as its parent and each vi has a leaf vertex of
T (G|G∗) as one of its children. Pick a leaf vertex ui which is the child of vi for each i.

48 JOHN KIEFFER AND EN-HUI YANG

Since L(vi|T (σ)) ≤ KL(ui|T (σ)), and since the length of σ(vi) is at most three times
L(vi|T (σ)), we have

|σ(vi)| ≤ 3L(vi|T (σ)) ≤ 3KL(ui|T (σ)) ≤ 3K|σ(ui)|.

By Prop(3), the summation of the |σ(ui)| is less than |σ|; also, σ is of length at most
3n − 2. Therefore, the distinct strings σ(vi) have total length < 9Kn. Applying
Lemma 2 with D = A ∪ {[,]} and |D| = |A|+ 2, we obtain

s ≤ 4(|A|+ 2)2 log(|A|+ 2)(9Kn/ log(9Kn))

≤ 36K(|A|+ 2)2 log(|A|+ 2)(n/ log n)

The bound on r is then K times this, and the bound on |G| is obtained by doubling
the bound on r. This gives us the conclusion of Theorem 1.

Appendix B. This appendix is devoted to the proof of Theorem 3. We present
the key lemma needed to prove Theorem 3.

Lemma 3. Let k be any positive integer. Then

(B1) H(G|G∗)−H(x|Λk) ≤ |G| log k

for any A-string x and any representational grammar G which represents x.

Proof of Lemma 3. Let x be a fixed A-string and let G be a fixed representational
grammar which represents x. Let k be a fixed positive integer. Our task is to show
that (B1) is true. Given a set S with k elements, a symbol s0 ∈ S, and a set of
nonnegative real numbers p = {p(s, u|s′) : s, s′ ∈ S, u ∈ A} satisfying (6.1), let µp,s0

denote the source in Λk defined by equation (6.2). As we let s0 and p vary through all
possibilities, µp,s0 varies over all sources in Λk. Fix p and define λp to be the function

λp(u) = max
s0∈S

µp,s0(u), u ∈ A+.

The function λp has the following two properties which are exploited in this proof:

(p.1): If u1, u2, · · · , uj are A-strings which yield the A-string u when concatenated
together, then

λp(u) ≤ λp(u1)λp(u2) · · ·λp(uj).

(p.2): For every positive integer m,

1 ≤
∑

u∈Am

λp(u) ≤ k.

Let σ be the A-expression such that Grep(σ) = G, and let σ′ be the {0}-expression
such that Gstr(σ′) = G∗. Let T (G|G∗) be the tree used in our earlier proofs. For our
purposes here, T (G|G∗) has the following properties:

STRUCTURED GRAMMAR-BASED CODES 49

(p.3): The tree T (G|G∗) has |G| − |V (G)|+ 1 leaf vertices.
(p.4): Each leaf vertex v of T (G|G∗) has a label σ(v) which is either a subexpression

of σ or an element of A, a label σ′(v) which is either 0 or a subexpression
of σ′, and a label x(v) which is a substring of x. The label σ′(v) is obtained
from the label σ(v) by replacing each A-entry of σ(v) with 0, and the label
x(v) is obtained from the label σ(v) by removing all brackets from σ(v).

(p.5): For each α′ which is either 0 or a proper subexpression of σ′, if we let S(α′) be
the sequence formed by the labels σ(v) for those leaf vertices v of T (G|G∗)
for which σ′(v) = α′, then

(B2) H(G|G∗) =
∑

α′
H(S(α′)).

(p.6): The labels x(v) on the leaf vertices v of T (G|G∗) yield x when concatenated
together (according to the left-to-right ordering of the leaf vertices).

For each α′ which is either 0 or a proper subexpression of σ′, let the positive integer
m(α′) be the number of entries of α′ which are equal to 0, and let V(α′) be the set
of leaf vertices v of T (G|G∗) for which σ′(v) = α′. Then, for each v ∈ V(α′), the
string x(v) has length m(α′). For each positive integer m, let τm be the probability
distribution on Am such that

τm(u) = λp(u)/Σm, u ∈ Am,

where, using property (p.2),

(B3) Σm
∆=

∑

u∈Am

λp(u) ≤ k.

It follows that

H(S(α′)) ≤
∑

v∈V(α′)

− log τm(α′)(x(v))

≤ |S(α′)| log k +
∑

v∈V(α′)

− log λp(x(v)).

Summing each side of the preceding inequality over α′, we obtain

(B4) H(G|G∗) + log λp(x) ≤ |G| log k.

Here, we used (B2) and the fact that
∑

α′

∑

v∈V(α′)

− log λp(x(v)) ≤ − log λp(x),

which follows from properties (p.1) and (p.6). We also used the fact that
∑

α′
|S(α′)| ≤ |G|,

50 JOHN KIEFFER AND EN-HUI YANG

which is true because T (G|G∗) has no more than |G| leaf vertices (property (p.3)).
Inequality (B1) now results by taking the supremum of both sides of (B4) over p.

Proof of Theorem 3. Let C = {(εn, δn)} be a structured grammar-based code
induced by a structure transform satisfying (6.3) and (6.4). Let n be a fixed positive
integer. Since all A-strings of length n share a common structure grammar, denote
this common structure grammar by Gn. Fix an arbitrary string x ∈ An and let
Gx be the representational grammar representing x whose structure grammar is Gn.
Applying Theorem 2,

|εn(x)| = |B(Gx|Gn)| ≤ H(Gx|Gn) + 4|Gx|+ |A|.

Subtracting H(x|Λk) from both sides and applying Lemma 3, we see that

Redn(C, Λk) ≤ n−1|A|+ n−1(4 + log k) max
x∈An

|Gx|.

Applying Theorem 1 to the last term on the right in the preceding equation, we see
that the conclusion of Theorem 3 is true.

Appendix C. In this appendix, we prove Theorem 4. In view of the proof of
Theorem 3, it suffices to upper bound the overhead contributed by the encoding of
each G′x.

Lemma 4. Under Condition A and (6.3),

dlog |Gn|e ≤ 12β3/2
√

n log n

for any integer n ≥ 2.
Proof of Lemma 4: Let G′ be an arbitrary structure grammar from Gn. Let σ

be the {0}-expression such that G′ = Gstr(σ). We first use a technique similar to
the proof of Theorem 1 to upper bound the size of G′. Let G be the representational
grammar Grep(σ); then G∗ = G′ and the grammars G,G′ are identical except for the
fact that variables of G are denoted Aj and variables of G′ are denoted Uj . Let r be
the number of leaf vertices of the tree T (G|G∗) defined in the proof of Theorem 1.
(Throughout the rest of this proof, notation will be the same as in the proof of
Theorem 1, unless otherwise specified.) Then

(C1) |G′| ≤ 2r ≤ 2β(G′)s

For each vertex v of T (G|G∗), let x(v) be the {0}-string obtained by striking out all
possible brackets from σ(v). From the proof of Theorem 1, it follows that

|x(vi)| ≤ β(G′)|x(ui)|

and hence

(C2)
s∑

i=1

|x(vi)| ≤ β(G′)
s∑

i=1

|x(ui)| ≤ β(G′)n

STRUCTURED GRAMMAR-BASED CODES 51

Note that under Condition A, all x(vi), i = 1, 2, · · · , s, are distinct. Let N be the
positive integer equal to the left side of (C2). Let J(N) be the maximum number of
distinct {0}-strings which are of total length at most N . Then

1
2
J(N)[J(N) + 1] ≤ N <

1
2
[J(N) + 1][J(N) + 2] < [J(N) + 1]2.

From this, we have

J(N) ≤ 2
√

N

which, together with (C2) and (C1), implies

(C3) s ≤ 2
√

β(G′)n and |G′| ≤ 4[β(G′)]3/2
√

n

Let us now describe how to encode G′. The first part B1 of the codeword of G′

tells the decoder the length of the right member of each production rule of G′. This
can be accomplished by the unary representation of each length. Thus, the length
of B1 is |G′|. The second part B2 tells the decoder the actual symbols in the right
member of each production rule. This can be accomplished by using dlog ne bits
to represent each symbol Uj or 0. The length of B2 is |G′|dlog ne. The complete
codeword is the concatenation of B1 with B2. The total codeword length is

|B1B2| = |G′|(1 + dlog ne)
≤ 4b[β(G′)]3/2

√
nc(1 + dlog ne)

≤ 4bβ3/2
√

nc(1 + dlog ne)

In the above, the first inequality is due to (C3), and the second inequality is attributed
to (6.3). Since such a coding scheme is a prefix code for Gn, Lemma 4 follows.

Proof of Theorem 4: It now follows immediately from Lemma 4 and the proof of
Theorem 3.

REFERENCES

[1] J. G. Cleary and I. H. Witten, Data compression using adaptive coding and partial string

matching, IEEE Trans. Commun., 32(1984), pp. 396–402.

[2] L. Davisson, Universal Noiseless Coding, IEEE Trans. Inform. Theory, 19(1973), pp. 783–795.

[3] J. Kieffer and E.-H. Yang, Grammar-Based Codes: A New Class of Universal Lossless

Source Codes, IEEE Trans. Inform. Theory, 46(2000), pp. 737–754.

[4] J. Kieffer and E.-H. Yang, Lossless Data Compression via Guided Approximate Bisections,

Proc. 2000 Conf. Inform. Sci. Systems (Princeton Univ.), Volume II, pp. TP6-1–TP6-6.

[5] J. Kieffer, E.-H. Yang, G. Nelson, and P. Cosman, Universal Lossless Compression via

Multilevel Pattern Matching, IEEE Trans. Inform. Theory, 46(2000), pp. 1227–1245.

[6] E. Plotnik, M. Weinberger, and J. Ziv, Upper Bounds on the Probability of Sequences

Emitted by Finite-State Sources and on the Redundancy of the Lempel-Ziv Algorithm,

IEEE Trans. Inform. Theory, 38(1992), pp. 66–72.

[7] N. Sloane, On-Line Encyclopedia of Integer Sequences, http://www.research.att.com/~njas

/sequences/.

52 JOHN KIEFFER AND EN-HUI YANG

[8] R. Stanley, Enumerative Combinatorics, Volume 2. Cambridge University Press, Cambridge,

UK, 1999.

[9] M. J. Weinberger, J. Rissanen, and M. Feder, A universal finite memory source, IEEE

Trans. Inform. Theory, 41:3(1995), pp. 643–652.

[10] F.M.J. Willems, Y.M. Shtarkov, and Tj.J. Tjalkens, The context tree weighting method:

Basic properties, IEEE Trans. Inform. Theory, 41(1995), pp. 653–664.

[11] F. M. J. Willems, Y. M. Shtarkov, and Tj.J. Tjalkens, Context weighting for general

finite-context sources, IEEE Trans. Inform. Theory, 42:5(1996), pp. 1514–1520.

[12] E.-H. Yang and J. C. Kieffer, Efficient universal lossless data compression algorithms based

on a greedy sequential grammar transform—Part one: Without context models, IEEE

Trans. Inform. Theory, 46(2000), pp. 755–777.

[13] J. Ziv and A. Lempel, A Universal Algorithm for Data Compression, IEEE Trans. Inform.

Theory, 23(1977), pp. 337–343.

[14] J. Ziv and A. Lempel, Compression of Individual Sequences via Variable-Rate Coding, IEEE

Trans. Inform. Theory, 24(1978), pp. 530–536.

