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POWER CONTROL UNDER FINITE POWER CONSTRAINTS∗

LEONID FAYBUSOVICH†

1. Introduction. In wireless communication, it is common that multiple users
share the same radio spectrum simultaneously. Signal of one channel appears then as
noise to the other channels. Hence, users transmitting power at power levels above
than what is necessary to maintain a given level of signal-to-noise quality are not only
wasteful of their battery power, they also cause unnecessary noise to other users. As
a result, other users may try to compensate their signal quality by increasing their
transmission power. This racing condition due to mutual interference could lead to
an unstable mode in which all users try to raise their power levels without achieving
any real gain in the overall signal-to-noise ratio. The objective of the power control
problem is to ameliorate these adverse mutual interference effects (see for example
[1-3]) as well as effects from fading effects and thermal noises.

Generally speaking, the power control problem should be viewed as a distributed,
nonlinear, constrained optimal control problem. In certain cases, it can also be re-
garded as a multi-user game-theoretic problem. Due to the problem complexity, it is
common to simplify it to make the problem amendable to analysis. For a classification
of the power control problems usually discussed in the literature, we refer to [4].

A crucial structure of the power control problem is the mapping between the power
levels and the carrier-to-interfere ratio (essentially, the signal-to-noise ratio). Let Gij

represent the channel gain between the i-th receiver and the j-th transmitter. In
practice, this gain is an unknown time-varying parameter, depending on the distance
between the transmitter and receiver as well as on the fading effects. The matrix G

= (Gij) is known as the channel gain matrix. The carrier-to-interference ratio of the
i-th receiver is defined as

Γi (P ) =
GijPi∑

j 6=i

GijPj + τi
, i = 1, 2, . . . m(1)

where P = (P1, . . . Pm) denotes the power vector and τ= (τ1, . . . τm) denotes the
thermal noise vector.

A common formulation of the power control problem is to consider it as a max-min
problem
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min
1≤i≤m

(Γ1 (P ) , · · · Γm (P )) → max,

subject to obvious constraints Pi ≥ 0, i = 1, 2, . . . m. The gain matrix G is unknown
but assumed to be a constant.

In this paper, we consider a model with additional physical constraints on the
power vector P . As a key example of such constraints, we consider Pi ≤ Mi < ∞, i

= 1, 2, . . . m. In other words, we assume that the transmission powers of all channels
are bounded. This constraint makes the model more realistic. Moreover, the solution
to an unconstrained formulation with non-zero noise terms is not well defined.

We describe the structure of the optimal solution of the arising optimization
problem, provide a sensitivity analysis of this solution and outline a decentralized
algorithm for the actual calculation of this solution.

2. Structure of the optimal solution and a sensitivity analysis. Assuming
that diagonal entries Gii of the gain matrix G are positive, we can introduce the
normalized link gain matrix Z = (Zij), Zij = Gij/Gii. The ratio coefficients Γi will
take the form

Γi (P ) =
Pi∑

j 6=i

ZijPj + τi
, i = 1, 2, . . . m.(2)

Our basic optimization problem has the form

(3) min
1≤i≤m

(Γ1 (P ) , · · · Γm (P )) → max,

(4) 0 ≤ Pi ≤ Mi, i = 1, 2, . . . m.

We start by describing an optimal solution of the problem defined by (3) and (4) for
a very special case.

Proposition 1. Let Mi > 0, τi > 0, i = 1, 2, . . . m,Z = I. Suppose (without loss
of generality) that

(5)
M1

τ1
≤ M2

τ2
≤ · · · ≤ Mm

τm
.

Then

P ∗
1 = M1, P ∗

2 =
τ2

τ1
M1, . . . P ∗

m =
τm

τ1
M1

is an optimal solution to the max-min problem defined by (3) and (4) such that
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(6) Γ1 (P ∗) = Γ2 (P ∗) = · · · = Γm (P ∗) .

Proof. Due to (5) it is obvious that P ∗
i ≤ Mi, i = 1, 2, . . .m. Since Z = 0,

Γi (P ) =
Pi

τi
≤ Mi

τi
, i = 1, 2, . . . m,

for any P satisfying (4). Hence,

min
i=1,2,···m

Γi (P ) ≤ min
i=1,2,···m

Mi

τi
=

M1

τ1
.

But

Γ1 (P ∗) = Γ2 (P ∗) = · · · = Γm (P ∗) =
M1

τ1
.

Hence, the result follows.

Observe that in general, i.e. without the assumption Z = 0, we have:

(6a) f(P ) = min
i

Γi (P ) = min
i

Pi∑
j 6=i

Zijpj+τi
≤ min

i

Mi

τi
= M1

τ1
.

Hence, we obtain the first upper bound for an optimal value for the problem defined
by (3) and (4). This result is summarized below.

Proposition 2. Let P satisfy constraints (4) and Zij ≥ 0, i, j = 1, 2, . . .m.
Then

(7) min
i

Γi (P ) ≤ M1

τ1
.

The next proposition describes an important qualitative property of an optimal
solution to (3) and (4).

Proposition 3. Suppose that τi > 0, Mi > 0, Zij ≥ 0, i, j = 1, 2, . . .m. Let
P ∗ be an optimal solution to (3) and (4). Then P ∗

i = Mi for at least one i.
Proof. It is obvious that the maximal value for (3) and (4) is positive. Hence,

P ∗
i > 0, ∀i= 1, 2, . . .m. Suppose that P ∗

i < Mi, ∀i.
Choose t > 0 such that tP ∗

i < Mi, ∀i. We have

Γi (tP ∗) =
P ∗

i∑
j 6=i

Zijp∗j + τi/t
.

Hence, Γi (tP ∗) > Γi (P ∗), ∀i. This obviously implies that
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f (tP ∗) > f (P ∗) .

A contradiction. Hence, P ∗
i = Mi for at least one i.

The next proposition extends a classical result on the optimal solution to our
model. It offers an important characterization of the optimal solution to (3) and (4).

Proposition 4. Let Mi > 0, τi > 0, Zij > 0, i, j = 1, 2, . . .m. Then for any
optimal solution P ∗ to (3) and (4) we have:

(8) Γ1 (P ∗) = Γ2 (P ∗) = · · · = Γm (P ∗) = ν.

Conversely, if P ∗ is a solution to

(9) Γ1 (P ) = Γ2 (P ) = · · · = Γm (P ) = c

for some c, with 0 ≤ P ∗
j ≤ Mj for all j and P ∗

i = Mi for at least one i, then P ∗ is
an optimal solution to the max-min problem. That is:

c = max
0 ≤ Pi ≤ Mi

∀i

f(P )

Moreover, the optimal solution is unique.
Proof. Suppose that, say, Γ1 (P ∗) 6= ν = f (P ∗). If Γ1 (P ∗) < ν, then

f(P ∗) = min
i

Γi (P ∗) ≤ Γi (P ∗) < ν = f(P ∗).

A contradiction. Suppose that Γ1 (P ∗) > ν. Obviously ν > 0 and hence P ∗ > 0, ∀i.
Consider the functions

∆i (ε) = Γi (P ∗
1 − ε, P ∗

2 , · · · P ∗
m) , i = 1, 2, . . . m, ε ≥ 0.

By (2) and our assumptions:

∆1 (ε) < Γ1 (P ∗) , ∆i (ε) ≥ Γi (P ∗) , i = 1, 2, . . . m,

for sufficiently small ε > 0. Since ∆1 (0) = Γ1 (P ∗) > ν, we obviously have Γ1 (P ∗) >

Γi (P ∗) for any i such that Γi (P ∗) = ν. Then we can choose ε > 0 so small that
∆1 (ε) > ∆i (ε) for any i such that Γi (P ∗) = ν. Then

min
1≤i≤m

∆i (ε) = min
2≤i≤m

∆i (ε) > min
2≤i≤m

∆i (0) = ν,
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since functions ∆i (ε) are monotonically increasing for i ≥ 2. Here we used the
assumption that Zij > 0 for all i, j.
Thus

f (P ∗
1 − ε, P ∗

2 , · · · P ∗
m) > f (P ∗) .

Contradicts the fact that f (P ∗) is the maximal value of on the feasible set (4).
To prove the converse, first note that conditions (9) can be rewritten in following

matrix form:

(10) P = c ((Z − I) P + τ)

where P = (P1, · · · Pm)T , τ = (τ1, τ2 · · · τm)T , and I is the identity m×m matrix.
Denote Z − I by Z̃. We can rewrite (10) in the form:

(11)
(

1
c
I − Z̃

)
P = τ

The solution can be expressed in the form (see for example [5]):

(12) P =
(

1
c
I − Z̃

)−1

τ = c
∞∑

k=0

(cZ̃)kτ.

If the optimal solution is larger than c, that is, ν > c, then the corresponding power
level vector, P ′, satisfies P ′ > P. But then P ′

i violates the power constraint. A
contradiction. The uniqueness of the solution also follows from (12).

Remark. The result holds true (along with the proof) if we add any number of
constraints of the form:

m∑
i=1

aiPi ≤ C,

where ai ≥ 0, i = 1, 2, . . .m, provided the resulted feasible set has a nonempty
interior. An example of such a constraint may be that the total received power should
be bounded.

Remark. (9) appears to consist of m equations with m + 1 unknowns. How-
ever, by Proposition 3, if P is an optimal solution, then Pi = Mi for at least one i.
Hence, one way to find the optimal solution is to consider m sets of m equations in
m unknowns by setting Pi = Mi for iequals to 1, 2, . . . and so on.

Let λ
(
Z̃

)
be the spectral radius of Z̃. By Perron-Frobenius theorem λ

(
Z̃

)
is

a positive eigenvalue of Z̃. There exists right q1 and left q2 eigenvectors of Z̃ with
positive coordinates ([5]).
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The next proposition provides the second upper bound for the maximal value of
(3), (4).

Proposition 5. Let P satisfy constraints (4) and Zij > 0 ∀i, j. Then

minΓi (P ) <
1

λ
(
Z̃

) .

Proof. The result easily follows from the Perron-Frobenius theorem. Let us sketch
the proof .Let P ∗ be an optimal solution of (3), (4) and ν∗ be the optimal value of
the cost function (3). Then by (11)

(
I − ν∗Z̃

)
P ∗ = ν∗τ.

Hence

(13) qT
1

(
I − ν∗Z̃

)
P ∗ = ν∗qT

1 τ,

where q1 is the right eigenvector of Z̃ with positive coordinates corresponding to the
eigenvalue λ

(
Z̃

)
.

Since ν∗ > 0 and all coordinates of P ∗ are positive, we derive from (12):

qT
1 P ∗

(
1− ν∗λ

(
Z̃

))
> 0.

Hence,1− ν∗λ
(
Z̃

)
> 0. The result follows.

3. Some perturbation results. Our next proposition shows that the optimal
solution described in Proposition 1 is robust under small feasible perturbations of the
matrix Z̃.

Given x ∈ <m, x = (x1, · · · xm)T , let

‖x‖∞ = max
1≤i≤m

|xi| .

If A is an m×m matrix, we denote by ‖A‖∞ the corresponding matrix norm.
Proposition 6. Let

M1

τ1
≤ M2

τ2
≤ · · · ≤ Mm

τm
.

Assume
∥∥∥Z̃

∥∥∥
∞

is so small that

1
τi

(
M1

τ1

)2

‖τ‖∞
∥∥∥Z̃

∥∥∥
∞

∥∥∥∥(
I − ν∗Z̃

)−1
∥∥∥∥
∞

<
Mi

τi
− M1

τ1
, ∀i = 2, 3, . . . ,m.
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If P ∗
1 , · · · P ∗

m is an optimal solution to (3) and (4), then

P ∗
1 = M1 and P ∗

i < Mi, i = 2, 3, . . . m.

Proof. Let ν∗ = min
i

Γi (P ∗). Using (11) and Proposition 5, we have

(14) P ∗ = ν∗
(
I + ν∗Z̃ + (ν∗)2 Z̃2 + · · ·

)
τ,

where the series in the right-hand side of (14) converges absolutely. This can be
rewritten in the form:

P ∗ − ν∗η = (ν∗)2 Z̃
(
I − ν∗Z̃

)−1

τ.

Hence,

‖P ∗ − ν∗τ‖∞ ≤ (ν∗)2
∥∥∥Z̃

∥∥∥
∞

∥∥∥∥(
I − ν∗Z̃

)−1
∥∥∥∥
∞
‖τ‖∞

≤
(

M1

τ1

)2 ∥∥∥I − ν∗Z̃
∥∥∥
∞
‖τ‖∞ = ∆.

Here we used (7). In particular,

P ∗
i − ν∗τi ≤ ∆, i = 2, 3, . . . m.

or

P ∗
i ≤ ν∗τi + ∆ ≤ M1

τ1
τi + ∆,

which implies

P ∗
i

τi
≤ M1

τ1
+

∆
τi

<
Mi

τi
, i = 2, 3, . . . m.

Using Proposition 3, we conclude that

P ∗
1 = M1.

We now consider another limiting situation, which corresponds to the case of a
small noise. Let τ = 0. Then the optimality condition has the form (see (11)):

P ∗ = ν∗Z̃P ∗,

i.e. P ∗ is a positive eigenvector corresponding to the eigenvalue λ
(
Z̃

)
and ν∗ = 1

λ(Z̃) .

Suppose that P ∗
s = Ms for some s ∈ [1,m] and P ∗

i < Mi, i 6= s.
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Proposition 7. For sufficiently small τ > 0, we have for the optimal solution
P ∗ (τ):

P ∗
s (τ) = Ms, P ∗

i (τ) < Mi, i 6= s.

Proof. By (11), we have:

P ∗ (τ) = ν∗ (τ) Z̃P ∗ (τ) + ν∗ (τ) τ.

Since P ∗ = P (0) is a simple eigenvector of Z̃ (by Perron-Frobenius Theorem, see
e.g. [5]) and P ∗ (τ) depends analytically on τ for sufficiently small τ . In particular,
P ∗

i (τ) = Mi, i 6= s for sufficiently small τ . Hence, P ∗
s (τ) = Ms by Proposition 3.

4. Decentralized algorithm based on dichotomy. Suppose that we know
the optimal value ν∗ for the problem defined by (3) and (4). Then to find the optimal
solution we need to solve (11). A well-known iterative scheme is:

(15) P (n+1) =
(
ν∗Z̃

)
P (n) + ν∗τ.

This scheme converges to the solution of (11) since ν∗ < 1

λ(Z̃) by Proposition 5. We

can rewrite (15) in the form:

(16) P
(n+1)
i = ν∗

∑
j 6=i

zijP
(n)
j + ν∗τi

or

(17) P
(n+1)
i =

ν∗P
(n)
i

Γi

(
P (n)

) , i = 1, 2, . . . m.

Now consider a power control problem for uplink channels. That is, assume m

users are sending information to the base stations. Assume that the power levels may
temporarily exceed the constraints Mi’s. However, we would like to find stationary
solutions that satisfy the constraints. A viable algorithm is to require users adjust
their power levels by the algorithm defined in (17). The base stations then estimate
the carrier-to-interference ratios and communicate them to the corresponding mobile
users for the next computation iteration. This provides a decentralized (or distributed)
version for the finding the optimal solution to (3) and (4). The only problem is that
we do not know ν. However, there is a simple variation of this approach that requires
only minimal interaction among the base stations.

Assume that a stopping rule can be defined to detect whether the iterative algo-
rithm defined in (17) is converging or not. For example, the base station can monitor
whether the carrier-to-interference ratios have been unchanging for a given period.

Set ν = 0 (or any lower bound for ν∗) and take ν to be equal to a known upper
bound of ν∗ (see Proposition 2, 5).
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Take ν = ν+ν
2 . ν is broadcast to all users and each users will update their

power according to (17) with ν∗ replaced by ν. Notice that the updates can be done
completely in a distributed manner, once ν is given. Let P = (P1, · · · Pm) be the
solution to (17) (observe that Pi ≥ 0, i = 1, 2, . . .m). If a) Pi > Mi for at least one
i, set ν = ν, ν = ν, and repeat the procedure. If b) Pi < Mi for all i, set ν = ν,
ν = ν and repeat the procedure. If Pi ≤ Mi for all i, with at least one equality, then
stop. In this case (P1, · · · Pm) is an optimal solution and the corresponding ν is an
optimal value for (3) and (4).

The justification for this procedure is very simple. In case a) we can guarantee
that ν∗ ∈ [ν, ν) and in case b) we can guarantee that ν∗ ∈ (ν, ν].

Initially, we know that ν ≤ ν∗ ≤ ν. In case of a), we know that ν ≤ ν∗ < ν+ν
2 .

Since if ν∗ ≥ ν+ν
2 , then the corresponding optimal solution P ∗ ≥ P as it follows from

(12) and hence, cannot be feasible.
In case of b) ν+ν

2 < ν∗ ≤ ν. Indeed, if ν∗ < ν+ν
2 , then P would be a feasible

solution with the value of cost function “better than optimal”. The case ν∗ = ν+ν
2 is

impossible by Proposition 3. We can proceed by induction to show that ν ≤ ν∗ ≤ ν

on each iteration.
Since ν − ν converges to zero very rapidly, our dichotomy procedure should work

fine.
Remark. The proposed algorithm works with any number of additional con-

straints of the form:

m∑
i=1

aiPi ≤ C, where ai ≥ 0,

provided that the feasible domain has a nonempty interior.

5. Numerical Results. To test the effectiveness of the dichotomy approach,
the following numerical simulation is carried out. There are 5 users in 5 cells. The
maximum power restriction is given by: [1, 1.4 , 2.0 , 1.8 , 1.6 ]. The thermal vector
is given by: [ 0.1 , 0.1 , 0.11 , 0.2 , 0.07 ]. The channel gain values are generated
randomly according. To initialize the system the power of all users are zero at the
beginning. Moreover,

v = 0 v̄ = min
i

Mi

τi

When |Pi −Mi| < 10−8 for all i, we consider that the system converges.
In the following figures, one can see that the algorithm converges rather quickly.

6. Concluding remark. In the present paper we have considered the power
control problem with additional constraints on the power vector. Surprisingly, the
structure of the optimal solution retains major features of the unconstrained problem.
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Fig. 1. Convergence of the v value

We have provided a complete analysis of the structure of the optimal solution, its
partial sensitivity analysis and described a distributed algorithm based on a dichotomy
principle. I would like to thank Ge Wei Yan for the simulation work for this paper.
Numerous discussions with Wing Shing Wong are greatly appreciated. When this
paper has been completed, the following reference has been brought to the author’s
attention: “Constrained power control in cellular radio systems” by Grandhi, S.A. and
J. Zander in Vehicular Technology Conference, 1994 IEEE 44th, 1994 Page(s): 824
-828 vol.2, where a constrained power control problem is also considered. However,
our model is more general (we allow different constraint levels for different users), we
provide a stability analysis of an optimal solution and our decentralized algorithm is
new and provides a fast convergence to the optimal solution. Observe that our results
(including the algorithm) are applicable to much more general constraints.
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Fig. 2. Convergence of the Power Levels
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