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A COMBINATORIAL APPROACH TO INFORMATION
INEQUALITIES*

TERENCE H. CHAN'

Abstract. In this paper, we establish a one-to-one correspondence between an inequality involv-
ing the entropies of discrete random variables, called an information inequality, and an inequality
involving the cardinalities of the projections of what we call a quasi-uniform box assignment. We
first show that a representative class of entropy functions can be characterized by quasi-uniform box
assignments. Based on this result, we show a one-to-one correspondence between an information
inequality and a combinatorial inequality. To demonstrate the importance of our results, we give
a combinatorial proof for the nonnegativity of conditional mutual information. This shows that all
Shannon-type-inequalities can be proved by methods in combinatorics. On the other hand, via a
non-Shannon-type information inequality recently discovered by Zhang and Yeung, we obtain a new
inequality in combinatorics whose meaning is yet to be understood.
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1. Introduction. The quest for information inequalities has been driven by the
need to solve various communication problems. These inequalities play a crucial role
in the proofs of almost all converse coding theorems in source and channel coding
problems. In essence, they govern the impossibilities in information theory. Conven-
tionally, we prove an information inequality by invoking certain elementary identities
and inequalities in the intermediate steps of a proof. In this approach, inequalities
corresponding to the nonnegativity of Shannon’s information measures, called the
basic inequalities [7], are invoked whenever we establish an inequality in an intermedi-
ate step. Proving an information inequality using this conventional approach can be
quite tricky, because it may not be easy to see which identity or elementary inequality
should be invoked at each step.

The framework developed in [7] renders a geometric interpretation of informa-
tion inequalities. With this interpretation, all the information inequalities which are
implied by the basic inequalities, called Shannon-type inequalities, have a unified de-
scription. These include all information inequalities which were known before the
recent discovery of the so-called non-Shannon-type inequalities reported in [8] and
[9]. Machine-proving of all Shannon-type inequalities is now possible [10].

It is evident that there are many non-Shannon-type inequalities yet to be discov-
ered. Unfortunately, due to lack of tools, these inequalities are extremely difficult to
discover and to prove. In [5][6] a combinatorial interpretation for a certain type of
linear inequalities for Kolmogorov complexity (which are basically the same as linear
information inequalities) is obtained. This new interpretation is important in finding
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new information inequalities.

In this paper, we introduce a new concept called quasi-uniformity. By means
of this concept, a combinatorial interpretation is found for all linear information in-
equalities. Hence, the problem of proving an information inequality can be translated
to a combinatorial problem. It then opens the door to discovering and proving new
information inequalities by means of tools in combinatorics.

In general, to prove/disprove an information inequality, we need to verify whether
the inequality is true for all possible entropy functions. The main idea in this paper is
that for a linear information inequality, it is not necessary to verify it for all possible
entropy functions. It has been proved by Chan and Yeung in [1] that it is sufficient to
check those entropy functions that are group-characterizable. Then they developed a
group-theoretic approach to proving information inequalities. In this paper, a similar
technique is used. Specificially, by showing that a linear information inequality can be
proved/disproved by checking those entropy functions that are combinatorially char-
acterizable, we develop a combinatorial approach to proving information inequalities.

2. A framework for information inequalities. Let NV = {1,--- ,n} and
X1, Xs, -+, X, be n nonempty sets. Let Q be the collection of all nonempty subsets of
N. For any a € Q, we define X, = [],, Xi to be the Cartesian product of X; for i € a.
Unless otherwise specified, all small Greek letters («, 3,7, .. ., etc.) are assumed to be
elements in 2 and an element in X, will be denoted by z, = (x; : i € @). Sometimes,
other small letters will also be used instead of x.

Let X;,Xs,---,X,, be a set of n jointly distributed discrete random variables
defined on X, X5, ---, X, respectively. For any a € ), X, denotes the jointly
distributed random variable (X; : i € a). For example, X (4 5y, or X; 5 for simplicity,
is the jointly distributed random variables of X; and X5. The joint entropy of X, is
denoted by H(X,).

Let H,, be the set of all real functions defined on 2. In other words, H,, is the set
of all real functions defined on the collection of nonempty subsets of N and hence, is
a (2™ — 1)-dimensional Euclidean space. For simplicity, for any function g € H,, the
function value g(«) is denoted by g, for all a € Q.

DEFINITION 2.1. Let g € Hy. Then g is called entropic if there exists a set of
random variables X1, Xa,--- , Xy, such that g, = H(X,,) for all a € Q.

ExaMmPLE 2.1. Let X1, X, be the outcomes of two fair coins respectively where
head is denoted by 0 and tail is denoted by 1. Let X3 = X1 + Xo mod 2. Then it can
be checked easily that

(2.1) H(X:) = H(X;)=H(X3) =1
(22) H(Xl,g) = H(X1,3) = H(X2,3) = H(X1 2 3) = 2.

94

Hence, if we define g, = H(X,) for all nonempty subset o of {1,2,3}, then g is
entropic.
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Let T [7] be the set of all entropy functions. I} plays an important role in
information theory, especially in proving information inequalities. I'}, is a subset of
‘Hy, and it has a very complex structure. For n > 3, 'Y is not even closed [8]. It

*

. —3
», is a closed convex cone. Thus, T,

was also proved in [8] that T, the closure of T'
is much more manageable than I'*, and for certain applications (see Section 5), it is
sufficient to consider T',,. Hence, characterizations of % and T, are of fundamental
interest.

Notice that every linear information inequality
(2.3) D baH(Xa) 20

e
corresponds to a linear inequality b"h > 0 in #,,, where b is a column vector whose
components are indexed by a € Q. Hence, for simplicity, an information inequality
will usually be written in the form bTh > 0.

EXAMPLE 2.2. Let N = {1,2} and b € Hy where by = by = 1 and by = —1.
Then the information inequality H(X1) + H(X2) — H(X1,2) > 0 corresponds to the
inequality bTh > 0 in Hs.

THEOREM 2.1. [7] An information inequality ) . ba H(Xs) > 0 is valid if and
only if for allh € T, b"h > 0. Since {h € H,, : b'h > 0} is closed and convex,
an information inequality Y, o boa H(Xo) > 0 is valid if and only if for all h € f:b,
b"h > 0.

Theorem 2.1 has an important implication. It says that the validity of an infor-
mation inequality E > 0 depends only on I'} (or f:b yand {h € H,, : b'h > 0}.
Thus, if I'}, is characterized explicitly, then the information inequality can be proved
or disproved by comparing the two regions. Hence, the study of I'}, and its underlying
structure is fundamental in information theory. Although it is proved that f:b is a
closed covex cone, T, is not fully characterized for n > 3 yet [9] [11].

3. Box Assignment.

DEFINITION 3.1. Let Xy,--- , X, be n non-empty finite sets. A box assignment
A of X is a non-empty subset of Xpr.

Since Xy is the Cartesian product of Xy,---,X,, it can be regarded as an “n-
dimensional box”. Then a box assignment A can be visualized as follows. Each
element x5 in X corresponds to a cell in the box, also denoted by Xy. If a cell zp
is in A, then it recieves one ball, otherwise it recieves no ball. For simplicity, for any
element zpr = (z1,...,T,) in Xy and a € Q, 2, will denote the subset of coordinates
(x5, @ € ).

ExAaMPLE 3.1. Let X; = {0,1,2}, X3 = {0,1,2} and A = {(1,0),(1,2),(2,1)}.
Then A is a box assignment of Xy x Xy. See figure 3.1.

DEFINITION 3.2. Let A be a boz assignment. The a-projection of A is defined as

follows:

(3.1) Ao ={an € Xy : Tz € A such thatVi € o, z; = a;}.
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Xy

2 ®

Fic. 3.1. A Boz Assignment A of X1 X X.

Roughly speaking, A, is the “projection of the balls onto the plane X,”. In other

words, a, € A, if and only if there exists a ball in .4 whose it*

coordinate is equal to
a; for all i € a.

DEFINITION 3.3. Let A be a box assignment and a, € Xo. Then the B-projection
of the ay section of A is defined as

(3.2) Aplalaa) = {bg € Xp : Fzn € A such that Vi € a,
z; =a; and Vj € B, x; = b;}.

Roughly speaking, Ag|4(as) is the “B-projection” of the balls in the a, section of
A. In other words, bg € Ap|(as) if and only if there exists a ball in the a, section of
A (i.e. its i*" coordinate equal to a; for all i € a ) such that its projection on plane
Xjp is bg (i.e. its j®* coordinate equal to b; for all j € B ). It is easy to prove that
Apla(aq) is non-empty if and only if a, € Aq.

EXAMPLE 3.2. Let A be a box assignment defined in Example 3.1. Then

Ay ={1,2}, A, ={0,1,2}
Azu(o) ={}, -Azll(l) ={0,2}, A2I1(2) = {1}
A1|2(0) ={1}, "41\2(1) ={2}, A1|2(2) ={1}.

3.1. Quasi-uniform Box Assignment.

DEFINITION 3.4 (Quasi-uniform box assignment). Let A be a box assignment of
Xy . It is quasi-uniform if for any fized a € €0, the cardinality of Ay |q(as) is constant
for all a, € A,. In other words, the number of balls on the a, section of A is the
same for all a, € Ay. The constant is denoted by |Ay|o| for simplicity.
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X 1 ® O
2| @ ®

F1G. 3.2. Quasi-uniform Bozx Assignment A of X1 X Xa.

ExampLE 3.3. Let Xy = {0,1,2}, X» = {0,1,2} and A = {(0,0),(0,1),(1,1),
(1,2),(2,0),(2,2)}. See figure 3.2. Here,

(36) -Al = {07 172}7 -AQ = {07 172}
,2|1(0) = {(070)7 (0; 1)}: A1,2|1(1) = {(L 1)7 (1;2)}: A1,2|1(2) = {(270)7 (2;2)}
(3-8)A1,2|2(0) = {(070)7 (2;0)}7 A1,2|2(1) = {(07 1)7 (1; 1)}7 A1,2\2(2) = {(172); (272)}-

Also, it is trivial that A; o 2(21,72) = {(z1,22)} if (z1,22) € A. Hence, for all
a € Q, |Ania(aq)| is constant for all a, € Ay. Therefore, A is a quasi-uniform box
assignment of X1 x Xs.

ExXAMPLE 3.4. Let X1 = {0,1} , X» = {0,1} and X35 = {0,1}. Let A =
{(0,0,0),(1,1,0), (0,1,1),(1,0,1)}. See figure 3.3. Then A is a quasi-uniform box
assignment of X1 x X x Xj3.

PROPOSITION 3.1. Let A be a quasi-uniform box assignment of Xn and o € Q.
Then

|A]
(3.9) ANl = :
7 Ml
Proof. Tt can be checked easily that A is equal to the disjoint union of A4 (24) for

Zo € A,. Hence,

(3.10) A= Y [Ayja(@a)l
ToaEAa

(3.11) = > ANl
Toa€EAa

(3.12) = [Aa||Anal-

The result then follows. O
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X3

0,1,1)

A S
N

F1G. 3.3. Quasi-uniform Box Assignment A of X1 X X X Xj.

PROPOSITION 3.2. Let A be a quasi-uniform box assignment of Xn and o € (.
Agua
For any ay € Aa, |Aga(aa)| = %-
Proof. Let vy =a U .

(3.13) Anialan) ={znx € Ay : Vi€ a, 7; = a;}
(3.14) = U {zy € Ay :Vi€ea, z;=a; and Vj € v, ; = y;}
Yy EAy

U {zn € Ay :Vj €, z; =y;}
y'ye-Avla(aa)

(3.15)

(3.16) = U Avn@).
y‘YE'A'VIa(aa)
Therefore,
|A|
3.17 =4 a\la
3.17) o = Mva(eo)
|A|

-1 == _—
(315) 2 4

Yy EAyja(aa)

A
(319) = %l“‘t’ya(aa)l'

Hence, |A,|q(aa)| = \‘:tll Since v = a U, it can be checked easily that |Ag 4 (aa)| =

| Aaup
[Aa]

denoted by |Ag,| for simplicity. O

| for all aq € A, and the constant is

|Ayja(aq)|- Hence [Agjq(aq)| is equal to

3.2. Constructing quasi-uniform box assignment using subgroups.
Group is one of the simplest and most basic algebraic structures. Some familiar
examples are: the integers under addition, the rationals excluding zero under mul-
tiplication, and the set of real-valued 2 x 2 matrices under addition, where addition
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and multiplication refer to the usual addition and multiplication for real numbers and
matrices. The above are all examples of infinite groups. In this paper, however, we
are concerned with finite groups. One example is the group of integers modulo m.
Let G be a group. A subset S of G is a subgroup of G if S is also a group
and each subgroup S of G partitions G into left cosets of S. In this section, we will
construct quasi-uniform box assigments using subgroups of a finite group. We first
state without proof the following basic facts in group theory. The proof of these facts
is straightforward (see for example [2][11]).
THEOREM 3.1. Let Gy, ...,G, ben subgroups of a finite group G. For any a € (2,
let Go = (;cq Gi- Then
1. G4 is a subgroup of G.
2. (Lagrange’s Theorem) There are % distinct left cosets of G, in G.
Thus, there are TG G ‘ distinct left cosets of G in G.
3. Let K4,...,K, be left cosets of Gi,...,Gy respectively. Then ()
either a left coset of G, or is empty.
4. Let K be a left coset of Gar. Then there exists unique left cosets Ky of Gy,
.oy Kn of Gy such that K = [\ K.
5 Let Ky,...,K, be left cosets of Gi,...,G, respectively If N,

(1Y%

K,' 18

i€

K; is non-

empty, then there are \G | left cosets of Gy in [);cq K.
THEOREM 3.2. Let G be a finite group, G1,...,G, ben subgroups of G and X;
be the index of the set of left cosets of G; (i.e. the left cosets of G; is denoted by K; .,

for x; € X;). Define

(3.20) A= {:L‘N € Xy : ﬂ K; ;. is a left coset ofGN} i

i=1
Then A is a quasi-uniform box assignment of Xnr. In addition, for any a €
G
ol = 627
Proof. Let aq € Aa- It can be checked easily that zx € Ay|q(ae) if and only if
Niy Kiz; is a left coset of G in ),

K; o, and hence,

ica Kia;- By Theorem 3.1, there are I‘g:/‘l s left

|Gal >
ica IGN|
is constant for all ay, € A,, i-e., A is a quasi-uniform box assignment. In addition,

since there are IJC%/LI distinct left cosets of Gur in G, |A| = H@I—‘ By Proposition 3.2,

cosets of G in [ s balls on the a, section. Thus, |Apr|q(aq )

(3.21) ol =

(3.22) = 1G]

(3.23) =

The result then follows. O
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XZ
1 2 3 4
1@ o
2 ® O
Xy
3 ® O
4, @ o

Fi1G. 3.4. Quasi-uniform Boz Assignment A of X1 x Xa.

EXAMPLE 3.5. Let G = {(i,j,k) : i,5,k = 0 or 1}, where the group operation
is the componentwise modulo 2 addition. Let G; = {(0,0,0), (1,0,0)} and G2 =
{(0,0,0), (1,1,1)}. There are four left cosets of G1 in G:

K.1=1{(0,0,0),(1,0,0)} Ki»=1{(0,0,1),(1,0,1)}

(3.24) Ki3={(0,1,0),(1,1,0)} Ki4=1{(0,1,1),(1,1,1)}.

Similarly, there are four left cosets of Go in G:

K2,1 = {(0)070)7 (1a ]-a 1)} K2,2 = {(O;Oa 1); (17 1,0)}

(3.25) Ky ={(0,1,0),(1,0,1)} K4 ={(0,1,1),(1,0,0)}.

Then a quasi-uniform box can be constructed by putting a ball in the cell (i,j) if
K1, K2, is non-empty, as depicted in Figure 3.4.

4. Combinatorial characterizations. In this section, we will construct en-
tropy functions based on quasi-uniform box assignments. We then show that in order
to prove/disprove an information inequality, it is sufficient to check those entropy
functions that can be constructed from quasi-uniform box assignments.

THEOREM 4.1. Let A be a quasi-uniform box assignment of Xnr. Then 'h € H,
defined by

(41) ha = IOg |Aa|

for all a € Q is entropic, i.e., h €T,

Proof. It suffices to show that there exists a collection of random variables X1,..., X,
such that for all @ € Q, the entropy H(X,) is equal to hs. Let the joint probability
mass function of Xy,..., X, be

1 .
(4.2) P(xl,.._,xn):{ i (@1, en) €4
0

otherwise.
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It can be checked easily that P(z; : i € a) = ‘17||AN|Q(:UQ)|. Therefore,

1 .
(4.3) Plz;:i€a)= a1 Aol if 7o € Aq
0 otherwise.

Hence, the random variable X, is uniformly distributed over A, and H(X,) =
log | Aq|- O

DEFINITION 4.1. Let A be a quasi-uniform box assignment of Xn and h € H,
such that hy, = log| Ayl for all a € Q. Then A is a combinatorial characterization of
h.

Theorem 4.1 asserts that certain entropy functions in I'} have a combinatorial
characterization. These are called combinatorially characterizable entropy functions,
which will be used in the next section to obtain a combinatorial characterization of
the region f:b.

ExamPLE 4.1. Let Gy, -..,G, be n subgroups of a finite group G and h € H,, be
defined by

Gl

(4.4) ho = log
|Gl

for all o € Q. In section 3.2, we have constructed a quasi-uniform box assignment A
such that |Ay| = % Therefore, h is combinatorially characterizable.

We have introduced the class of entropy functions in I'; which have a combina-
torial characterization. However, an entropy function h € I';, may not have a com-
binatorial characterization due to the following observation. Suppose h € I'}. Then
there exists a collection of random variables X1, Xs,--- , X, such that hy, = H(X,)
for all @ € Q. If A is a combinatorial characterization of h, then H(X,) = log|A4|
for all a € . Since |A,| is an integer, H(X,) must be the logarithm of an integer.
However, the joint entropy of a set of random variables in general is not necessarily
the logarithm of an integer. Therefore, it is possible to construct an entropy function
h € I';, which has no combinatorial characterization.

Although h € I'}, does not imply h has a combinatorial characterization, it turns
out that the set of all h € I';, which have a combinatorial characterization is almost
good enough to characterize the region I'}, as we will see next.

DEFINITION 4.2. Define the following region in Hy:

(4.5) An, ={h € H, : h has a combinatorial characterization }.

By Theorem 4.1, if h € H, has a combinatorial characterization, then h € I'}.
Therefore, A, C I'%. We will prove in the next theorem that ¢on(A,), the convex
closure of A, is in fact equal to T, the closure of T'%.

THEOREM 4.2. con(A,) =T.,.

Proof. Tt is trivial to prove that com(A,) C T.. Recall that in Example 4.1, we

have constructed combinatorially characterizable functions using subgroups of finite



250 TERENCE H. CHAN

groups. Let Y, be the set of all combinatorially characterizable functions that can be
constructed as in Example 4.1 using subgroups of finite groups. It has been proved
in [1] that con(Y,) = T,,. Therefore, T, C ¢on(A,) and the result follows. 0

5. Information inequalities. As we have stated in Section 2 that an informa-
tion inequality!

(5.1) b'™h>0
always holds if and only if
(5.2) T, C{heM,:b"h>0}.

In other words, all unconditional information inequalities are fully characterized by
T,. We also have proved at the end of the last section that com(A,) = T.,. Since
A, CT% CT.,if (5.2) holds, then

(5.3) A, C{heH,:b h>0}.

On the other hand, since {h € H,, : b"h > 0} is closed and convex, by taking convex
closure in (5.3), we obtain

—J

(5.4) T, =con(A,) C{he€H,:b "h>0}.

Therefore, (5.2) and (5.3) are equivalent.

For each h € A, hy = log|A,| for all @ € Q for some quasi-uniform box assig-
wett, baH (Xa) > 0 holds for all
random variables Xj, X5,--- , X, if and only if the corresponding combinatorial in-

ment A of Xy . Hence, the information inequality

equality » 4, balog|Aa| > 0 holds for all quasi-uniform box assigments of Xx. In
other words, for every unconditional information inequality, there is a corresponding
combinatorial inequality, and vice versa. Therefore, inequalities in information theory
can be proved by methods in combinatorics and vice versa.

In the rest of the section, we explore this one-to-one correspondence between
information theory and combinatorics. We first give a combinatorial proof of the
basic inequalities in information theory. At the end of the section, we will give an
information-theoretic proof for a new combinatorial inequality.

THEOREM 5.1. Let A be any quasi-uniform box assignment of Xy X X X Xj.
Then

(5.5) |A1,2,3][As| < [A1,3][A2,3]-
Proof.

the results still hold for general information inequality b(h) > 0 as long as {h € H,, : b(h) > 0}
is a closed and convex cone.
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Lif o~/
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T 7T
/ /99,
Xl

F1G. 5.1. A 2-dimensional bozx assignment induced by A

Let A be any quasi-uniform box assignment of X; x X5 x X3. Fix 3 € A3. Then
let B = A; 53(23). It can be checked easily that By = A;j3(z3) and Ba = Ayjz(x3).
See Figure 5.1. Also, it is trivial to prove that B is a subset of By x B;. Hence,

(5.6) B[ < [Bi]|Ba|.

By Proposition 3.2,

|A1,2,3] | A1 3] | Az.3]
5.7 Bl = = | By = = |Be| = —.
o0 BI= Tl B = g 1=
Hence,

|A123] _ [Avs| [Az23]

5‘8 1< < ) )
(58) |[As| = [As] |As]
which is equivalent to |Aj 2 3||As| < |41 3]|A2,3]- 0

COROLLARY 5.1. For random variables X1, X5 and X3,
(5.9) I(X1; X5[X3) > 0.

Proof. Let A be a quasi-uniform box assignment of X; x X3 x X3. Then by Theorem
5.1,

(5.10) |A1,2,3]|As| < |A13]|Az2,3]
Hence,
(5.11) log | A1,2,3] + log | As| < log|A; 3| + log| Az 3|

This combinatorial inequality corresponds to the information inequality

(5.12) H(X1,Xs,X3)+ H(X3) < H(Xy,X3) + H(X», X3)
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which is equivalent to

O
EXAMPLE 5.1. Recently, the following highly non-trivial information inequality,

which cannot be deduced by invoking the basic Shannon inequalities directly, has been
proved in [9].

H(X:)+ H(X,) +2H(X1,X2) +4H(X3) + 4H(X4)

+5H (X1, X3, X4) + 5H (X2, X3,X4)

<6H(X3,X,4) +4H(X,X3) +4H (X1, Xy)
(5.14) +4H (X5, X3) + 4H (X2, X4),

Such an information inequality is referred to as a non-Shannon-type information in-
equality. This information inequality corresponds to the following combinatorial in-

equality
log |A1| + log | As| + 21log | A1 2| + 41og | As| + 41og | A4|
+51log | Ay1,3,4] + 5log | Az,3.4]
< 6log|Asz4| + 4log| A1 3| + 41og|As 4]

(5.15) +4log| Az 3| + 4log| Az 4]

Taking exponentiation on both sides, we obtain

| As || Az|| A1 2] As || As|*| A1 3 41| As,3,4]°
(5.16) < |A3,4|6|A1,3|4|A1,4|4|A2,3|4|A2,4|4-

The meaning of this combinatorial inequality is yet to be understood.

6. Conclusion. In this paper, we have identified a class of entropy functions
which have combinatorial characterizations. These functions are called combinato-
rially characterizable entropy functions. The discovery in this paper is particularly
important for studying I'),, the set of all entropy functions. It has been shown that
I'y plays a crucial role in information theory. However, it is extremely difficult to
characterize this set. One possible way to characterize I}, is to find new information
inequalities which give tighter outer bounds on I';,. The most important result along
this line was reported in [9], in which a new non-Shannon-type information inequality
was obtained. However, due to lack of tools, to find new information inequalities is an
extremely difficult task. The result in this paper turns the problem of characterizing
entropy functions into the problem of characterizing the sizes of the projections of
a quasi-uniform box assignment. Hence, it may be possible that we can use some
existing results in combinatorics to attack the corresponding problem in information
theory.
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