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AN OPTIMIZATION ON A MANIFOLD APPROACH FOR SOLVING
AN ANTENNA ARRAY PROBLEM*

JOHN B. MOORE!, JEREMY S. THORNE!, AND TAT M. LOK!

Abstract. There is a fundamental existence and construction question which arises in many
array signal processing problems. Although there is a wealth of experience and intuition about this
question, a fundamental theorem and proof is only now here documented. The question concerns exis-
tence and calculation of power gains p; > 0 which satisfy the set of equalities ping(E piging)_lgi =
z; for given vectors g; and scalars 1 > x; > 0. The results will have application in antenna array
optimization and direct sequence CDMA communication system design.

1. Introduction. In the optimization of certain antenna array problems and
the design of direct sequence CDMA communication systems, there is a fundamental
existence and construction question which arises. The first challenge is to tackle the
issues of singularity inherent in the problem to achieve an existence result, and un-
derstand the meaning of the necessary and sufficient conditions for applications. The
next challenge is to provide practical algorithms, including decentralized algorithms,
for achieving on-line optimization for adaptive power control. For this, it also impor-
tant to understand when there is guaranteed convergence, and to know the rates of
convergence.

1.1. Antenna Array. Consider a communication system with m users. During
each symbol interval, the ith user, for 1 < i < m, sends a data symbol ¢; with zero
mean and unit variance to the base station. At the base station, an antenna array
of n elements is used to capture the signal. The received signal is, therefore, an
n-dimensional vector of the form

(11) q= E\/Eqigi"f'ntherm:
i=1

where p; represents the transmitted power of the signal of the ith user. The elements
of g; represent the gains from the transmitter of the i¢th user to the antennas at the
base station. The vector ngperm represents the contribution of thermal noise.

We consider a decentralized linear receiver for each user at the base station.
Therefore, the decision statistic for the symbol of the ith user is of the form w/q.
The signal-to-noise ratio (SNR) for the ith user is given by

| 2

)

H o
(1.2) SNR; = Wi Vrigi
w/l (Zj;éi Pjgjgf + 0.2[n) Wi

where ¢? is the variance of the thermal noise, and I, is the n-dimensional identity
matrix. We pick w; to maximize the SNR. Equivalently, we pick w; to maximize the
signal-to-total-power (STR) ratio
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|2

H
(1.3) STR; = [wi' vPig: _ SN
' ' H(sm oo oH o g2] - 1+4+SNR;’
Wi Zj:1 P;jgig; + 0 ln | Wi

It can be shown [1] that w; should be chosen as

-1

(1.4) wi= | pigigf + I i,
j=1

and the resulting STR is given by

-1

(1.5) pigl | D _pigigl + 'L | i
=

Written in a compact form, the STR for the ith user is the ith diagonal element of

(1.6) PG (G"PG +¢%I,) ' GH.

Suppose that for satisfactory performance, each user requires a certain target SNR.
Equivalently, we can specify the requirement for the ith user as a target STR of
xz; where 0 < z; < 1. We would like to know whether the set of m users can be
supported with suitable choices of p;. While the application of antenna arrays in
wireless communication systems has been a topic of intense research interests [2, 3, 4,
5, 6, 7], this existence problem has not been solved. We consider this existence problem
and are interested in the case where m > n. Since then the system is interference
limited, we would neglect the effect of thermal noise. The STR’s become the diagonal
elements of

(1.7) PG (G"PG)' GF.

1.2. Direct Sequence CDMA. Consider a synchronous direct sequence
CDMA communication system with m users. During each symbol interval, the ith
user, for 1 <7 < m, sends a data symbol ¢; with zero mean and unit variance to the
base station. The symbol ¢; is spread by a signature sequence g; of length n before
transmission. The received signal is, therefore, an n-dimensional vector of the form

(18) q= Z\/p_z%gz + Ni¢perm
i=1

where p; represents the transmitted power of the signal of the ¢th user. The vector
Niherm represents the contribution of thermal noise.

It can be shown [8] that the minimum mean square error (MMSE) receiver is
again given by (1.4) with the resulting STR given by (1.5). Satisfactory performance,
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determined by target STR’s, may be achieved by varying the power output of each
of the users. This power control problem has been of much interests in wireless
communications.

Previous research on power control in different wireless communication systems
have been focused on the effects of power control [9, 10, 11], the development of
algorithms [12, 13, 14, 15, 16], and the proofs of convergence of iterative algorithms
[17, 18]. However, the problem on the existence of a power control solution is not
fully addressed. In this paper, we consider the existence of a power control solution
for a synchronous CDMA system with MMSE receivers.

1.3. Existence Problem. We observe that (1.8) and (1.1), as well as the corre-
sponding receivers, are identical. We are faced with the same problem in both cases.
We focus on the antenna array setting. In fact, explicit results are easily derived to
provide optimal solutions for the cases:

1. When the number of users m, is equal to the number of antennas in the array
n plus one.
2. When the number of antennas in the array n is equal to one.

However, for the case when the number of users m is greater than the number
of antennas in the array n plus one, only iterative ad-hoc algorithms are available, a
proof of existence has been left open (the case when the number of users m, is less
than the number of antennas in the array n is trivial). In this paper we establish the
existence of a solution for the case of m > n + 1 under certain constraints, using an
optimization on a manifold approach [19].

This paper is organized as follows: Section 2 sets up our problem, states our main
existence result, and provides lemmas concerning conditions in our existence result.
In Section 3 we establish our existence result by construction, using an optimization
on a manifold argument. Gradient flows are defined which are guaranteed to flow
to an unique solution at a global minimum within the manifold. Section 4 provides
analytical results for the special case examples, and an iterative algorithm which is
asymptotically Newton and hence quadratically convergent is introduced to provide
practical calculation of the desired solution. Also, a decentralized ad-hoc algorithm
is given which is more practical in some applications. Section 5 gives conclusions.

2. Existence Result.

2.1. Problem Statement. Consider the equation

(2.1) R= {PG(GHPG)_lGH—XL' =0
iag

with matrix diagonal constraints r;, p;, z; € IR and g; € C", n < m.

1 D1
(2.2) R=|g9 . o |\P=]0¢ . o |
m Pm
1 gl
X=10 0 [ G=] :
H
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Here, A = (B)
diagonal elements of B, and G denotes the Hermitian (transpose conjugate) of G.
Of course, it is necessary that G is full rank n and that P is rank n to ensure the
existence of the inverse (GHPG)_I.

Taking the trace of (2.1), then for all P, satisfying (2.1),

diag denotes a diagonal matrix A where the elements of A are the

(2.3) tr (R) = tr {PG (G7PG) ™' GY - X] = tr (Ip) — tr (X) = 0

using the trace operator property tr (AB) = tr (BA), so that necessary conditions for
(2.1) to hold are that tr (X) = n, tr (R) = 0.

Notice that if some P* is a solution of (2.1), so also is SP* for an arbitrary
nonzero scaling factor (.

2.2. Main Existence Theorem. THEOREM 2.1. Suppose the following con-
straints are satisfied
1. G is generic wn that any selection of n rows of G are linearly independent.
2. 0<x; <1 forallj.

m m
3. Z x; =n, or equivalently Z r; = 0.

7j=1 j=1
Then there exists a positive definite solution P = P* of (2.1) (trivially satisfying
(GTP*G) ™" > 0).
Moreover, there are no limiting solutions P** with (GHP**G) singular.
Also, Condition 3 and G full rank are necessary conditions for (2.1) to hold.
The remainder of this section is devoted to developing a proof of this theorem.
The necessity result has been trivially established in (2.3).

2.3. Genericity Condition on G. The concept of a generic G, has important
implicationsin the development of our proof for Theorem 2.1. Consequences of generic
G selections are now developed:

If G is generic, in that Condition 1 of Theorem 2.1 holds, then for an arbitrary

set Tt :={j1,72,...,Jnt} with nf < m, an equivalent condition is
2.4 k o | = { o<
( . ) ran Z 8i8; = n, at>n

€Tt -

Also, for nt < n an eigenvalue decomposition, gives the further equivalent conditions

U Ui 17

c H _ nt . nt

(2.5) Z g8 = [ U ] diag (A1, A2, ..., A,1,0,...,0) [ U, ] ,
€Tt

where A; > 0fori=1,2,...,nf, and [Uﬁ Uf_m} is unitary.

LEMMA 2.2. With generic G, as in Condition 1 of Theorem 2.1, and nt < n.
Then

(2.6) R ({gibejn*r }) =R (US), gj|j¢jn1 ¢ R (Uat)
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B H _ H
(2‘) g] jejn’r Un—nT - 01 g] |-7'€jn‘r Un—nT ;é 0

Here R (B) denotes the range space of B.
Proof. Clearly for generic G, (2.5) holds and

Y &gl | Ul = 0= R ({gies, }) LR (UL).

€Tt
But R (Uf_m) LR (Uﬁ) since {Urﬁ Uf_m} is unitary so that the first equation in
(2.6) holds, from which the second follows, as then does (2.7). O

Consider the related e-dependent square Hermitian matrix

(2.8) A =ch+ Y msll,
Z'Ejn-r

where ¢ > 0. Then

Ut ]H

(2.9) A(e):[ Ut ][dn—i—dz'ag()\l,)\z,...,/\nT,O,...,0)][U T

Un—nT

LEMMA 2.3. With generic G, as in Condition 1 of Theorem 2.1 and n! < n.
Then

(2.10) lim sup ng (6)_1gj

< oo, liminfgfA(e) ' g;
s s, minf &' A(0) ' gy

Proof. For generic G, (2.5) holds, as then does (2.9), so that

_ U,
g A() g =8 [ v ]
o H
diag ()\1—1—6)_1,()\2—}—6)_1,... ,(/\n»r—i—e)_l,e_l,... ,6_1} [ o an ] g;.

The desired result follows from application of the Lemma 2.3 result (2.7). a

3. Optimization on Manifold. Our proof of Theorem 2.1 is by construction
using an optimization approach. Let us here seek a solution of (2.1) by minimizing
the cost function defined as

e 1
3.1 ®(P):= - —r?
(3.1) Pr=g52 5
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A number of our results focus on the two sets

(3.2) Imin ={jr; > Vi), J™ ={j:r; <r Vi}.

The cost function is defined only over the open smooth manifold

(3.3) M :={P|P > 0,PG(GPG) exists}

and is subject to the constraint Z;»nzl r; = 0. Actually this later constraint is satisfied
for all P € M.
Notice that if the cost function is zero on the manifold, then R = 0, and the
associated value of P, denoted P*, is a solution of (2.1), that is R(P*) = 0.
The introduction of the v; terms is to assist in establishing the following:
1. A global minimum of the cost function belongs to M.
2. There are no local minimum or other critical points in M, other than the
global minimum.
3. There are no limiting solutions of (2.1) or limiting critical points of ®(P) on
the boundary of M, denoted § M, and defined in terms of a matrix condition
number C'N (), as

(3.4) §M = {P[P>0,CN (G"PG) = oo}

Our first task i1s to show that under the conditions of the theorem, the only
possible critical points of ®(P), denoted Pg, belonging to M are the global minimum
of ®(P), which would occur at P*, a solution of (2.1), that is R(P*) = 0.

3.1. Cost Function Gradients. The gradients of ® (P) are given from

8<I> (P) 3T’j 37’2'
3.5 =r,i—+ ri—.
59 : Y
Noting that

-1
ri =p;yi;— %, vij =8 (G"PG) gy,

and
J (G"PG)
(3.6) o gigl
then
(3.7) ori _ { vii (L= piyjs) fori=j
Opj —piyi;¥ii <0 fori#j

Substituting for 22 and 22+ in the second part of (3.5) gives
p; ap;
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- 0% (P
(3.8) 5 (, | . ri¥ig (L= pi¥ig) — D ribi¥i Vi
Pi ly=o 2]
]
m
=1y = D TiPiYii¥ii-
=1

It follows that

0% (P)
ap.? y=0
(3.9) =g/ (G"PG) "' G"P(r;1 - R)G (G"PG) ' g;

= rjy;; — g (G"PG)” G"PRG (G"PG) g,

LEMMA 3.1. Consider the nonempty sets J™  Jpmin of (3.2), then

o0d (P
(310) (7“][ — R) |jEJma.z: Z 07 % Z 0.
P jeJmaz
o0d (P
(3.11) (ril = R)jes,.., <0, 22 <.
Ip; F€Tmin

Moreover, for R 0, then there is some T not in J™* and some T not in szn
’ ’ ’ ’
and also

2% (P) Lo 02(P)

(3.12)
9pj |jeymas Op;

< 0.
J€Tmin

Proof. The first inequalities involving r; follow from the definitions of J™% Jy;,.
The first set of inequalities on the gradients follow immediately from substituting the
first inequalities into (3.9).

Now recall that the sum of the r; are zero, so that in the case R # 0, at least for
one pair 1,j, then r; # r;. In an expansion of the right hand side of (3.9), involving
terms (r; — 7;), then at least one of the summands would be nonzero, so that the
inequalities can be strengthened to strict inequalities, as claimed. a

3.2. Cost Function Properties. Any critical points Pg of ® (P) within M,
are characterized by

2% (P)

3.13
( ) ap] P=P

—0Vj.

Observe that the constraint Z;n:l r; = 0 is satisfied for all P € M, so there is no
need for any projection onto this constraint. Useful equivalent conditions to (3.13)
are given in the following lemma.

LEMMA 3.2. Consider the cost function (3.1), under the constraint Z;n:l r; = 0.
The only critical points of the cost function ®(P) within M, satisfying (3.13), if any
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exist, are the global minimum of the cost function, characterized by R(P*) = 0, being
the solution of (2.1).

Moreover, for all elements in the nonempty sets J™* | Jnin of (3.2), a necessary
and sufficient condition for P € M to achieve a global minimum for ® (P) are that

2@ (P) 2@ (P)

(3.14)
Op;j  |jeqmas i jesnin

Furthermore, for P # P*, then of necessity the strict inequalities (3.12) hold.

Proof. Necessity of (3.14), follows by implication from (3.13). For sufficiency,
first note that for j € J™?" defined in (3.2), and applying the constraint Z;»n:l r; =0,
then from (3.9)

2% (P)

apj jeJmaz

=0= rjleJm‘”f =0

= r; = 0V i (under the constraint Z r; =0)
7j=1
= & (P) =0 (from (3.1))
9% (P)

(3.15) -

=0V (from(3.9))
Likewise, working with J,;,, and the first parts of the lemma are established. The
last part follows from application of the second part result to the Lemma 3.1. a

From the results so far, we see the following: In seeking to minimize ® (P) on M, via
a gradient flow, for example, if the gradient flow was always repelled by the boundary,
it would converge to a critical point in M. By the above lemma, this critical point
P* would be the desired solution of (2.1).

Our next step is to further study the cost function on the boundary, and to
exclude the case that a solution of (2.1) exists as a limiting solution approaching the
boundary d M.

LEMMA 3.3. Consider the cost function ® (P) of (3.1), and that the Conditions
of Theorem 2.1 apply. Consider also any gradient flow reducing the cost function
assumed to converge to a limiting point Py on the boundary of M, namely § M Then
R(P1) # 0, and P1 is not a solution of (2.1).

Proof.

First consider the re-organization

m
GIPG = Zgjpjgf
7j=1
m
=gipigl + > gipigl
i=1,i#j
= gipg; +Gj'P;Gy,
with obvious definitions of P, G;, (not functions of p;,g;). Substitution into (3.6)
yields
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_ —1
;i =Pjg; (ngJg] + GHP G; ) j L
1

=g <gyg] +Gj ]G)

and applying the Matrix Inversion Lemma, then

(3.16) ri=1-

Now consider a sequence of P, as {P (k) : k=1,2,...,00}, which reduces @ (P (k))
as k increases, such as can be extracted from gradient flow equations. Consider also
that p; (k) = oo as k — co. Then, we wish to study the limiting behavior, as k — oo,
of

-1

cnPi(k) e\
gl (@) gﬂ'] okl

(3.17) ri(k)=1—

Let us assume that there is a subset of ny, indices j, denoted J, such that p; (k) = oo
at the same maximum rate as k — oo. Thus for some ¢;ip, Cmaz > 0,

Z Cmin .
1,j€Jo0

Let us also consider a dual subset of ng indices j, denoted Jy, such that p; (k) — 0
at the same maximum rate as £ — oo. Thus, again for some cpmin, Cmaz > 0,

Z Cmin .
i,j€Jo

The dual results are useful since the solution of (2.1) is invariant of the scaling of
P, so that with a change of scaling, the role of zero and infinity can be interchanged.
We consider limiting r;(k) of (3.17), for two cases of ne or ng.

i (k
=0, emap > lim 2iK)
iejco,jEJoo k—o0 pj (k)

k— oo D (k)

(3.18) Joo 1= {g| lim ()

i (k
— 0, cpap > lim 2LE)
i¢ o i€ s koo pj (k)

(3.19)  Jo:= {j|klim

Case 1: 0 < ne < mn, or m > ng > m — n.. Consider first an application of

(3.18) as

. e BiR) : pi (k) u
(3.20) lim inf <GH I G =liminf » g; i
k— o0 a1 D (k’) J jedwe k— o0 ; i (]i’) jEeTwe
> Cmin Zgigzﬂ
17 ijed

for some constant ¢, > 0. Clearly, with generic G, as in Condition 1 of Theorem
2.1, and 0 < ne < n, the Property (2.4) tells us that the right hand side of the above
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inequality has rank (ne, — 1) < n. Also, the conditions of Lemma 2.2 and Lemma
2.3 are met. Thus let us identifying n* < n with ne, — 1 < n, and lim.,q A(¢) as an
upper bound on the left hand side of the above inequality. Then application of the
right hand equation of (2.10) yields

. g P;(k) = !
H gL , ,
klgr;o g; <G] ) G]) g;

Taking limits in (3.17), and including the corresponding dual situation result without
giving details, then

3

(3.21) lim r; (k) =(1—2;) >0V j € Joolocnosn, 07 j & Jolm>no>m—n-

k— oo

where the inequality follows from the Condition 2 of Theorem 2.1. Equivalently, there
is asymptotic ill-conditioning of PG (GrHPG)_l7 and P (k) converges to the manifold
boundary d M as follows:

(3.22) lim P (k) €5M.

im i€ Tuolocnas <nr 07 FETolmng 3 mon

The nonzero limits on 7;(k) established for 0 < n,, < n and for ng > m —n in
(3.21), give the result that R(Pq1) # 0, or equivalently, the solution of (2.1) does not
exist as a limit on the boundary of M, § M, and the lemma is established. a

For completeness we add the further limiting results.

Case 2: m > ne > n, or 0 < ng < m — n. Consider the inequality, which
follows by neglecting terms involving p;(k)|i¢s.. , as

(er T

Pz(k) "
> gi g;
er 2 2 BB

J#Jo

From the generic assumption property (2.4), recall that m > ne, > n, and thus both
terms above are full rank. Now taking limits in the above inequality, then application
of the first of the limits (3.18) in inverse form, leads to the limit

(3.23) Jim <G§I zj ((]];)) Gj )

it FTlST P (k)™

It follows that

'-U

1IGAN
li niGgaE-1 " g, :
koo ( D) ) &

Application in (3.17) gives the following, which includes the corresponding dual result,

=0.

FERAS

(3.24) lim r; (k) = —2; <OV j € Joo|lm>ne>n, o7 j € Jolo<no<m—n-

k— o0



SOLVING AN ANTENNA PROBLEM 173

where the inequality follows from the Condition 2 of Theorem 2.1.

REMARK 3.1. Clearly, generic G, as in Condition 1 of Theorem 2.1, 1s sufficient
for Lemma 3.3 to hold. However, if g; |jEJw of (3.21) is linearly independent of the
gi|jerf then Lemma 3.3 wnll still hold. Thus generic G, as in Condition 2.1 of
Theorem 2.1, 1s not a necessary condition.

However, in the case of non-generic G since we can not guarantee that g; |jer
of (3.21) is linearly independent of the gjleJw‘ Then to establish our existence result
we must restrict the selection of G to generic G as in Condition 1 of Theorem 2.1.

The above derivations are summarized in the first part of the proof of the following
lemma.

LEMMA 3.4. Consider the cost function ® (P) of (3.1), on the manifold M with
boundary d M, and that the Conditions of Theorem 2.1 apply.

Then GP(GHPG)~! becomes ill-conditioned asymptotically, and P — §M, and
(3.21), (3.22) apply, if and only if, in a minimization of the cost function, the sets
Joo, Jo of (3.18), (3.19), have 0 < ne, < n, or ng > m — n elements, respectively. .

Moreover, a lower bound on the cost function is %(1 — :L‘m(m)Q, where Tp,qz 15 the
marimum of the set of x;.

Proof. The first part of the proof follows from the derivation of (3.21), (3.22).
The second part follows since at the boundary § M, then (3.21) holds for at least one
value of j, so we take the minimum r; value to give a minimum cost as in the lemma. O

We proceed by first showing that any gradient flow reducing the cost function
and converging to a limiting point Py on the boundary of M, namely § M, does not
achieve a limiting solution P** of (2.1).

3.3. Gradient Flows. et us first consider two “downhill” gradient flows for
®(P) > 0, or equivalently R # 0, on the manifold M, with boundary éM. In
particular,

> 0.

min

(3.25) Pi =~ <0, and p; = _»yj&L(P)

Pi ljegmas Op; e
Here the sets J™2", Jpin are defined in (3.2), and consist at time ¢ of the j such
that, respectively, r;(t) > r;i(t) Vi # j, and rj(t) < r;(t) ¥ 1 # j, and the inequality
properties of Lemma 3.1 are made explicit. The gain factors v; are chosen to be
positive, but so as to upper bound the rate of change of p; or pj_1 to less than some
exponential rate, preferably differing for each j to avoid any tendency towards ill
conditioning .

LEMMA 3.5. Consider either of the two flows, or both acting together, of (3.25)
associated with arbitrary positive definite initial conditions P > 0, and that the con-
ditions of Theorem 2.1 apply.

Then sufficiently close to the boundary § M, there is no critical point Pg for either
of the flows.

Moreover for both flows, there is no p;|j € J™* which approaches infinity, or
Pjliemin Which approaches, and there is no convergence of P to the boundary 6 M.

Also, for after some sufficiently large time, the cost ®(P) becomes smaller than
any minimum finite cost in the neighborhood of the boundary 6 M : Such a bound in
given in Lemma 3.4.
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Furthermore, each of the flows converges to a critical point in M, being the solu-
tion of R(P*) = 0. Equivalently P* is a solution of (2.1), unique to within a scaling
factor 3. That 1s, the existence and uniqueness result of Theorem 2.1 holds.

Proof. The first result follows immediately from Lemma 3.3. The second results,
in part, follow by the inequalities in the gradient flows, being properties of Lemma
3.1, preventing p; increasing for the first flow and decreasing for the second flow.

Even should some set of p; approach zero in the first flow, or infinity in the second
flow, then the gain selections 7; ensure that there is a limited rate of exponential
growth of pj,pj_1 for j € J7%, Jpmin, respectively. Consequently, there is no finite
escape time for p;|jesmas or pj_1|jejmm. Eventually the cost function is lower than
any prior threshold, and in particular the lower bound of the cost function on the
boundary d M.

Subsequently, there is no attraction to the boundary for either of the two flows,
and both flows converge to the same critical point within M. Application of Lemma
3.2 completes the proof. a

REMARK 3.2. When the v; are selected to achieve different exponential rate
bounds for different j, then this imposes the constraints ne,ng < 1. Thus asymptotic
ll-conditioning can occur only for nee = 1 < n, orng = 1> m —n. Actually, the
constraints n > 1,m —n > 1, are assumed to be satisfied here, otherwise (2.1) has
trivial solutions.

Considering the first flow where we have established that there are no p; approach-
ing infinity, let us assume that ng = 1 > m —n, then from (3.24), for the one j € Jy,
the corresponding r;(k) is asymptotically negative, so then asymptotically j ¢ J™".
There 1s a contradiction. Consequently, we see that the first flow converges to a critical
point in M, without asymptotic ill-conditioning, that is, without going to the boundary
OM, as claimed.

Likewise, considering the second flow where we have established that there are
no p; approaching zero, let us assume no, = 1, then from (3.21), the corresponding
r; approaches a positive value, giving a contradiction, so ensuring convergence to a
critical point in M, as claimed.

THEOREM 3.6. Consider that the conditions of Theorem 2.1 apply. Consider
also a gradient flow for ®(P) > 0 or equivalently R # 0, on the manifold M, with
boundary dM. In particular, denoting p == [p1 pa ...Pm-1] and VO(P) := %ﬁzl,
then the flow

(3.26) p=—-QVo(P)

for arbitrary Q > 0. Then this flow will converge to a critical point P* € M satisfying
VO(P*) =0, and R(P*) = 0. Equivalently P* is a solution of (2.1), and the existence
result of Theorem 2.1 holds.

Proof. The gradient flow (3.26) on M, avoids the boundary M, since as estab-
lished in the above lemma, there is a “downhill” path from arbitrary initial conditions
which is repelled by the boundary § M. The flow then converges to a critical point
satisfying V®(P) = 0, which by Lemma 3.2 is a global minimum and yields P* the
solution of R(P*) = 0, and of (2.1). O

The existence and uniqueness result of Theorem 2.1 are now established by con-
struction.
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4. Construction Results. Although the existence result of the previous section
is derived by a construction procedure, this is by no means the best method for
construction. In this section, given the existence result of the previous section we
develop efficient construction methods.

We first focus on two special cases for which explicit solutions can be calculated
before proceeding to a general algorithm.

4.1. Special Case Solution: n = 1. Consider that n = 1, and rewrite (2.1) as
[PHg (gHPg)_lgH} =X,
diag

or equivalently

pigf g; T

795 9i zj "
= =, pj = pal a1,
Yapgtta T gl ;

where j, 0 =1,2,...m. Let B =352 pigi g1, then

. L1 L2 Tm
4.1 P:[)’xdzag{ , e },
1) gt' 91" 95 9 9 gm
for arbitrary 8 # 0, so that without loss of generality set 5 = 1. We summarize the
above result as the following theorem
THEOREM 4.1. Given that the conditions of Theorem 2.1 apply, then an explicit
solution P* of (2.1), for the case n = 1 is given by (4.1).

4.2. Special Case Solution: m = n+ 1. Consider that m = n+ 1, and rewrite

(2.1) as

(4.2) (WG (G"wwG) ™ W] L=X
iag

bl

where WWZ = P. Let us denote the square augmented matrix G = [G g], where
G is full rank, and W¥g is orthogonal to all columns of W7 G. Then

- - H
GHIWWHG = [ SH ]WWH[ G gl ]
_ [ eg"wwia 0
and
- N GIWWHG)™ 0
crwwia) = | -
( ) [ 0 (g7TWWHg)™! ]

Then from the full rank property of WHG,
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- - ~\—1 .
Ing1 = [WHG (GHWWHG) GHW]
diag

e | g [59)

(4.3)

- [WHG (GIwwiG)™ GHW} + [WHg (gHWWHg)_lgHW}

diag diag '

Now (4.2) can be written as

-1
{WHg (gHWWHg) gHW} diag =l — X,
or equivalently,
H n+1
Pig; 95 1—z;
: =1-x; pj= 2> pugt i,

+1 H .
Yoy mat g 95 9i

for j,l =1,2,...,n+ 1. Let us denote g, the null vector of G¥, then

=1

(4.4) Gig=0, GPWWIP-lg=0 g=P 'g.

It follows that

(1 —z;)p?
(4.5) pi = B—p—L,
95 95
where 3 = 27:'1—11 g g1 Then
~H~  ~H> ~H -
. 9191 93 92 Imm
46 P=0xd , . ,
(4.6) px mg{l—ml 1— 2y l—mm}

for arbitrary 8 # 0, so that without loss of generality set § = 1. We summarize the
above results as the following theorem

THEOREM 4.2. Griven that the conditions of Theorem 2.1 apply, then an explicit
solution P* of (2.1), for the case m = n+ 1 is given by (4.6).

4.3. General Solution. To achieve a general solution of (2.1), our approach is
to design a practical gradient descent algorithm to minimize the cost function @ (P)
of (3.1) to achieve a critical point P* satisfying V® (P*) |p=p+ = 0, where V denotes
the gradient. A first approach to achieve a practical algorithm is to work with a
gradient algorithm of the form

(4.7) p(k+1)=p (k) —a(k)Q k) Ve (P(k),
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where
. 0% (P)
4. o (P) = = Sr.
(9 v @)= 20 g,
T T . ar;
Here p = [p1,p2,.-- ,Pm] ,* =[r1,72,...,"m] , and from (3.7) S := (S)ij Sii = B

fori,j=1,2,...,m.

A suitable selection of @ (k) would be some form of positive definite matrix to
ensure a “downhill” direction, yet being an approximation to the inverse of the Hessian
matrix to achieve quadratic convergence rates. A suitable selection of a (k) could be
the result of a line search so that ® (P (k + 1)) is minimized yet maintains GFPG > 0.
A maximum step size would be when |GTPG| = 0, which is given as the minimum
real positive root of a polynomial equation.

The Hessian matrix at the critical point when R = 0 is derived as follows. The
ij-th element of He (P)|g_, is

2% (P)
Op; Op;

— I:eT aSr+ GTS al1

T acH
; —e: S5 e,
! Op; J 31%”11—0 ! Z

R=0

where e; = [0,...,0,1,0,...,0]7 with 1 in the i-th position, and

(4.9) Ha (P) |y = 557

Now it is readily shown that S is singular since

S1=0,
where 1 is a vector with all entries unity. Thus (SSH)_l does not exist. Indeed this
property reflects the fact that the solutions P* of (2.1), when these exist under the
conditions of Theorem 2.1, are unique only up to a scaling factor.

The approach we propose here to side-step the singularity problem in the manifold
M and achieve a unique P* is to work with a cost function related to ¢ (P) as

-1

Y2

=1

V)

(4.10) ¢ (P) = ;

S

N | —

Observe that (4.10) leads to

(4.11) Vo (P) = = Sr

where p; = p;, Ty =13, S35 = S5 for 4,7 =1,2,... ,m — 1. Recalling the constraint

Yot ri =0, it is immediate that R = 0 & R = 0, and consequently,

V& (P*) =0 Vo (P*) =0.
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Under the conditions of Theorem 2.1, any critical point P* of ® (P) is also a
critical point of ® (P), this being unique to within a scaling factor . Moreover, since
the gradient is zero only when R = 0, or equivalently r = 0, then S is always full
rank.

THEOREM 4.3. Consider the gradient algorithm, assuming existence of the in-
verse,

B (k) —a (k) (S (k) S7 (k)" Vo (P (k)
B (k) —a (k) (ST (k)™ ¥ (k), B(0)>0.

Here, the step size a (k) € (0,1] is chosen to preserve GIPG > 0 and to minimize
(or merely reduce) ® (P (k + 1)) in a line search.
Then under the conditions of Theorem 2.1:

p(k+1)

(4.12)

i) The algorithm is well defined for all k, or equivalently the inverse exists for all k.
it) The algorithm (4.12) has a limiting solution

(4.13) lim p (k) = p*

k—o0
where P* = diag {p*, pm} is the unique critical point of ® (P). P* is unique given by
V® (P*) =0, and satisfying ® (P*) = 0.
iti) The algorithm (4.12) is equivalent to

(4.14) p(k+1)=p(k)—a(k) 15 (P(k)|,_, Ve (P (k).

Here Hg (P) is the Hessian matriz of ® (P) at P. Also, as k approaches oo, P (k)
approaches P*. Also, Hg (P (k))|g_, approaches asymptotically the Hessian Hg (P*)
at the unique critical point P*.

iv) A line search on o« (k) achieves the property

(4.15) lim o (k) = 1.

k— o0

v) The algorithm (4.12) with (4.15) holding is asymptotically a Newton algorithm,
and converges quadratically.

Proof. Consider the gradient (4.11). As noted above the theorem, S is full rank
in M, so that S(k)™! exists for all k. Thus the second equality in (4.12) holds. Also,
the ij-th element of Hg (P)|g_, is

92® (P)
Op;Op;

or -

7905, :eJTSgHeT.

= r

Ta
= e} +e: S
R=0 ]3}92

R=0 ! apl

(3

Thus

(4.16) He (P)|g_, = SSH.
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and the equivalence of (4.12) and (4.14) is established.

Now, since we are dealing with a gradient algorithm, clearly the selection of « (k)
by a line search, achieves the property that ® (P (k+ 1)) < @ (P (k)), except at a
critical point. This in turn, from the properties of a line search, is a continuous
mapping. Applying standard results yields convergence to a critical point of ® (P).
As established above, such a critical point is the desired solution of (2.1).

The remaining results of the theorem are standard for asymptotic Newton algo-
rithms. a

REMARK 4.1.

If there exists a quadratic upper bound ® (), of ® (P) then it would be possible to
find an ezplicit solution for a (k), making the line search unnecessary. At this stage,
we have no simple to calculate quadratic upper bound. We then require a line search
for a (k).

A line search iteration requires a computational effort which is linear in m — 1.
This is a negligible cost compared to an iteration which requires the inverse of S is
cubic in m — 1.

We know asymptotically the optimal step size is unity, so that in practice a step
size of unity is first used and reduced only if this gives a reduced cost without il
conditioning. Any line search is for a step size over the range (0,1] .

We also note that it 1s sometimes useful to work with a sitmpler algorithm in the
first few iterations, since there is no convergence rate advantage to a Newton type al-
gorithm except asymptotically. The simpler algorithm we propose replaces (4.12) with
one which approzimates S by a diagonal matriz consisting of the diagonal elements
of S, namely [S)4iag, as follows.

-1

(4.17) p(k+1)=p (k) —a (k) ([Slaag (k) F(k), p(0) > 0.
The computational effort for this iteration s now only quadratic in m — 1.

On many randomly generated examples, our algorithms found P* to within the
accuracy of the computer in seven iterations.

4.3.1. Decentralized Algorithm. There is motivation in some applications to
work with a decentralized algorithm as in (4.17). Tt turns out that asymptotically
this algorithm is equivalent to one where s;; = y;; (1 — piyi ;) is replaced by s; =
yii(1 —x;), and s;; = —p;y;,ivi ; is replaced by s;; = 0.

Indeed, simulation studies suggest that such a substitution gives the preferred
decentralized algorithm

(4.18) pi (k+1) = p;i (k)

T ) .
: fori=1,2,... m,

yii(1— ;)
with a step-size adjustment a (k) not needed in our simulations. For the simplest
randomly generated examples m=4 and n=2, the decentralized algorithm required be-
tween 60-80 iterations to converge within the accuracy of the computer. The number
of iterations required for the decentralized algorithm to converge within the accuracy
for the computer increases with the number of users in the system e.g. for m=20 and
n=2 at least 200 iterations before satisfactory convergence is achieved.
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5. Conclusion. In this paper, we have established an existence result for an
antenna array problem. The existence result is established by construction, and by
then employing an optimization on a manifold argument.

Finally, in Section 4, we provide explicit results for the cases when m = n + 1
and m = 1, and a general iterative solution for the case of m > n+ 1 (where m is the
number of users, and n is the number of antennas in the array). The resultant general
solution is a centralized algorithm and asymptotically Newton, and supersedes the
existing ad-hoc decentralized algorithms, providing improvements in convergence, to
the accuracy of the computer, of at least one order of magnitude.
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