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Abstract. These are lecture notes intended to supplement my second
lecture at the Current Developments in Mathematics conference in 2014.
In the first half of article, we give an introduction to the totally nonneg-
ative Grassmannian together with a survey of some more recent work. In
the second half of the article, we give a definition of a Grassmann poly-
tope motivated by work of physicists on the amplituhedron. We propose
to use Schubert calculus and canonical bases to replace linear algebra
and convexity in the theory of polytopes.
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This work is split into two halves.
The first part is an introduction to the totally nonnegative Grassman-

nian. Most of it should be accessible to graduate students with some back-
ground in algebra and combinatorics. Indeed, Sections 2–8 are an expansion
of lecture notes [Lam13b] that I used in part of a graduate course in total
positivity. My approach differs from Postnikov’s seminal work [Pos], in that
I build the theory from scratch using the enumeration of perfect matchings
(or dimer configurations) as a starting point. Sections 9–12 are a survey of
results mostly from [KLS13] and [Lam+], and requires a bit more back-
ground in algebraic geometry. Sections 13–14 contain some material that is
likely somewhat familiar to experts, but the details of which have not been
written down as far as I know.

The second part studies a notion of a Grassmann polytope, motivated
by Arkani-Hamed and Trnka’s definition of an amplituhedron [ArTr13a].
Our aim is to explain some phenomena in this theory via examples and
counterexamples. In Section 16, we propose a related definition of a (real-
izable) Grassmann matroid. Sections 17–19 work through techniques that
allow us to compute Grassmann matroids. In Sections 20–22, we explore
the face structure and the notion of triangulation for Grassmann polytopes.
In Section 23 we give an informal explanation of the relation to scattering
amplitudes.

1. Introduction

1.1. Total positivity. A real matrix g ∈ GL(n,R) is totally nonnega-
tive if all of its minors are nonnegative. This notion goes back to the works of
Schoenberg [Sch] and Gantmacher and Krein [GaKr], who noticed that such
matrices possess remarkable spectral properties and a variation-diminishing
property.

For the purpose of this article, the first main result of the totally non-
negative part GL(n)≥0 is that it has a trio of descriptions (see Section 2 for
details).

Theorem 1.1. Let g ∈ GL(n,R). Then the following are equivalent:

(1) g is totally nonnegative;
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(2) g is in the semigroup generated by positive Chevalley generators
and positive diagonal matrices;

(3) g is representable by a planar network.

Thus GL(n)≥0 can be described by inequalities, as a semigroup with
specified generators, and as matrices obtained by a combinatorial construc-
tion. It is the interplay between these structures that give rise to a rich
theory. Another important feature of GL(n)≥0 is that it has a natural cell
decomposition (Theorem 2.4).

Lusztig [Lus94] used the semigroup description to generalize GL(n)≥0

to other split real reductive groups.

1.2. The totally nonnegative Grassmannian and the dimer
model. Let Gr(k, n) denote the complex Grassmannian of k-planes in Cn.
We review some basic facts concerning the Grassmannian in Section 3.
Postnikov [Pos] defines the totally nonnegative Grassmannian Gr(k, n)≥0

to be the locus in the Grassmannian with nonnegative Plücker coordinates.
Lusztig [Lus94] defined the totally nonnegative part of any generalized par-
tial flag variety G/P that turns out to agree (Theorem 3.6 and Remark 3.8)
with Postnikov’s in this case.

The immediate goal of Sections 4–7 is to prove an analogue of Theo-
rem 1.1 for the totally nonnegative Grassmannian Gr(k, n)≥0. To construct
points X ∈ Gr(k, n)≥0 we study almost perfect matchings (or dimer configu-
rations) Π in a planar bipartite network N . Theorem 4.1 states that counting
perfect matchings with particular boundary conditions one obtains quanti-

ties {ΔI(N) | I ∈
([n]
k

)
} that are the Plücker coordinates of a point X(N)

in the Grassmannian. The main argument for this result goes back to work
of Kuo [Kuo], and we have formulated it in the more algebraic language of
Temperley-Lieb invariants [Lam14a].

In Theorem 7.12, we show (the much harder direction) that every point
in Gr(k, n)≥0 is of the form X(N) for some planar bipartite network N .
The argument we use is close in spirit to Whitney’s result [Whi] for to-
tally nonnegative matrices. Namely, we reduce a point X ∈ Gr(k, n)≥0 by
repeatedly applying column operations until we obtain one of the torus-
fixed points of Gr(k, n). On the combinatorial side, the reduction procedure
corresponds to adding or removing “bridges” or “lollipops” from a network
N . These bridges are the network analogue of the semigroup generators in
Theorem 1.1(2).

Section 5 describes how to obtain points in Gr(k, n)≥0 from Postnikov’s
plabic networks that are more general than the planar bipartite networks
that we use. We do not review Postnikov’s original construction but summa-
rize Talaska’s approach [Tal] via flows. The connection to the enumeration
of matchings was observed by Postnikov, Speyer, and Williams [PSW].

Section 14 describes yet another way to obtain points in Gr(k, n) from
graphs, this time using linear algebra instead of combinatorics. The construc-
tion goes under the name of on-shell diagram in the scattering amplitudes
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literature, and we call it the “relation space” Rel(N) ∈ Gr(k, n) of a network
N . I could not find in the literature a comparison of this construction with
any of the combinatorial approaches (matchings, flows, or paths), so I have
formulated and proved some basic results. A key feature is that the relation
space construction typically produces points in Gr(k, n) that are not totally
nonnegative.

The connection between the totally nonnegative Grassmannian and pla-
nar networks has also found applications in certain integrable systems, see
[KoWi, GSV09].

1.3. Stratification of Gr(k, n)≥0. Each point X ∈ Gr(k, n) has a
matroid MX , defined in (11). A positroid is the matroid of a point X ∈
Gr(k, n)≥0 in the totally nonnegative Grassmannian. An important byprod-
uct of the construction N �→ X(N) is that it gives a stratification [Pos]

(1) Gr(k, n)≥0 =
⊔

f∈B(k,n)
Πf,>0

of Gr(k, n)≥0 into positroid cells Πf,>0, with the properties (Theorem 7.12)
that

(a) each stratum Πf,>0 is homeomorphic to Rd
>0 for some d ≥ 0,

(b) the positroid MX is constant on each stratum Πf,>0, and distinct
strata have distinct positroids,

(c) for each stratum Πf,>0 there exists a planar bipartite graph G so
that every point X ∈ Πf,>0 is equal to X(N) for a network N
obtained by placing edge weights on G.

Postnikov [Pos] gave (very!) many ways to index these strata. Our pre-
ferred indexing set is the set B(k, n) of (k, n)-bounded affine permutations f
(essentially equivalent to Postnikov’s decorated permutations). In [KLS13]
(Theorem 8.1 here), it is shown that the closure partial order of positroid
cells is (dual to) the well-studied Bruhat order of the affine symmetric group.
In Section 6, we also describe the Grassmann necklaces and cyclic rank ma-
trices that can be used to index the strata.

The most important result about positroids is Oh’s theorem [Oh] stat-
ing that a positroid M is the intersection of cyclically rotated Schubert
matroids. Our proof of this in Theorem 8.4 appears to be new. In Section
8, we also state two other characterizations of positroids: (a) together with
Postnikov [LaPo+], we showed that positroids are exactly the sort-closed
matroids; (b) Ardila, Rincon, and Williams [ARW] characterize positroids
as exactly the underlying matroids of positively orientable matroids.

The elegant combinatorics of the stratification (1) is a reflection of topo-
logical properties, some proved [Lus98b, PSW, RiWi], and some conjec-
tural.

1.4. Positroid varieties. The remarkable stratification (1) of the to-
tally nonnegative Grassmannian is the intersection of Gr(k, n)≥0 with an
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equally remarkable stratification of the complex Grassmannian into the
positroid varietiesΠf . This stratification was introduced by Lusztig [Lus98a]
for a generalized partial flag manifold, and systematically studied in the
Grassmannian case in our work with Knutson and Speyer [KLS13].

We define positroid varieties and summarize some of their geometric
properties in Section 9. For our purposes, the most important fact is that
Πf is an irreducible, projectively normal subvariety of the Grassmannian
whose ideal is linearly generated (Proposition 9.2 and Theorems 9.4 and
9.5).

The positroid stratification has been of interest in a number of directions.
We list some not mentioned in the main text here.

(a) In [KLS14], it is shown that positroid varieties are exactly the
compatibly Frobenius split subvarieties of the Grassmannian, with
respect to the standard Frobenius splitting.

(b) Goodearl and Yakimov [GoYa] showed that (open) positroid vari-
eties are exactly the torus orbits of symplectic leaves of the Grass-
mannian as a Poisson manifold.

(c) There is an analogous classification of torus-invariant primes in
quantum Schubert cell algebras by Mériaux and Cauchon [MéCa]
and Yakimov [Yak]. See also [LaLe09] for a survey of the rela-
tions between total nonnegativity, quantum matrices, and Poisson
geometry.

(d) The cluster algebra structure of the coordinate ring C[Π̊f ] of open
positroid varieties has attracted much recent attention [Lec, MS14,
LeYa].

(e) Positroid varieties play a role in the study of period integrals on the
flag variety, where they are candidates to be large complex structure
limit points, as discussed by Huang, Lian, and Zhu [HLZ].

In Section 10, we review some standard facts about the cohomology
ring H∗(Gr(k, n)) of the Grassmannian, and in Theorem 10.3 formulate the
result from [KLS13] that the cohomology class of the positroid variety [Πf ]

is equal to the affine Stanley symmetric function F̃f of [Lam06]. This result
will play an important role in the applications to Grassmann matroids.

There are many explicit relations to quantum and affine Schubert calcu-
lus that we will not pursue here. For example, certain positroid varieties turn
out to be projections of two-point Gromov-Witten varieties for the Grass-
mannian, see [BCMP, KLS13]. In addition, there is a mysterious relation
[KLS13, HeLa, Sni] between the positroid stratification and the geometry
of affine flag varieties. We have already noted that the closure partial order
for positroid cells agrees with the affine Bruhat order. The affine Stanley
symmetric functions F̃f themselves appear in the study of affine Schubert
calculus [LLMSSZ, Lam08]. See [Knu] for another application of positroid
varieties.
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1.5. Cyclicity, promotion, and canonical bases. The cyclic group
Z/nZ acts on all the objects we have discussed so far: the stratifications

Gr(k, n)≥0 =
⊔

f∈B(k,n)Πf,>0 and Gr(k, n) =
⊔

f∈B(k,n) Π̊f are invariant

under the cyclic group action, and the indexing set B(k, n) of bounded affine
permutations has a natural action by the cyclic group.

The same cyclic group arises in another place in algebraic combina-
torics: the set of rectangular semistandard Young tableaux with entries in
[n] := {1, 2, . . . , n} have an action of the cyclic group Z/nZ via promotion.
In [Lam+], the connection with the positroid stratification is made by de-

scribing the homogeneous coordinate ring C[Π̂f ] and the homogeneous ideal
I(Πf ) of a positroid variety in terms of the canonical basis [Lus93, Kas91].
We survey these results in Sections 11–12.

It is a classical theme in representation theory to consider the space
of sections of line bundles on flag varieties. Let O(1) denote the line bun-
dle on Gr(k, n) pulled back from the Plücker embedding, and let O(d) de-
note its d-th tensor power. By the classical Borel-Weil theory, the space
of sections Γ(Gr(k, n),O(d)) on a Grassmannian can be identified with the
(dual of the) irreducible representation V (dωk) of GL(n) indexed by the
k × d rectangular shape. The space of sections Γ(XI ,O(d)) on a Schu-
bert subvariety XI ⊂ GL(n) is then identified with a Demazure submodule
VI(dωk) ⊂ V (dωk). The space of sections Γ(Πf ,O(d)) on a positroid variety
can then be identified with the intersection of cyclically rotated Demazure
modules, which we call the cyclic Demazure module Vf (dωk). The cyclic
Demazure submodule is spanned by canonical basis elements with remark-
able positivity and cyclicity properties (Theorem 12.2 and Theorem 12.8).
We remark that Lakshmibai and Littelmann [LaLi] have also constructed a
standard monomial basis for the vector space Γ(Πf ,O(d)).

One of the new perspectives that we hope to advertise is that the crystal
graph (the natural indexing set for the canonical basis) of Γ(Gr(k, n),O(d))
is a higher degree analogue of the uniform matroid of rank k on [n]. Indeed,
when d = 1, the crystal graph of Γ(Gr(k, n),O(1)) can be identified with
the set of k element subsets of [n]. We have the following analogies:

Geometry Representation theory d = 1 Combinatorics d > 1 Combinatorics

Grassmannian Rectangular irred. uniform matroid crystal on rect. tableaux

Schubert Demazure submod. Schubert matroid Demazure crystal

Positroid cyclic Demazure positroid cyclic Demazure crystal

1.6. Scattering amplitudes and the canonical form. In Section
13, we study the canonical form ωf of a positroid variety, a distinguished
mermorphic top form on Πf with simple poles exactly along the boundary
∂Πf =

⋃
g<f Πf . The canonical form ωGr(k,n) generates the positroid strat-

ification, as follows. The positroid divisors Π1,Π2, . . . ,Πn are the poles of
ωGr(k,n); the canonical form of a positroid divisor Πr is exactly the residue
ResΠrωGr(k,n). Repeating, we can produce all the positroid varieties and their
canonical forms.
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These forms were considered implicitly in [KLS14], where it arises from
the standard Frobenius splitting of the Grassmannian. Quite unexpectedly
to me, these differential forms also appears in two seemingly unrelated con-
texts, where it is part of an integrand to be integrated along certain real
cycles: (a) in the study of Whittaker functions [Lam13a], and (b) in the
study of scattering amplitudes, to be discussed in Section 23 and briefly
presently.

Scattering amplitudes [ElHu, HePl] are quantities studied in quantum
field theory used to compute the probabilities that certain particle scattering
experiments occur. One of the remarkable recent developments in the theory
is that scattering amplitudes in maximally supersymmetric Yang-Mills the-
ory can be computed (at tree level) as an integral over the Grassmannian:

(2) amplitude =

∫
some contour

(some delta function) ωGr(k,n).

Here, the delta function amounts to considering the integral over a sub-
Grassmannian of Gr(k, n) that depends on the momenta of the particles
being considered.

The equation (2) was made more combinatorial in [ABCGPT] where
a formula

(3) amplitude =
∑

f ∈ C(k, n) ⊂ B(k, n)

∫
(some delta function) ωΠf

was given. Here, the delta function has the same dimension as Πf , so the
integral amounts to formally evaluating ωΠf

at certain (possibly complex)
points of Πf . Only the delta functions, and not the subset C(k, n) ⊂ B(k, n),
depend on the momenta of the particles involved. Furthermore, the subset
C(k, n) ⊂ B(k, n) is generated by a “BCFW recursion”, and many such
subsets would give the same answer.

1.7. The amplituhedron andGrassmann polytopes. In [ArTr13a],
it was suggested that (3) could be considered an expression for the volume
of some space as the sum over the simplices of a triangulation of that space
(see also [ABCHT]). Arkani-Hamed and Trnka called this space the ampli-
tuhedron.

When k = 1, the Grassmannian Gr(1, n) is the projective space Pn−1.
The totally nonnegative Grassmannian Gr(1, n)≥0 can be identified with the
(n−1)-dimensional simplex sitting inside Pn−1. Let Z be a real n×r matrix
with r ≤ n. The matrix Z can be considered a linear map Rn → Rr and
induces a rational map Z : Pn−1 ��� Pr−1, and more generally a rational map
ZGr : Gr(k, n) ��� Gr(k, r). The image Z(Gr(1, n)≥0) can then be identified
with the polytope equal to the convex hull of the row vectors of Z.

Call Z positive if its maximal (r × r) minors are strictly positive. The
amplituhedron is the image of Gr(k, n)≥0 under the map ZGr for a positive
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Z, with the case of physical importance being r = k + 4. When k = 1, the
amplituhedron is a cyclic polytope.

In Section 15, we define a Grassmann polytope to be the image Z(Πf,≥0),
under the following condition:

there exists a r × k real matrix M such that

Z ·M has positive k × k minors.

The analogous condition for k = 1 appears in variants of Farkas’ Lemma,
and in linear programming. In the current analogy, the totally nonnegative
Grassmannian Gr(k, n)≥0 is an analogue of the simplex, the positroid strati-
fication is an analogue of the face stratification of the simplex, and the poset
B(k, n) is an analogue of the boolean lattice. We explain in Section 15 some
behavior of Grassmann polytopes that may be considered unusual from the
perspective of the classical theory.

1.8. Grassmann matroids. Convexity may be thought of as the study
of positive linear combinations. Before we can study convexity, it is natural
to first study linearity.

In Section 16, we study the “linear” behavior of the rational map ZGr :
Gr(k, n) ��� Gr(k, r), by defining a notion of the Grassmann matroid GZ of
Z. As a replacement for the notion of “linear span of the vectors zi1 , zi2 , . . . ,

zis”, we consider the Zariski-closure Z(Πf ) := Z(Πf,≥0) of the image
Z(Πf,≥0). For example, f ∈ B(k, n) is called independent if Z(Πf ) has
the same dimension as Πf . Also, f, g ∈ B(k, n) belong to the same flat if
Z(Πf ) = Z(Πg).

We do not attempt to axiomatize Grassmann matroids here, but in Sec-
tions 17–19 we discuss some techniques from [Lam14b, Lam+] that can
be used to compute Grassmann matroids.

When k = 1, the rank function of the matroid MZ of Z is simply
the function rZ : f �→ dim(Z(Πf )) + 1. When k > 1, we propose that the
invariant dim(Z(Πf )) should be upgraded to the cohomology class [Z(Πf )] ∈
H∗(Gr(k, r)),to give the class function cZ : f �→ [Z(Πf )]. The calculation of
[Z(Πf )] is a Schubert calculus problem. To compute this cohomology class
is equivalent to computing the number of intersection points #(Z(Πf )∩YJ)
where YJ ⊂ Gr(k, r) is a Schubert variety of complementary dimension
in general position with respect to Z(Πf ). Thus, for Grassmann matroids,
linear algebra is replaced by Schubert calculus.

In our earlier work [Lam14b], we gave a formula for the cohomology
class [Yf ] ∈ H∗(Gr(k, r)) of an amplituhedron variety Yf ⊂ Gr(k, r), defined
to be Yf := Z(Πf ) when Z is a generic matrix. The main result (Theo-
rem 17.2) states that [Yf ] is the truncation of the affine Stanley symmetric
function mentioned previously. In the context of Grassmann matroids, this
result is then a formula for the class function of the uniform Grassmann
matroid.



TOTALLY NONNEGATIVE GRASSMANNIAN AND GRASSMANN POLYTOPES 59

1.9. Amplituhedron varieties and sphericoid varieties. In Sec-
tions 18 and 19, we explain results from [Lam+] concerning the homoge-
neous ideals I(Yf ) of amplituhedron varieties. It is necessary to compute
these ideals to understand flats of Grassmann matroids. We illustrate in
examples that these ideals may not be linearly generated (so flats of Grass-
mann matroids are cut out by higher degree equations).

Since Yf depends on the matrix Z, to describe the ideal I(Yf ), we con-
sider the universal amplituhedron variety Yf → Mat(n, r) whose fibers over
generic Z ∈ Mat(n, r) are the amplituhedron varieties Yf . Some geometry
and invariant theory related to Yf is described in Section 18.

Let � = n− r. There is a direct sum rational morphism⊕
: Gr(k, n)×Gr(�, n) −→ Gr(k + �, n)

(X,K) �−→ X +K

where X +K is simply the linear span of the k-plane X and the �-plane K.
For f ∈ B(k, n) and f ′ ∈ B(�, n), we define the sphericoid variety

Πf,f ′ :=
⊕

(Πf ,Πf ′) ⊆ Gr(k + �, n).

Proposition 19.2 states that computing the ideal I(Πf,id) is equivalent to
computing I(Yf ). Here id ∈ B(�, n) is the bounded affine permutation such
that Πid = Gr(�, n). The �-plane K should be identified with the kernel
ker(Z).

The advantage of considering the map
⊕

is that the corresponding map
on homogeneous coordinate rings has a familiar representation theoretic
description. It is induced from the unique (up to scalar) non-trivial GL(n)-
homomorphism

V (dωk)⊗ V (dω�) −→ V (dωk+�)

where as before V (dωk) denotes the highest weight GL(n)-representation
indexed by a k × d rectangle. Combining with the results from Section 12,
we obtain a representation theoretic description of I(Πf,f ′) in Theorem 19.3.
We work through some examples in Section 19. We also state in Theorems
19.9 and 19.10 a construction of points X(N) ∈ Πf,f ′ by counting matchings
on a spherical bipartite network, explaining the nomenclature.

1.10. Facets and triangulations of Grassmann polytopes. In Sec-
tion 20, we discuss facets of Grassmann polytopes. We do not study a com-
plete definition of faces here, but instead we illustrate some phenomena in
examples. In particular, we show how to analyze some faces of the ampli-
tuhedron within our framework, and illustrate the feature that geometric
facets of Grassmann polytopes are typically unions of smaller Grassmann
polytopes.

In Section 21, we define the canonical form ωZ(Πf ) on the varieties Z(Πf ).
These differential forms are defined to be the pushforward, or trace, of the
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canonical form ωf on positroid varieties Πf . We formulate a conjecture (Con-
jecture 21.3) on the divisor of poles and zeroes of ωf .

In Section 22, we make contact with the work of Arkani-Hamed and
Trnka [ArTr13a] by formulating an informal conjecture (Conjecture 22.1)
that every Grassmann polytope P ⊂ Gr(k, r) itself has a canonical form
ωP with remarkable properties. In particular, this form ωP should be the
sum of the canonical forms ωZ(Πf ) over a triangulation P =

⋃
f∈T Z(Πf,≥0),

reminiscent of equation (3). When P is the amplituhedron, this form should
be the (tree) amplitude form ωSYM of super Yang-Mills theory as studied in
[ArTr13a]. Conjecture 22.1 does hold in the case that P is a usual polytope,
and we give a brief construction of this form ωP , which will be further studied
in joint work with Arkani-Hamed and Bai [ABL].

Acknowledgements. It is a pleasure to thank Nima Arkani-Hamed,
Yuntao Bai, Pierre Baumann, Allen Knutson, Alex Postnikov, Mark Shimo-
zono, David Speyer, Jara Trnka, and Lauren Williams for helpful discussions
and comments. I thank Jacob Bourjaily and Willem de Graaf for their help
with computer computations.

Part 1. The totally nonnegative Grassmannian

Let GL(n) denote the complex general linear group, and GL(n,R) denote
the real general linear group. We use the notation [n] := {1, 2, . . . , n} and(
S
k

)
denotes the set of k-element subsets of a finite set S.

2. Total positivity

In this section we set the stage by giving a brief introduction to some
classical and some more recent results in total positivity. We make no at-
tempt to be comprehensive, and point the reader to [FZ] for an accessible
introduction and many references.

2.1. Total nonnegativity in GL(n). Let M be a matrix with real
entries. We say that M is totally nonnegative (TNN for short) if the de-
terminant of any finite submatrix of M is nonnegative. We say that M is
totally positive (TP for short) if the determinant of any finite submatrix of
M is positive. We write GL(n)≥0 (resp. GL(n)>0) for the subset of TNN
elements (resp. TP elements) in GL(n,R).

Let X be a p× q matrix and Y a q × p matrix. Then the Cauchy-Binet
formula states that

(4) det(XY ) =
∑

I∈([q]p )

det(X[p],I) det(YI,[p])

where XA,B denotes the submatrix of X with rows indexed by the set A and
columns indexed by the set B. Note that the summation on the right hand
side is empty if p > q, which agrees with the fact that the determinant on
the left hand side is 0.
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Corollary 2.1. The totally nonnegative part GL(n)≥0 is a submonoid
of GL(n). The totally positive part GL(n)>0 is a subsemigroup of GL(n).

2.2. Semigroup generators. We now describe the semigroup genera-
tors of GL(n)≥0. For (i, j) ∈ [n]2, let ei,j denote the matrix which has a 1 in
the i-th row and j-th column and 0-s elsewhere. For a ∈ C, and an integer
i ∈ [n − 1], define xi(a) := In + a ei,i+1 and yi(a) := In + a ei+1,i, where In
denotes n×n identity matrix. It is easy to check that xi(a), yi(a) ∈ GL(n)≥0

when a ∈ R≥0. For example, for n = 4, we would have

x2(a) =

⎡
⎢⎢⎣

1
1 a

1
1

⎤
⎥⎥⎦ and y3(b) =

⎡
⎢⎢⎣

1
1

1
b 1

⎤
⎥⎥⎦

Theorem 2.2 (Loewner-Whitney theorem [Loe, Whi]). GL(n)≥0 is
the subsemigroup of GL(n,R) generated by the elements {xi(a) | a ∈ R>0},
{yi(a) | a ∈ R>0}, and diagonal matrices with positive real entries.

Let us briefly sketch the main idea of the proof of Theorem 2.2. Mul-
tiplication by the matrices xi(a) and yi(a) act as row operations. The idea
is to start with an arbitrary g ∈ GL(n)≥0, and to “reduce” it to a diagonal
matrix by row operations. The key step is to find i ∈ [n− 1] and a ∈ R>0 so
that g′ = xi(−a)g (or g′ = yi(−a)g) has more zero entries than g, but g′ is
still totally nonnegative. We shall apply the same philosophy to prove the
harder Theorem 7.12.

In 1994, Lusztig [Lus94] turned Theorem 2.2 around to define the totally
nonnegative part of any real reductive group as a semigroup generated by
distinguished elements.

2.3. Lindström-Gessel-Viennot. Suppose we have a directed acyclic
planar network N with sources labeled by [n] and sinks labeled by [n]′, with
all positive real edge weights, as illustrated below:

a

b

c

N =

1

2

3

1′

2′

3′

All edges are directed to the right. Unlabeled edges have weight 1.

M(N) =

1 + ac a 0

c 1 0

bc b 1

⎡
⎢⎢⎣

⎤
⎥⎥⎦

Define a n× n matrix M(N) with entries (mij) where mij is the weight
generating function of directed paths from source i to sink j′. Here, we define
the weight of a path to be the product of the weights of edges on the path.

Theorem 2.3. Suppose g ∈ GL(n). Then g is totally nonnegative if and
only if g = M(N) for some directed acyclic planar network N with positive
real edge weights.
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The “if” part of Theorem 2.3 follows from the Lindström Lemma [Lin],
sometimes also called the Gessel-Viennot method: each minor det(M(N)I,J)
of M(N) has a combinatorial interpretation as the weight generating func-
tion of non-intersecting families of paths in N with source set I and sink
set J . The “only if” part of Theorem 2.3 follows from Theorem 2.2 and the
observation that M(N) · M(N ′) = M(N ∗ N ′) where N ∗ N ′ denotes the
concatenation of N and N ′. It is then enough to construct a network repre-
senting each of the generators xi(a), yi(a) and positive diagonal matrices.

2.4. Stratification. Let B ⊂ GL(n) (resp. B− ⊂ GL(n)) denote the
subgroup of upper (resp. lower) triangular matrices. For a permutation w ∈
Sn, we also use w to denote the corresponding permutation matrix, and
we let �(w) denote the length of w. We have the Bruhat decompositions
GL(n) =

⋃
w∈Sn

BwB =
⋃

v∈Sn
B−vB−. Define

GL(n)w,v
≥0 := GL(n)≥0 ∩BwB ∩B−vB−.

Then we have GL(n)≥0 =
⊔
GL(n)w,v

≥0 .

Theorem 2.4 ([Lus94]). The topological space GL(n)w,v
≥0 is homeomor-

phic to R
n+�(w)+�(v)
>0 .

The homeomorphism is given explicitly by a map of the form

(a1, . . . , ar, t1, . . . , tn, b1, . . . , bs)(5)

�→ xi1(a1) · · ·xir(ar)diag(t1, . . . , tn)yi1(b1) · · · yis(bs),
where w = si1 · · · sir and v = si1 · · · yis are reduced factorizations, and
ai, tj , bk ∈ R>0. Theorem 2.4 is proven by analyzing the relationship be-
tween the Bruhat decomposition and the reduction procedure used in the
proof of Theorem 2.2.

Denote by w′ ≤ w the Bruhat order on the symmetric group Sn.

Theorem 2.5 ([Lus94]). We have GL(n)w,v
≥0 =

⊔
w′≤w,v′≤v GL(n)w

′,v′

≥0 .

The ⊇ inclusion of Theorem 2.5 is obtained by sending some of the pa-
rameters ai and bk in (5) to 0, and using the characterization of Bruhat order
via subwords of reduced words. The ⊆ inclusion of Theorem 2.5 is obtained
by the geometric characterization of Bruhat order: BwB =

⊔
w′≤w Bw′B.

The topological structure of the decomposition GL(n)≥0 =
⊔
GL(n)w,v

≥0 and
of similar stratified spaces has drawn quite a bit of recent interest, see for
example [Her].

3. The Grassmannian

3.1. Real and complex Grassmannians. Let k ≤ n be positive in-
tegers. The Grassmannian Gr(k, n) is the space of k-dimensional subspaces
of the complex vector space Cn. The space Gr(k, n) can be given the struc-
ture of a smooth complex projective variety, as follows. Let X ⊂ Cn be a
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k-dimensional subspace. Then X has a basis {x1, x2, . . . , xk} ⊂ Cn, so we
have

X = rowspan

⎡
⎢⎢⎢⎣

x1
x2
...
xn

⎤
⎥⎥⎥⎦ .

Every full rank k × n matrix M represents a point in Gr(k, n). Two k × n
matrices M,M ′ represent the same point X ∈ Gr(k, n) if we have M ′ = g ·M
for g ∈ GL(k). We will often abuse notation by identifying X ∈ Gr(k, n)
with a matrix M representing it.

For I ∈
([n]
k

)
, let ΔI(X) := ΔI(M) denote the k × k minor of M with

columns indexed by the elements of I. Since ΔI(gM) = det(g)ΔI(M), the

collection of Plücker coordinates {ΔI(X) | I ∈
([n]
k

)
} are well-defined up to

a common scalar. Thus we have a map

Gr(k, n) −→ P(
n
k)−1

X �−→ (ΔI(X))
I∈([n]

k )

mapping the Grassmannian to the projective space with homogeneous coor-

dinates labeled by
([n]
k

)
. This map is an injection called the Plücker embed-

ding, and endows Gr(k, n) with the structure of a smooth irreducible pro-
jective variety of (complex) dimension k(n − k). If X ∈ Gr(k, n), then the
Plücker coordinates ΔI(X) satisfy quadratic relations known as the Plücker
relations.

In the following, Plücker coordinates will also be indexed by k-tuples
(i1, i2, . . . , ik) ∈ [n]k, with the convention that the coordinates are anti-
symmetric in the indices. So for example Δ1,3 = −Δ3,1. The following stan-
dard result can be found in [Ful].

Proposition 3.1. The Plücker coordinates ΔI(X) satisfy the relations

Δi1,...,ikΔj1,...,jk −
∑

Δi′1,...,i
′
k
Δj′1,...,j

′
k
= 0,

where the sum is over all pairs obtained by interchanging a fixed set of r of
the subscripts j1, . . . , jk with r of the subscripts i1, . . . , ik, maintaining the
order in each.

We have the following simpler criterion to check if a point lies in Gr(k, n),
which follows from [Ful, Proof on page 133].

Proposition 3.2. A collection of numbers (ΔI(N))
I∈([n]

k )
), not all zero,

defines a point in Gr(k, n) if and only if the Plücker relation with r = 1 index
swapped is satisfied:

(6)

k∑
s=1

(−1)sΔi1,i2,...,ik−1,jsΔj1,...,js−1,ĵs,js+1,...,jk+1
= 0

where ĵr denotes omission.
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The Grassmannian can be covered by affine charts. Let Ω ⊂ Gr(k, n) be
the locus Ω := {X ∈ Gr(k, n) | Δ[k](X) = 0}. Then every X ∈ Ω is uniquely
represented by a k×n matrix M whose columns 1, 2, . . . , k form the identity
matrix. For example, if k = 3 and n = 7, we have

M =

⎡
⎣1 0 0 m14 m15 m16 m17

0 1 0 m24 m25 m26 m27

0 0 1 m34 m35 m36 m37

⎤
⎦ .

The entries mij for i ∈ [k] and j ∈ [k+1, n] form coordinates on Ω, identify-

ing Ω with the affine space Ck(n−k). If instead of placing the identity matrix

in the columns {1, 2, . . . , k} we placed it in the columns indexed by I ∈
([n]
k

)
,

we obtain the chart ΩI . The collection of
(
n
k

)
affine charts {ΩI | I ∈

([n]
k

)
}

cover the Grassmannian Gr(k, n).

Example 3.3. The Plücker coordinates of the 2-plane

X = rowspan

[
1 0 a b
0 1 c d

]
are Δ12 = 1, Δ13 = c, Δ14 = d, Δ23 = −a, Δ24 = −b, and Δ34 = ad − bc.
They satisfy the one Plücker relation Δ13Δ24 = Δ12Δ34 +Δ14Δ23.

Example 3.4. Suppose k = 1. Then Gr(1, n) is the set of one-dimension-
al subspaces of Cn. The Plücker embedding Gr(1, n) → Pn−1 is an isomor-
phism.

The real Grassmannian Gr(k, n)R parametrizes k-dimensional subspaces
of Rn. One can identity Gr(k, n)R with the subset of Gr(k, n) consisting
of points X represented by Plücker coordinates ΔI(X) that are all real
numbers. In other words, if all the k × k minors of a full rank k × n matrix
M are real, then there exists g ∈ GL(k) so that g · M is a full rank k × n
matrix with real entries.

3.2. The totally nonnegative Grassmannian. The totally nonneg-
ative Grassmannian [Pos], denoted Gr(k, n)≥0, is the subset of X ∈ Gr(k, n)
represented by Plücker coordinates ΔI(X) that are nonnegative real num-
bers. The totally positive Grassmannian or positive Grassmannian for short
is the subset Gr(k, n)>0 ⊂ Gr(k, n) represented by Plücker coordinates
ΔI(X) that are all positive real numbers.

There is a natural right action of GL(n) on Gr(k, n), and we have the fol-
lowing compatibility of totally nonnegative parts, which follows immediately
from (4).

Proposition 3.5. Suppose g ∈ GL(n)≥0 and X ∈ Gr(k, n)≥0. Then
X · g ∈ Gr(k, n)≥0.

For any I ∈
([n]
k

)
, we have a point eI = span(ei | i ∈ I) ∈ Gr(k, n) with

Plücker coordinates ΔJ(eI) = δI,J for J ∈
([n]
k

)
. By definition, the point eI
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lies in Gr(k, n)≥0. The torus (C
∗)n ⊂ GL(n) acts on Gr(k, n) and the points

eI are exactly the torus fixed points.

Theorem 3.6. We have Gr(k, n)≥0 = Gr(k, n)>0 = e[k] ·GL(n)≥0 in
the Hausdorff topology.

The proof of Theorem 3.6 will be given in Section 8.3.
As a Corollary, we obtain the following classical result [Whi].

Corollary 3.7. We have GL(n)≥0 = GL(n)>0 in the Hausdorff topol-
ogy on GL(n,R).

Proof. By Theorem 3.6, Gr(n, 2n)≥0 = Gr(n, 2n)>0. Since Ω[n] ⊂
Gr(n, 2n) is open, we have Gr(n, 2n)≥0 ∩ Ω[n] = Gr(n, 2n)>0 ∩ Ω. But
Gr(n, 2n)≥0 ∩ Ω[n] can be identified with GL(n)≥0, by the map

(In×n | A) �→ A′, a′i,j = (−1)n−iai,n+1−j

where (In×n | A) is the n× 2n matrix representing a point in Gr(n, 2n)≥0 ∩
Ω[n]. �

Remark 3.8. Lusztig [Lus98a] defined the totally nonnegative part of
a generalized partial flag variety G/P . In the case of the Grassmannian,

his definition reduces to the subset e[k] ·GL(n)>0 of the Grassmannian. By
Theorem 3.6, his definition agrees with the one we use.

Let the cyclic group Z/nZ act on k×nmatrices with generator χ ∈ Z/nZ
acting by the map

χ : [v1, v2, . . . , vn] �−→
[
(−1)k−1vn, v1, v2, . . . , vn−1

]
,

where v1, v2, . . . , vn ∈ Ck denote column vectors. It is easy to see that this
action descends to an action of the cyclic group on Gr(k, n). A straightfor-
ward computation gives

Proposition 3.9. X �→ χ(X) gives an action of Z/nZ on Gr(k, n)≥0,
and on Gr(k, n)>0.

4. Perfect matchings in planar bipartite graphs

The aim of this section is to generalize the construction N �→ M(N)
of Section 2.3 to produce points in Gr(k, n)≥0. We will use the following
nonstandard convention. A “network” will refer to a weighted graph. A
“graph” will refer to an unweighted graph. Thus a network has an underlying
graph. In addition, G will denote an unweighted graph while N will denote
a network.
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4.1. Matchings for bipartite networks in a disk. Let N be a
weighted bipartite network embedded in the disk with n boundary vertices,
labeled 1, 2, . . . , n in clockwise order. Each vertex is colored either black or
white, and all edges join black vertices to white vertices. We assume that
all boundary vertices have degree 1, and that edges cannot join boundary
vertices to boundary vertices. The color of the boundary vertices is thus
determined by the color of the interior vertices, and we do not indicate the
color of a boundary vertex in our figures.

We let d be the number of interior white vertices minus the number of
interior black vertices. We let d′ ∈ [n] be the number of boundary vertices
incident to an interior black vertex.

An almost perfect matching Π is a subset of edges of N such that

(1) each interior vertex is used exactly once
(2) boundary vertices may or may not be used.

The boundary subset I(Π) ⊂ {1, 2, . . . , n} is the set of black boundary ver-
tices that are used by Π union the set of white boundary vertices that are
not used by Π. By our assumptions we have |I(Π)| = k := d′ + d.

We will always assume that almost perfect matchings of N exist. There-
fore, we may suppose that isolated interior vertices do not exist.

Define the boundary measurement, or dimer partition function as follows.
For I ⊂ [n] a k-element subset,

ΔI(N) =
∑

Π|I(Π)=I

wt(Π)

where wt(Π) is the product of the weight of the edges in Π. Our first aim is
to prove that boundary measurements define a point in the Grassmannian.
The following theorem improves on a result of Kuo [Kuo].

Theorem 4.1. Suppose N has nonnegative real weights, and that almost
perfect matchings of N exist. Then the homogeneous coordinates {ΔI(N) |
I ∈

([n]
k

)
} defines a point X(N) in the Grassmannian Gr(k, n).

Example 4.2. Let us consider the lollipop graph N below. Note that
all boundary vertices must have degree 1, so we cannot have graphs smaller
than the lollipop graphs. Then the point X(N) ∈ Gr(k, n) is a torus-fixed
point. The network N represents the point e{3,4} = span(e3, e4) ∈ Gr(2, 4).
There is a single almost perfect matching Π, consisting of all four edges.
This matching satisfies I(Π) = {3, 4}.

N =

1

2

3

4 X(N) =

[
0 0 1 0
0 0 0 1

]
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Example 4.3. Let us compute the boundary measurements of the square
graph for Gr(2, 4).

N =

1

2

3

4

a b

cd

Δ12(N) = a

Δ13(N) = ac+ bd

Δ14(N) = b

Δ23(N) = d

Δ24(N) = 1

Δ34(N) = c

4.2. Double dimers. To prove Theorem 4.1, we must show that ΔI(N)
satisfy the Plücker relations, which are some quadratic identities in ΔI . We
thus proceed to study ordered pairs of almost perfect matchings in N .

A (k, n)-partial non-crossing pairing is a pair (τ, T ) where τ is a matching
of a subset S = S(τ) ⊂ {1, 2, . . . , n} of even size, such that when the vertices
are arranged in order on a circle, and the edges are drawn in the interior, then
the edges do not intersect; and T is a subset of [n]\S satisfying |S|+2|T | =
2k. Let Ak,n denote the set of (k, n)-partial non-crossing pairings.

A subgraph Σ ⊂ N is a Temperley-Lieb subgraph if it is a union of con-
nected components each of which is: (a) a path between boundary vertices,
or (b) an interior cycle, or (c) a single edge (called a doubled edge), such that
every interior vertex is used. The set of boundary vertices used by the paths
in a Temperley-Lieb subgraph is denoted S(Σ). Thus each Temperley-Lieb
subgraph Σ gives a partial non-crossing pairing on S(Σ) ⊂ {1, 2, . . . , n}.

Let (Π,Π′) be a double-dimer (that is, a pair of dimer configurations) in
N (see for example [KeWi]). Then the union Σ = Π∪Π′ is a Temperley-Lieb
subgraph:

a b

When Σ arises from a double-dimer, the set S(Σ) is given by S = (I(Π) \
I(Π′)) ∪ (I(Π′) \ I(Π)), and we obtain a non-crossing pairing on S. For
example, in the above picture we have that a is paired with b and S =
{a, b}. Note that a Temperley-Lieb subgraph Σ can arise from a double-
dimer (Π,Π′) in many different ways: it does not remember which edge in a
path came from which of the two original dimer configurations.

For each (k, n)-partial non-crossing pairing (τ, T ) ∈ Ak,n, define the
Temperley-Lieb immanant

Fτ,T (N) :=
∑
Σ

wt(Σ)
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to be the sum over Temperley-Lieb subgraphs Σ which give boundary path
pairing τ , and T contains black boundary vertices belonging to a doubled-
edge in Σ, together with white boundary vertices not belonging to a doubled-
edge in Σ. Here wt(Σ) is the product of all weights of edges in Σ times
2#cycles; also, the weight of a doubled-edge in Σ is the square of the weight
of that edge. The function Fτ,T , introduced in [Lam14a], is a Grassmann-
analogue of Rhoades and Skandera’s Temperley-Lieb immanants [RhSk].

Given I, J ∈
([n]
k

)
, we say that a (k, n)-partial non-crossing pairing (τ, T )

is compatible with I, J if:

(1) S(τ) = (I \ J) ∪ (J \ I), and each edge of τ matches a vertex in
(I \ J) with a vertex in (J \ I), and

(2) T = I ∩ J .

Theorem 4.4 ([Lam14a]). For I, J ∈
([n]
k

)
, we have

ΔI(N)ΔJ(N) =
∑
τ,T

Fτ,T (N)

where the summation is over all (k, n)-partial non-crossing pairings τ com-
patible with I, J .

Proof. The only thing left to prove is the compatibility property.
Let Π,Π′ be almost perfect matchings of N such that I(Π) = I and

I(Π′) = J . Let p be one of the boundary paths in Π ∪ Π′, with endpoints
s and t. If s and t have the same color, then the path is even in length. If
s and t have different colors, then the path is odd in length. In both cases
one of s and t belongs to I \ J and the other belongs to J \ I. �

Example 4.5. Suppose n = 6. Then Δ124(N)Δ356(N) = Fτ1,∅ + Fτ2,∅,
where τ1 and τ2 are the following non-crossing matchings:

τ1 =

43

2

1 6

5 τ2 =

43

2

1 6

5

4.3. Proof of Theorem 4.1. We shall use Proposition 3.2.
Use Theorem 4.4 to expand (6) with ΔI = ΔI(N) as a sum of Fτ,T (N)

over pairs (τ, T ) (with multiplicity). We note that the set T is always the
same in any term that comes up. We assume that i1 < i2 < · · · < ik−1 and
j1 < j2 < · · · < jk+1.

So each term Fτ,T is labeled by (I, J, τ) where I, J is compatible with
τ , and I, J occur as a term in (6). We provide an involution on such terms.
By the compatibility condition, all but one of the edges in τ uses a vertex
in {i1, i2, . . . , ik−1}. The last edge is of the form (ja, jb), where ja ∈ I and
jb ∈ J . The involution swaps ja and jb in I, J but keeps τ the same.
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Finally we show that this involution is sign-reversing. Let I ′ = I∪{jb}−
{ja} and J ′ = J ∪ {ja}− {jb}. Then the sign associated to the term labeled
by (I, J, τ) is equal to (−1) to the power of #{r ∈ [k] | ir > ja} + a. Note
that by the non-crossingness of the edges in τ there must be an even number
of vertices belonging to (I \ J) ∪ (J \ I) strictly between ja and jb. Thus
jb−ja = (b−a)+(#{r ∈ [k] | ir > jb}−#{r ∈ [k] | ir > ja}) mod 2 is odd.
So the involution changes the sign. This completes the proof of Theorem
4.1.

4.4. Gauge equivalence. Let N be a planar bipartite network. If
e1, e2, . . . , ed are adjacent to an interior vertex v, we can multiply all of
their edge weights by the same constant c ∈ R>0, and still get the same
point X(N). Note that we cannot do this at a boundary vertex.

Let F be any face of the network N . This can be a face completely
bounded by edges of N , or a face that also touches the boundary of the
disk. Take the clockwise orientation of the edges bounding the face, and
define the face weight

(7) yF :=
∏

e bounding F

wt(e)±1

where we have +1 if the edge goes out of a black vertex and into a white
vertex, and −1 if the edge goes out of a white vertex and into a black vertex.

Lemma 4.6. Face weights are preserved by gauge equivalence.

Here is some more abstract language to formulate the above. A line
bundle V = VG on a graph G is the association of a one-dimensional vector
space Vv to each vertex v of G. A connection Φ on V is a collection of
invertible linear maps φuv : Vu → Vv for each edges u, v satisfying φuv = φ−1

vu .
If we fix a basis of each Vv, then the connection Φ is equivalent to giving G
a weighting, that is, it is equivalent to a network N with underlying graph
G. Two connections Φ and Φ′ are isomorphic if they are related by change
of basis at each Vv.

Lemma 4.7. Gauge equivalence for N corresponds to changing bases for
{Vv}. Isomorphism classes of connections on V are in bijection with gauge
equivalence classes of planar bipartite networks N with underlying graph
G. Isomorphism classes of connections are in bijection with face weights
{yF ∈ R>0}, which can be chosen arbitrarily subject to the condition that∏

F yF = 1.

Proof. Only the last statement is not clear, and it basically follows
from Euler’s formula. �

Let LG be the moduli space of connections on VG (that is, the space of
isomorphism classes of connections), and let (LG)>0 be the positive points

so that (LG)>0 � R
#F−1
>0 can be identified with the space of positive real

weighted networks N with underlying graph G, modulo gauge equivalence.
Here #F denotes the number of faces of G.
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4.5. Relations for bipartite graphs. We have the following local
moves, replacing a small local part of N by another specific network to
obtain N ′:

(M1) Spider move [GoKe], square move [Pos], or urban renewal [Pro]:
assuming the leaf edges of the spider have been gauge fixed to 1,
the transformation is

(8) a′ =
a

ac+ bd
b′ =

b

ac+ bd
c′ =

c

ac+ bd
d′ =

d

ac+ bd

a

d

b

c
a′b′

d′c′

(M2) Valent two vertex removal. If v has degree two, we can gauge fix
both incident edges (v, u) and (v, u′) to have weight 1, then contract
both edges (that is, we remove both edges, and identify u with u′).
Note that if v is a valent two-vertex adjacent to boundary vertex
b, with edges (v, b) and (v, u), then removing v produces an edge
(b, u), and the color of b flips.

←→

(R1) Multiple edges with the same endpoints can be reduced to a single
edge with the sum of original weights.

(R2) Leaf removal. Suppose v is leaf, and (v, u) the unique edge incident
to it. Then we can remove both v and u, and all edges incident to
u. However, if there is a boundary edge (b, u) where b is a boundary
vertex, then that edge is replaced by a boundary edge (b, w) where
w is a new vertex with the same color as v.

−→

(R3) Dipoles (two degree one vertices joined by an edge) can be removed.

The following results are checked case-by-case.

Proposition 4.8. Each of the moves (M1) and (M2), and each of the
reductions (R1), (R2), (R3) preserve X(N).

Proposition 4.9. Suppose G and G′ are related by (M1) and (M2).
Then the moves induce a homeomorphism (LG)>0 � (LG′)>0.

5. Plabic graphs

So far we have only discussed planar bipartite graphs. Postnikov [Pos]
gives a more general theory in the setting of “plabic graphs”. Here we will
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not introduce Postnikov’s original notion of boundary measurement, but
work with the setting of flows in perfectly oriented networks, as studied in
[Tal, PSW].

A bicolored graph is a finite undirected graph G with n distinguished ver-
tices labeled 1, 2, . . . , n called boundary vertices. The non-boundary vertices
are called interior vertices and each interior vertex is colored either black or
white. Each boundary vertex has degree one and is not colored. We allow
both loops and multiple edges.

A perfect orientation O of a bicolored graph G is a choice of direction
for each edge of the graph G such that interior black vertices have outdegree
1 (and any indegree) and interior white vertices have indegree 1 (and any
outdegree). If (G,O) is perfectly oriented with n boundary edges, then the
number of boundary sources k is given by the formula (see [Pos, Definition
11.5])

(9) k :=
1

2

(
n+

∑
v black

(deg(v)− 2) +
∑

v white

(2− deg(v))

)
.

If a bicolored graph G is embedded into a disk so that the boundary
vertices are arranged in order on the boundary of the disk then we call G
a plabic graph [Pos]. A plabic network N is a plabic graph where each edge
has been given a positive real edge weight.

Proposition 5.1. Suppose G is a planar bipartite graph. Then there is
a natural bijection between perfect orientations O of G and almost perfect
matchings Π of G. In particular, a planar bipartite graph G has an almost
perfect matching if and only if it has a perfect orientation.

Proof. Let Π be an almost perfect matching. We construct a perfect
orientation O of G as follows. Suppose e /∈ Π. Then we orient the edge e
from white to black. Suppose e ∈ Π. Then we orient the edge e from black
to white. It is straightforward to see that this is a bijection. �

A flow F in a perfectly oriented plabic graph (G,O) is a subset of the
edges of G, such that at each interior vertex the number of incoming edges
in F equals the number of outgoing edges in F. If (G,O) is perfectly oriented,
it follows immediately from the definition that a flow F is a union of oriented
cycles and oriented paths between boundary vertices. The weight wt(F) of
a flow F is the product of the weights of the set of edges belonging to F.

Define the boundary subset I(F) ∈
([n]
k

)
by

I(F) := { boundary sources not used } ∪ { boundary sinks used }.

The weight of a flow is the product of the edge weights used in the flow.
Define the boundary measurements of (N,O) to be

ΔI(N,O) =
∑

F|I(F)=I

wt(F).
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The following result is the oriented analogue of Theorem 4.1. It can be
proved in a similar manner.

Theorem 5.2. Suppose (N,O) is a perfectly oriented planar bicolored

network with positive edge weights. Then {ΔI(N,O) | I ∈
([n]
k

)
} define a

point X(N,O) in the totally nonnegative Grassmannian Gr(k, n)≥0.

Proposition 5.3. Suppose N is a planar bipartite network, and O is a
perfect orientation of N . Define (Ñ , O) to be the oriented network where the
edge weights on black to white edges of O have been inverted. Then

X(N) = X(Ñ , O).

Proof. Let F be a flow in (Ñ , O). Reversing the all the edges of F

gives another perfect orientation O of N . By Proposition 5.1, we obtain a
bijection F �→ Π between flows of (Ñ , O) and almost perfect matchings of
N . We then calculate that wt(F) = wt(Π)/wt(ΠO), where ΠO is the almost
perfect matching associated to the chosen perfect orientation O. �

The boundary measurements of a planar bipartite graph are invariant
under the relations discussed in Section 4.5. For perfectly oriented plabic
networks we have the further relation:

←→

allowing us to merge or unmerge adjacent vertices of the same color, when
the edge weight of the connecting edge is equal to 1.

6. Bounded affine permutations

For more details on the material of this section, we refer the reader to
[Pos, KLS13].

6.1. Affine permutations. Fix n ≥ 2. An affine permutation is a
bijection f : Z → Z satisfying the periodicity condition f(i+ n) = f(i) + n
for all i ∈ Z. Affine permutations form a group under composition denoted
S̃n. The quantity

∑n
i=1(f(i) − i) is always divisible by n, and we let S̃k

n

denote the subset of S̃n satisfying the condition
n∑

i=1

(f(i)− i) = kn.

We call f ∈ S̃k
n a (k, n)-affine permutation. We will give an affine permuta-

tion by giving it in window notation: [f(1), f(2), . . . , f(n)].

The subset S̃0
n is the Coxeter group Wn of affine type A, with generators

s0, s1, . . . , sn−1, and relations

s2i = 1

sisj = sjsi if |i− j| > 1

sisi+1si = si+1sisi+1



TOTALLY NONNEGATIVE GRASSMANNIAN AND GRASSMANN POLYTOPES 73

where all indices are taken modulo n. The length �(w) of w ∈ Wn is the
length of the shortest expression of w as a product of the si. We let ≤
denote the Bruhat partial order in Wn.

The group Wn acts on the set of (k, n)-affine permutations by both left
and right multiplications. If g = fsi, then g is obtained from f by swapping
f(i+ rn) and f(i+ rn+ 1) for all r ∈ Z; that is, right multiplication by si
swaps positions i and i+ 1. Similarly, if g = sif , then g is obtained from f
by swapping the values i+ rn and i+ rn+ 1 for all r ∈ Z.

For each k there is a distinguished (k, n)-affine permutation id given by

id(i) = i + k for all i ∈ Z. Every f ∈ S̃k
n is of the form f = w · id for a

unique w ∈ Wn. The length of f ∈ S̃k
n is then defined to be the length of w,

and if f = w · id and g = v · id, we define f ≤ g if and only if w ≤ v. The
poset S̃k

n has id as its unique minimal element, which has length 0. Note
that these definitions can also be made (with the same result) using right
multiplication by Wn. The length �(f) of an affine permutation can also be
computed as the cardinality of the set of inversions:

�(f) = |{(i, j) ∈ [n]× Z | i < j and f(i) > f(j)}|.

6.2. Bounded affine permutations. A (k, n)-bounded affine permu-

tation is a (k, n)-affine permutation f ∈ S̃k
n satisfying the additional bounded

condition:

i ≤ f(i) ≤ i+ n.

The set B(k, n) of (k, n)-bounded affine permutations forms a lower order

ideal in S̃k
n ([KLS13]). We define the partial order on B(k, n) to be the dual

of the induced order from S̃k
n. Thus f ≤ g in B(k, n) if and only if g is

less than f in Bruhat order. Unless otherwise specified, we always use this
partial order when referring to bounded affine permutations.

6.3. Grassmann necklaces. Let I = {i1 < i2 < · · · < ik} and J =
{j1 < j2 < · · · < jk} be two k-element subsets of [n]. We define a partial

order ≤ on
([n]
k

)
by I ≤ J if ir ≤ jr for all r = 1, 2, . . . , k.

We write ≤a for the cyclically rotated ordering a < a + 1 < · · · < n <
1 < · · · < a−1 on [n]. Replacing ≤ by ≤a, we also have the cyclically rotated

version partial order I ≤a J on
([n]
k

)
.

A (k, n)-Grassmann necklace [Pos] is a collection of k-element subsets
I = (I1, I2, . . . , In) satisfying the following property: for each a ∈ [n]:

(1) Ia+1 = Ia if a /∈ Ia
(2) Ia+1 = Ia − {a} ∪ {a′} if a ∈ Ia.

There is a partial order on the set of (k, n)-Grassmann necklaces, given by
I ≤ J if Ia ≤a Ja for all a = 1, 2, . . . , n.

Given f ∈ B(k, n), we define a sequence I(f) = (I1, I2, . . . , In) of k-
element subsets by the formula
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Ia = {f(b) | b < a and f(b) ≥ a} mod n

where mod n means that we take representatives in [n].

Example 6.1. Let k = 2 and n = 6. Suppose f = [2, 4, 6, 5, 7, 9]. Then
I(f) = (13, 23, 34, 46, 56, 16).

Theorem 6.2. The map f �→ I(f) is a bijection between (k, n)-bounded
affine permutations and (k, n)-Grassmann necklaces. We have f ≥ f ′ in
B(k, n) if and only if I(f) ≤ I(f ′).

The inverse map I �→ f(I) is given as follows. Suppose a /∈ Ia. Then
define f(a) = a. Suppose a ∈ Ia and Ia+1 = Ia − {a} ∪ {a′}. Then define
f(a) = b where b ≡ a′ mod n and a < b ≤ a + n. We leave it to the
reader to check that this is inverse to the map f �→ I, and proves the
“bijection” statement of Theorem 6.2. The comparison of partial orders is
best understood via rank matrices.

6.4. Cyclic rank matrices. A formal characterization of cyclic rank
matrices is discussed in [KLS13], see also [Pos]. Here we only consider
cyclic rank matrices of points X ∈ Gr(k, n). Let v1, v2, . . . , vn ∈ Ck be the n
columns of a k × n matrix representing X. Set vi+n := (−1)k−1vi to define
vi for i ∈ Z. The cyclic rank matrix of X is the function

rX(i, j) := dim span(vi, vi+1, . . . , vj) ∈ {0, 1, . . . , k}
defined for i ≤ j.

We also define the bounded affine permutation fX by

(10) fX(i) := min{j ≥ i | vi ∈ span(vi+1, . . . , vj)}.
Thus fX(i) = i if vi = 0, and fX(i) = i + n if vi does not lie in the span
of the other n− 1 columns. It is clear that fX is bounded and periodic; the
fact that it is a bijection from Z to Z is left as an exercise.

Let us also define the Grassmann necklace IX = (I1, I2, . . . , In) by

Ia := min
≤a

{
J ∈

(
[n]

k

)
| ΔJ(X) = 0

}
where min≤a is the lexicographical minimum with respect to the partial
order ≤a.

Proposition 6.3. Let X ∈ Gr(k, n). Then fX ∈ B(k, n) and IX is a
(k, n)-Grassmann necklace, related by the bijection of Theorem 6.2. Further-
more, any one of fX , IX , and rX determine the other two.

Proof. We only sketch a proof of the last statement. The condition vi ∈
span(vi+1, . . . , vj) is equivalent to dim span(vi, vi+1, . . . , vj) = dim span(vi+1,
. . . , vj). Thus fX is determined by rX . Conversely, fX can be used to de-
termine when the rank matrix increases, that is, when r(i, j) − r(i + 1, j)
is equal to 0 or to 1. This shows that fX and rX determine each other.
The lexicographically minimal J such that ΔJ(X) = 0 is determined by
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the values r(1, 1), r(1, 2), r(1, 3), . . . , r(1, n). Specifically, j ∈ J if and only if
r(1, j) > r(1, j − 1), where we take r(1, 0) = 0. The converse is similar. �

Sketch proof of Theorem 6.2. Define a partial order on cyclic rank
matrices by r ≤ r′ if and only if r(i, j) ≤ r′(i, j) for all i, j. Then it is
a standard result in combinatorics [BjBr] that f ≥ f ′ in B(k, n) if and
only if rf ′ ≤ rf , where the rank matrices are related to the bounded affine
permutations by the correspondence of Proposition 6.3. (We will see later
that for every f ∈ B(k, n) there exists X ∈ Gr(k, n) such that fX = f ,
so there is no loss of generality.) But it is also clear from the Proof of
Proposition 6.3 that I ≤ I ′ if and only if rI′ ≤ rI , so the claim follows. �

Example 6.4. Let k = 3 and n = 6. Consider the point

X =

⎡
⎣1 1 0 0 0 0
0 1 4 6 0 0
0 0 1 2 2 1

⎤
⎦ ∈ Gr(3, 6)≥0.

Then fX = [4, 7, 5, 8, 6, 9], because, for example, v2 ∈ span(v3, v4, v5, v6, v7)
but v2 /∈ span(v3, v4, v5, v6). We have IX = (123, 234, 341, 451, 512, 612). We
have rX(1, 2) = 2 but rX(5, 6) = 1.

7. Totally nonnegative Grassmann cells

In this section, we decompose Gr(k, n)≥0 into positroid cells, and show
that every point in Gr(k, n)≥0 is represented by a network N (the analogue
of Theorem 2.3). The main results in this section are due to Postnikov [Pos].
Our proof relies on a bridge–lollipop reduction procedure which we believe
to be new.

7.1. Trips and zig-zag paths. Let G be a planar bipartite graph. In
the following we will sometimes think of an edge in G as two directed edges,
one in each direction.

We decompose G into directed paths and cycles as follows. Given a
directed edge e : u → v, if v is black we pick the edge e′ : v → w after e
by turning (maximally) right at v; if v is white, we turn (maximally) left at
v. This decomposes G into a union of directed paths and cycles, such that
every edge is covered twice (once in each direction). These paths and cycles
are called zig-zag paths, or trips.

The trip permutation πG : [n] → [n] is the permutation given by πG(i) =
j if the trip that starts at i ends at j. For example in the following square
graph, we have πG(1) = 3, πG(2) = 4, πG(3) = 1, πG(4) = 2.

1

2

3

4

1

2

3

4
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Proposition 7.1. Trip permutations are preserved by the moves (M1)
and (M2).

Proof. This is checked case by case. �

A leafless planar bipartite graph G is reduced or minimal if

(1) there are no trips that are cycles,
(2) no trip uses an edge twice (once in each direction) except for the

case of a boundary leaf, and
(3) no two trips T1 and T2 share two edges e1, e2 such that the edges

appear in the same order in both trips.

Note that T1 and T2 can share two edges e1, e2 if they appear in a
different order.

Remark 7.2. The conditions imply that if πG(i) = i then the boundary
vertex i must be connected to a boundary leaf.

Remark 7.3. The trip permutations allow us to associate a k-element
subset IF ⊂ [n] to each face F of a planar bipartite graph G. These face
labels play an important role in certain aspects of the subject [OPS, OhSp,
MS14, FaPo].

7.2. The bounded affine permutation of a reduced planar bi-
partite graph. Let G be a reduced planar bipartite graph. We define
a bounded affine permutation fG ∈ B(k, n) as follows: we always have
fG(i) = πG(i) mod n, where πG is the trip permutation of G defined in
Section 7.1. Given the bounded condition, the only time there is ambiguity
is if the trip that starts at i ends at i, that is, πG(i) = i. In this case, we
have fG(i) = i if i is incident to a black vertex and fG(i) = i + n if i is
incident to a white vertex.

It is not difficult to check that if G and G′ are related by the moves (M1)
and (M2) then fG = fG′ . We omit the proof of the following important result.

Theorem 7.4 ([Pos]). Every planar bipartite graph is move-equivalent
to a reduced graph. A planar bipartite graph is reduced if and only if it has
the minimal number of faces in its move-equivalence class. Any two reduced
planar bipartite graphs in the same move-equivalence class are related by the
equivalences (M1) and (M2). Two reduced planar bipartite graphs G and G′

are in the same move-equivalence class if and only if fG = fG′.

Theorem 7.4 is an analogue of the well-known fact that any two reduced
words for a permutation are related by commutation moves and braid moves.
Another proof of (part of) Theorem 7.4 appears in the recent work of Oh
and Speyer [OhSp].

7.3. Matroids and positroids. Some basic facts about matroids will
be reviewed in Section 16. For now, we will think of matroids as collections
of k-element subsets, called bases, satisfying the exchange axiom.
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If X ∈ Gr(k, n) we define

(11) MX =

{
I ∈

(
[n]

k

)
| ΔI(X) = 0

}
to be the matroid of X.

Let SI := {J ∈
([n]
k

)
| I ≤ J} be the Schubert matroid with minimal

element I. Let SI,a := {J ∈
([n]
k

)
| I ≤a J} be a cyclically rotated Schubert

matroid. We leave as an exercise for the reader to check that these are indeed
matroids.

GivenX ∈ Gr(k, n) we writeX ∈ X̊I if I is the lexicographically minimal

subset such that ΔI(X) = 0 (we will define the Schubert cell X̊I and the
Schubert variety XI in Section 9). The following result is one version of the
greedy property of matroids.

Lemma 7.5. If X ∈ X̊I then MX ⊂ SI .

If X ∈ Gr(k, n)≥0, then we call MX a positroid. Denote the set of
positroids by P(k, n). Given a positroid M ∈ P(k, n), we let the positroid
cell ΠM,>0 be

ΠM,>0 := {X ∈ Gr(k, n)≥0 | MX = M}.
Given a positroid M ∈ P(k, n), we obtain a Grassmann necklace I(M)
defined by

(12) Ia = min
≤a

{J ∈ M}

where min≤a is the lexicographical minimum with respect to the cyclic order
≤ a on [n]. We also define the bounded affine permutation fM ∈ B(k, n) by
I(f) = I(M).

7.4. Adding bridges. Let G be a planar bipartite graph. We define
the operation of adding a bridge at i, black at i and white at i+1. It modifies
a bipartite graph near the boundary vertices i and i+ 1:

i+ 1 i i+ 1 i

t

The bridge edge is the edge labeled t in the above picture. Note that
in general this modification might create a graph that is not bipartite – for
example, if in the original graph i is connected to a black vertex. However,
by adding valent two vertices using the local move (M2), we can always
assume that we obtain a bipartite graph. There is an operation of “adding
a bridge at i, white at i and black at i+ 1”, as well.

Adding a bridge is the network analogue of multiplication by the Cheval-
ley generators xi(a) and yi(b) of Section 2.
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Lemma 7.6. Let N be a network. Now let N ′ be obtained by adding a
bridge with edge weight a from i to i + 1 which is white at i and black at
i+ 1. Then the boundary measurements change as follows:

ΔI(N
′) =

{
ΔI(N) + aΔI−{i+1}∪{i}(N) if i+ 1 ∈ I but i /∈ I

ΔI(N) otherwise.

Thus X(N ′) = X(N) · xi(a).
If N ′′ is obtained by adding a bridge, black at i and white at i+ 1, then

ΔI(N
′) =

{
ΔI(N) + aΔI−{i}∪{i+1}(N) if i ∈ I but i+ 1 /∈ I

ΔI(N) otherwise.

Thus X(N ′′) = X(N) · yi(a).

For i = n, we should think of xn(a) (resp. yn(a) as the operation obtained
from x1(a) (resp. y1(a)) by conjugating by the generator of the Z/nZ action
on Gr(k, n).

Remark 7.7. Thinking of adding bridges as the GL(n)≥0 action on
Gr(k, n)≥0 breaks the cyclic symmetry of planar bipartite graphs (the op-
erations xn(a) and yn(a) do not come from elements of GL(n)≥0). It is
more natural to consider adding bridges to be the action of the totally non-
negative part of the polynomial loop group GLn(R[t, t

−1]) on Gr(k, n)≥0. In
[LaPy12, LaPy13a], the analogue of Theorems 2.2 and 2.3 are established
for the polynomial loop group. In particular, elements g ∈ GLn(R[t

−1, t])≥0

are represented by networks on a cylinder. The action of GLn(R[t
−1, t])≥0

on Gr(k, n)≥0 corresponds to gluing a cylinder to a disk along one bound-
ary of the cylinder, and thus obtaining a disk. I expect there to be rich
generalizations of the topics discussed here to networks on surfaces; see
[GSV12, LaPy13b, GoKe].

7.5. Adding a lollipop. We also need the operation of adding a lol-
lipop, which can be either white or black. This inserts a new boundary vertex
connected to an interior leaf. The new boundary vertices are then relabeled:

i+ 1 i (i+ 2)′ (i+ 1)′ i′

7.6. Reduction of TNN Grassmann cells. Let X ∈ Gr(k, n)≥0.
Suppose fX has a fixed point fX(i) = i. Then by (10), the i-th column vi
of any representative of X must be the 0 vector. We have a projection map
pi : R

n → Rn−1 removing the i-th coordinate.

Lemma 7.8. The projection map induces a bijection between {X ∈
Gr(k, n)≥0 | fX(i) = i} and Gr(k, n− 1)≥0.

Now suppose fX satisfies fX(i) = i+n. Then by (10), the i-th column vi
of any representative of X is not in the span of the other columns. Treating
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X as a k-dimensional subspace of Rn, we have that pi(X) is a (k − 1)-
dimensional subspace of Rn.

Lemma 7.9. The projection map gives a bijection between {X ∈
Gr(k, n)≥0 | fX(i) = i+ n} and Gr(k − 1, n− 1)≥0.

Proof. By cyclic rotation we assume that i = 1. By left multiplying
by g ∈ GL(k,R), we may assume that the first column is (1, 0, . . . , 0)T and
that the first row is (1, 0, . . . , 0). Removing the first row and column gives
a (k − 1)× (n− 1) matrix, representing a point in Gr(k − 1, n− 1)≥0. It is
not hard to see that this is a bijection. �

We now give a bridge (or Chevalley generator) reduction of TNN points
in the Grassmannian. Let X be a TNN point of the Grassmannian. Suppose
the bounded affine permutation fX satisfies i < i+1 ≤ f(i) < f(i+1) ≤ i+n.
Then we say that X has a bridge at i.

Proposition 7.10. Suppose X ∈ Gr(k, n)≥0 has a bridge at i. Then the
quantity

a = ΔIi+1(X)/ΔIi+1∪{i}−{i+1}(X)

is positive and well defined, and X ′ = X ·xi(−a) ∈ Gr(k, n)≥0 has a positroid
strictly smaller than MX . We also have fX′ = fXsi.

Proof. Let vi be the columns of a k × n matrix which represents X.
If f(i) = i + 1, then by (10), the columns vi and vi+1 are parallel, and

since f(i + 1) = i + 1 both vi and vi+1 are non-zero. In this case a is just
the ratio vi+1/vi, and X ′ is what we get by changing the (i+ 1)-st column
to 0. All the claims follow.

We now assume that f(i) > i + 1. For simplicity of notation, assume
i = 1. Let f(i) = j and f(i + 1) = k. Since f(i) /∈ {i, i + n}, we have
i ∈ Ii and i /∈ Ii+1. We also have i+ 1 ∈ Ii ∩ Ii+1. We let Ii = {i, i+ 1} ∪ I,
Ii+1 = (i+1)∪I∪{j}, and Ii+2 = I∪{j, k} for some I ⊂ [n]−{i, i+1}. Note
that if k = n+ i, then Ii+2 = I ∪ {j, i}; this immediately gives Δi∪I∪j = 0.

Suppose k = n+ i. Then we have a Plücker relation

Δi∪I∪jΔ(i+1)∪I∪k = Δi∪I∪kΔ(i+1)∪I∪j +Δi∪(i+1)∪IΔI∪j∪k

where all subsets are ordered according to ≤i. (The easiest way to see that
the signs are correct is just to take i = 1.) Since the RHS is positive,
Δi∪I∪j = 0.

Now X ′ is obtained from X by adding −a times vi to vi+1. So

(13) ΔJ(X
′) =

{
ΔJ(X)− aΔJ−{i+1}∪{i}(X) if i+ 1 ∈ J and i /∈ J

ΔJ(X) otherwise.

The formulae above are the minors of this specific representative of X ′; the
Plücker coordinates of the actual point in the Grassmannian are only deter-
mined up to a scalar. By Lemma 7.11 below, we see that X ′ ∈ Gr(k, n)≥0,
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and that J ∈ MX′ only if J ∈ MX . However, ΔIi+1(X
′) = 0, so MX′ �

MX .
Finally, let v′i be the columns for the matrix obtained from vi by right

multiplication by x′(−a). Then span(vi) = span(v′i) and span(vi, vi+1) =
span(v′i, v

′
i+1), so fX′(r) = fX(r) unless r ∈ {i, i+1} mod n. But fX′ = fX

since ΔIi+1(X
′) = 0. Thus fX′ must be obtained from fX by swapping the

values of f(i) and f(i+ 1). �
Lemma 7.11. Let X ∈ Gr(k, n)≥0 be as in Proposition 7.10, with f(i) >

i + 1. For simplicity of notation suppose i = 1. Write I2 = 2 ∪ I ∪ j.
Suppose J ⊂ {3, . . . , n} satisfies 1 ∪ J ∈ MX . Then Δ1∪I∪j(X)Δ2∪J(X) ≥
Δ1∪J(X)Δ2∪I∪j(X).

Proof. Let M be the positroid of X. We let I1 = {1, 2} ∪ I, I2 =
2∪ I ∪{j}, and I3 = I ∪{j, k}, as in the proof of Proposition 7.10. We have
already shown in the proof of Proposition 7.10 that (1 ∪ I ∪ j) ∈ M.

We proceed by induction on the size of r = |(I ∪ j) \ J |. The case r = 0
is tautological. So suppose r ≥ 1. We may assume that 1 ∪ J ∈ M for
otherwise the claim is trivial. Applying the exchange lemma to 1 ∪ J the
element a = max(J \ (I ∪ j)) ∈ J and the other base 1 ∪ I ∪ j, we obtain
L = J − {a} ∪ {b} such that 1 ∪ L ∈ M.

We claim that b < a. To see this, note that I1 ≤ (1 ∪ J), which implies
that a > I \ J . So the only way that b could be greater than a is if b = j,
and a < j. But by assumption we also have I3 = I ∪ {j, k} ≤3 (1 ∪ J) with
k ≥2 j. This is impossible since both k and j are greater than a, but we
have J \ I ⊂ [3, a] – the only element of (1 ∪ J) \ I that is greater than j or
k in ≤3 order is 1. Thus b < a.

So by induction we have that Δ2∪L/Δ1∪L ≥ Δ2∪I/Δ1∪I , where in par-
ticular we have (1 ∪ L), (2 ∪ L) ∈ M. It suffices to show that Δ2∪J/Δ1∪J ≥
Δ2∪L/Δ1∪L.

We apply the Plücker relation to Δ2∪JΔ1∪L, swapping L with (k− 1) of
the indices in 2 ∪ J to get

Δ1∪LΔ2∪J = Δ1∪JΔ2∪L +Δ12j1j2···â···jk−1
Δ�1�2···a···�k−1

.

We note that �1 < �2 < · · · < a < · · · < �k−1 is actually correctly ordered,
since L is obtained from J by changing a to a smaller number. So all factors
in the above expression are nonnegative. The claim follows. �

7.7. Network realizability of Gr(k, n)≥0. Let MG : (LG)>0 →
Gr(k, n)≥0 be the map that takes a networkN representing a point in (LG)>0

to the point X(N). Let ΠG,>0 denote the image of MG.

Theorem 7.12.

(1) Every X ∈ Gr(k, n)≥0 is representable by a network N .
(2) The map M �→ fM is a bijection between P(k, n) and B(k, n). The

map M �→ I(M) is a bijection between positroids and Grassmann
necklaces.
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(3) For each positroid cell ΠM,>0 there is a reduced bipartite graph
G such that MG : (LG)>0 → ΠG,>0 := ΠM,>0 is bijective. The
bounded affine permutation of G is equal to fM.

(4) ΠM � Rd
>0 has dimension equal to d = k(n− k)− �(fM).

Proof. We establish the first statement completely first. We proceed
by induction on n, and then by induction on |M|.

Suppose n = 1, then X is representable by a network N with a single
boundary vertex joined to a single interior vertex, which can be either black
or white. This represents the unique points in Gr(0, 1)≥0 and Gr(1, 1)≥0.
This is the base case.

Now suppose X ∈ Gr(k, n)≥0. If fX(i) ∈ {i, i+n}, then we can apply the
reductions of Lemma 7.8 and Lemma 7.9 to get some X ′ which by induction
is represented by a network N ′. To obtain N from N ′ we insert a lollipop
(with any edge weight, they are all gauge equivalent) at position i. Note
that fX′ is determined completely by fX .

Thus we may suppose that fX(i) /∈ {i, i + n}. But then we can find
some i such that fX(i) < fX(i+ 1) satisfying the conditions of Proposition
7.10. Let X ′ ∈ Gr(k, n)≥0 be the TNN point of Proposition 7.10. Then by
induction on M, we may assume that X ′ is represented by a network N ′.
Let N be the network obtained from N ′ by adding a bridge between i and
i+1, white at i and black at i+1. Lemma 7.6 then says that N represents X.

Thus every X ∈ Gr(k, n)≥0 is representable by a network N . We note
that the entire recursion depends only on fX : we can choose the underlying
graph G of N to depend on fX only. Thus for each bounded affine permu-
tation f , there is a graph G(f) which parametrizes all of {X ∈ Gr(k, n)≥0 |
fX = f}. But the matroid of X(N) depends only on G (as long as all edge
weights are positive), so we have a bijection between positroids and bounded
affine permutations, and in turn Grassmann necklaces.

We note that adding a bridge adds one face and hence one parame-
ter to (LG)>0. Adding lollipops do not change the number of faces. So
(LG(f))>0 � Rd

>0 where d is the number of bridges used in the entire re-
cursion. Furthermore, the edge weights of the bridges determine the graph
up to gauge equivalence, or, equivalently, these edge weights are coordinates
on (LG(f))>0. But the labels of the bridges are uniquely recoveredX = X(N)
by the recursive algorithm above. So the map MG : (LG)>0 → ΠM,>0

is a bijection, where G = G(fM). By Theorem 7.4, G is reduced since
MG : (LG)>0 → Gr(k, n) is injective (or the reduced statement can be
proved directly).

Finally, we note that the dimension claim is true for n = 1, and we
have �(fsi) = �(f) + 1 when f(i) < f(i+ 1). Now suppose we have X such
that fX(i) = i and X ′ is obtained by the projection pi. Then {(i, j) | i <
j and fX(i) > fX(j)} = ∅, but |{(j, i) | j < i and fX(j) > fX(i)}| = k. So
�(fX) = �(fX′) + k. A similar relation holds when fX(i) = i + n. Thus the
formula for the dimension of ΠM,>0 holds by induction. �



82 T. LAM

Remark 7.13. There are a number of explicit constructions of graphs
G(f) that represent each f ∈ B(k, n), see [Pos, Kar].

Using Theorem 7.12, we define the positroid cell Πf,>0 := ΠM,>0, where
fM = f .

Corollary 7.14. For any reduced planar bipartite graph G, we have
MG : (LG)>0 → ΠG,>0 = ΠfG,>0.

Proof. This follows from combining Theorem 7.12(3) with Proposition
4.9 and Theorem 7.4. �

Theorem 7.15. Suppose N and N ′ are planar bipartite networks with
X(N) = X(N ′). Then N and N ′ are related by local moves and gauge
equivalences.

Proof. By Theorem 7.4, we may first replace N and N ′ by networks
whose underlying planar bipartite graphs are reduced, without changing
X(N) and X(N ′). Again by Theorem 7.4, we may assume that N and N ′

and have the same underlying reduced planar bipartite graph G, which we
may choose to be the graph G in Theorem 7.12(3). Thus Theorem 7.12(3)
says that N and N ′ are related by gauge equivalences. �

8. Positroids and Gr(k, n)≥0 as a stratified space

In this section, we give a number of different descriptions of positroids
due to Oh [Oh], Lam and Postnikov [LaPo+], and Ardila, Rincon, and
Williams [ARW]. We also describe the closure partial order on positroid
cells, originally determined by Postnikov [Pos] and Rietsch [Rie]. The de-
scription here in terms of Bruhat order is from [KLS13].

8.1. Closures of positroid cells. Define Πf,≥0 := cl(Πf,>0) to be the
closure of Πf,>0 in the Hausdorff topology on Gr(k, n) (not to be confused
with the Zariski topology that we shall mostly use).

Theorem 8.1. Let f ∈ B(k, n). Then Πf,≥0 =
⊔

g≤f Πg,>0.

We first give a proof of the direction ⊇. We hope the reader notices the
strong similarity with arguments in Bruhat order.

Proposition 8.2. We have Πf,≥0 ⊇
⊔

g≤f Πg,>0.

Proof. By induction, it is enough to show that Πg,>0 ⊂ Πf,≥0 when

g � f in B(k, n) (thus g covers f in Bruhat order of S̃k
n). It is a standard

exercise to show that this happens if and only if g is obtained from f by
swapping f(i) with f(j), where

(14) i < j, f(i) < f(j), {f(a) | i < a < j} ∩ [f(i), f(j)] = ∅.
Let G be a reduced planar bipartite graph with fG = f . Then (14) implies
that the trip Ti starting at i and the trip Tj starting at j must cross one
another. In particular, Ti and Tj must share an edge e, where they travel
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in opposite directions along e. By the move (M2), we can assume that this
edge e is unique, and that the graph G′ = G\{e} is reduced. Then it follows
from the definitions that fG′ = g. A network N ′ with underlying graph G′

can thus be thought of as a network N(0) with underlying graph G, but
edge e having weight 0. Let N(a) be the same network but letting edge e
have weight a. Then X(N(0)) = lima→0X(N(a)), and so by Corollary 7.14
we have Πg,>0 ⊂ Πf,≥0. �

Let I ∈
([n]
k

)
. Define tI ∈ B(k, n) by tI(i) = i+ n if i ∈ I and tI(i) = i if

i /∈ I. Recall that the rotated Schubert matroid SI,a was defined in Section
7.3.

Lemma 8.3. Let f ∈ B(k, n) and I ∈
([n]
k

)
. We have f ≥ tI if and only

if I ∈ SI1,1 ∩ SI2,2 ∩ · · · ∩ SIn,n, where I = (I1, . . . , In) is the Grassmann
necklace of f .

Proof. The Grassmann necklace of tI is (I, I, . . . , I). The result then
follows from Theorem 6.2. �

8.2. Oh’s theorem. Our approach gives a new proof of Oh’s theorem.

Theorem 8.4 ([Oh]). Positroids are intersections of cyclically rotated
Schubert matroids: if I(M) = (I1, I2, . . . , In) then

M = SI1,1 ∩ SI2,2 ∩ · · · ∩ SIn,n.

Proof. The inclusion ⊆ follows from the definition (12). For the reverse
inclusion, suppose I belongs to the right hand side. Let f = fM ∈ B(k, n)
be the bounded affine permutation corresponding to the positroid M. By
Lemma 8.3, we have f ≥ tI . By Proposition 8.2, we have ΠtI ,>0 ⊂ Πf,≥0.
But ΠtI ,>0 is simply the point eI ∈ Gr(k, n) with the single non-vanishing
Plücker coordinate ΔI . Thus the Plücker coordinate cannot vanish on ΠM
(otherwise it would vanish on the closure as well). It follows that I ∈ M, as
required. �

Recall that Theorem 7.12 gives a bijection f �→ M(f) between B(k, n)
and P(k, n). Theorem 8.4 has the following immediate corollary.

Corollary 8.5. We have f ≥ g if and only if M(f) ⊇ M(g).

Proof of Theorem 8.1. By Proposition 8.2, we have the inclusion
Πf,≥0 ⊇

⊔
g≤f Πg,>0.

Suppose X ∈ Πf,>0. Then X ∈ Gr(k, n)≥0 so X ∈ Πg,>0 for some
g ∈ B(k, n). The Plücker coordinates ΔI(X) are non-zero for I ∈ M(g).
Suppose J /∈ M(f). Then the Plücker coordinate ΔJ vanishes on Πf,>0 and

therefore it also vanishes on Πf,>0. We conclude that M(g) ⊆ M(f). But

by Corollary 8.5 this implies f ≥ g. Thus Πf,>0 =
⊔

g≤f Πg,>0. �

We also have the following somewhat surprising Corollary.
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Corollary 8.6. Suppose f, g ∈ B(k, n). Then f ≥ g if and only if

whenever g ≥ tI we have f ≥ tI as well, for I ∈
([n]
k

)
.

8.3. Proof of Theorem 3.6. We can now prove the equivalence of
Lusztig’s and Postnikov’s definitions of the totally nonnegative Grassman-
nian. The first equality of Theorem 3.6 is just the special case f = id of
Theorem 8.1.

Now let f ∈ B(k, n) be given by f(i) = i+ n for 1 ≤ i ≤ k and f(i) = i
for k+1 ≤ i ≤ n. Then Πf,>0 is the single point e[k] ∈ Gr(k, n). Let w ∈ Sn

be the permutation such that fw = id. Then w = (r+ 1)(r+ 2) · · ·n12 · · · r
in one-line notation. Let i1i2 · · · i� be a reduced word for w. Then by the
proof of Theorem 7.12, adding the bridges indexed by i1, i2, . . . , i� to the lol-
lipop graph of e[r] gives a planar bipartite graph G such thatMG : (LG)>0 →
Gr(k, n)>0 is bijective. Thus for X ∈ Gr(k, n)>0, there are (unique) parame-
ters a1, a2, . . . , a� ∈ R>0 such that the matrix g = xi1(a1) · · ·xi�(a�) satisfies
e[r] · g = X. This shows that Gr(k, n)>0 ⊂ GL(n)≥0 · e[k].

8.4. Supermodularity of Plücker coordinates. Let I = {i1 < i2 <

. . . , ik} and J = {j1 < · · · < jk} ∈
([n]
k

)
. Suppose the multiset I ∪ J , when

sorted in increasing order, is equal to {a1 ≤ b1 ≤ a2 ≤ · · · ≤ ak ≤ bk}. Then
we define sort1(I, J) = {a1, . . . , ak} and sort2(I, J) = {b1, . . . , bk}. Also de-
fine min(I, J) := {min(i1, j1), . . . ,min(ik, jk)} and max(I, J) := {max(i1, j1),
. . . ,max(ik, jk)}. For example, if I = {1, 3, 5, 6, 7} and J = {2, 3, 4, 8, 9} then
sort1(I, J) = {1, 3, 4, 6, 8}, sort2(I, J) = {2, 3, 5, 7, 9},min(I, J) = {1, 3, 4,
6, 7}, and max(I, J) = {2, 3, 5, 8, 9}.

Proposition 8.7. Let X ∈ Gr(k, n)≥0. Then

ΔI(X)ΔJ(X) ≤ Δmin(I,J)(X)Δmax(I,J)(X) ≤ Δsort1(I,J)(X)Δsort2(I,J)(X).

Proof. We use Theorem 4.4 and show that any (τ, T ) compatible with
I, J is also compatible with min(I, J),max(I, J) and with sort1(I, J),
sort2(I, J). We also note that sorti(min(I, J),max(I, J)) = sorti(I, J). �

Similar inequalities occur in the very different context of Schur positivity
[LPP]. See also [FaPo] for related ideas.

The operations min(I, J) and max(I, J) have another interpretation. To

each I ∈
([n]
k

)
we have an associated partition λ(I) ⊆ (n − k)k (see Section

10.2). Thinking of λ and μ as Young diagrams, write λ∪ μ for the partition
that is the union of the boxes in λ and μ, and similarly define λ ∩ μ. Then
λ(max(I, J)) = λ(I)∪λ(J) and λ(min(I, J)) = λ(I)∩λ(J). This makes the

poset of partitions λ ⊆ (n − k)k under inclusion (resp. the poset (
([n]
k

)
,≤))

a distributive lattice under the operations (∪,∩) (resp. (max,min)).

Corollary 8.8. Every positroid M is a distributive lattice.

A supermodular function f : L → R on a lattice (L,∨,∧) is a function
satisfying f(x ∨ y) + f(x ∧ y) ≥ f(x) + f(y). A log-supermodular function
g : L → R>0 is a function such that log g is supermodular.
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Corollary 8.9. For X ∈ Πf,>0, the function I �→ ΔI(X) is a log-
supermodular function from the lattice (M(f),max,min) to R>0.

We can also think of the function I �→ ΔI(X) as a function hX on the
vectors eI ∈ Rn (the 0-1 vector with 1-s in locations specified by I). Then
the inequality ΔI(X)ΔJ(X) ≤ Δsort1(I,J)(X)Δsort2(I,J)(X) implies that hX
is log-concave: hX(x)hX(y) ≤ hX((x + y)/2)2, whenever x, y, (x + y)/2 are
all of the form eI .

8.5. Alcoved polytopes and sort-closed sets.The class of positroids
P(k, n) is exactly the same as the class of sort-closed matroids that had pre-
viously been studied in a different setting [LaPo07, Blu].

A matroid M is sort-closed if I, J ∈ M implies sort1(I, J), sort2(I, J) ∈
M.

Theorem 8.10 ([LaPo+]). A matroid M is a positroid if and only if
it is sort-closed.

The “only if” direction of Theorem 8.10 follows immediately from Propo-
sition 8.7. The “if direction” of Theorem 8.10 follows from a characteriza-
tion of sort-closed collections as integer points in alcoved polytopes, see
[LaPo07].

Theorem 8.10 can also be stated as follows: a matroid polytope is a
positroid polytope if and only if it is also an alcoved polytope. In [LaPo+],
Postnikov and I take this as a starting point to investigate polypositroids,
the positive analogue of polymatroids.

8.6. Positively oriented matroids. A theorem of Ardila, Rincon,
and Williams gives yet another characterization of positroids: they are ex-
actly the underlying matroids of positively orientable matroids.

A chirotope of rank k oriented matroid M on [n] is a function χ : [n]k →
{−1, 0, 1} satisfying the axioms

(1) The map χ is alternating:

χ(iσ(1), iσ(2), . . . , iσ(k)) = sign(σ)χ(i1, i2, . . . , ik)

where sign(σ) is the sign of the permutation σ.
(2) For any a1, a2, a3, a4, i3, i4, . . . , ik ∈ [n], we have

if ε := χ(a1, a2, i3, . . . , ik)χ(a3, a4, i3, . . . , ik) ∈ {−1, 1},
then either

χ(a3, a2, i3, . . . , ik)χ(a1, a4, i3, . . . , ik) = ε, or

χ(a2, a4, i3, . . . , ik)χ(a1, a3, i3, . . . , ik) = ε.

Suppose χ is a chirotope of rank k on [n]. Then the set Mχ = {I ∈([n]
k

)
| χ(I) = 0} is the underlying matroid of χ.
A chirotope χ is positively orientable if there exists a subset A ⊆ [n] so

that
(−1)|A∩{i1,i2,...,ik}|χ(i1, i2, . . . , ik) ≥ 0,
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whenever i1 < i2 < · · · < ik. It is clear that any point X ∈ Gr(k, n)≥0 gives
a positively oriented matroid.

Theorem 8.11 ([ARW]). Suppose the chirotope χ is positively ori-
entable. Then the underlying matroid Mχ is a positroid.

We remark that da Silva had earlier conjectured that positively ori-
entable matroids are realizable.

8.7. The topology of Gr(k, n)≥0. Let B̂(k, n) := B(k, n)∪{f∅}, where
f∅ is a new minimal element. Thus B̂(k, n) has unique minimum f∅ and
unique maximum id. By convention, Πf∅,≥0 := ∅.

Recall that a poset is thin if length two intervals are diamonds, and
Eulerian if in each interval [x, y] where x = y, the number of odd rank
elements equals the number of even elements. We refer the reader to [BjBr]
for the definition of shellable.

Theorem 8.12 ([Wil]).The poset B̂(k, n) is thin, Eulerian, and shellable.

The weaker statement that B(k, n) is thin, Eulerian, and shellable (that
is, every interval is shellable) follows from general results in Coxeter group
theory and the fact that B(k, n) is dual to a convex subposet of a Bruhat
order [KLS13].

Lusztig [Lus98b] showed that Gr(k, n)≥0 is contractible, and Postnikov,
Speyer, and Williams [PSW] showed that the stratification Gr(k, n)≥0 =⋃

f Πf,≥0 is a CW complex. It follows from Theorem 8.12 and results of

Björner [Bjo] that B̂(k, n) is the face poset of some regular CW complex
homeomorphic to a ball. It is conjectured that the Gr(k, n)≥0 =

⋃
f Πf,≥0

itself is a regular CW complex homeomorphic to a ball. Rietsch and Williams
[RiWi] showed that this statement is true up to homotopy-equivalence.

9. Positroid varieties

So far we have concerned ourselves with the combinatorics of planar
bipartite graphs and the behavior of points in the TNN Grassmannian
Gr(k, n)≥0. However, to go further it is very helpful to be able to use the
language of algebraic geometry. This leads us to the study of the positroid
varieties that form a stratification of the complex Grassmannian Gr(k, n)
[KLS13].

9.1. Schubert varieties. We refer the reader to [Ful] for the material

of this section. Let I ∈
([n]
k

)
be a k-element subset of [n]. Let F• = {0 =

F0 ⊂ F1 ⊂ · · ·Fn−1 ⊂ Fn = Cn} be a flag in Cn, so that dimFi = i. The

Schubert cell X̊I(F•) is given by

X̊I(F•)

(15)

:= {X ∈ Gr(k, n) | dim(X ∩ Fj) = #(I ∩ [n− j + 1, n]) for all j ∈ [n]}.
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The Schubert variety XI(F•) is given by

XI(F•)
(16)

:= {X ∈ Gr(k, n) | dim(X ∩ Fj) ≥ #(I ∩ [n− j + 1, n]) for all j ∈ [n]}.

We have XI(F•) = X̊I(F•). Also, X[k](F•) = Gr(k, n) and codim(XI(F•)) =
i1 + i2 + · · ·+ ik − (1+ 2+ · · ·+ k), where I = {i1, i2 . . . , ik}. Here and else-
where, we always mean complex (co)dimension when referring to complex
subvarieties.

Let E• be the standard flag defined by Ei = span(en, en−1, . . . , en−i+1).
Then we set the standard Schubert varieties to be XI := XI(E•). Suppose
v1, v2, . . . , vn are the columns of a k × n matrix (with respect to the basis
e1, e2, . . . , en) representing X ∈ Gr(k, n). Then the condition dim(X∩Ej) =
d is equivalent to the condition dim span(v1, . . . , vn−j) = k − d. Thus the
Schubert variety XI(E•) is cut out by rank conditions on initial sequences
of columns of X.

9.2. Positroid varieties. Let the generator χ of the cyclic group Z/nZ
act on [n] by the formula χ(i) = i+ 1 mod n (cf. Section 3.2). Then χ also

acts on subsets of [n]. For I = (I1, . . . , In) ∈
([n]
k

)n
, define the open positroid

variety Π̊I ⊂ Gr(k, n) by

(17) Π̊I := X̊I1 ∩ χ(X̊χ−1(I2)) ∩ · · · ∩ χn−1(X̊χ1−n(In)).

If f ∈ B(k, n) then we set Π̊f = Π̊I(f), where I(f) is the Grassmann necklace
of f . For any X ∈ Gr(k, n), we have defined in (10) fX ∈ B(k, n). It follows
from the definitions that X ∈ Π̊fX , and that Π̊I is empty unless I is a
Grassmann necklace.

Proposition 9.1. The subvariety Π̊I is nonempty if and only if I is a
Grassmann necklace.

Proof. Suppose f ∈ B(k, n). We need to show that Π̊f is non-empty.
But this follows from our construction of points in Gr(k, n)≥0 (Theorem
7.12). �

Define the positroid variety Πf to be the Zariski closure of Π̊f in Gr(k, n).
It is shown in [KLS13] that

ΠI = XI1 ∩ χ(Xχ−1(I2)) ∩ · · · ∩ χn−1(Xχ1−n(In)).

From the definitions, we have Πf,>0 = Π̊f ∩ Gr(k, n)≥0, and Πf,≥0 = Πf ∩
Gr(k, n)≥0.

Proposition 9.2. The positroid variety Πf is irreducible.

In [KLS13], it is shown that Πf is the image of a Richardson variety
Xw

v ⊆ Fl(n) under a projection map π : Fl(n) → Gr(k, n) from the full flag
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variety to the Grassmannian. The irreducibility then follows from the fact
that Richardson varieties are irreducible.

It is surprisingly difficult (at least for me) to prove Proposition 9.2 di-
rectly. Indeed, the intersection (17) is usually not transverse, and ideals
generated by Plücker coordinates are in general not prime.

Theorem 9.3. Πf has codimension �(f), and Πf,>0 is a Zariski-dense

subset of Πf . We have Πf =
⊔

g≥f Π̊g.

Proof. The first statement is proved in [KLS13] by the identification
mentioned above of Πf with the projection π(Xw

v ) of a Richardson variety.

We have shown in Theorem 7.12 that Πf,>0 � Rk(n−k)−�(f). The Zariski
closure of Πf,>0 must thus be a subvariety of Πf with dimension at least
k(n−k)−�(f), which is equal to the dimension of Πf . Since Πf is irreducible
by Proposition 9.2, the first claim follows. For the second claim, the inclusion
Πf ⊇

⊔
g≥f Π̊g follows from Theorem 8.1. The reverse inclusion is proved in

the same way as in Theorem 8.1. �

In fact, a stronger version of Proposition 9.2 holds.

Theorem 9.4 ([KLS13]). Let M ∈ P(k, n) be a positroid. Then the
homogeneous ideal 〈ΔI | I ∈ M〉 is a prime ideal.

We will return to this ideal in Section 12. The proof of Theorem 9.4
depends on the technology of Frobenius splittings which we do not discuss
here; see [KLS14]. It would be interesting to give a direct proof of Theorem
9.4.

A projective variety Y ⊆ Pn is projectively normal if it is normal and
the restriction map Γ(Pn,O(k)) → Γ(Y,O(k)) is surjective for all k.

Theorem 9.5 ([KLS13]). Positroid varieties are projectively normal,
Cohen-Macaulay, and have rational singularities.

See also Billey and Coskun [BiCo].
In brief, positroid varieties are in general singular, but the singularities

are relatively mild. Projective normality will be the most important property
for us. A normal variety has a good theory of Weil divisors. In particular,
we have a well-behaved notion of the divisors of poles and of zeros of a
rational function, or rational form on a positroid variety Πf . This will be
important in Section 13. Also, in Section 12 we will discuss the homogeneous
coordinate ring of a positroid variety by restricting sections from the Plücker
embedding. Projective normality implies that the resulting graded ring is
intrinsic to Πf .

The singularities of positroid varieties will be important to us again in
Section 21.
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10. Cohomology class of a positroid variety

In this section, we describe the cohomology class of a positroid variety
in terms of affine Stanley symmetric functions. We follow [KLS13] and
[Lam06].

10.1. The cohomology ring of the Grassmannian. We shall work
with singular cohomology with integer coefficients. Let X be a smooth com-
plex projective variety, and Y ⊂ X a closed irreducible subvariety. Then
we have a cohomology class [Y ] ∈ H2d(X,Z) where d is the codimen-
sion of Y . Recall that two subvarieties Y, Z ⊂ X intersect transversally,
if the intersection Y ∩ Z is smooth and each component has dimension
dim(Y ) + dim(Z)− dim(X).

Theorem 10.1 ([Ful, Appendix B]). Let X be a nonsingular variety.
Let Y, Z ⊂ X be closed irreducible subvarieties. Suppose Y and Z intersect
transversally. Then we have

[Y ] · [Z] = [Y ∩ Z]

in the cohomology ring H∗(X).

When Y ∩ Z is a finite set of r (reduced) points, we have [Y ∩ Z] =
r[pt] ∈ H∗(X).

Let E• be the standard flag in Cn. The cohomology ring H∗(Gr(k, n))
vanishes in odd degrees, and the set {[XI(E•)] | codim(XI) = d} of Schubert
classes forms a Z-basis of H2d(Gr(k, n)).

10.2. Symmetric function realization. Let Λ = ΛZ denote the ring
of symmetric functions over Z. It has bases of monomial symmetric functions
mλ, homogeneous symmetric functions hλ, and Schur functions sλ, each of
which are indexed by partitions λ. We refer the reader to [Mac, Sta99] for
background material on symmetric functions.

There is a bijection between partitions λ ⊆ (n − k)k contained in a

k × (n− k) rectangle and subsets I ∈
([n]
k

)
given by I(λ) = {λk + 1, λk−1 +

2, . . . , λ1 + k}. So for example I(3, 2, 0) = {1, 4, 6} if k = 3.
The ring H∗(Gr(k, n)) is isomorphic to the quotient of the ring Λ of sym-

metric functions by an ideal Ik,n (see [Ful]). Let η : ΛZ → H∗(Gr(k, n),Z)
be the quotient map. Then we have

η(sλ) =

{
[XI(λ)] if λ ⊂ (n− k)k,

0 otherwise.

We will often identify a symmetric function f ∈ Λ with its image η(f) ∈
H∗(Gr(k, n)). Thus [Gr(k, n)] = s(0) and [pt] = s(n−k)k . Let λc denote the

180 degree rotation of the complement of λ inside the (n−k)k rectangle. Then
λc(J) = λ(I) where I = Jc := {(n+1)− j | j ∈ J}. Inside H∗(Gr(k, n)), we
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have the equality

(18) sλ sμ =

{
1 μ = λc

0 otherwise

for |λ|+ |μ| = k(n− k).

10.3. Affine Stanley symmetric functions. We use notation from
Section 6. An element v ∈ Wn is called cyclically decreasing if it has a
reduced word v = si1si2 · · · sik such that i1, i2, . . . , ik are distinct, and if
both i and i + 1 occur then i + 1 occurs before i. For example, s4s3s1s0s6
is cyclically decreasing if n = 7. A cyclically decreasing factorization of v is
a factorization v = v1v2 · · · vr where �(v) = �(v1) + �(v2) + · · · + �(vr) and
each vi is cyclically decreasing. For v ∈ Wn, we define the affine Stanley
symmetric function

F̃v(x1, x2, . . .) =
∑

v=v1v2···vr
x
�(v1)
1 x

�(v2)
2 · · ·x�(vr)r .

It follows easily from the definitions that F̃v = F̃w if v is obtained from w
by the Coxeter automorphism that sends si to si+r for all i, and a fixed r.

Recall that id denotes the bounded affine permutation given by id(i) =

i + k and each (k, n)-affine permutation f ∈ S̃k
n has an expressions as f =

idv = wid for v, w ∈ Wn. The elements v, w are related by the Coxeter
automorphism that sends si to si+k for all i. We define F̃f := F̃v = F̃w.

The basic result on affine Stanley symmetric functions is the following,
generalizing work of Stanley [Sta84].

Theorem 10.2. [Lam06] For any f ∈ S̃n, the generating function F̃f

is a symmetric function.

The positroid variety Πf ⊂ Gr(k, n) has a cohomology class [Πf ] ∈
H∗(Gr(k, n)). The following result further confirms that the bounded affine
permutation f ∈ B(k, n) is the correct object to index a positroid variety
Πf .

Theorem 10.3 ([KLS13]). We have [Πf ] ≡ F̃f ∈ H∗(Gr(k, n)).

We do not prove Theorem 10.3 here. The main steps in its proof ([KLS13,

HeLa]) are: (1) an interpretation of F̃f as a cohomology class in the affine
Grassmannian of GL(n) [Lam08, LLMSSZ]; (2) the consideration of the
torus-equivariant cohomology class of [Πf ]; and (3) a map that pulls back
cohomology classes from the affine Grassmannian to Gr(k, n).

Example 10.4. We list the cohomology classes of all positroid varieties,
up to cyclic rotation, of Gr(2, 4).
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f ∈ B(2, 4) reduced word F̃f ∈ Λ [Πf ] ∈ H∗(Gr(2, 4))
[3456] id 1 1
[3546] ids2 s1 s1
[2547] ids2s0 s11 + s2 s11 + s2
[3564] ids2s3 s11 s11
[5346] ids2s1 s2 s2
[5247] ids2s0s1 s21 s21
[5364] ids2s1s3 s21 s21
[3654] ids2s3s2 s21 s21
[5274] ids2s0s1s3 s22 + s211 − s1111 s22
[5634] ids2s1s3s2 s22 s22

10.4. The case k = 1. Suppose k = 1. Then positroid varieties are
simply coordinate hyperspaces in Pn−1 = Gr(1, n). Every f ∈ B(1, n) can
be written in the form

f = ids[a1,b1]s[a2,b2] · · · s[ar,br]
where s[a,b] := sbsb−1 · · · sa, and the [ai, bi] � [n] are disjoint and non-
adjacent cyclic intervals. It follows from the definition that

F̃f = h|[a1,b1]|h|[a2,b2]| · · ·h|[ar,br]| ≡ h�(f) mod I1,n,

as expected.

10.5. The case k = 2. We work out F̃f ∈ H∗(Gr(2, n)) completely in
this section. Let X ∈ Gr(2, n) be represented by a 2×n matrix with column
vectors v1, v2, . . . , vn ∈ C2. Positroid varieties are cut out by rank conditions
of the form

rank(span(va, va+1, . . . , vb)) ≤ 1, or rank(span(va, va+1, . . . , vb)) = 0,

for cyclic intervals [a, b]. The latter condition just says that va = va+1 =
· · · = vb = 0. Any two rank conditions of the first type for cyclic intervals
[a, b] and [c, d] that overlap glue to give a rank condition of the same type
on [a, b] ∪ [c, b]. It follows that a positroid variety is determined by setting
vi = 0 for i ∈ A � [n], and imposing that the vectors {va, va+1, . . . , vb} are
parallel, for a non-trivial partition [n] \ A =

⋃
i[ai, bi] into disjoint cyclic

intervals. (The cyclic order on [n] \A is inherited from that of [n].)
Let us say that f ∈ B(2, n) has type (α;β1, β2, . . . , βr) if α = |A| and

βi = |[ai, bi]|. Here α ∈ [n − 1] and βi ≥ 1, and α + β1 + · · · + βr = n, and
r ≥ 2.

For a partition λ = (λ1, λ2), let λ
+α := (λ1 + α, λ2 + α).

Proposition 10.5. Suppose f has type (α;β1, β2, . . . , βr). Then

F̃f ≡ (hβ1−1hβ2−1 · · ·hβr−1)
+α mod I2,n

where p �→ p+α is the linear operator that is induced by λ �→ λ+α.
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Proof. First, we consider the case α = 0. Let the partition of [n] be
into cyclic intervals π1, π2, . . . , πr. Using (10), we calculate that the bounded
affine permutation f is given by

f(i) =

{
i+ 1 i+ 1 belongs to the same part as i,

i+ πa + 1 i+ 1 belongs to the part πa.

We then have an expression

f = id sπ′
1
sπ′

2
· · · sπ′

r

where if π = [a, b] then π′ = [a− 1, b− 2]. It follows that

F̃f ≡ hβ1−1hβ2−1 · · ·hβr−1 mod I2,n,

so the formula holds for α = 0. Now suppose α > 0. Then Πf is a positroid
variety of the subGrassmannian Gr(2, V ) ⊂ Gr(2, n) where V = span(ei | i ∈
[n] \A). We can first calculate the cohomology class of Πf in H∗(Gr(2, V )).
This also determines the homology class [Πf ]∗ ∈ H∗(Gr(2, V )), which we
can pushforward via the injection ι : Gr(2, V ) ↪→ Gr(2, n). Finally, this
determines the cohomology class of Πf in H∗(Gr(2, n)). To see that the
injection ι : Gr(2, V ) ↪→ Gr(2, n) induces the map p �→ p+α, we need only
check what it does to Schubert classes. �

11. Tableaux, promotion, and canonical bases

11.1. Highest weight representations. A partition λ = (λ1 ≥ λ2 ≥
· · · ≥ λ� > 0) is a weakly decreasing sequence of positive integers. We say
that λ = (λ1 ≥ λ2 ≥ · · · ≥ λ� > 0) has � parts and size |λ| = λ1+λ2+· · ·+λ�.
We have the following dominance order on partitions: λ ≥ μ if and only if
|λ| = |μ| and λ1 ≥ μ1, λ1 + λ2 ≥ μ1 + μ2, and so on.

For a partition λ with at most n parts, we have an irreducible, finite-
dimensional representation V (λ) of GL(n) with highest weight λ. We state
some basic facts concerning V (λ).

The Young diagram of λ is the collection of boxes in the plane with λ1

boxes in the first row, λ2 boxes in the second row, and so on, where all
boxes are upper-left justified. A semistandard tableaux T of shape λ is a
filling of the Young diagram of λ by the numbers 1, 2, . . . , n so that each
row is weakly-increasing, and each column is strictly increasing. The weight
wt(T ) of a tableau T is the composition (α1, α2, . . . , αn) where αi is equal
to the number of i-s in T . For example,

1 1 3 4 4
2 3 4 5
4 4

is a semistandard tableau with shape (5, 4, 2) with weight (2, 1, 2, 5, 1). Let
B(λ) denote the set of semistandard tableaux of shape λ. (Note that this
set depends on n, which is suppressed from the notation.) The dimension
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dim(V (λ)) is equal to the cardinality of B(λ). A vector v in a GL(n)-
representation V is called a weight vector with weight (α1, α2, . . . , αn) if
the diagonal matrix diag(x1, x2, . . . , xn) sends v to (xα1

1 xα2
2 · · ·xαn

n )v.
Let Uq(sln) denote the quantized enveloping algebra of sln and Vq(λ)

denote a highest weight representation. Lusztig [Lus93] and Kashiwara
[Kas91] have constructed a canonical basis, or global basis of the Uq(sln)-
module Vq(λ). We shall only use the evaluation of this basis at q = 1, giving
a basis of V (λ).

There exists a basis {G(T ) | T ∈ B(λ)} of V (λ) such that
each G(T ) is a weight vector with weight wt(T ).

We shall also let {G(T )∗ | T ∈ B(λ)} denote the dual basis of V (λ)∗,
called the dual canonical basis.

11.2. Promotion on rectangular tableaux. Let ωk = (1, 1, . . . , 1)
be the partition with k 1’s. Then V (ωk) is isomorphic to the k-th exterior
power Λk(Cn) of the standard representation Cn of GL(n). For an integer
d ≥ 1, the representation V (dωk) for a rectangular partition has very special
properties. The set B(dωk) is the set of semistandard Young tableaux with
k rows and d columns. For example,

1 1 3 4 4
2 3 4 5 5
4 4 6 6 6

belongs to B(5ω3).
The set B(dωk) has an additional operation called promotion, which is a

bijection χ : B(dωk) → B(dωk). Promotion is defined as follows: first remove
all occurrences of the letter n in T . Then slide the boxes to the bottom right
of the rectangle, always keeping the rows weakly-increasing and columns
strictly-increasing. Once all slides are complete, we add one to all letters,
and fill the empty boxes with the letter 1 to obtain χ(T ). For example,

T =
1 1 3 4 4
2 3 4 5 5
4 4 6 6 6

→
1 1 3 4 4
2 3 4 5 5
4 4

→
1 1

2 3 3 4 4
4 4 4 5 5

→
1 1 1 2 2
3 4 4 5 5
5 5 5 6 6

= χ(T ).

Theorem 11.1 ([Shi, Rho]). The bijection χ : B(dωk) → B(dωk) has
order n.

Example 11.2. The action of χ cycles through the following six tableaux:

1 1 3 4 4
2 3 4 5 5
4 4 6 6 6

1 1 1 2 2
3 4 4 5 5
5 5 5 6 6

1 1 2 3 3
2 2 4 5 5
6 6 6 6 6

1 1 1 1 1
2 2 3 4 4
3 3 5 6 6

1 1 2 2 2
2 2 3 3 5
4 4 4 5 6

1 2 2 3 3
3 3 3 4 4
5 5 5 6 6



94 T. LAM

11.3. (Opposite) Demazure crystals. Let I = {i1 < i2 < · · · <

ik} ∈
([n]
k

)
. Define the tableau TI ∈ B(dωk) to be the unique rectangular-

shaped tableaux whose first row is filled with i1, second row is filled with i2,
and so on.

Define the Demazure subcrystal BI(dωk) to be the set of tableaux T ∈
B(dωk) such that T (a, b) ≥ TI(a, b) for any cell (a, b). In other words, T ∈
BI(dωk) if it is entry-wise greater than or equal to TI .

Example 11.3. Suppose that d = 1. Then B(ωk) can be identified with

the set
([n]
k

)
of k-element subsets of [n]. Then BI(ωk) = {J ∈

([n]
k

)
| I ≤ J}

is simply the Schubert matroid SI .

Example 11.4. Suppose n = 4 and I = {1, 3}. Then B(2ω2) consists of
the following tableaux:

1 1
3 3

1 1
3 4

1 1
4 4

1 2
3 3

1 2
3 4

1 2
4 4

1 3
3 4

1 3
4 4

2 2
3 3

2 2
3 4

2 2
4 4

2 3
3 4

2 3
4 4

3 3
4 4

Remark 11.5. The usual definition of the (opposite) Demazure crystal

is to consider all tableaux T = f̃j1 f̃j2 · · · f̃jr · TI that can be obtained from

TI by Kashiwara’s lowering crystal operators f̃i. While it is not obvious, our
definition agrees with the usual definition.

12. The homogeneous coordinate ring of a positroid variety

12.1. Homogeneous coordinate ring of the Grassmannian. Let
Ĝr(k, n) denote the affine cone over the Grassmannian Gr(k, n). A point

X ∈ Ĝr(k, n) is determined by a set ΔI(X) of Plücker coordinates satis-
fying the Plücker relations and we allow the possibility that all ΔI(X) are

simultaneously zero. The subset Ĝr(k, n)≥0 ⊂ Ĝr(k, n) is the set of points
with nonnegative Plücker coordinates. It is sometimes convenient to work
with Ĝr(k, n) instead of Gr(k, n) because we can talk about functions on

Ĝr(k, n). For Gr(k, n) we can only talk about homogeneous coordinates, or
sections of line bundles.

Let R(k, n) denote the coordinate ring of Ĝr(k, n), or equivalently, the
homogeneous coordinate ring

⊕∞
d=0 Γ(Gr(k, n),O(d)) of Gr(k, n). Thus,

R(k, n) = C[ΔI ]/(Plücker relations)

is a graded ring where the degree of ΔI is taken to be 1. For example,

R(2, 4) = C[Δ12,Δ13,Δ14,Δ23,Δ24,Δ34]/(Δ13Δ24 −Δ12Δ34 −Δ14Δ23).

We also note that R(k, n) is a unique factorization domain. In particular,

a codimension one irreducible subvariety of Ĝr(k, n) is cut out by a single
polynomial.

The degree d component R(k, n)d = Γ(Gr(k, n),O(d)) of the graded ring
R(k, n) is isomorphic, as a GL(n)-representation, to the dual V (dωk)

∗ of the
highest weight representation V (dωk).
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The multiplicative structure of R(k, n) can be described as follows. For
two highest weights λ and μ, there is a natural inclusion of GL(n)-modules
V (λ+ μ) → V (λ)⊗ V (μ). In particular, we have a map

ηd,d
′

k : V ((d+ d′)ωk) → V (dω�)⊗ V (d′ωk).

Under the identification R(k, n)d � V (dωk)
∗, this map is dual to the multi-

plication map R(k, n)d ⊗R(k, n)d′ → R(k, n)d+d′ .

12.2. Temperley-Lieb invariants. In Section 4.2 we introduced func-
tions Fτ,T (N) of a planar bipartite network N . Let X̂(N) = {ΔI(N) | I ∈([n]
k

)
} ∈ Ĝr(k, n) denote the point in the cone over the Grassmannian corre-

sponding to N .

Proposition 12.1 ([Lam14a]). The function Fτ,T (N) depends only on

X̂(N) ∈ Ĝr(k, n) and thus descends to a function Fτ,T on Ĝr(k, n). Further-
more, the set {Fτ,T | (τ, T ) ∈ Ak,n} forms a basis for R(k, n)2.

Sketch of proof. Call ΔI1ΔI2 a standard monomial if I1 and I2 form
the columns of a semistandard tableaux. The main calculation (see [Lam14a]
for details) is to check that the formula given in Theorem 4.4 can be inverted,
expressing Fτ,T (N) in terms of the standard monomials ΔI1(N)ΔI2(N). This
proves the first statement. The second statement follows from the fact that
standard monomials form a basis for R(k, n)2. �

It follows immediately from the definitions and Proposition 12.1 that
Fτ,T takes positive values on Ĝr(k, n)≥0. A partial converse to this is also

true: any weight vector in R(k, n)2 that is nonnegative on Ĝr(k, n)≥0 is a
nonnegative linear combination of the Fτ,T .

12.3. Dual canonical basis of the Grassmannian. The dual canon-
ical basis of Section 11 gives rise to a basis of R(k, n)d with remarkable
properties. The following result will be established in [Lam+]. Part (3) is
due to Lusztig [Lus94] and (4) depends on a result of Rhoades [Rho].

Theorem 12.2. The vector space R(k, n)d has a dual canonical basis
{G(T )∗ | T ∈ B(dωk)} with the following properties:

(1) For d = 1, we have G(T )∗ = ΔI , where I is the set of entries in
the one-column tableau T .

(2) For d = 2, the set {G(T )∗ | T ∈ B(2ωk)} is exactly the set {F(τ,T ) |
(τ, T ) ∈ Ak,n}.

(3) For any T ∈ B(dωk), the function G(T )∗ is a nonnegative function

on Ĝr(k, n)≥0.
(4) For any T ∈ B(dωk), we have χ∗(G(T )∗) = G(χ(T ))∗, where χ∗ is

the pullback map induced by χ : Gr(k, n) → Gr(k, n).
(5) For f ∈ B(k, n) the vectors G(T )∗ that do not restrict to identically

zero on Πf form a basis for the homogeneous coordinate ring of Πf .
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(6) For f ∈ B(k, n), if G(T )∗ is not identically zero on Πf , then it
takes strictly positive values everywhere on Πf,>0.

We will make (5) much more explicit shortly.
The bijection θ : Ak,n → B(2ωk) of Theorem 12.2(2) is given as follows.

Given (τ, T ), the tableau θ(τ, T ) has columns I1, I2, where I1 ∩ I2 = T , and
for each strand (a, b) ∈ τ with a < b, we have a ∈ I1 and b ∈ I2.

Example 12.3. The bijection θ sends the following five non-crossing
pairings in A3,6

43

2

1 6

5

43

2

1 6

5

43

2

1 6

5

43

2

1 6

5

43

2

1 6

5

to the five tableaux in B(2ω3):

1 4
2 5
3 6

1 3
2 5
4 6

1 3
2 4
5 6

1 2
3 5
4 6

1 2
3 4
5 6

The following result can be found in [PPR].

Theorem 12.4. Under the bijection θ, the obvious cyclic action on Ak,n

corresponds to the promotion operator on B(2ωk).

12.4. Demazure modules and Schubert varieties. Let I(XI) ⊂
R(k, n) denote the homogeneous ideal of the Schubert varietyXI (see Section
9) and let I(XI)d ⊂ R(k, n)d denote the degree d component. Let R(XI)d =
Γ(XI ,O(d)) denote the degree d part of the homogeneous coordinate ring
of XI . Since sections on the Grassmannian restrict to sections on Schubert
varieties, the space R(XI)d is naturally a quotient of R(k, n)d = V (dωk)

∗.

For I ∈
([n]
k

)
, we have an extremal weight vector G(TI) ∈ V (dωk). The

vector G(TI) spans the weight space of V (dωk) with weight α given by αi = d
if i ∈ I and αi = 0 otherwise. The (opposite) Demazure module VI(dωk) is
defined to be the B−-submodule of Vdωk

generated by the vector G(TI).
The following result is due to Kashiwara [Kas93].

Theorem 12.5. The B−-submodule VI(dωk) has a basis {G(T ) | T ∈
BI(dωk)}.

The following result is a consequence of Theorem 12.5.

Proposition 12.6. We have

(1) I(XI)d = VI(dωk)
⊥ ⊂ V (dωk)

∗ = R(k, n)d has a basis given by
{G(T )∗ | T /∈ BI(dωk)}.

(2) R(XI)d has a basis given by (the image of) {G(T )∗ | T ∈ BI(dωk)}.
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12.5. Cyclic Demazure modules and positroid varieties. Let f
be a (k, n)-bounded affine permutation. Define I(Πf )d ⊂ R(k, n)d by

I(Πf )d := I(Πf ) ∩R(k, n)d

to be the degree d homogeneous component of I(Πf ). Since I(Πf ) is a homo-
geneous ideal, it is spanned by the subspaces I(Πf )d. The aim of this section
is to give a representation-theoretic description of I(Πf )d as a subspace of
R(k, n)d � V (dωk)

∗.
Let f ∈ B(k, n) have (k, n)-Grassmann-necklace I(f) = (I1, I2, . . . , In).

Define the cyclic Demazure crystal Bf (dωk) to be intersection

Bf (dωk) := BI1(dωk) ∩ χ(Bχ−1(I2)(dωk)) ∩ · · · ∩ χn−1(Bχ1−n(In)(dωk)).

If we identify B(ωk) with the set
([n]
k

)
of k-element subsets of [n], then by

Example 11.3, Bf (ωk) is simply the positroid M(f). Also, define the cyclic
Demazure module Vf (dωk) to be intersection

Vf (dωk) := VI1(dωk) ∩ χ(Vχ−1(I2)(dωk)) ∩ · · · ∩ χn−1(Vχ1−n(In)(dωk)).

Let R(Πf ) denote the homogeneous coordinate ring of the positroid va-
riety Πf . The following results will be established in [Lam+].

Theorem 12.7 ([Lam+]). The subspace Vf (dωk) has a basis {G(T ) |
T ∈ Bf (dωk)}.

Theorem 12.8 ([Lam+]).

(1) I(Πf )d is isomorphic to Vf (dωk)
⊥ and has a basis given by {G(T )∗ |

T /∈ Bf (dωk)}.
(2) R(Πf )d has a basis given by the images of {G(T )∗ | T ∈ Bf (dωk)}.

Example 12.9. Suppose k = 1. In this case BI(dω1) is the set of one-row
(of length d) tableaux with entries in 1, 2, . . . , i, where I = {i}. By choosing
the (1, n)-Grassmann necklace appropriately, Bf (ω1) can be arranged to be
any subset of {1, 2, . . . , n}. For example, if n = 4, (I1, I2, I3, I4) = (1, 3, 3, 1)
gives Bf (ω1) = {1, 3}. The set Bf (dω1) is simply the set of one-row tableaux
with entries in Bf (ω1).

Example 12.10. Take k = 2 and n = 4. Let us consider the positroid
variety Πf where f = [2547] ∈ B(2, 4). The Grassmann necklace is I(f) =
(13, 23, 13, 41). The set Bf (2ω2) is given by the set of tableaux

1 1
3 3

1 2
3 3

1 2
3 4

1 1
3 4

2 2
3 3

2 2
3 4

1 1
4 4

1 2
4 4

2 2
4 4
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The positroid cell Πf,>0 is represented by the planar bipartite graph

G =

1

2

3

4

Under the bijection θ : Ak,n → B(2ωk) described after Theorem 12.2, the
third tableau in Bf (2ω2) is sent to the non-crossing matching

τ =

1

2

3

4

and so one can check from the definition that Fτ,∅ is non-vanishing (in fact,
always positive) on Πf,>0. On the other hand, if τ ′ = {(1, 4), (2, 3)}, then
Fτ ′,∅ vanishes on Πf,>0 since the graph G has no Temperley-Lieb subgraphs
with non-crossing matching τ ′. We have that θ(τ ′, ∅) is the tableau with
columns 12 and 34, and this tableau is not in Bf (2ω2), consistent with The-
orem 12.8.

Since Bf (ωk) is simply a positroid, Theorem 12.8 is a higher degree
analogue of Theorem 8.4. Looking at whether dual canonical basis elements
vanish or not is a higher degree analogue of the concept of a matroid.

Problem 12.11. Find a formula for the character of Vf (dωk). Equiva-
lently, compute the weight generating function of Bf (dωk).

For the bounded affine permutation f = [2547] of Example 12.10, we
have

ch(Vf (2ω2)) = x21x
2
3 + x21x3x4 + x21x

2
4 + x1x2x

2
3 + x1x2x3x4 + x1x2x

2
4

+ x22x
2
3 + x22x3x4 + x22x

2
4.

It may seem from the above results that we might expect many ideals
of subvarieties of the Grassmannian to have a basis given by a subset of the
dual canonical basis, but this is not the case.

Example 12.12. Let X ⊂ Gr(2, 4) be given by the single equation {Δ13 =
0} (which is not a positroid variety). Then the degree two part of I(X) has a
one-dimensional weight space for the weight (1, 1, 1, 1). It is spanned by the
vector Δ13Δ24. This vector is a sum of two elements of the dual canonical
basis by Theorem 4.4.
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Quantum versions of Grassmannians and Schubert varieties have been
studied by many authors, see for example [LeRi]. In that setting, positroid
varieties correspond to certain torus-invariant prime ideals, classified in
[MéCa, Yak].

Problem 12.13. Find the quantum version of Theorem 12.8.

Note however that the cyclic symmetry acts on the quantum Grassman-
nian in a more subtle way than it does on the Grassmannian [LaLe11].

13. Canonical form

Each positroid variety Πf has a distinguished rational differential top
form ωf with remarkable properties. This differential form has simple (loga-
rithmic) poles along the boundary ∂Πf :=

⋃
g>f Πf , and no zeroes. We will

describe the rational form ωf in an explicit combinatorial way, but we first
begin with two more abstract descriptions.

For X a normal variety, we say that D is an anticanonical divisor on
X if D ∩ Xreg is an anticanonical divisor on Xreg, where Xreg denotes the
smooth locus of X. By Theorem 9.5, Πf is normal. Let Π1,Π2, . . . ,Πr be
the irreducible components of ∂Πf . In [KLS14], we showed that the divisor∑r

i=1[Πr] is anticanonical on Πf . In particular, there is a rational differential
form ωf whose divisor of poles is equal to

∑r
i=1[Πr] (cf. [Lam13a, Lemma

2.9]). The singular locus Πf − (Πf )reg has codimension two in Πf , and we
may ignore it when considering poles or zeroes (which are codimension one
phenomena). The differential form ωf so defined is unique up to scalar, since
the ratio of two such forms would be a rational function on Πf with no poles
or zeroes, and thus a constant.

The form ωf is also natural from the point of view of cluster algebras.
The works of Leclerc [Lec], Muller and Speyer [MS14], and Lenagan and

Yakimov [LeYa], strongly suggest that the coordinate ring C[Π̊f ] of an open
positroid variety is a cluster algebra. Cluster varieties have (up to sign) a

natural top form, which is the differential form dx1
x1

∧· · ·∧ dxn
xn

on any cluster

torus with coordinates (that is, cluster variables) (x1, x2, . . . , xn). We will
not discuss the cluster structure further, though it is certainly an important
part of the story.

Let G be a reduced planar bipartite graph with bounded affine permu-
tation f . A disconnected grove of G is a spanning subforest F of G such that
every connected component of F contains exactly one boundary vertex. For

a subset E′ ⊂ E and a collection of parameters (te)e∈E′ ∈ R
|E′|
>0 , let N(xe)

be planar bipartite network with weights given by te, for e ∈ E′, and all
other weights equal to 1.

Lemma 13.1. Let E′ ⊂ E(G) of the edges of the G. Then the following
are equivalent:

(1) The complement E(G) \E′ is a disconnected grove of G.
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(2) The map φE′ : (te)e∈E′ ∈ R
|E′|
>0 �→ X(N(xe)) is a homeomorphism

onto Πf,>0.

Proof. Suppose (1) holds. By Corollary 7.14, it is enough to show that

equation (7) maps (te)e∈E′ ∈ R
|E′|
>0 homeomorphically onto (LG)>0. To see

this, we proceed by induction on the number of faces of G. If G has a single
face, then (LG)>0 is a single point, the only disconnected grove of G is G
itself, and E′ must be the empty set. Thus the base case holds. Now suppose
the claim holds for all planar bipartite graphs with a faces, and suppose that
G has a+1 faces. It is easy to see that removing any edge e ∈ E′ from G gives
a graph G′ with one fewer face. Suppose F, F ′ are the faces of G separated
by e. Then yF yF ′ = y′F∪F ′ , where y-s are the face weights of G and y′-s
are the face weights of G′. If we know all face weights of G′ (by induction
this is equivalent to knowing te′ for all e′ ∈ E \ {e}), then the value of te
determines the face weights yF and yF ′ , and conversely. Thus (2) follows.
The proof that (2) implies (1) uses the same ideas. �

In fact, the map φE′ : R
|E′|
>0 → Πf,>0 extends to a birational isomorphism

between (C∗)|E
′| and Πf . This follows from the fact that R

|E′|
>0 (resp. Πf,>0)

is Zariski-dense in (C∗)|E
′| (resp. Πf ), and that the inverse of φE′ is given

by rational formulae. We can thus define a rational differential form of top
degree

ωG :=
∏
e∈E′

dlog te :=
∏
e∈E′

dte
te

on Πf via this birational isomorphism. This form depends on an ordering
of E′, but we shall only consider ωG up to sign. To see that ωG does not
depend on the choice of E′, we note that

ωG = ±
∏
F

dyF
yF

where the product is over all but one of the faces of G. The equality follows
from the fact that the transformation (te) �→ (yF ) is an invertible monomial
transformation (the proof of Lemma 13.1 gives such an invertible monomial
transformation). Similarly, the map φE′ only depends on G, so that we have

a canonical map φG : (C∗)dim(Πf ) → Π̊f ⊆ Πf .
Let Y ⊂ X be an irreducible subvariety of codimension one. Let ω

be a rational form on X. We now define the residue ResY ω of ω along
Y . Suppose X has local coordinates h1, h2, . . . , hd and Y is locally cut
out by the equation h1 = 0. Write ω = dh1

h1
∧ ω′, where ω′ is of the

form g(h1, h2, . . . , hd)dh2 ∧ dh3 ∧ · · · ∧ dhd for a rational function g. Then
ResY ω = ω′|Y . We refer the reader to [GrHa] for further background on
this.

Theorem 13.2. The rational form ωf = ωG on Πf is, up to sign, in-
dependent of the choice of reduced planar bipartite graph G representing
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f ∈ B(k, n). This form has no zeroes, and it has simple poles on each Πf ′

where f ′ � f . Furthermore, ResΠf ′ωf = ωf ′ .

Proof. We first show that ωG does not depend on G. By Theorem 7.4,
if G′ is another reduced planar bipartite graph representing f , then G′ and
G are related by the moves (M1) and (M2). It is easy to see that the move
(M2) does not change ωG. Let us consider the move (M1). We are free to
choose E′ as we desire, and we can pick E′ to contain the four edges (with
weights a, b, c, d) surrounding the square face of used in (M1), see Section
4.5. We then check that

dlog a ∧ dlog b ∧ dlog c ∧ dlog d = ±D4dlog a′ ∧ dlog b′ ∧ dlog c′ ∧ dlog d′

where a′, b′, c′, d′ are given by (8), and D = (ac + bd). The factor D4 is
to account for the fact that the two graphs shown in (M1) have Plücker
coordinates that differ by a factor of D (even though they are the same
point in the Grassmannian). Thus we have a well-defined form ωf .

Now suppose that f ′�f , and G is a reduced planar bipartite graph with
no degree two vertices representing f . From the proof of Theorem 7.12 we
know that there is an edge e of G such that removing e gives a reduced
planar bipartite graph G′ representing f ′. Note that the number of faces of
G′ is one less than the number of faces of G, so that we can pick E′ ⊂ E(G)
satisfying the conditions of Lemma 13.1 containing the edge e. There is thus
a morphism C× (C∗)|E

′|−1 → Πf , where the (distinguished) first coordinate

is te, and {0} × (C∗)|E
′|−1 is sent to Πf ′ . Thus, in the local coordinates

(te)e∈E′ , the subvariety Πf ′ is cut out by the equation te = 0. By definition,
we have

ResΠf ′ωf =
∏

e′∈E′\e
dlog te = ωf ′ .

This proves the last statement of the Theorem.
It is clear that ωf has no poles or zeroes on (C∗)dim(Πf ), and thus no

poles or zeroes on the image of φG, for any G. Let Z ⊂ Π̊f be the union
of the images of φG. To complete the proof it would suffice to show that
Π̊f \Z is codimension two in Π̊f , for then all polar and zero divisors can be
detected on Z. For the case, Πf = Gr(k, n) this statement is shown in [Sco].
In general, we expect this follows easily from the connection with cluster
algebras [Lec, LeYa, MS14].

We sketch a roundabout argument. First suppose f = id so Πf =
Gr(k, n). Then the fact that ωid has no other poles or zeroes follows from the
an alternative description of the form given in Proposition 13.3. Let ω′

id be
the rational form on Πf from [KLS13] described in the beginning of this sec-
tion. Since ωid and ω′

id have the same poles and zeroes, they must be equal up
to a constant. But it also follows from [KLS13] that ω′

f ′ = ResΠf
ω′
f when-

ever f ′�f . Thus ωf and ω′
f must be equal up to a scalar for all f ∈ B(k, n).

The claim about poles and zeroes follows. �
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Consider the rational form

η =
dk×nC

Δ12···k(C)Δ2···k(k+1)(C) · · ·Δn12···(k−1)(C)

on the space Mat(k, n) of k×n matrices C. Here, if C = (ci,j) then dk×nC =∏
i,j dci,j . The form η is GL(k)-invariant: for g ∈ GL(k) acting as a map

g : Mat(k, n) → Mat(k, n), we have g∗ω = ω. We thus have a rational form

ω =
dk×nC/GL(k)

Δ12···kΔ2···k(k+1) · · ·Δn12···(k−1)

on Gr(k, n) (the quotient of the dense subset of full-rank k × n matrices
by GL(k)). Concretely, we consider the affine chart Ω[k] (see Section 3).
Represent a point X ∈ Ω[k] by a k × n matrix with an identity matrix in
the first k columns. Let {xa,b | (a, b) ∈ {1, 2, . . . , k} × {k+ 1, . . . , n}} be the
coordinates of the remaining entries. Then

ω =

∏
a,b dxa,b

Δ12···k(X)Δ2···k(k+1)(X) · · ·Δn12···(k−1)(X)

and this form does not depend on our choice of affine chart.

Proposition 13.3. We have ωid = ±ω.

Proof. We work on the affine chart Ω[k]. Use the “rectangular grid” pla-
nar bipartite networkN representing the top cell Πid,>0 of the Grassmannian
Gr(k, n), and call the face weights yi,j for i = 1, 2, . . . , k and j = k+1, . . . , n
(see (7)). Below is the network N for k = 3 and n = 8.

y1,4

y2,4

y3,4

y1,5

y2,5

y3,5

y1,6

y2,6

y3,6

y1,7

y2,7

y3,7

y1,8

y2,8

y3,8

1

2

3

45678

=

The orientation shown above givesN the structure of an acyclic perfectly
oriented network (Ñ , O) in the sense of Section 5. A flow in (Ñ , O) is simply
a family of non-intersecting paths from the sources {1, 2, . . . , k} to the sinks
{k + 1, . . . , n}. Gauge fixing the edge weights appropriately, the weight of

a path in (Ñ , O) is simply the product of the face weights yi,j over all the
faces “under” (that is, to the bottom right of) the path.

Let xa,b be the (a, b)-entry of the representative of X = X(Ñ , O) ∈
Gr(k, n) with the identity matrix in the first k columns. Let Ya,b =∏

k≥i≥a and k+1≤j≤b yi,j . Then by Theorem 5.2

xa,b = Ya,b + other terms
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where the other terms do not involve ya,b. Using the fact that dyi,j∧dyi,j = 0,
we have that ∏

(a,b)∈[1,k]×[k+1,n]

dxa,b = ±
∏

(a,b)∈[1,k]×[k+1,n]

dYa,b

= ±
∏

(a,b)∈[1,k]×[k+1,n]

Ya,bdlog ya,b.

Let I = {i, i+1, . . . , k+ i−1}. Then ΔI(Ñ , O) is a weighted sum of families
of non-intersecting paths from sources A = [k]\ I to sinks B = [k+1, n]∩ I.
There is only one such non-intersecting path family, and it has weight equal
to Ya1,b1Ya2,b2 · · ·Yar,br , where A = {a1 < a2 < · · · < ar} and B = {b1 <
b2 < · · · < br}. Note that each Ya,b occurs exactly once in such a product.
Thus

ω =
1

Δ12···kΔ2···k(k+1) · · ·Δn12···(k−1)

∏
(a,b)∈[1,k]×[k+1,n]

dxa,b

= ±
∏

(a,b)∈[1,k]×[k+1,n]

dlog ya,b = ±ωG = ±ωid. �

Remark 13.4. The singular cohomology Hd(Π̊f ,C) is one-dimensional,
where d is the dimension of Πf . The canonical form ωf spans this coho-

mology group. The singular cohomology groups H i(Π̊f ,C) for i < d are also
very interesting [LaSp].

14. Relation space of a graph

In this section, we describe a way to obtain a point Rel(N) in the Grass-
mannian from a bicolored network N using only linear algebra. This con-
struction is closely related to the “on-shell diagrams” in the physics litera-
ture; see [ABCGPT, ElHu] and the references therein. While it is certainly
expected by experts, I could not find in the literature a description of the
precise relationship between Rel(N) and the point X(N) constructed by
enumerating matchings. Indeed, there are some subtle sign issues.

One advantage of this approach over the perfect matching approach
is that one obtains a point in the Grassmannian for nonplanar bicolored
networks, with no additional work.

This section does not play a big role in the rest of this article, and can
be safely skipped on first reading.

14.1. Definition of the relation space. In this section we will work
with the following version of bicolored networks. Let G be a bicolored graph
with no isolated vertices. Let F be a field. A bicolored network N associates
to each oriented edge e = (u, v) of G a weight w(u, v) ∈ F∗ satisfying the
condition that

w(u, v)w(v, u) = 1.
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Since w(u, v) and w(v, u) determine each other, we will often think of the
two as a single “edge weight”. Also it makes sense to say that an edge has
weight 1 or −1, without specifying an orientation.

Associate a formal variable z(u,e) to each half-edge (u, e). Abusing nota-
tion, when there are no multiple edges, we identify half-edges with oriented
edges, so that if e = (u, v) we have z(u,v) := z(u,e). If e = (u, v) is an edge,
then we impose the condition that

(19) w(u, v) z(v,e) = z(u,e).

To each black vertex v in N , we associate the equations

(20) z(v,e) = z(v,e′)

for every pair of edges e, e′ incident to v. To each white vertex u in N , we
associate the equation

(21)
∑

e incident to u

z(u,e) = 0.

Let S(N) denote the system of all these linear equations in the variables
{zu,e}, as we consider all vertices of N . For each boundary vertex i, let
zi := z(i,ei) where ei is the unique edge connected to i. Define Rel(N) to the
space of relations on z1, z2, . . . , zn induced by S(N). More precisely, consider

each equation in S(N) to be a vector in F2|E(N)|, where 2|E(N)| is equal to
the number of half edges in N . Let V ⊂ F2|E(N)| be the subspace where the
only non-zero coordinates are the ones indexing the half-edges (i, ei). Then
we have Rel(N) := span(S(N))∩V is the space of relations on z1, z2, . . . , zn
that do not mention the interior half-edges.

Let us compute an estimate on the dimension of Rel(N). There are two
variables z(v,e) and z(u,e) for each edge e. There is one relation (19) per edge.
There are deg(v) − 1 relations (20) per black vertex. There is one relation
(21) per white vertex. Thus the expected dimension of Rel(N) is equal to
kN =

∑
v black(deg(v) − 1) +

∑
v white 1 −#interior edges. This can also be

written in the more black-white symmetric form

(22) kN :=
1

2

(
n+

∑
v black

(deg(v)− 2) +
∑

v white

(2− deg(v))

)

which has no mention of the number of interior edges. This is identical to the
formula (9). We shall consider Rel(N) to be a point in the Grassmannian
Gr(kN , V ) = Gr(kN ,Fn). If dimRel(N) = kN , we shall instead declare RelN
to be undefined.

Example 14.1. Consider a network N with four boundary vertices 1, 2,
3, 4 and two interior vertices, one black v and one white u. Suppose we have
the following edges: 1−v, 2−v, v−u, 3−u, 4−u. Then deg(v) = deg(u) = 3,
and kN = 2. Let the variables at the boundary vertices be z1, z2, z3, z4, and
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set z := z(v,u). Then the two interior vertices v and u give the equations

β1z1 = β2z2 = z and β3z3 + β4z4 + γz = 0

respectively. Here βi come from the weights of the boundary edges, and
γ = w(u, v). Cancelling z, we obtain β1z1 = β2z2 = −(1/γ)(β3z3 + β4z4),
assuming γ = 0. Thus Rel(N) ∈ Gr(2, 4) is represented by the matrix

[
β1 −β2 0 0
β1γ 0 −β3 −β4

]
.

It is important to note that the construction does not depend on any planar
embedding of N . For non-zero values of βi and γ, we have RelN ∈ Π[3,5,4,6].

14.2. Moves preserving Rel(N). We first discuss operations on a bi-
colored graph that do not change Rel(N). It is helpful to compare this
discussion to Postnikov’s moves on plabic graphs [Pos].

14.2.1. Gauge equivalence. Fix an interior vertex u. Let N ′ be obtained
from N by scaling w(u, v) by a fixed c ∈ F , for all v adjacent to u.

14.2.2. Degree two vertex removal. Suppose u is an interior vertex of
degree two, and let e1 = (u, v1) and e2 = (u, v2) be the two vertices adjacent
to it. Let N ′ be obtained from N by removing u, and replacing e1 and e2
with a single edge (v1, v2) with weight w(v1, v2) = ±w(v1, u)w(u, v2), where
we take the plus sign if u is black and the minus sign if u is white.

14.2.3. Gluing and separating vertices of the same color. Suppose u and
v are interior vertices with the same color and are joined by an edge (u, v).
By applying gauge equivalences we can assume that w(u, v) = 1 = w(v, u).
Let N ′ be obtained from N by removing (u, v) and identifying u and v. If u
and v are white, in addition we multiply all edge weights of edges that were
incident to u by −1. (By gauge equivalence we could also choose to multiply
all edge weights of edges that were incident to v by −1.)

14.2.4. Square move. Suppose we have a square of two white w1, w2 and
two black b1, b2 trivalent interior vertices as arranged in Figure 1. Let the
edge weights w(wj , bi) be denoted wij . Also write zij := z(bi,wj) and zbi (resp.

zwi) for the formal variable associated to the external half-edge attached to
bi (resp. wi).

Then the four sets of equations are

zb1 = z12 = z11

zw2 + w12z12 + w22z22 = 0

zb2 = z21 = z22

zw1 + w11z11 + w21z21 = 0.
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w12

w22

w21

w11

b1 w2

w1 b2

w′
21

w′
22

w′
12

w′
11

w′
1 b′2

b′1 w′
2

Figure 1.

Set W = w11w22 − w12w21. These equations induce the same relations on
zb1 , zw2 , zb2 , zw1 as

zb1 +
−w21

W
z′21 +

w22

W
z′11 = 0

zw2 = z′21 = z′22

zb2 +
w11

W
z′22 +

−w12

W
z′12 = 0

zw1 = z′11 = z′12

Draw a new square with two white w′
1, w

′
2 and two black b′1, b

′
2 vertices, so

that w′
i (resp. b

′
i) is connected to the outside in the same way bi (resp. wi

used to be). Set the edge weights of the square by

w′
11 =

w22

W
w′
12 = −w12

W
w′
21 = −w21

W
w′
22 =

w11

W

where w′
ij := w(w′

j , b
′
i). Call this new bicolored graph N ′. Assuming that

W = 0 (which always holds if the edge weights of N are algebraically inde-
pendent), we have Rel(N) = Rel(N ′). (In Figure 1 we have drawn the graph
as planar, but the planar embedding is not part of the data of a bicolored
graph.)

14.2.5. Parallel edge reduction. Suppose u and v are interior vertices of
different colors connected by two edges e1 and e2, with weights w1 and w2

when oriented from white to black. Assuming w1+w2 = 0, letN ′ be obtained
from N by replacing e1 and e2 by a single edge e with weight w1 +w2 when
oriented from white to black.

14.2.6. Leaf removal. Suppose u is an interior leaf, joined to a ver-
tex v of the other color. Suppose the other half-edges incident to v are
(v, e1), (v, e2), . . . , (v, er). Let N

′ be obtained from N by removing u and v,
creating new vertices x1, x2, . . . , xr with the same color as u, and replacing
the half-edge (v, ei) by (xi, ei). (Note that each (xi, ei) is itself a leaf, so by
gauge equivalences, the weight of the incident edge does not matter.)

14.2.7. Dipole removal. Suppose u and v are interior degree one vertices
joined be an edge, and they are of opposite colors. Let N ′ be obtained from
N by removing u, v and the edge.
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14.2.8. Loop removal. Suppose e is a loop at the vertex u. Assume that
if u is black the weight of e is not 1, and if u is white the weight of e is not
−1. Then we can replace the edge e by an edge (u, v) for a new vertex v
which has color opposite to u. Then we can apply leaf removal to obtain a
new bicolored graph N ′.

Proposition 14.2. For any of the above moves, we have kN = kN ′ and
assuming Rel(N) is well-defined, we have Rel(N) = Rel(N ′).

Proof. Checked case-by-case. �
14.3. Disjoint sum and gluing. If N and N ′ are two bicolored net-

works with boundary vertex sets S and S′, then N ∪N ′ is a bicolored graph
with boundary vertex set S ∪ S′. If V ∈ Gr(k,FS) and V ′ ∈ Gr(k′,FS′

)

then we have a natural point V � V ′ ∈ Gr(k + k′,FS∪S′
).

Proposition 14.3. Let N and N ′ be two bicolored networks with bound-
ary vertex sets S and S′ and relation spaces Rel(N) ∈ Gr(k,FS) and

Rel(N ′) ∈ Gr(k′,FS′
). Then Rel(N ∪N ′) = Rel(N)� Rel(N ′).

Suppose N is a bicolored network and a, b ∈ S are two boundary vertices
of N . We suppose that the edges incident to a and b have weight 1. Let
N ′ = Gluea,b(N) be the bicolored network on boundary vertex set S \ {a, b}
obtained by gluing the two boundary edges incident to a and b together
(removing a and b in the process), and giving the new edge weight 1. We

shall describe Rel(N ′). Let S′ = S − {a, b} ∪ {c} and let φ : FS → FS′
be

the linear map induced by the set map given by a �→ c and b �→ c, and the
identity on other elements. Let S \ {a, b} � V0 ⊂ FS′

be the subspace of
vectors where the coefficient in the c-direction is 0. Then

(23) Rel(N ′) = φ(Rel(N)) ∩ V0.

The operation Gluea,b(N) does not change the degrees of interior vertices of
N , so by (22), we have kN ′ = kN − 1.

For convenience, we assume that we have a total order on S given by
a < b < rest. Given such a total order, the notion that Rel(N) is TNN
makes sense.

Proposition 14.4. Suppose Rel(N) is totally nonnegative, or the edge
weights are generic. Then dim(Rel(N ′)) = kN ′ if and only if ΔI(Rel(N)) = 0

for some I ∈
(
S
k

)
satisfying |I∩{a, b}| = 1. Furthermore, in this case Rel(N ′)

is represented by Plücker coordinates ΔJ(Rel(N
′)) =

ΔaJ(Rel(N)) + ΔbJ(Rel(N)).

Proof. Let k = kN and k′ = kN ′ . Suppose Rel(N) is represented by a
k × n matrix X with column vectors {vs ∈ Fk | s ∈ S}, where n = |S|. As-
suming dimRel(N ′) = k′, we let X ′ be a k′×n matrix representing Rel(N ′).
There is a torus (F∗)S acting on the columns of vs. The genericity condition
means that we only have to consider relations that are torus invariant. For
example, we do not need to consider the possibility that va = −vb.
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If Rel(N) is TNN or generic, the cases we have to consider are:

(1) both va and vb are equal to 0: then Rel(N ′) is simply the projection

of RelG from FS to FS\{a,b} by forgetting two of the coordinates,
and dimRel(N ′) = k = k′. In this case, we have ΔaJ(X) = 0 =

ΔbJ(X) for all J ∈
(S\{a,b}

k−1

)
.

(2) va = 0 and vb = 0 (resp. vb = 0 and va = 0): then dimRel(N ′) = k′

and Rel(N ′) is simply equal to Rel(N) ∩ FS\{a,b}. In this case, we
have ΔJ(X

′) = ΔbJ(X) = ΔbJ(X) + ΔaJ(X) (resp. ΔJ(X
′) =

ΔaJ(X) = ΔaJ(X) + ΔbJ(X)).
(3) va = αvb and both are non-zero: then k′ = k − 1 and Rel(N ′) =

Rel(N) ∩ FS\{a,b}. In this case ΔaJ(X) = αΔbJ(X), and we can
take ΔJ(X

′) = ΔaJ(X) + ΔbJ(X).
(4) the vectors va and vb are linearly independent and the vector (1,−1,

0, 0, . . . , 0) belongs to Rel(N): under the TNN or genericity condi-
tions this holds only if both va and vb do not lie in the span of the
rest of the columns. In this case we have dimRel(N ′) = k − 2 and

ΔaJ(X) = 0 = ΔbJ(X) for all J ∈
(S\{a,b}

k−1

)
.

(5) va and vb are independent of each other: in this case, by a change of
matrix we can make va = (1, 0, 0, . . . , 0)T and vb = (0, 1, 0, . . . , 0)T .
Then we have vectors (1, 0, α1, α2, . . . , αn−2) and (0, 1, β1, β2, . . . ,
βn−2) in Rel(N). Hence Rel(N ′) is spanned by (α1−β1, . . . , αr−βr)

together with Rel(N)∩FS\{a,b}, and dim(Rel(N)∩FS\{a,b}) = k−2.
In this case, we calculate that ΔJ(X

′) = ΔaJ(X) + ΔbJ(X).

�

14.4. Planarity and positivity. Suppose Ñ is a usual planar bipar-
tite network. We obtain from Ñ a bicolored graph N in the sense of this
section by setting w(u, v) to be equal to the weight of the edge e = (u, v) in
N whenever u is white or v is black. In the following we do not distinguish
between Ñ and N .

Recall that there is a (positive) rotation map χ : Gr(k, n) → Gr(k, n)
which moves the last column of a k × n matrix to the front, with a sign of
(−1)k−1.

Lemma 14.5. We have χ(Rel(N)) = Rel(N ′), where N ′ is obtained from
N by multiplying the weight of the half edge incident to boundary vertex n by
(−1)kN−1 and then relabeling the boundary vertices 1 → 2, 2 → 3, . . . , n → 1.

LetG andG′ be plabic graphs with boundary vertices labeled{1, 2, . . . ,m}
and {m+1, . . . , n}. Then G∪G′ is naturally a plabic graph with boundary
vertices labeled {1, 2, . . . , n}. For plabic graphs, we will always assume that
disjoint unions ∪ are taken in a planar way.

Suppose G is a plabic graph with edge set E(G). Let ε ∈ {+1,−1}|E(G)|

be a choice of sign for each edge of G. For t = {te | e ∈ E(G)} ∈ R
|E|
>0 , let

N(t, ε) be the plabic network with underlying graph G, and edge weights
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given by εe · te. In other words, N has signed edge weights with signs given
by ε.

Theorem 14.6. Suppose G is a planar bipartite graph with almost perfect

matchings. Then there exists εG ∈ {+1,−1}|E(G)| such that for any t ∈ R
|E|
>0

we have

(24) Rel(N(t, εG)) = X(N(t, 1)).

Proof. Let us say εG “exists” if there is εG ∈ {+1,−1}|E(G)| such that
(24) is satisfied. We prove the result by a sequence of reductions.

IfG andG′ are planar bipartite graphs on boundary vertices {1, 2, . . . ,m}
and {m + 1, . . . , n}, and εG and εG′ both exist then it is easy to see that
εG∪G′ exists.

Now suppose εG exists and G′ = Glue1,2(G) is bipartite, and that G′

has almost perfect matchings (which implies G has almost perfect match-
ings). We claim that εG′ also exists. The assumption that G′ has almost
perfect matchings implies that G has at least one almost perfect matching
Π such that |I(Π) ∩ {1, 2}| = 1. We may now apply Proposition 14.4, us-
ing the assumption that Rel(N(t, εG)) = X(N(t)) is TNN. Note that we
defined Glue1,2(N) by insisting that the new edge has weight 1, but by
applying gauge equivalences before and after the gluing operation, we see
that there is εG′ such that Rel(N(t′, εG′)) is always TNN. To check that
Rel(N ′(t′, εG′)) = X(N ′(t′)), we do a matching computation. For simplic-
ity, assume that boundary vertex 1 in G is connected to a black vertex u
and boundary vertex 2 is connected to a white vertex v. In G′, an almost
perfect matching either uses the edge (u, v) or it does not, and these match-

ings correspond to Δ2J and Δ1J respectively, for some J ∈
([n−1]

k

)
. Thus

ΔJ(N
′) = ΔaJ(N) + ΔbJ(N), agreeing with Proposition 14.4.

Next, using Lemma 14.5 we see that if εG exists then so does εG′ , when-
ever G′ is a rotation of G. In particular, we can apply Gluei,i+1 instead of
just Glue1,2 and ε will still exist. But every planar bipartite graph can be
built up from m-valent vertices (that is, the graph with a single interior
vertex connected to m boundary vertices) and gluing operations of adjacent
boundary vertices.

Thus the theorem follows from checking that it holds for a single m-
valent vertex (see Example 14.7). �

We suspect there is a simple explicit description of ε.

Example 14.7. Consider the planar bipartite network

N = a

c

b
1

2

3
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Using matching enumeration, the Plücker coordinates are calculated to be
Δ12(N) = c, Δ13(N) = b, Δ23(N) = a. Now let us calculate Rel(N). Let
z1, z2, z3 be the formal variables associated to the half-edges at the boundary
vertices. From the definitions, we obtain the relations

1

a
z1 =

1

b
z2 =

1

c
z3.

In coordinates, Rel(N) is the row span of the matrix[
1/a −1/b 0
1/a 0 −1/c

]

which has Plücker coordinates Δ12 = 1/ab, Δ13 = −1/ac, Δ23 = 1/bc. This
represents the same point as X(N) if we set b �→ −b. Thus we can choose
ε = (1,−1, 1) when the edges are ordered (a, b, c). More generally, we can
choose ε = (1,−1, . . . , (−1)m−1) for a m-valent vertex.

For a m-valent white vertex, no signs are required.

For a bicolored graph G, let FG be the field of rational functions in a
set of variables, one for each edge. There is a natural bicolored network N
with edge weights that are variables in FG.

Corollary 14.8. Let G be a planar bipartite graph and N be the planar
bipartite network with indeterminate edge weights in FG. Then there exists
a reduced planar bipartite network Ñ , with edge weights taking values in FG,
such that Rel(N) = Rel(Ñ).

Proof. Suppose G is a planar bipartite graph, and G̃ is the reduced
planar bipartite graph obtained just by reducing G combinatorially (without
considering edge weights). We have to show that the local moves used to

change G into G̃ are well-defined when we start with indeterminate edge
weights. It is enough to show that the local moves are well-defined starting
with a Zariski-dense subset of edge weights in (C∗)|E(G)|. Since R>0 and
−R>0 are both Zariski-dense in C∗, it is enough to show that the local
moves are well-defined as each edge weight varies over either the positive or
the negative reals.

We shall use Theorem 14.6 to prove this last statement. By a direct
verification, we see that the choice of signs for edge weights in Theorem
14.6 can be made compatible with all the local moves and reduction moves.
Suppose G1 and G2 are planar bipartite graphs with positive edge weights
related by a local move or reduction move. Let ε1 and ε2 be the corre-
sponding signs in Theorem 14.6. We have Rel(N1(t1, ε1)) = X(N1(t1)) =
X(N2(t2)) = Rel(N1(t2, ε2)) for positive real t1, t2 related by some rational

formulae. It follows that there is a choice of edge weights for Ñ with values in
FG such that Rel(N) = Rel(Ñ) when all edge weights are specialized to be
appropriately signed and real; thus the equality holds over FG as well. �
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Part 2. Grassmann polytopes

15. Grassmann polytopes

We assume the reader is familiar with the usual theory of polytopes, for
example as presented in [Zie].

15.1. Grassmann polytopes. For k = 1, the TNN Grassmannian
Gr(1, n)≥0 is the subset of Pn−1 consisting of points with nonnegative co-
ordinates. Thus Gr(1, n)≥0 can naturally be identified with the (n − 1)-
dimensional simplex Δn−1. Our plan is to take seriously the analogy

simplex −→ TNN Grassmannian

faces of the simplex −→ positroid cells

boolean lattice −→ B̂(k, n).

Recall that B̂(k, n) is the poset of (k, n)-bounded affine permutations B(k, n)
with an additional minimum adjoined.

Let Z be a real n × r matrix with r ≤ n. Denote the rows of Z by
z1, z2, . . . , zn ∈ Rr. We may think of Z : Rn → Rr as a linear map. It
induces a rational map ZGr : Gr(k, n)R ��� Gr(k, r)R for any 1 ≤ k ≤ r,
sending a dimension k subspace V ⊂ Rn to the image subspace Z(V ) ⊂ Rr.
The map ZGr is not defined if dimZ(V ) < k.

Call Z positive if its maximal (r × r) minors are strictly positive. Then
Arkani-Hamed and Trnka [ArTr13a] define the amplituhedron to be the
image of Gr(k, n)≥0 under the map ZGr. When k = 1, the amplituhedron is
a cyclic polytope [Stu].

Restricting Z to have strictly positive maximal minors seems to be overly
restrictive, so we introduce the following condition, in the style of Farkas’
Lemma and its relatives:

There exists a r × k real matrix M such that(25)

Z ·M has positive k × k minors.

For k = 1, the condition (25) would guarantee that the cone spanned by
the rows of Z form a pointed polyhedral cone.

The following definition is an analogue of the fact that every polytope
is the image of a simplex.

Definition 15.1. A Grassmann polytope is the set

P = Z(Πf,≥0) := {ZGr(X) | X ∈ Πf,≥0}
for some f ∈ B(k, n) and Z satisfying (25). Say P is a full Grassmann
polytope if f = id, so that P = Z(Gr(k, n)≥0).

The dimension dim(P ) of a Grassmann polytope P is the dimension of
the Zariski closure P ⊆ Gr(k, r).

Since Πf,≥0 is Zariski-dense in Πf , we have that P is equal to the variety
Z(Πf ) to be defined in Section 16.3.
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Proposition 15.2. Suppose (25) holds. Then the map ZGr is well-
defined on Gr(k, n)≥0. The Grassmann polytope Z(Πf,≥0) is a closed con-
nected subset of Gr(k, r).

Proof. Let X be a k × n matrix representing a point in Gr(k, n), and
suppose ZGr is not well-defined at this point. Then the matrix Y = X · Z
has rank less than k, and thus all Plücker coordinates ΔI(Y ) vanish.

If Z satisfies (25) and X ∈ Gr(k, n)≥0 has nonnegative minors (and at
least one positive minor), then Y ·M = X · (Z ·M) is a k× k matrix whose
determinant (by (4)) is given by

∑
J∈([n]

k )
ΔJ(X)ΔJ(Z ·M) > 0. This implies

that Y itself must have rank k, and ZGr is well-defined at X.
The last statement follows from the fact that Z(Πf,≥0) is a compact

connected set (being a closed connected subset of Gr(k, n)R), and ZGr is
continuous when restricted to Gr(k, n)R \ EZ . Here, EZ is the exceptional
locus of the rational morphism ZGr : Gr(k, n) ��� Gr(k, r), to be discussed
in further detail in Section 17. �

We conjecture that every Grassmann polytope is contractible.

Corollary 15.3. The condition (25) implies that span(zi1 , zi2 , . . . , zik)

has rank k for any I = {i1, . . . , ik} ⊂
([n]
k

)
.

Proof. By Proposition 15.2, the map ZGr is well-defined at the torus
fixed point eI ∈ Gr(k, n)≥0. �

We say that P and P ′ are projectively equivalent if P = P ′ · g where
g ∈ GL(r) acts on Gr(k, r) by right multiplication. If Z and Z ′ are related
by Z ′ = Z · g, then the Grassmann polytopes P = Z(Πf,≥0) and P ′ =
Z ′(Πf,≥0) are projectively equivalent. Thus, up to projective equivalence, the
Grassmann polytope P only depends on the column space of Z. Equivalently,
P only depends on the image of Z in Gr(r, n), or again equivalently, P only
depends on the kernel of Z.

Remark 15.4. Proposition 15.2 can also be interpreted using cones.
Let Ĝr(k, n) be the cone over the Grassmannian (see Section 12) and let

Ĝr(k, n)≥0 ⊂ Ĝr(k, n) be the locus with nonnegative Plücker coordinates.

Similarly define Π̂f,≥0. Then the proof of Proposition 15.2 shows that

Z(Π̂f,≥0) lies completely within the closed half-space

M+ := {Y ∈ Ĝr(k, r) | det(Y ·M) ≥ 0}

and the intersection of Z(Π̂f,≥0) with M0 := {Y ∈ Ĝr(k, r) | det(Y ·M) = 0}
consists only of the origin. Thus Z(Π̂f,≥0) is a pointed cone.

Remark 15.5. Definition 15.1 is a Grassmann analogue of projective
polytopes. There is also an analogue of Euclidean polytopes. To work with
this, we fix the first k rows of M to be the k × k identity matrix. Then the
condition (25) is that the first k columns of Z give a point in Gr(k, n)>0.
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(For k = 1, the condition is that the first column of Z has positive entries,
and these entries are usually fixed to equal 1).

We allowed Grassmann polytopes to be Z(Πf,≥0) for arbitrary f ∈
B(k, n) in Definition 15.1 rather than just Z(Gr(k, n)≥0). This is because
we would like the totally nonnegative strata Πf,≥0 (the faces of Gr(k, n)≥0)
to be Grassmann polytopes too. But the strata Πf,≥0 are inherently different
to Gr(k, n)≥0; the totally nonnegative Grassmannian Gr(k, n)≥0 has dimen-
sion k(n− k), but Πf,≥0 can have any dimension. Furthermore, if Z has full
rank then Z(Gr(k, n)≥0) will always be full-dimensional in Gr(k, r)R, and
thus have dimension k(r − k).

We check that (25) is satisfied by positive Z.

Lemma 15.6. Suppose Z has positive r × r minors. Then Z satisfies
(25).

Proof. Let e[r] = span(e1, . . . , er) be the 0-dimensional cell Πf in
Gr(r, n), where f = [1 + n, 2 + n, . . . , r + n, r + 1, . . . , n]. Let w ∈ Sn be
the permutation such that fw = id. Then w = (r + 1)(r + 2) · · ·n12 · · · r in
one-line notation. Let i1i2 · · · i� be a reduced word for w. Then by the proof
of Theorem 7.12, adding the bridges indexed by i1, i2, . . . , i� to the lollipop
graph of e[r] gives a planar bipartite graph that represents G such that MG

parametrizes Gr(k, n)>0. Thus for any X ∈ Gr(k, n)>0, there are (unique)
parameters a1, a2, . . . , a� ∈ R>0 such that the matrix g = xi1(a1) · · ·xi�(a�)
satisfies e[r] · g = X.

Now let v = r(r − 1) · · · 1n(n − 1) · · · (r + 1) be the longest element in
the parabolic subgroup Sr×Sn−r, and let j1 · · · jp be some reduced word for
v. Let g′ = xj1(b1) · · ·xjp(bp) where b1, b2, . . . , bp ∈ R>0. Then the product
g′g is in the “top cell” of the totally nonnegative part of upper triangular
matrices U≥0 ⊂ GL(n)≥0. We have e[r] · g′g = e[r] · g = X since e[r] is
stabilized by g′.

The transpose matrix ZT represents a point in Gr(k, n)>0. We can there-
fore find g, g′ ∈ GL(n) as above, and h ∈ GL(k) so that

h · e[r] · g′g = ZT

as r× n matrices, where e[r] is the r× n matrix equal to the identity in the
first r columns, and zero in the last n− r columns. Let M be a r×k matrix.
Then

(Z ·M)T = MT · ZT = MT · h · e[r] · g′g.
Now, if e[k],r is the k× r matrix equal to the identity in the first r columns,
and zero in the remaining columns, then e[k],re[r] = e[k],n is the k×n matrix
with the same property. Since g′g is in the top cell of U≥0, the same argument
as above shows that e[k],ng

′g represents a point in Gr(k, n)>0, and so must

have strictly positive k × k minors. Thus M = (e[k],r · h−1)T shows that Z
satisfies (25). �
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We now define the notion of a dual Grassmann polytope. Let Z∗ be a
real r×n matrix, thought of as a linear map Z∗ : Rr → Rn. We assume that
Z∗ is full rank, so that we have an induced map Z∗

Gr : Gr(k, r)R → Gr(k, n)R
sending V ⊂ Rr to Z(V ) ⊂ Rn.

Definition 15.7. A dual Grassmann polytope is the set

P = (Z∗
Gr)

−1(Πf,≥0) := (Z∗
Gr)

−1(Πf,≥0 ∩ Z∗
Gr(Gr(k, r)R)) ⊂ Gr(k, r)R

for some f ∈ B(k, n) and Z∗ such that Z = (Z∗)T satisfies (25). Say P is a
full dual Grassmann polytope if f = id.

In other words, a full dual Grassmann polytope is defined by pulling
back the defining inequalities of Gr(k, n)≥0 to Gr(k, r)R via the injection
Z∗
Gr. (Strictly speaking, the inequalities themselves do not make sense; only

ratios of them do.)

Proposition 15.8. Suppose Z∗ is full rank and (25) holds. Then the
dual Grassmann polytope P = (Z∗

Gr)
−1(Πf,≥0) is a closed subset of Gr(k, r)R,

and the full dual Grassmann polytope P = (Z∗
Gr)

−1(Gr(k, n)≥0) is in addi-
tion nonempty.

Proof. The map Z∗
Gr : Gr(k, r)R → Gr(k, n)R embeds Gr(k, r)R as a

closed submanifold of Gr(k, n)R. The condition (25) for (Z∗)T is exactly the
condition that Z∗

Gr(Gr(k, n)R) intersects Gr(k, n)>0. �

We will focus on Grassmann polytopes rather than dual Grassmann
polytopes in this work.

15.2. Some unusual behavior. We begin with a list of warnings con-
cerning the behavior of Grassmann polytopes.

15.2.1. Facet inequalities do not cut out a Grassmann polytope. Con-
sider the TNN Grassmannian Gr(2, 4)≥0. There are four positroid cells of
codimension one, indexed by the bounded affine permutations [4356], [3546],
[3465], [2457]∈B(2, 4). These four “facets” are the intersections of Gr(k, n)≥0

with the four cyclic rotations of the Schubert variety X12, and are cut out
by the “hyperplanes” Δ12 = 0, Δ23 = 0, Δ34 = 0, and Δ14 = 0 respectively.

However, the inequalities Δ12 ≥ 0, Δ23 ≥ 0, Δ34 ≥ 0, Δ14 ≥ 0 cut
out the union of Gr(2, 4)≥0 with the twisted totally nonnegative Grassman-
nian Gr(2, 4)≥0,τ (see (30)) where Δ12,Δ23,Δ34,Δ14 are nonnegative, and
Δ13,Δ24 are nonpositive. To see this, note that the right hand side of the
Plücker relation Δ13Δ24 = Δ12Δ34 +Δ14Δ23 must be nonnegative, so Δ13

and Δ24 must have the same sign.
To cut out the totally nonnegative Grassmannian, we must include the

additional inequalities Δ13 ≥ 0 and Δ24 ≥ 0. The intersection of Δ13 = 0
with Gr(k, n)≥0 is the union of the four codimension two positroid cells in-
dexed by bounded affine permutations [1467], [3564], [2358], [5346] ∈ B(2, 4).
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15.2.2. Grassmann polytopes can be cut out by higher degree equations.
The Grassmann polytope Z(Πf,≥0) may be cut out by higher degree equa-
tions in Plücker coordinates. In Section 19.3, we will give an example of
Z(Πf,≥0) that is codimension one in the ambient Grassmannian, with Zariski
closure (the analogue of the affine span) a degree two hypersurface.

Because of this, there seems to be no hope of a simple Grassmann ana-
logue of Fourier-Motzkin elimination, which computes the defining inequal-
ities of the projection of a polytope in terms of the defining inequalities of
the original polytope.

Since a dual Grassmann polytope is always defined by equations that
are linear in Plücker coordinates, it follows that our notion of a Grassmann
polytope is distinct from our notion of a dual Grassmann polytope.

Problem 15.9. Give a description of a Grassmann polytope by inequal-
ities.

Problem 15.10. Give a description of a dual Grassmann polytope as a
projection.

15.2.3. Dimension-preserving maps can be many to one. Suppose P ⊂
Rn is a polytope, not necessarily of full-dimension, and Q = φ(P ) is the
image of P under an affine map φ : Rn → Rr. Then if Q and P have equal
dimensions, the map φ is a one-to-one map from P to Q. This follows from
the corresponding statement for the affine span of P mapping to the affine
span of Q.

In Example 17.5, we give an example of a Grassmann polytope Z(Πf ),
where Z is positive, such that Πf,>0 �→ Z(Πf,>0) is not one-to-one, but the
typical fiber can have two points.

This is the standard symptom of a Schubert calculus problem: a seem-
ingly “linear” problem turns out to have finitely many, but more than one,
solutions. Indeed, we will explain in Section 17 that these fibers are often
intersections of a Schubert variety with a positroid variety. More precisely,
we will study in Section 17 the behavior of these fibers over complex points.
Understanding the fibers of Πf,>0 �→ Z(Πf,>0) would require understanding
reality, and even positive reality, issues in Schubert calculus.

15.2.4. Dimension may be forced to collapse. Suppose P ⊂ Rn is a poly-
tope and φ : Rn → Rr is an affine map. If dim(P ) = r, then we expect that
φ(P ) has dimension r as well, and this is the case if φ is a generic map.

In Section 17, we give examples where dimZ(Πf ) < dim(Πf ) for generic
maps Z, even though dim(Πf ) is equal to the dimension of the image Grass-
mannian Gr(k, r)R.

15.2.5. Differences between the boolean lattice and B(k, n). The partial
order B(k, n) is neither self-dual nor a lattice. In Section 20 we will see that
this is related to the phenomenon that facets of Grassmann polytopes are
non-trivial unions of smaller Grassmann polytopes.



116 T. LAM

16. Grassmann matroids

We work over the field C in this section since we are thinking algebro-
geometrically, but most of the discussion makes sense over R or another
field.

16.1. Matroids. A matroid of rank k on [n] is a non-empty collection

M ⊆
([n]
k

)
of k-element subsets satisfying the exchange axiom:

if I, J ∈ M and i ∈ I then there exists j ∈ J such that

I \ {i} ∪ {j} belongs to M.

A set I ∈ M is called a base of M.
Matroids can be characterized in many ways, including in terms of inde-

pendent sets, circuits, flats, and rank functions. If M is a matroid, we say
that I ⊂ [n] is an independent set of M if I ⊂ J for some J ∈ M. Write
I(M) for the collection of independent sets of M. The following axioms of
independent sets give another axiomatization of a matroid:

(1) We have ∅ ∈ I.
(2) If I ∈ I and J ⊂ I then J ∈ I.
(3) If I, J ∈ I and |I|< |J | then there exists j ∈ J such that (I∪{j})∈ I.

The circuits of M are the subsets C ⊂ [n] with the property that C /∈
I(M) but C ′ ∈ I(M) for any C ′ � C.

The rank function of M is the function r : 2[n] → Z≥0 given by

r(S) = size of the largest independent set T ⊂ S

for S ⊂ [n]. Rank functions of matroids are characterized by the axioms:

Rank a) For any S ⊂ [n], we have r(S) ≤ |S|.
Rank b) For any S, T ⊂ [n], we have r(S ∪ T ) + r(S ∩ T ) ≤ r(S) + r(T ).
Rank c) For any S ⊂ [n], and i ∈ [n] we have r(S) ≤ r(S ∪ {i}) ≤ r(S) + 1.

The independent sets are recovered as those subsets I ⊆ [n] satisfying r(I) =
|I|.

A subset F ⊂ [n] is a flat of M if for any i ∈ [n]\F we have r(F ∪{i}) >
r(F ). We denote the set of flats of M by F(M). The flats of a matroid are
characterized by the axioms:

(1) We have [n] ∈ F .
(2) If F,G ∈ F then (F ∩G) ∈ F .
(3) Suppose F ∈ F . We say that G covers F if F � G and there are

no flats strictly between F and G. Then, as we vary G over covers
of F , the sets G \ F partition [n] \ F .

A subset H ⊂ [n] is a hyperplane if it is a flat with rank k− 1. A matroid is
also completely determined by its hyperplanes. The cocircuits of a matroid
are the complements [n] \H of the hyperplanes.
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16.2. Realizable matroids. Let Z = (z1, z2, . . . , zn) ∈ Cr be n vec-
tors in Cr that span Cr. We obtain a realizable matroid M as the collection
of subsets I = {i1, i2, . . . , ir} such that zi1 , . . . , zir form a basis of Cr. We
will recover the independent sets, circuits, rank function, and flats of the
realizable matroid MZ in a somewhat unorthodox fashion.

Abusing notation, we also write Z : Cn → Cr for the linear map sending
the basis vectors e1, e2, . . . , en to z1, z2, . . . , zn. This induces a rational map
ZP : Pn−1 ��� Pr−1. Thinking of Pn−1 as the space of lines in Cn, the rational
map ZP has exceptional locus EZ = {L ⊂ Cn | L ⊆ ker(Z)} ⊂ Pn−1.

Suppose I = {i1, i2, . . . , is}. Let HI ⊆ Pn−1 be the coordinate hyper-
space given by the image of span(ei1 , . . . , eis) in Pn−1. Define the image
Z(HI) of HI under the map ZP to be

(26) Z(HI) := ZP(HI \ EZ)

where the closure here is taken in the Zariski topology. The subvariety Z(HI)
is simply a linear hyperspace in Pr−1: it is the image of the linear space
Z(span(ei1 , . . . , eis)) ⊂ Cr. By definition, if HI ⊆ EZ , then Z(HI) := ∅.

Then we have the following dictionary:

(1) A subset I ∈
(
[n]
r

)
is a base of MZ if dim(Z(HI)) = dim(HI) =

dimPr−1.
(2) A subset I ∈ 2[n] is an independent set of MZ if and only if

dim(Z(HI)) = dim(HI).

(3) A subset C ∈ 2[n] is a circuit of MZ if dim(Z(HC)) < dim(HC)
and C is minimal under inclusion amongst subsets satisfying this
condition. Equivalently, C is a circuit if EZ ∩ HC = ∅ and EZ ∩
HC′ = ∅ for all C ′ � C.

(4) The rank function rZ : 2[n] → Z≥0 is given by rZ(S) = dim(HS)+1.
(5) A subset F ⊂ [n] is a flat of MZ if for every i /∈ F , we have

Z(HF ) � Z(HF∪{i}). Equivalently, define an equivalence relation

on 2[n] by S ∼ T if Z(HS) = Z(HT ). Then F is a flat if it is the
unique maximal element in its equivalence class.

16.3. Realizable Grassmann matroids. Now fix 1 ≤ k ≤ n. The
linear map Z : Cn → Cr also induces a rational morphism

ZGr : Gr(k, n) ��� Gr(k, r).

The exceptional locus EZ ⊂ Gr(k, n) is

EZ = {X ∈ Gr(k, n) | dim(X ∩ ker(Z)) ≥ 1}
with points in Gr(k, n) thought of as k-dimensional subspaces. Motivated
by the analogies in Section 15, we take the positroid varieties Πf as the
Grassmannian-analogue of the coordinate subspaces HI , and define

(27) Z(Πf ) := ZGr(Πf \ EZ).

If Πf ⊂ EZ , we define Z(Πf ) := ∅.
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Now, let us pretend that a Grassmann matroid GZ exists, and ask for
the analogue of bases, independent sets, circuits, rank function, and flats.

16.3.1. Bases. A bounded affine permutation f ∈ B̂(k, n) is a base of GZ

if dim(Πf ) = dim(Gr(k, r)) = dim(Gr(k, r)). Note that by the irreducibility
of Gr(k, r) this implies that Z(Πf ) = Gr(k, r).

16.3.2. Independent sets. A bounded affine permutation f ∈ B̂(k, n) is
an independent set of GZ if dim(Πf ) = dim(Z(Πf )). As it is shown in Ex-
ample 17.6, if g < f and f is independent it may not be the case that g
is also independent. It is therefore unlikely that the bases of GZ capture all
the information in the Grassmann matroid.

16.3.3. Circuits. A bounded affine permutation f ∈ B̂(k, n) is a circuit
of GZ if dim(Πf ) > dim(Z(Πf )) (that is, f is not independent) and if g < f
then dim(Πg) = dim(Z(Πg)). As for bases, it is unlikely that the circuits of
GZ capture all the information.

Remark 16.1. When k = 1, the conditions that dim(Πf ) > dim(Z(Πf ))
and Πf ∩ EZ = ∅ are equivalent. However, this is not the case for k > 1.

16.3.4. Rank and class function. Define the rank function of GZ to be
the function rZ : B̂(k, n) → Z≥0 given by

rZ(f) := dim(Z(Πf )) + 1.

The only natural invariant of a linear hyperspace Y ⊆ Pr−1 is its dimen-
sion, but for the subvarieties Z(Πf ) ⊂ Pr−1 there are other natural GL(r)-
invariants. As we shall see in Section 19, the subvarieties Z(Πf ) ⊆ Gr(k, r)
can have degree greater than one; it would be reasonable to keep track of
this too.

We thus define the class function cZ of GZ by

cZ(f) := [Z(Πf )] ∈ H∗(Gr(k, r)).

When k = 1, we have [Z(HI)] = [H]c where [H] ∈ H2(Pr−1) is the hyper-
plane class, and c is the codimension of Z(HI). Thus cZ and rZ contain
the same information in this case. For k > 1, the class function contains
information such as the degree of Z(Πf ).

16.3.5. Flats. Define an equivalence relation on B̂(k, n) by f ∼ g if
Z(Πg) = Z(Πf ). We call each equivalence class a flat of GZ .

16.4. Axioms? We will not formally axiomatize a Grassmann matroid.
Here we will be content with an informal sketch of a heuristic that the class
function might satisfy inequalities analogous to the axioms Rank a), Rank
b), and Rank c) of a rank function of a matroid.

(1) The analogue of Rank a) is that dimZ(Πf ) ≤ dimΠf , which in

turn gives cZ(f) ∈ Hd(Gr(k, r)) where d ≥ codim(Πf ).
(2) Let f, g ∈ B(k, n). Then Πf and Πg typically do not intersect

transversally in Gr(k, n). However, Πf and Πg could potentially
intersect transversally inside Πh, where h > f, g is minimal among
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elements greater than f and g. (When B̂(k, n) is the boolean lattice,
we would take h to be the join of f and g.) Assuming the pushfor-
ward and pullback maps between H∗(Πh) and H∗(Gr(k, n)) behave
well, we would then obtain an equality

[Πf ] · [Πg] = [Πh] · [Πf ∩Πg] in H∗(Gr(k, n))

via the projection formula and Theorem 10.1. Since Z(Πf ∩Πg) ⊆
Z(Πf )∩Z(Πg), this equality turns into an inequality for cZ similar
to Rank b).

(3) The analogue of the inequality r(S) ≤ r(S ∪ {i}) in axiom Rank
c) comes from the inclusion Z(Πf ) ⊆ Z(Πg) whenever f � g, from
which one can deduce an appropriate cohomological identity for cZ .
The analogue of r(S ∪ {i}) ≤ r(S) + 1, comes from the inequality
[Πg] · s1 ≥ [Πf ] whenever f � g. Here, the Schur function s1 is the
class of the Schubert divisor, and “≥” means that the difference is
a nonnegative linear combination of Schubert classes.

16.5. Canonical basis matroid. There is a Grassmann matroid GZ

for each value of 1 ≤ k ≤ r. It is not clear to us to what extent these
Grassmann matroids determine each other. In particular, we do not know
which data in a Grassmann matroid depends only on the usual matroid MZ .

Theorem 12.8 and the examples in the rest of the paper suggest that we
should also consider the canonical basis matroid BZ of Z, defined to be

BZ :=
⋃
d

{T ∈ B(dωr) | G(T )∗(Z) = 0} ⊆
⊔
d

B(dωr),

where we consider the n× r matrix Z to represent a point in Gr(r, n). The
degree d = 1 part of BZ is then the usual matroid MZ of Z.

Problem 16.2. Characterize canonical basis matroids.

Note that Theorems 12.2 and 12.8 characterize the canonical basis ma-
troids of Z that give a point in Gr(r, n)≥0. That is, we have a classification
of canonical basis positroids. In particular, if Z ∈ Gr(r, n)>0 = Πid,>0 is
in the totally positive part of the Grassmannian, then G(T )∗(Z) > 0 for
all T ∈ B(dωr). It follows that every totally positive point has the uniform
canonical basis matroid.

We suspect the knowledge of the vanishing or non-vanishing of a finite
subset of the canonical basis will completely govern the behavior of Grass-
mann matroids.

17. The uniform Grassmann matroid

In this section, we consider the case that Z is a generic matrix, which
corresponds to the uniform Grassmann matroid. The meaning of “generic”
in this section is made precise in the paper [Lam14b]. In particular, a
Zariski-open subset of real matrices Z are generic. In the case that Z is a
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generic, we call the varieties Z(Πf ) amplituhedron varieties and denote them
by Yf .

17.1. Combinatorial criterion for intersection with the excep-
tional locus. Recall that the exceptional locus is EZ = {X ∈ Gr(k, n) |
dim(X ∩ ker(Z)) ≥ 1}. We have dim(ker(Z)) = n − r, so EZ is a Schubert
variety with codimension codim(EZ) = r− k+ 1 = m+ 1. The cohomology
class is [EZ ] = sm+1.

Proposition 17.1. For generic Z, the positroid variety Πf will intersect

EZ if and only if F̃f · sm+1 = 0 in H∗(Gr(k, n)).

Proof. This follows from combining Theorem 10.3 with Theorem 10.1.
�

17.2. Truncations of affine Stanley symmetric functions. For
μ ⊆ (m)k we let μ+� ⊆ (n− k)k be the partition obtained from μ by adding
� columns of height k to the left of μ. For example, with � = 2 and k = 4,
we may have

μ = μ+� =

Given f=
∑

λ⊂(n−k)kcλsλ representing a cohomology class inH∗(Gr(k, n)),

we define the truncation τr(f) ∈ H∗(Gr(k, r)) by

τr(f) =
∑

μ⊆(m)k

cμ+(n−r)sμ.

If dim(Πf ) = dim(Yf ) (that is, f is independent), we let df denote the degree
of the map ZGr|Πf

: Πf → Yf .

Theorem 17.2 ([Lam14b]). Suppose Z is generic and f ∈ B(k, n).
(1) If τr(f) = 0, then dim(Yf ) < dim(Πf ). In other words, f is not

independent.
(2) If τr(f) = 0, then dim(Yf ) = dim(Πf ). Thus f is independent. In

this case, the cohomology class [Yf ] of the amplituhedron variety Yf
is equal to 1

df
τr(F̃f ).

Note that Theorem 17.2 only says something about the rank function in
the case that f is independent. Furthermore, we do not yet have a combi-
natorial formula for the degree df .

Here is a sketch of the proof of Theorem 17.2. To compute [Yf ], it is
enough to compute the number of intersection points in Yf ∩ YJ(F•) for a
Schubert variety YJ(F•) ⊂ Gr(k, r) intersecting Yf transversally in a finite

number of points (see Theorem 10.1). The inverse image Z−1
Gr (YJ(F•)) ⊂

Gr(k, n) is itself a Schubert variety, and assuming the intersection is trans-

verse, the number of intersection points of Πf ∩ Z−1
Gr (YJ(F•)) can be com-

puted using Theorem 10.3 and Theorem 10.1.
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It would be interesting to extend Theorem 17.2 to the case where Z is
not generic. This would presumably involve understanding non-transverse
intersections between positroid varieties and Schubert varieties.

Remark 17.3. In [Lam14b], we used the terminology “f has kinemati-
cal support” instead of “f is independent”. When m = 4 and dim(Πf ) = 4k,
this agrees with the notion of kinematical support in physics [ABCGPT].

Example 17.4. Let k = 2, r = 5, and n = 8. Suppose f = [2, 3, 4, 8,
6, 7, 12] ∈ B(2, 7). It is given by the rank conditions r(1, 4) ≤ 1 and

r(5, 7) ≤ 1. Then by Proposition 10.5, we have F̃f = h3h2 ≡ s32 + s41 + s5
in H∗(Gr(2, 7)). Thus f is independent and [Yf ] = s1 in H∗(Gr(2, 5)).

If instead we have r = 6, then f is still independent and [Yf ] = s3 + s21
in H∗(Gr(2, 6)).

Example 17.5. Let k = 2, r = 6, and n = 8. Suppose f = [4, 3, 6, 5, 8, 7,

10, 9] ∈ B(2, 8). Then by Proposition 10.5, we have F̃f = h41 ≡ s4+3s31+2s22
in H∗(Gr(2, 8)). The coefficient of s22 in F̃f is equal to 2. So f is independent
and the map ZGr : (Πf \ EZ) → Yf has degree 2. In a similar manner we
can easily produce maps Zf of arbitrarily high finite degree.

The map ZGr can have fibers of cardinality greater than one even when
restricted to Πf,>0. An explicit example is to take

X =

[
1 10 40 10 11 0 0 −9
0 1 4 10 11 6 11 0

]

Z =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
13 1 0 0 0 0
24 18 1 0 0 0
0 40 9 1 0 0
0 0 50 12 1 0
0 0 0 6 8 1
0 0 0 0 20 4
0 0 0 0 0 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Then the fiber over ZGr(X) has another point in Πf,>0.

Example 17.6. Let f = [4, 3, 6, 5, 7] ∈ B(2, 5). Then by Proposition

10.5, we have that F̃f = h21 = s2 + s11 in H∗(Gr(2, 5)). We have g =
[6, 3, 4, 5, 7]�f (recall that we are using the opposite of Bruhat order). Then

by Proposition 10.5, we have F̃g = h3 = s3. Suppose r = 4. Then f is

independent with τ4(F̃f ) ≡ 1 in H∗(Gr(2, 4)), but g is not independent. This

shows that independent sets do not form an order ideal in B̂(k, n).

17.3. An example of the geometry of ZGr. We work through the
geometry of a few examples explicitly. Take k = 2, r = 3, n = 4. Inside
Gr(2, 4) we consider the three subvarieties:



122 T. LAM

(1) The Schubert variety A = {V ∈ Gr(2, 4) | V ⊂ E}, where E ⊂ C4

is a three-dimensional subspace.
(2) The Schubert variety B = {V ∈ Gr(2, 4) | dim(V ∩ F ) ≥ 1}, where

F ⊂ C4 is a one-dimensional subspace.
(3) The positroid variety C = Πf where f = [2547] ∈ B(2, 4). By

(10), this is the closure of the locus {V ∈ Gr(2, 4) | dim(V ∩
span(e1, e2)) = 1 and dim(V ∩ span(e3, e4)) = 1}.

All three varieties A,B,C are two-dimensional. We study their behavior un-
der ZGr for a generic Z. Identify Gr(2, 4) with the space of lines in complex
projective three-space CP3. Then the map ZGr is identified with the projec-
tion from the point p ∈ CP3 which corresponds to the kernel of the map Z,
to some hyperplane H0 � CP2 ⊂ CP3. The exceptional locus EZ of ZGr is
then identified with the subvariety of lines passing through the point p.

17.3.1. The Schubert variety A. The variety A is isomorphic to Gr(2, 3).
For a generic Z, it will not intersect the exceptional locus of ZGr by Proposi-
tion 17.1. In this case, ZGr maps A isomorphically onto Gr(2, 3). We picture
this geometrically as follows: A is identified with the space of lines contained
inside a two-plane H ⊂ CP3 (the image of the three-dimensional subspace
E). If p /∈ H, then EZ does not intersect A, and the projection maps the
space of lines inside H isomorphically to the space of lines inside H0.

17.3.2. The Schubert variety B. By Theorem 17.2, we have dim(Z(B)) <
dim(B). The variety B can be identified with the space of lines that pass
through a point q (the image in CP3 of the one-dimensional subspace F ⊂
C4). Generically, p = q. The line joining p and q lies in the exceptional locus
B ∩ EZ . Let r be the intersection of this line with H0.

Let L0 ⊂ H0 be a line. If the plane spanned by p and L0 does not
intersect p, then L0 is not in the image of ZGr(B \ EZ). Otherwise, there
is a one-dimensional family of lines in that plane that pass through p and
project to L0. To summarize, the image ZGr(B\EZ) is the P

1-of lines passing
through r. The fiber of B \ EZ over a point in this image is an A1-of lines.
Note that the line joining p and q does not belong to B \EZ , which is why
we have an A1 instead of P1.

17.3.3. The positroid variety C. We now consider the variety C. Let
L12 (resp. L34) be the image of span(e1, e2) (resp. span(e3, e4)) in CP3. The
variety C is the space of lines that intersect both L12 and L34. Generically,
p does not lie on either L12 or L34. Projecting the two lines to H0 we get L

′
12

and L′
34. Let x0 be the intersection of L′

12 and L′
34. Now let L0 ⊂ H0 be a

line. If L0 does not pass through x0, then it intersects L′
12 and L′

34 at y0 and
z0. Let y ∈ L12 (resp. z ∈ L34) be the intersection of L12 (resp. L34) with
the line passing through y0 (resp. z0) and p. Then the line passing through
y and z is the unique point of C that maps to L0 under ZGr.

Now suppose L0 passes through x0. If L0 = L′
12 or L0 = L′

34, then there
is a P1-worth of lines that map to it. If L0 is any other line passing through x0
then no line in C\EZ will map to it. To summarize, the map ZGr : (C\EZ) →
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Gr(2, 3) is one-to-one over a dense open subset Gr(2, 3)\P1 � C2. On the P1

there are two distinguished points which lie in the image of ZGr, and each
has a fiber isomorphic to A1.

18. The ideal of an amplituhedron variety

Linear subspaces of Pr−1 are cut out by linear equations, and linear
algebra computes the equations that cut out the varieties Z(HI) of Section
16.2. In this section, we discuss the computation of the ideal I(Yf ) of an
amplituhedron variety Yf . The main idea is to relate the geometry of the
rational map ZGr : Gr(k, n) ��� Gr(k, r) to the geometry of the direct sum
rational map ⊕

: Gr(k, n)×Gr(�, n) −→ Gr(k + �, n)

that takes a k-plane X and a �-plane K to the k + �-plane span(X,K).
The map

⊕
is induced by projection maps Vdωk

⊗ Vdω�
→ Vdωk+�

of highest
weight representations.

The material of this section relies heavily on the material in Section 12.
We will also use some terminology from geometric invariant theory [Mum].

18.1. The universal amplituhedron variety. Fix 1 ≤ k ≤ n, and
r ∈ [k + 1, n]. Set � := n− r and m := k − r. We will sometimes work with

the cone Ĝr(k, n) over the Grassmannian in this section, as the language
with coordinate rings becomes simpler. There is a distinguished cone point
0 ∈ Ĝr(k, n).

We have a map

μ : Ĝr(k, n)×Mat(n, r) → Ĝr(k, r)

given on the level of matrices by

(X,Z) �→ X · Z

where X denotes a k×n matrix representing a point in Ĝr(k, n). Note that
if X ∈ EZ , we have μ(X,Z) = 0. Using the Cauchy-Binet formula (4), the
Plücker coordinates of X ·Z can be written explicitly in terms of the Plücker
coordinates of X and the matrix entries of Z.

Let id : Mat(n, r) → Mat(n, r) be the identity map. Let μ×id : Ĝr(k, n)×
Mat(n, r) → Ĝr(k, r)×Mat(n, r) be the map (X,Z) �→ (X ·Z,Z). We define
the universal amplituhedron variety to be

Yf := (μ× id)(Π̂f ×Mat(n, r)).

There is a natural projection map p : Π̂f × Mat(n, r) → Mat(n, r). For a
generic Z ∈ Mat(n, r), the (affine cone over the) amplituhedron variety Yf
is the fiber p|−1

Yf
(Z) of the universal amplituhedron variety.
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18.2. GL(r) action on Yf . Both Ĝr(k, r) and Mat(n, r) have right

actions of the group GL(r). Thus GL(r) acts on Ĝr(k, n) × Mat(n, r) by

acting on the second factor, and acts on Ĝr(k, r) × Mat(n, r) by acting
simultaneously on both factors. Furthermore, the map μ × id commutes
with these two actions:

(μ× id)(X,Z · g) = (X · Z · g, Z · g) = (X · Z,Z) · g.

Since Π̂f × Mat(n, r) is preserved by this action, we deduce that Yf is a

GL(r)-invariant subvariety of Ĝr(k, r)×Mat(n, r).

Let A(k, r, n) := C[Ĝr(k, r) × Mat(n, r)] denote the coordinate ring of

Ĝr(k, r) × Mat(n, r). It is generated by the Plücker coordinates ΔI(Y ) of

Ĝr(k, r) and the matrix entry coordinates of Mat(n, r). Define the functions

(Y, Z) �→ ΔI(Z)

for I ∈
(
[n]
r

)
and

(Y, Z) �→ Δ(Y, ZJ)

for J ∈
(
[n]
m

)
, where Δ(Y, ZJ) is the determinant of the r × r matrix, whose

first k rows are given by Y and last m rows are given by the rows of Z
labeled by J .

Theorem 18.1 ([Lam+]). The SL(r)-invariants ASL(r) are generated

by Δ(Y, ZJ) for J ∈
( [n]
r−k

)
and ΔI(Z) for I ∈

(
[n]
r

)
.

Note that the functions Δ(Y, ZJ) satisfy the Plücker relations for

Ĝr(m,n). For notational convenience, we actually identify {Δ(Y, ZJ) | J ∈(
[n]
m

)
} with a point in Ĝr(n − m,n) = Ĝr(k + �, n) under the isomorphism

Ĝr(m,n) � Ĝr(n−m,n) that sends the Plücker coordinate ΔJ to the Plücker
coordinate Δ[n]\J .

Remark 18.2. Theorem 18.1 generalizes Weyl’s first fundamental the-
orem for SL(r) invariants of polynomial functions on matrices. Indeed, for
k = 0, we have Weyl’s classical result.

Corollary 18.3 ([Lam+]). The GIT-quotient Gr(k, r) × Mat(r, n) //
GL(r) can be identified with the projective subvariety A of Gr(k + �, n) ×
Gr(r, n) with homogeneous coordinate ring ASL(r). The GIT-quotient Af :=
Yf //GL(k +m) is a closed subvariety of A.

In fact, A can be identified with a partial flag variety.
The ideal I(Yf ) ⊂ A of the universal amplituhedron variety is generated

by the ideal I(Af ) = I(Yf )
SL(r) ⊂ ASL(r). Let π : Gr(k + �, n)×Gr(r, n) →

Gr(k+ �, n) be the projection to the first factor. Then the map Af → π(Af )
is a fiber bundle with fiber Gr(k, k + �). The ideal I(Af ), and hence also
I(Yf ) is generated by the pullback of the ideal I(π(Af )).
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18.3. The direct sum map. Let us now describe π(Af ) more explic-
itly.

The GL(r)-equivariant map μ × id : Ĝr(k, n) ×Mat(n, r) → Ĝr(r, n) ×
Mat(n, r) induces a (rational) map

(28) Gr(k, n)×Mat(n, r) //GL(r) → A → Gr(k + �, n).

We have Mat(n, r)//GL(r) � Gr(r, n). Let ker : Gr(r, n) → Gr(�, n) be given
by Z �→ K, where

ΔI(K) = (−1)inv(I,[n]\I)Δ[n]\I(Z)

for any I ∈
([n]

�

)
. Here inv(A,B) = #{a ∈ A, b ∈ B | a > b} denotes the

inversion number. The notation is explained by the following result.

Lemma 18.4. Suppose ΔI(X) are the Plücker coordinates of a point
X ∈ Gr(k, n). Then the kernel ker(X) ∈ Gr(n− k, n) of X is represented by

the point with Plücker coordinates ΔJ(ker(X)) = (−1)inv(J,[n]\J)Δ[n]\J(X)

for J ∈
( [n]
n−k

)
.

Remark 18.5. We have (−1)inv(I,[n]\I) = (−1)o(I)+�k/2�, where o(I) de-
notes the number of odd elements in I and k = |I|. From this it is easy

to see that the automorphism ΔI �→ (−1)inv(I,[n]\I)ΔI acts as a sign in ev-
ery weight space. That is, the sign associated to a monomial ΔI1ΔI2 · · ·ΔId
depends only on the multiset I1 ∪ I2 ∪ · · · ∪ Id.

Let θ : Gr(k + �, n) → Gr(k + �, n) be the involution given by ΔI �→
(−1)�k/2�+��/2�+o(I)ΔI , for I ∈

( [n]
k+�

)
.

Proposition 18.6. Composing the map (28)with the isomorphism ker−1:
Gr(�, n) → Gr(r, n), and the isomorphism θ : Gr(k + �, n) → Gr(k + �, n),
we obtain the direct sum rational morphism⊕

: Gr(k, n)×Gr(�, n) −→ Gr(k + �, n)

given by
(X,K) �−→ X +K = span(X,K).

Note that the direct sum map is only a rational map because the sum
X + K may have dimension less than k + �. On the level of homogeneous
coordinate rings, the map

⊕
is dual to the ring homomorphism φk,� : R(k+

�, n) → R(k, n)⊗R(�, n) where

(29) φk,�(ΔI) =
∑
J⊂I

(−1)inv(J,I\J)ΔJ(X)ΔI\J(K).

Let us also note that the isomorphism ker : Gr(r, n) → Gr(�, n) takes
positroid varieties to positroid varieties, but it takes Gr(r, n)≥0 to the twisted
positive part

(30) Gr(�, n)≥0,τ := {K ∈ Gr(�, n) | (−1)inv(I,[n]\I)ΔI(K) ≥ 0}.
The subvariety π(Af ) ⊆ Gr(k+�, n) is then identified with

⊕
(Πf ×Gr(�, n)).
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19. Sphericoid varieties

19.1. Ideals and cohomology classes of sphericoid varieties. Let
f ∈ B(k, n) and f ′ ∈ B(�, n). Define the sphericoid variety Πf,f ′ to be

⊕
(Πf ×Πf ′) ⊆ Gr(k + �, n).

Then Πf,id is the variety π(Af ) of Section 18.

Remark 19.1. There is a formula for the cohomology class [Πf,id] ∈
H∗(Gr(k + �, n)) similar to Theorem 17.2. It is an interesting problem to
compute the more general cohomology classes [Πf,f ′ ] ∈ H∗(Gr(k + �, n)).

Let R(Πf,f ′) denote the homogeneous coordinate ring of the sphericoid
variety Πf,f ′ , and let I(Πf,f ′) ⊂ R(k+ �, n) be its homogeneous ideal. For a
fixed Z, define ψ : R(k + �, n) → R(k, r) by

ΔJ �−→ Δ(Y, Z[n]\J)

for J ∈
( [n]
k+�

)
. Then the discussion of Section 18 can be summarized as:

Proposition 19.2. Suppose Z is generic. Then ψ(I(Πf,id)) = I(Yf ).

Thus calculating the ideal of a sphericoid variety also computes the ideal
of an amplituhedron variety. We now give a representation theoretic descrip-
tion of the former ideal. Let κdk,� : Vdωk

⊗ Vdω�
→ Vdωk+�

be the GL(n)-
projection to the direct summand Vdωk+�

⊂ Vdωk
⊗Vdω�

, which appears with
multiplicity one.

Theorem 19.3 ([Lam+]). The d-th degree component of I(Πf,f ′) is
given by

I(Πf,f ′)d =
(
κdk,�

(
Vf (dωk)⊗ V (dω�) ∩ V (dωk)⊗ Vf ′(dω�)

))⊥
.

In particular, when f ′ = id, we have

I(Πf,id)d = κdk,� (Vf (dωk)⊗ V (dω�))
⊥ .

Equivalently,

I(Πf,id)d = {p ∈ R(k, �)d | p ∈ I(Πf )d ⊗R(�, n)d}.

Remark 19.4. The torus (C∗)n ⊂ GL(n) acts on Gr(k, n),Gr(�, n),
and Gr(k+�, n). Since positroid varieties are torus-invariant, the sphericoid
variety Πf,id is also torus-invariant. In particular, I(Πf,id)d ⊂ V (dωk+�)

∗ is
spanned by weight vectors.

We give some examples explaining how to compute with Theorem 19.3.
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19.2. When Πf,id is a linear hypersurface. Let J ∈
( [n]
k+�

)
. By The-

orem 19.3, we have ΔJ ∈ I(Πf,id) if

φk,�(ΔJ) =
∑
I⊂J

(−1)inv(I,J\I)ΔI ⊗ΔJ\I ∈ I(Πf )1 ⊗R(�, n)1,

using (29). By Theorem 12.8, I(Πf )1 has as basis the Plücker coordinates
{ΔI | I ∈ M(f)}, so ΔJ ∈ I(Πf,id) if and only if{

I ∈
(
[n]

k

)
| I ⊂ J

}
⊂ M(f).

For example, take k = 2. We classified B(2, n) in Section 10.5. Suppose Πf is
given by the conditions rank(span(va, va+1, . . . , vb)) ≤ 1 for cyclic intervals
[ai, bi] (and no rank conditions of the form vc = 0). Then ΔJ ∈ I(Πf,id) if
J ⊂ [ai, bi] for some i. If all the cyclic intervals [ai, bi] have cardinality less
than k + �, then no Plücker coordinate ΔJ vanishes on Πf,id. By Remark
19.4, I(Πf,id)1 = 0 in this case.

19.3. Degree-two examples. Let k = 2, and suppose f ∈ B(2, n) is
given by the conditions rank(span(va, va+1, . . . , vb)) ≤ 1 for cyclic intervals
[a1, b1], . . . , [as, bs] (and no rank conditions of the form vc = 0). Let βi =
|[ai, bi]|.

By Proposition 10.5, we have F̃f ≡ [Πf ] =
∏s

i=1 hβi−1 ∈ H∗(Gr(2, n)).
Suppose k = 2, n, r are fixed and f is chosen so that dim(Πf ) =

dim(Gr(2, r))− 1 = 2m− 1, where m = r− 2. But codim(Πf ) =
∑s

i=1(βi −
1) = n−s, so we have s = n−2�−1, where � = n−r = n−m−2. Applying
Theorem 17.2, we have the following cases:

(1) If max(βi) > �+ 2 then [s(�+1,�)]F̃f = 0. In this case f ∈ B(2, n) is
not independent. Thus Yf has codimension two or more.

(2) If max(βi) = � + 2 then [s(�+1,�)]F̃f = 1. In this case, by Section
19.2, Πf,id is cut out of Gr(�+ 2, n) by the linear equation ΔJ = 0
where J = [at, bt] is the (necessarily unique) cyclic interval satisfy-
ing |[at, bt]| = � + 2. By Proposition 19.2, Yf is cut of Gr(2, r) by
the equation ΔY,Z[n]\J = 0, so it is a linear hypersurface.

(3) If max(βi) < �+ 2 and

#{i | βi ≥ 2} ≥ 4,

then [Πf ] is the product of at least four (non-identity) homogeneous

symmetric functions. In this case, [s(�+1,�)]F̃f ≥ 3. We expect that
in general Yf is cut out by an equation with degree three or higher
(though Theorem 17.2 only guarantees that it is cut out by an

equation with degree at most [s(�+1,�)]F̃f ). We will give an example
of such an equation in Section 19.4.

There is a fourth case, where we expect Yf to be a codimension one
hypersurface cut out by a quadratic equation.
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Proposition 19.5 ([Lam+]). Suppose max(βi) < �+ 2 and

#{i | βi ≥ 2} = 3.

Then F̃f ≡ ha−1hb−1hc−1 ∈ H∗(Gr(2, n)) for some a, b, c ≥ 2 and

[s(�+1,�)]F̃f = 2. There is a (� + 2, n)-partial non-crossing matching (τ, ∅)
with (a + b + c)/2 strands such that F(τ,∅) ∈ I(Πf,id)2, and this element
generates the ideal I(Πf,id).

The non-crossing matching τ of Proposition 19.5 is illustrated in the
following picture. Here, f ∈ B(2, n) is given by rank conditions for the cyclic
intervals [1, 4], [5, 7], and [8, 10], and we have β1 = 4, β2 = 3, and β3 = 3.

1

2

34

5

6

7

8 9
10

Proposition 19.5 is proven by a general formula that expresses φk,�(F(τ,T ))
as a linear combination of F(η,T ′) ⊗ F(ν,T ′′) where (η, T ′) ∈ A2,n is a (2, n)-
partial non-crossing matching and (ν, T ′′) ∈ A�,n is a (�, n)-partial non-
crossing matching.

Example 19.6. Suppose n = 6, and f is given by the cyclic intervals
[1, 2], [3, 4], [5, 6]. Then dim(Πf ) = 5, so with r = 5 and � = 1, we have
that Yf ⊂ Gr(2, 5) is codimension one. In this case Yf is cut out by the
single equation ψ(F(τ,∅)), where τ = {(1, 6), (2, 3), (4, 5)}. One calculates
using Theorem 4.4 that

F(τ,∅) = Δ124Δ356 −Δ123Δ456.

Example 19.7. Suppose n = 8, and f is given by the cyclic intervals
[1, 3], [4, 6], [7, 8]. Then dim(Πf ) = 7, so with r = 6 and � = 2, we have that
Yf ⊂ Gr(2, 6) is codimension one. In this case Yf is cut out by the single
equation ψ(F(τ,∅)), where τ = {(1, 8), (2, 5), (3, 4), (6, 7)}.

19.4. A degree-three example. Let k = 2,m = 5, n = 9. Consider
the bounded affine permutation f = [2, 3, 6, 5, 8, 7, 10, 9, 13] ∈ B(2, 9). Then
Πf is cut out by the conditions

dim span(v1, v2, v3) ≤ 1,

dim span(v4, v5) ≤ 1,

dim span(v6, v7) ≤ 1,

dim span(v8, v9) ≤ 1.

By Proposition 10.5, or using the reduced factorization f = ids1s0s7s5s3,
we obtain

F̃f = h2h
3
1 = 3s3,2 + other terms.
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According to Theorem 17.2, f is independent. Since dim(Πf ) = 9, Yf is a
hypersurface in Gr(2, 7) and [Yf ] ∈ H∗(Gr(2, 7)) is either equal to s1 or 3s1.

By Proposition 19.2, we can check that Yf is not a linear hypersurface
by checking that none of the Plücker coordinates ΔJ vanish identically on
Πf,id. Note that Πf,id is a torus invariant subvariety of Gr(k + �, n) (for
the torus (C∗)n ⊂ GL(n)), so I(Πf,id) is spanned by weight vectors, and in
particular I(Πf,id)1 is spanned by Plücker coordinates. It follows that we
must have [Yf ] = 3s1. (We can also check this by numerically computing
that ZGr : Πf ��� Yf is a birational map.)

We shall confirm that [Yf ] = 3s1 by finding a section in R(2, 7)3 =
Γ(Gr(2, 7),O(3)) that cuts out Yf . Indeed, in terms of Plücker coordinates,
we have that Πf,id is cut out by

g = Δ1,2,3,5Δ1,2,3,7Δ4,6,8,9 −Δ1,2,3,4Δ1,2,3,7Δ5,6,8,9(31)

−Δ1,2,3,5Δ1,2,3,6Δ4,7,8,9 +Δ1,2,3,4Δ1,2,3,6Δ5,7,8,9.

The reader is invited to check that Yf is cut out by the cubic

Δ(Y, Z1,2,3,5)Δ(Y, Z1,2,3,7)Δ(Y, Z4,6,8,9)

−Δ(Y, Z1,2,3,4)Δ(Y, Z1,2,3,7)Δ(Y, Z5,6,8,9)

−Δ(Y, Z1,2,3,5)Δ(Y, Z1,2,3,6)Δ(Y, Z4,7,8,9)

+ Δ(Y, Z1,2,3,4)Δ(Y, Z1,2,3,6)Δ(Y, Z5,7,8,9)

where I := [9] \ I, agreeing with Proposition 19.2. The cubic g is in fact an
instance of a web immanant introduced in [Lam14a]. It is indexed by the
following web:

1

2
34

5

6

7 8
9

The calculation of this web immanant is obtained by combining the
results of [Lam14a] with [KhKu]. We sketch the calculation assuming the
reader is familiar with both works. Consider the following 5 tableaux

(32) 1 1 4
2 2 6
3 3 8
5 7 9

1 1 4
2 2 7
3 3 8
5 6 9

1 1 5
2 2 6
3 3 8
4 7 9

1 1 5
2 2 7
3 3 8
4 6 9

1 1 6
2 2 7
3 3 8
4 5 9

.
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The growth algorithm of [KhKu] gives a bijection between these 5 tableaux
and the following 5 webs:

1

2
34

5

6

7 8
9

1

2
34

5

6

7 8
9

1

2
34

5

6

7 8
9

1

2
34

5

6

7 8
9

1

2
34

5

6

7 8
9

The expansion of the standard monomials labeled by these 5 tableaux in
terms of the corresponding web immanant (see [Lam14a, Theorem 4.13])
is given by the 5× 5 matrix ⎡

⎢⎢⎢⎢⎣
1 1 1 1 0
0 1 0 1 1
0 0 1 1 0
0 0 0 1 1
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦ .

The first row of the inverse of this matrix has entries (1,−1,−1, 1, 0). These
are the coefficients of the standard monomials in the web immanant g. In
fact, the cubic g also belongs to the dual canonical basis, and is indexed by
the leftmost tableau in (32).

19.5. A conjecture. The above examples give evidence for the follow-
ing conjecture.

Conjecture 19.8. The homogeneous ideal I(Πf,id) is generated by ele-
ments of the dual canonical basis of R(k + �, n).

19.6. Sphebic graphs. In Part 1 of this work, we constructed points
in Gr(k, n)≥0 by enumerating perfect matchings in a planar bipartite net-
work. We now discuss a construction of points in a sphericoid variety Πf,f ′

using bipartite graphs on a sphere. The more general spherical bicolored
graphs, might be called “sphebic” graphs, following Postnikov’s terminol-
ogy.

Let S2 be the two-sphere and H ⊂ S2 be the equator of the sphere, H+

the upper hemisphere and H− the lower hemisphere, so that H+∩H− = H.
Both H+ and H− are closed disks.

H+

H

H−

A spherical bipartite network is a weighted bipartite graph N embedded
into S2 with distinguished vertices 1, 2, . . . , n arranged in order on H such
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that N ∩H consists only of these distinguished equatorial vertices, and both
N ∩H+ and N ∩H− are planar bipartite networks.

We now define the equatorial measurements of a spherical bipartite net-
work N . For simplicity, we will make the following assumption: all the ver-
tices 1, 2, . . . , n on H are black. We can always add two-valent vertices (move
(M2)) to arrange a boundary vertex to have the desired color, so we lose no
generality.

An almost perfect matching Π of N is a collection of edges using all
vertices of N \H exactly once each, and using each of the vertices 1, 2, . . . , n
either once or not at all. The equatorial subset I(Π) is the set of equatorial
vertices that are used. Let I+(Π) (resp. I−(Π)) be the set of equatorial
vertices connected to an edge in H+ (resp. H−), so we have I(Π) = I+(Π)�
I−(Π).

Let

k = #{white vertices in N \H} −#{black vertices in N \H}.

Then |I(Π)| = k for any almost perfect matching Π in N . Define the equa-
torial measurement

ΔI(N) :=
∑

I(Π)=Π

(−1)inv(I
+(Π),I−(Π))wt(Π).

Theorem 19.9. Suppose ΔI(N) = 0 for some I ∈
([n]
k

)
). Then the vector

X(N) := (ΔI(N) | I ∈
([n]
k

)
) defines a point in the Grassmannian Gr(k, n).

Theorem 19.9 follows from the next result.

Theorem 19.10. Let X+ := X(N ∩H+) ∈ Gr(k1, n) and X− := X(N ∩
H−) ∈ Gr(k2, n) be the points represented by the upper and lower planar
bipartite networks. Then X(N) =

⊕
(X+, X−) ∈ Gr(k, n) ∪ {0}, and k =

k1 + k2.

Here X(N) = 0 means that all ΔI(N) = 0 for all I.

Proof. Follows from the definition of equatorial measurements and
equation (29). �

Note that if V + + V − has dimension smaller than k = k1 + k2, then
X(N) = 0. The equatorial measurement vector X(N) is usually not non-
negative, even when all the weights are nonnegative.

Let f ∈ B(k, n) and f ′ ∈ B(�, n). Let N+(a1, a2, . . . , ad) be a pla-
nar bipartite network (with edge weights ai varying over Rd

>0 or Cd) that
“parametrizes” (Πf )>0 or Πf . Let N−(b1, b2, . . . , bd′) be a planar bipartite
network that parametrizes (Πf ′)>0 or Πf ′ . Let N(a1, . . . , ad, b1, . . . , bd′) be
the spherical bipartite network obtained from N+ and N− by gluing them
at the boundary vertices.
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Proposition 19.11. The Zariski closure of {X(N(a1, a2, . . . , ad, b1, . . . ,
bd′))} ⊂ Gr(k + �, n) is Πf,f ′.

20. Facets of Grassmann polytopes

In this section, we give taste of the facial structure of Grassmann poly-
topes. We will not attempt a full development of the theory; instead we will
illustrate some definitions with examples computed using the techniques of
Sections 17 and 18.

20.1. Definition of facet. Let P = Z(Πh,≥0) ⊂ Gr(k, r) be a Grass-
mann polytope. Let p be a homogeneous element of the homogeneous coor-
dinate ring R(k, r) of Gr(k, r). We call the set

F := {p = 0} ∩ P

a global geometric facet of P if

(1) p takes a constant sign on P , and

(2) F contains Z(Πg,≥0) for some g < h ∈ B̂(k, n) satisfying
dim(Z(Πg,≥0)) = dim(P )− 1.

To make sense of condition (1) precisely, we use the corresponding cones in

Ĝr(k, r), as in Remark 15.4.
By definition, a global geometric facet F contains at least one Grassmann

polytope Z(Πg,≥0). In fact, F is typically a (non-disjoint) union of many
Grassmann polytopes, as we’ll illustrate.

Remark 20.1. Here we only define the notion of a global facet. There
are other sets on the boundary of P that may be considered facets and do
not satisfy these conditions.

20.2. Facets of the amplituhedron. In this section, we assume that
Z is positive and P = Z(Gr(k, n)≥0) is the amplituhedron. Write X,K, S
for typical points in the Grassmannians Gr(k, n),Gr(�, n), and Gr(k+ �, n).
If p is a torus-invariant polynomial (that is, a weight vector in R(k + �, n)d
for some d) in the Plücker coordinates ΔJ(S), write ψ(p) for the polynomial
obtained via the substitution ΔJ(S) �→ Δ(Y, Z[n]\J). By Proposition 19.2 if
p vanishes on Πf,id then ψ(p) vanishes on Z(Πf ).

We state the positive version of this result. Recall that the twisted totally
nonnegative Grassmannian Gr(�, n)≥0,τ ) is defined in (30).

Lemma 20.2. Suppose Z is positive. If p has a fixed sign on
⊕

(Πf,≥0,
Gr(�, n)≥0,τ ) then ψ(p) has a fixed sign on Z(Πf,≥0).

Here and henceforth, “fixed sign” is made sense of by using cones (see
Remark 15.4).

Say that I ∈
(
[n]
m

)
satisfies the evenness condition if for every i, i′ /∈ I, the

number of elements in I between i and i′ is even. For example, {2, 3, 6, 7} ⊂
[8] satisfies the evenness condition. The following result is well known for
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cyclic polytopes [Zie], and is discussed in [ArTr13a] for amplituhedra with
even m.

Proposition 20.3. Suppose Z is positive. Let I satisfy the evenness
condition. Then Δ(Y, ZI) takes a fixed sign on P = Z(Gr(k, n)≥0).

Proof. Let J = [n] \ I. Then

(33) φ(ΔJ(S)) =
∑
L⊂J

(−1)inv(L,J\L)ΔL(X)ΔJ\L(K).

Now, if X ∈ Gr(k, n)≥0 and K ∈ Gr(�, n)≥0,τ , then the term indexed by

L ∈
([n]
k

)
will have sign (by Remark 18.5)

(−1)inv(L,J\L)(−1)o(J\L)+�k/2�

where o(T ) denotes the number of odd elements in T . When I satisfies the
evenness condition, the parity of inv(L, J \L)+o(J \L) does not depend on
L. Thus ΔJ(S) has a fixed sign on

⊕
(Gr(k, n)≥0,Gr(�, n)≥0,τ ). By Lemma

20.2, Δ(Y, ZI) takes a fixed sign on P . �

Let us investigate the intersection P ∩Δ(Y, ZI) for I satisfying the even-
ness condition. Set J = [n] \ I. Then Δ(Y, ZI) vanishes at Y = ZGr(X)
only if all the monomials in (33) vanish, and this happens exactly when

ΔL(X) = 0 vanishes for every L ∈
([J ]
k

)
. The ideal generated by {ΔL | L ∈([J ]

k

)
} ⊂ R(k, n) is the Schubert variety A ⊂ Gr(k, n) given by

(34) A = {X ∈ Gr(k, n) | dim(X ∩ span(ei | i ∈ I)) ≥ 1}.

Thus when Z is positive, the geometric facet cut out by {Δ(Y, ZI) = 0} is
given by

P ∩ {Δ(Y, ZI) = 0} = Z(A≥0)

where A≥0 := A ∩ Gr(k, n)≥0. Since we have a disjoint union Gr(k, n)≥0 =⊔
Πf,>0, and every X ∈ Πf,>0 has matroid equal to M(f), we see that

(35) A≥0 =
⊔

Πg⊆A

Πg,≥0.

In other words, A≥0 only contains points in Πg,≥0 when the whole of Πg is
contained in A. Note that the equality A =

⊔
Πg⊆AΠg is certainly not true.

We can now explain one of the motivations for our study of canonical
bases in Sections 12 and 18. By Theorem 12.8(6), we have complete control
of the vanishing and non-vanishing of canonical basis elements on Gr(k, n)≥0

(generalizing the fact that we have classified all positroids in Section 8). If
the variety A were to be cut out not simply by minors, but by higher degree
elements of the canonical basis, then we would obtain a union analogous to
(35) by using Theorem 12.8.

Let us investigate the union (35) further.
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20.2.1. Suppose m = 2. Without loss of generality, we can pick I =
{1, 2}, and so J = {3, 4, . . . , n}. Then A is given by rank conditions on
cyclically consecutive intervals, so it is itself a positroid variety. For example,
if k = 2, it is the positroid variety indexed by the bounded affine permutation
g = [3, 1 + n, 4, 5, 6, . . . , n, 2]. Applying Theorem 17.2, it is not hard to see
that A contains a positroid variety (indeed, a Schubert variety) Πg′ such
that g′ ∈ I(Z) and dim(Πg′) = 2k − 1 = dim(P )− 1. In particular, Z(A≥0)
itself has dimension dim(P )− 1. Thus Z(A≥0) is a global geometric facet of
P which is itself a single Grassmann polytope.

20.2.2. Suppose m = 4. For simplicity assume that k = 2 and n = 8.
(a) We first consider I = {1, 2, 3, 4}. Then J = {5, 6, 7, 8} and A is again

itself a positroid variety. The facet is simply Z(A≥0), a single Grassmann
polytope.

(b) Now suppose I = {1, 2, 4, 5}. Then J = {3, 6, 7, 8}. In this case A
is not a positroid variety. The maximal positroid varieties A1, A2, A3, A4

contained in A are given by the rank conditions

A1 := rank({3, 4, 5, 6, 7, 8}) ≤ 1,

A2 := rank({1, 2, 3, 6, 7, 8}) ≤ 1,

A3 := rank({6, 7, 8}) ≤ 1, rank({3}) = 0,

A4 := rank({6}) = rank({7}) = rank({8}) = 0.

One deduces from Theorem 17.2 and Proposition 10.5 that dim(Z(A3,≥0)) =
dim(P ) − 1, but dim(Z(A4,≥0)) = dim(P ) − 2 and dim(Z(A1,≥0)) =
dim(Z(A2,≥0)) ≤ dim(P ) − 2. On the other hand, this facet is not equal
to Z(A3,≥0) itself.

To see this, note that on Z(A3), we have

det(Y, Z1,2,4,8) = Δ56(X)Δ5,6,1,2,4,8(Z) + Δ57(X)Δ5,7,1,2,4,8(Z)

since Δ35(X) = Δ36(X) = Δ37(X) = Δ67(X) = 0 when X ∈ A3. Both
terms are positive when Z is positive and X ∈ A3,>0. Thus the function
det(Y, Z1,2,4,8) takes a fixed sign on Z(A3,≥0). However, on Z(A2), we have

det(Y, Z1,2,4,8) = Δ35(X)Δ3,5,1,2,4,8(Z) + Δ56(X)Δ5,6,1,2,4,8(Z)

+ Δ57(X)Δ5,7,1,2,4,8(Z)

and there are terms of both signs. So the function det(Y, Z1,2,4,8) takes both
positive and negative values on Z(A2,≥0). Thus Z(A2,≥0) is not contained
in Z(A3,≥0). So in this case the facet is a non-trivial union of Grassmann
polytopes of different dimensions. There is, however, a unique “component”
which has dimension dim(P )− 1, in this case.

(c) Now suppose I = {1, 2, 5, 6} and n = 8. Then J = {3, 4, 7, 8}.
In this case A is not a positroid variety. The maximal positroid varieties
A1, A2, A3, A4 contained in A are given by the rank conditions
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A1 := rank({3, 4, 5, 6, 7, 8}) ≤ 1,

A2 := rank({1, 2, 3, 4, 5, 6}) ≤ 1,

A3 := rank({7, 8}) ≤ 1, rank({3}) = rank({4}) = 0,

A4 := rank({3, 4}) ≤ 1, rank({7}) = rank({8}) = 0.

By Proposition 10.5, we have

[A1] = s , [A2] = s , [A3] = s , [A4] = s .

Thus dim(Z(A3,≥0)) = dim(Z(A4,≥0)) = dim(P ) − 1 are codimension one.
We shall show that neither Z(A3,≥0) or Z(A4,≥0) contains the other. Let us
consider the function det(Y, Z2,6,7,8) on Z(A3) and Z(A4). On Z(A3,≥0), we
have

det(Y, Z2,6,7,8) = Δ15(X)Δ1,5,2,6,7,8(Z) ≤ 0,

since Δ13(X) = Δ14(X) = Δ34(X) = Δ35(X) = Δ45(X) = 0 on A3. On
Z(A4,≥0), we have

det(Y, Z2,6,7,8) = Δ13(X)Δ1,3,2,6,7,8(Z) + Δ14(X)Δ1,4,2,6,7,8(Z)

+ Δ15(X)Δ1,5,2,6,7,8(Z) + Δ35(X)Δ3,5,2,6,7,8(Z)

+ Δ45(X)Δ4,5,2,6,7,8(Z).

There are terms of both signs, and this function takes both positive and
negative values on Z(A4,≥0). Similarly, there are functions that take a fixed
sign on Z(A4,≥0), but take both positive and negative values on Z(A3,≥0).
It follows that neither Z(A4,≥0) or Z(A3,≥0) contains the other.

However, Z(A≥0) is not contained in Z(A3,≥0) ∪ Z(A4,≥0). To see this,
consider the function p = det(Y, Z1,5,6,7). Then p is equal to

Δ23(X)Δ2,3,1,5,6,7(Z) + Δ24(X)Δ2,4,1,5,6,7(Z) + Δ28(X)Δ2,8,1,5,6,7(Z)

on Z(A1,≥0),

Δ28(X)Δ2,8,1,5,6,7(Z)

on Z(A3,≥0),

Δ23(X)Δ2,3,1,5,6,7(Z) + Δ24(X)Δ2,4,1,5,6,7(Z)

on Z(A4,≥0).

Thus p is positive (or zero) on Z(A4,≥0), negative (or zero) on Z(A3,≥0),
and takes both signs on Z(A1,≥0). Similarly, q = det(Y, Z2,4,5,6) is equal to

Δ13(X)Δ1,3,2,4,5,6(Z) + Δ17(X)Δ1,7,2,4,5,6(Z) + Δ18(X)Δ1,8,2,4,5,6(Z)

on Z(A1,≥0),

Δ17(X)Δ1,7,2,4,5,6(Z) + Δ18(X)Δ1,8,2,4,5,6(Z)

on Z(A3,≥0),

Δ13(X)Δ1,3,2,4,5,6(Z)

on Z(A4,≥0).
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Thus q is positive (or zero) on Z(A3,≥0), negative (or zero) on Z(A4,≥0), and
takes both signs on Z(A1,≥0). So p and q takes opposite signs on Z(A3,≥0)∪
Z(A4,≥0). However, one can check from the above formulae that p and q
can take the same sign at certain points of Z(A1,≥0). Thus Z(A1,≥0) is not
contained in Z(A3,≥0) ∪ Z(A4,≥0).

So, in this case the facet is a union of two Grassmann polytopes of
dimension dim(P ) − 1, together with some lower dimensional Grassmann
polytopes.

(d) Now suppose still that m = 4 and k ≥ 2 is arbitrary. Let J = [n]\I =
J1 � J2, where J1 and J2 are disjoint cyclic intervals that we assume to be
nonempty. For each pair (k1, k2) of nonnegative integers satisfying ki ≤ |Ji|
and k1 + k2 = k − 1, we have a positroid variety Πfk1,k2

given by the rank
conditions

rank(J1) ≤ k1 and rank(J2) ≤ k2.

One can show that each Πfk1,k2
is maximal amongst positroid varieties con-

tained inside the Schubert variety A of (34). These are the positroid varieties
corresponding to the “factorization” of scattering amplitudes discussed in
[ArTr13a, Section 11]. As the previous examples illustrate, the Grassmann
polytopes Z(Πfk1,k2 ,≥0) are sometimes of lower dimension, and in general
there are additional lower-dimensional components in the facets of the am-
plituhedron.

20.2.3. Suppose m ≥ 2 is even. Suppose that I satisfies the evenness
condition and Z is positive. Suppose [n] \ I = J1 � J2 � · · · � Jt is a de-
composition into disjoint cyclic intervals. For each t-tuple (k1, k2, . . . , kt) of
nonnegative integers satisfying ki ≤ |Ji| and k1+k2+· · ·+kt = k−1, we have
a positroid variety Πf(k1,k2,...,kt)

satisfying the rank conditions rank(Ji) ≤ ki.

Clearly Πf(k1,k2,...,kt)
⊂ A, where A is given by (34).

We conjecture that the geometric facet P ∩ {Δ(Y, ZI) = 0} is the
union of the Grassmann polytopes Z(Πf(k1,k2,...,kt),≥0) together with lower-

dimensional Grassmann polytopes.

20.3. A degree-two facet. The facets of Proposition 20.3 are all linear
facets. However, Grassmann polytopes can have higher degree facets. This
is not surprising since in Section 19 we already gave many examples of
amplituhedron varieties which were cut out by higher degree polynomials.

Take k = 2, r = 5, n = 6, and consider P = Z(Πf,≥0) where f = [3, 5,
4, 7, 6, 8] ∈ B(2, 6). Consider p = F(τ,∅) ∈ R(3, 6)2, where τ = {(1, 6), (2, 3),
(4, 5)}. We claim that ψ(p) is a global geometric facet of P . By Example 19.6
and Proposition 19.2, we know that {ψ(p) = 0} contains Z(Πg,≥0) where
g = [2, 5, 4, 7, 6, 9] ∈ B(2, 6). Furthermore dim(Z(Πg,≥0)) = dim(P )− 1.

We then check that p has a fixed sign on the following set of matrices:⎡
⎣ 1 α1 + α6 α3α5 α3α4 0 0
0 1 α5 α4 α2 α1

β1 −β2 β3 −β4 β5 −β6

⎤
⎦ ,
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for positive α and β. The top two rows parametrize Πf,>0, and the bottom
row runs through Gr(1, 6)≥0,τ . By Lemma 20.2, it follows that ψ(p) takes a
fixed sign on Z(Πf,≥0).

21. Canonical form

In Section 13, we defined a canonical rational differential form ωf of top
degree on Πf . In this section, we define the canonical form ωZ(Πf ).

21.1. Traces. Suppose f : X → Y is a proper, surjective morphism
of smooth complex algebraic varieties of the same dimension. We want to
define the trace, or pushforward, f∗ω of a rational differential form ω on X.

We first describe the construction complex analytically. Away from a
hypersurface D ⊂ Y , the map f is a finite unramified covering map. For
sufficiently small neighborhoods U ⊂ Y \ D, we have f−1(U) = V1 � V2 �
· · · � Vd is a disjoint union, and f : Vi → U is a holomorphic map with
holomorphic inverse gi : U → Vi. We then define

f∗ω|U := g∗1ω + g∗2ω + · · ·+ g∗dω.

This defines f∗ω on Y \D, and the form extends to a meromorphic form onY .
The algebraic version of the construction is as follows. The map f : X →

Y restricts to an étale morphism f−1(W ) → W for a Zariski-open subset
W ⊂ Y . We assume that W = Spec(A) and f−1(W ) = Spec(B) are affine,
and the map φ : A → B is étale. Let K = Frac(A) and L = Frac(B).
The inclusion K ⊂ L is a finite field extension, and has a well-defined trace
map Tr : L → K. Let Ωp

B/C ⊗B L (resp. Ωp
A/C ⊗A K) be the module of

rational Kähler differential p-forms on B (resp. A). By the definition of
étale morphism, we have Ωp

B/C � Ωp
A/C ⊗A B, and we obtain a map

Tr : Ωp
B/C ⊗B L � Ωp

A/C ⊗A L → Ωp
A/C ⊗A K

by using the trace map Tr : L → K. In this way, a rational differential form
on X gives a rational differential form on W , and hence also on Y .

We shall need the following result [KeRo, Proposition 2.5] saying that
pushforward commutes with residues.

Proposition 21.1. Let f : X → Y be a proper, surjective morphism of
complex algebraic varieties of the same dimension n. Let ω be a rational dif-
ferential form with only poles of the first order along a smooth hypersurface
V in X. Suppose Vo = f(V ) is a smooth hypersurface in Y . Then f∗ω has
first order poles on Vo and

ResVo(f∗ω) = f̄∗ResV (ω),

where f̄ : V → Vo is the restriction of f .

21.2. Canonical form. We now define a canonical form ωZ(Πf ) on

Z(Πf ). Let Z : Πf ��� Z(Πf ) be the rational map defining Z(Πf ). If
dim(Z(Πf )) < dimΠf , we declare ωZ(Πf ) = 0.
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Otherwise, dim(Z(Πf )) = dimΠf and in particular Πf \ EZ is Zariski-
open and dense in Πf . We define ωZ(Πf ) using the graph construction, as
follows. Let

Πf := {(X,ZGr(X)) | X ∈ Πf \EZ} ⊆ Gr(k, n)×Gr(k, r)

be the closure of the graph of ZGr : Πf \EZ → Gr(k, r). We have a natural

birational morphism Πf ��� Πf allowing us to pullback ωf to a rational

differential form ω̄f on Πf . The morphism Z : Πf → Z(Πf ) is induced by

the projection Gr(k, n) × Gr(k, r) and is thus proper. We can restrict Z
to a proper surjective morphism Z|U : U → W where both U ⊂ Πf and
W ⊂ Z(Πf ) are smooth. We then define ωZ(Πf ) to be the pushforward of ω̄f

(extended to Z(Πf ) under the map Z|U : U → W .

21.3. Poles and zeroes of the canonical form. We would like to
investigate the poles and zeroes of ωZ(Πf ). To simplify the discussion, we

shall assume that Z(Πf ) is a normal variety. In fact, we make the following
conjecture.

Conjecture 21.2. Suppose Z is generic and dim(Z(Πf )) = dimΠf .
Then the amplituhedron variety Yf = Z(Πf ) is projectively normal.

By Theorem 9.5, Conjecture 21.2 holds for positroid varieties themselves.
Also Conjecture 21.2 obviously holds when Yf = Gr(k, r), which is the most
important case in the construction of the amplituhedron form (see Section
22).

We assume dim(Z(Πf )) = dimΠf and Z(Πf ) is a normal variety from
now on. Suppose that g � f so that Πg is a codimension one subvariety in
Πf . Suppose also that dim(Z(Πg)) = dimΠg. Combining Proposition 21.1
and the fact that ResΠgωf = ωg (Theorem 13.2) we see that

(36) ResZ(Πg)(ωZ(Πf )) = ωZ(Πg).

We know that ωf has no zeroes and only poles along the Πg. Equation
(36) says that ωZ(Πf ) has simple poles along each of the codimension one

subvarieties Z(Πg). So we are led to the question: what are the other poles
and zeroes of ωZ(Πf )?

It is easy to see that we should expect that in general ωZ(Πf ) does have

zeroes. For example, the anticanonical divisor of Gr(k, r) is r times the hy-
perplane class. However, there are some f ∈ B(k, n) such that Yf = Gr(k, r)
where Πf has poles along more than r divisors Πg (and the corresponding Yg
do produce poles for ωYf

). So ωYf
must have zeroes to compensate for this.

Let d be the degree of the map Πf ��� Z(Πf ). We assume that d = 1.
Then the map ZGr : Πf \ EZ → Z(Πf ) is a morphism that is birational.
Let W ⊂ Z(Πf ) denote the image ZGr(Πf \ EZ). In this case, we suspect
(possibly requiring a genericity condition on Z) that the poles and zeroes of
ωZ(Πf ) are supported on Z(Πf ) \ W . Furthermore, in simple cases, ωZ(Πf )
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only has poles along Z(Πg)’s and the only zeroes are supported on Z(Πf )\W .
We make the following rather speculative conjecture.

Conjecture 21.3. Suppose Z is generic, d = 1, and dim(Z(Πf )) =
dim(Πf ). Then ωZ(Πf ) has (simple) poles only along the codimension one

subvarieties Z(Πg), and all the zeroes of ωZ(Πf ) lie in Z(Πf )\ZGr(Πf \EZ).

We expect that the zeroes along Z(Πf )\W roughly correspond to zeroes
acquired when pulling back ωf under a blowup of EZ ∩Πf ⊂ Πf .

When d > 1, we may have to further consider the behavior along the
ramification locus.

21.4. An example. We explicitly compute the canonical form ωYf
for

f = [2547] ∈ B(2, 4). This example continues the study of the variety C in
Section 17.3. The boundary ∂Πf consists of four codimension one positroid
varieties. Let us describe these positroid varieties in terms of lines in three-
space. Let q1, q2, q3, q4 be the images of e1, e2, e3, e4. Let Πi be the locus of
lines passing through qi and the line L12 if i /∈ {1, 2} or L13 if i /∈ {3, 4}.
Then Π1,Π2,Π3,Π4 are our four boundary positroid varieties, and each one
is isomorphic to P1.

Let q′i be the projection of qi onto H0. We assume that the qi are distinct
from p, that q′i are distinct from each other, and that they are distinct from
x0 as well. The image of ZGr(Πi) = Yi is the locus of lines in H0 passing
through q′i. In particular, each Πi is mapped isomorphically onto Yi. Since
ωΠf

had simple poles along Πi, the meromorphic form ωYf
also has simple

poles along Yi. (Note that a dense open subset of Yi belongs to the open
subset of Gr(2, 3) over which the map ZGr : (C \ EZ) → Gr(2, 3) is an
isomorphism.)

The anticanonical divisor of Gr(2, 3) is three times the hyperplane class
(and each Yi represents such a class). Thus ωYf

must have a zero some-
where. We claim that it has a simple zero along the divisor D ⊂ Gr(2, 3)
corresponding to the locus of lines that pass through x0. This divisor D is
the complement Z(Πf )\ZGr(Πf \EZ) appearing in Conjecture 21.3. Indeed,
since ZGr is an isomorphism away from D, and ωΠf

has no zeroes, the any
extra poles and zeroes of ωYf

must be supported on D. Considering the class
of the canonical divisor of Gr(2, 3) we see that it must have a simple zero
along D. This confirms Conjecture 21.3 in this case.

Let us check this directly using local coordinates. Parametrize a dense
subset of C as the space of matrices of the form[

1 a 0 0
0 0 1 b

]
.

Then we have ωΠf
= dlog a ∧ dlog b. Then Y = X · Z is represented by the

matrix [
1 0 u
0 1 v

]
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where

a = −det(Y, Z1)

det(Y, Z2)
=

−uz1,1 − vz1,2 + z1,3
uz2,1 + vz2,2 − z2,3

,

b = −det(Y, Z3)

det(Y, Z4)
=

−uz3,1 − vz3,2 + z3,3
uz4,1 + vz4,2 − z4,3

.

We have da ∧ db = J(u, v)du ∧ dv where

J(u, v) = det

⎡
⎢⎣
∂a

∂u

∂a

∂v
∂b

∂u

∂b

∂v

⎤
⎥⎦ .

Substituting, we get

ωYf
=

f(u, v)

det(Y, Z1) det(Y, Z2) det(Y, Z3) det(Y, Z4)
du ∧ dv

where f(u, v) is of the form αu+βv− γ. Note that det(Y, Zi) = 0 is exactly
the equation that cuts out the locus Yi ⊂ Gr(2, 4) of lines that pass through
q′i. A brute force calculation shows that the vector x = (α, β, γ) satisfies
det(Z1, Z2, x) = det(Z3, Z4, x) = 0. In other words, the condition f(u, v) = 0

cuts out the locus of lines L ⊂ H0 that pass through the intersection of q′1q
′
2

and q′3q
′
4. This intersection is the divisor D of lines passing through x0. So

ωYf
has a simple zero along D, as claimed.
Finally, we can check that there are no poles or zeroes at infinity

(in the u, v coordinates). For this, we just note that the degree of
det(Y, Z1) det(Y, Z2) det(Y, Z3) det(Y, Z4) is three more than the degree of
f(u, v) as polynomials in either u, or v.

22. Triangulations of Grassmann polytopes

In this section, we return to the situation that Z is a real matrix. We
aim to make contact with the motivating work [ArTr13a] by informally
discussing triangulations of Grassmann polytopes.

22.1. The canonical form of a Grassmann polytope. In the fol-
lowing conjecture, “triangulation” and “facets” are in quotation marks be-
cause we have not given a complete definition of either notion. Let P =
Z(Πf,≥0) be a Grassmann polytope.

Conjecture 22.1. There is a canonical rational differential top form
ωP on Z(Πh) = P , uniquely defined up to sign, with the following properties:

(1) ωP has simple poles along the Zariski-closure F of each of its “facets”
F , and no other poles;

(2) for any “facet” F of P , with F =
⋃

i Pi a union of Grassmann
polytopes, we have ResF (ωP ) =

∑
i±ωPi ;

(3) if T is a “triangulation” of P , then ωP =
∑

f∈T ±ωZ(Πf ).
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This conjecture is the natural extension to Grassmann polytopes of
the conjecture of [ArTr13a] for the amplituhedron. In the case that P =
Z(Πh,≥0) and h ∈ GZ is a base, part (1) is closely related to Conjecture 21.3.

Remark 22.2. Conjecture 22.1 reflects two philosophies common in the
theory of scattering amplitudes (see Section 23). (1) The amplitude Atree

k,n is
uniquely determined by its poles, together with the factorization properties at
these poles; this is analogous to a polytope being determined by its facets. (2)
The amplitude can be written as a sum of certain simpler functions in many
different ways; this is analogous to a polytope having many triangulations.

Let us give an argument that ωP should be unique once all ωPi and
all signs have been fixed. Suppose ωP and ω′

P only have simple poles along
its facets, and ResF (ωP ) = ResF (ω

′
P ) for each facet F . Then the difference

ωP − ω′
P has no poles anywhere, because the only possible poles are simple

poles along facets F , and the residue along each facet F is 0. Now, assuming
that it is a normal variety (see Conjecture 21.2), Z(Πh) is a unirational
projective variety, and it does not have holomorphic canonical sections, so
we conclude that ωP − ω′

P = 0.

22.2. The polytope form. A rational differential form ωP satisfying
Conjecture 22.1 does indeed exist for a polytope P , with the usual notions
of triangulation and facets. I like to think of this rational differential form
as the Laplace transform of the characteristic function of the dual polytope.
This form has been studied by physicists in [ArTr13a, AHT], and in a
different language by mathematicians for example in [BaTs, Fil].

It is simpler to first construct a rational differential form on Rr. Let
C ⊂ Rr be the pointed polyhedral cone spanned by the rows of Z, and let
x1, . . . , xr be coordinates on Rr. Let C∗ ⊂ (Rr)∗ be the dual (or polar) cone
and let y1, . . . , yr be coordinates on (Rr)∗. Define

ωC(x1, . . . , xr) :=

(∫
C∗

e−〈x,y〉dy1 ∧ dy2 ∧ · · · dyr
)
dx1 ∧ dx2 · · · ∧ dxr,

for (x1, x2, . . . , xr) in the interior of C, and extend to a rational differential
form on Rr. That this is naturally a differential form rather than a rational
function reflects the fact that the Laplace transform depends on a choice of
measure on (Rr)∗. Indeed, there is a general theory of Laplace transforms
of piece-wise linear functions giving rational forms; see Brion and Vergne
[BrVe] for a discussion of these ideas.

Let P ⊂ Pr−1 be the projective polytope that is the image of C ⊂ Rr.
The differential form ωC can be written as q(x1, x2, . . . , xr)

dx1
x1

∧· · ·∧ dxr
xr

for a rational function q homogeneous of degree 0. It gives a differential
form ωP on Pr−1: on the affine chart where x1 = 1, we have ωP = q(1, x2,

. . . , xr)
dx2
x2

∧ · · · ∧ dxr
xr

, and this does not depend on the choice of chart.

Theorem 22.3. With the usual notion of facets and triangulations, Con-
jecture 22.1 holds for polytopes with this canonical form ωP .



142 T. LAM

The canonical polytope form ωP will be discussed in some detail in up-
coming joint work with Arkani-Hamed and Bai [ABL], where many further
properties of the form will be given.

We remark that Part (1) of Conjecture 22.1 for polytopes follows from
the results of [BrVe], and Part (3) of Conjecture 22.1 is essentially [Fil,
Theorem 1]. Also, the rational form ωC(x1, . . . , xr) is called a X -function in
[BaTs], where it is defined as a rational function instead.

22.3. Geometric triangulations. We now discuss a number of pos-
sible notions of triangulations of Grassmann polytopes, starting with the
analogue of the most familiar notion of triangulation for point sets.

Let P = Z(Πh,≥0) be a Grassmann polytope. When we discuss trian-
gulations of P , the matrix Z is itself part of the data. For example, when
k = 1, some of the vectors zi may be in the interior of P , but can be used
in a triangulation. Let GZ denote the Grassmann matroid of Z.

A maximal cell (of P ) is an independent set f ∈ T such that f ≤ h and
dim(Z(Πf,≥0)) = dim(P ).

Conjecture 22.4. Let P be a nonempty Grassmann polytope. Then P
has a maximal cell.

I expect Conjecture 22.4 is easy to see when Z is generic.
Let f ∈ I(GZ) be an independent set. A face of f is an independent set

g ∈ I(GZ) such that g ≤ f in B̂(k, n). We say that two independent sets
f, f ′ intersect properly if the intersection Z(Πf,≥0) ∩ Z(Πf ′,≥0) is a union⋃

g∈I(GZ) Z(Πg,≥0) where each g is a face of both f and f ′. When k = 1, a

convex union of faces will always be a face and this is closely related to the
fact that the boolean poset is a lattice.

A geometric simplicial triangulation of P is a collection T ⊂ B̂(k, n) of
maximal cells of GZ satisfying the following conditions:

(1) We have P =
⋃

f∈T Z(Πf,≥0).

(2) For distinct f, f ′ ∈ T , the two maximal cells f, f ′ intersect properly.

This is the usual definition of a triangulation of a point configuration. Un-
fortunately, the methods that we have developed in Section 17 and Section
18 do not give us a consistent way to check either condition.

22.4. Combinatorial triangulations. It is desirable to have a more
combinatorial, and less geometric/semi-algebraic way to check if T is a tri-
angulation. For triangulations of point configurations, there are a number of
such possibilities, many of which are formulated using the language of ori-
ented matroids. We use some of that language below, but will not develop
a Grassmann analogue of oriented matroids [BLSWZ]. We refer the reader
to the book [dLRS] for background on triangulations.

An independent set f ∈ I(MZ) with dim(Z(Πf,≥0)) = dim(P ) − 1 is
called a facet cell of P if Z(Πf,>0) is not contained in the interior of P .
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22.4.1. Pseudomanifold property. We say that a collection T of maxi-
mal cells satisfies the pseudo-manifold property if for every facet cell g of a
maximal cell f ∈ T that is not a facet cell of P , there is another maximal
cell f ′ ∈ T such that g is a facet cell of f ′.

22.4.2. Signed circuits. We would now like to define a signed circuit of
Z. Let us recall the usual notion. For a circuit C = {c1, c2, . . . , ct} ⊂ [n] of
Z, there is a unique up to scalar equality

a1zc1 + a2zc2 + · · · atzct = 0

where a1, a2, . . . , at are all nonzero real numbers. We then obtain a signed
circuit (C+, C−), where C+ ⊂ C (resp. C− ⊂ C) is the set of ci where ai > 0
(resp. ai < 0). So C = C+ � C−. Consider the subsets F ⊂ C with size
|F | = |C| − 1. There are two kinds of these subsets: the ones that contain
the whole of C+ (and all but one element of C−), and the ones that contain
the whole of C− (and all but one element of C+).

Let us try to find such a decomposition for Grassmann polytopes. Recall
that Πf has a canonical form±ωf defined uniquely up to sign. An orientation
of Πf is a choice of one of the two signs for this canonical form. An orientation
ωf of Πf determines an orientation for each Πg where g � f : we choose the
orientation ResΠgωf of Πg. Note that taking residues does not involve any
choices.

Now suppose f is a circuit of GZ . Thus dim(Z(Πf )) = dim(Πf )− 1, and
f is minimal with respect to this property. Fix an orientation ωf of Πf , and
thus obtain orientations ResΠgωf of each Πg. We also obtain a pushforward
orientation ωZ(Πg) = (ZGr)∗(ResΠgωf ). By our assumptions P lies inside a
submanifold of Z(Πh)R that is orientable (Remark 15.4). Let us choose an

orientation top-form ω(P ). So the set {g � f} ⊂ B̂(k, n) can be split into
two subsets

g ∈
{
D+ if ωZ(Πg) is a positive multiple of ω(P ) at a point of Z(Πg,>0),

D− if ωZ(Πg) is a negative multiple of ω(P ) at a point of Z(Πg,>0).

(It is not clear to me if this is well-defined in general, for example, when
Πg ��� Z(Πg) has degree greater than one. But let us proceed as if it were
defined.) We can then define the signed circuit of f as follows: C+ is the
collection of maximal elements of {g′ | g′ ≤ g and g ∈ D+} ⊂ B(k, n), and
similarly for C−. When k = 1, B(1, n) is a lattice, so C± are just single
elements of B(1, n).

Remark 22.5. I expect that the notion of a bistellar flip of a triangu-
lation T is to replace a set of maximal cells D+ by a set of maximal cells
D−, or vice versa. This is closely related to the homological identities of
[ABCGPT].

22.4.3. Definition of combinatorial triangulation. A combinatorial tri-
angulation of P is a collection T of maximal cells with the properties:
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(1) T satisfies the pseudomanifold property, and
(2) there do not exist f, f ′ ∈ T so that C+ ≤ f and C− ≤ f ′ for some

signed circuit (C+, C−).

For k = 1, a combinatorial triangulation in this sense is equivalent to a
geometric simplicial triangulation [dLRS, Chapter 4]. Here, we say C+ ≤ f
if all elements of C+ are less than f . (Though, I must admit I do not have
convincing evidence that this is the correct definition.)

22.5. Homological triangulations. Conjecture 22.1(3) suggests that
it may also be interesting to study a purely homological notion of triangu-
lation.

A homological triangulation of P is a collection T ⊂ I(GZ) of maximal
cells, together with an orientation ωf for each cell f ∈ T , such that

(1) for each facet cell g of P , there is a unique maximal cell f ∈ T so
that g is a facet of f , and

(2) for each facet g of a maximal cell f ∈ T that is not a facet cell of
P , there is a unique other maximal cell f ′ ∈ T with g as a facet,
and the orientations on Z(Πg) induced by ωf and ωf ′ are negatives
of each other.

This is a simpler notion of triangulation, which is certainly not equivalent
to the usual notion. It is, however, much easier to check.

22.6. Momentum-twistor BCFW recursion. Let us suppose now
that Z is positive, r = k + 4, and P = Z(Gr(k, n)≥0) is the amplituhedron.
There is a recursive formula (in fact, many) for the amplituhedron form
ωP as a sum of forms ωZ(Πf ), and it is the conjecture of Arkani-Hamed
and Trnka that these recursive formulae give rise to “triangulations”. We
describe the version of this recursion due to Bai and He [BaHe].

Suppose n ≥ k + 4. We shall recursively define collections C(k, n) ⊂
B(k, n) of bounded affine permutations f satisfying dim(Πf ) = 4k, as fol-
lows. First, if n = r = k+4, then we have C(k, k+4) = {fid} consists of the
single bounded affine permutation indexing the top cell of Gr(k, k + 4)≥0.
Suppose C(k′, n′) has been computed for all (k′, n′) where either k′ < k and
n′ ≤ n or k′ ≤ k and n′ < n. Then C(k, n) is the union of all bounded affine
permutations f ∈ B(k, n) where either (1) f = fG is the bounded affine
permutation of the planar bipartite graph G obtained by adding a black
lollipop at n to a reduced planar bipartite graph G(f ′) representing some
f ′ ∈ C(k, n− 1),

G ∼ 1

2

n− 1

n

G(f ′)
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or (2) f = fG is the bounded affine permutation of a planar bipartite graph
G of the form

G ∼ 1

j − 1

j

n− 1

n

G(f2)

G(f1)

where G(f1) (resp. G(f2)) is a reduced planar bipartite graph representing
f1 ∈ C(k1, j) (resp. f2 ∈ C(k2, n−j+2)) for any j ∈ [3, n−2] and nonnegative
integers k1, k2 satisfying k1 + k2 = k − 1. Here, we may have to insert
two-valent white vertices on the boundary edges of G(f1) and G(f2) to
ensure that the resulting graph is bipartite. Also, if the graph G is not
reduced, then (by a face-count argument) it will represent a positroid cell
with dimension less than 4k, and should be ignored. This defines a collection
C(k, n) ⊂ B(k, n) for all n ≥ k + 4.

A basic conjecture of [ArTr13a, BaHe] is that the set C(k, n) gives a
“triangulation” of the amplituhedron.

Example 22.6. Suppose k = 0. Then C(0, n) = B(0, n) consists of just
one element. In the recursion, construction (2) is never used.

Example 22.7. Suppose k = 1. Then in the recursion we always have
k1 = k2 = 0, so for the bounded affine permutations arising from construc-
tion (2), the only choice is the index j ∈ [3, n−2]. The corresponding planar
bipartite graphs G consist of a single interior white vertex connected to the
boundary vertices {1, j − 1, j, n − 1, n} and all other boundary vertices are
connected to black lollipops.

This recursion gives rise to a triangulation of the four-dimensional cyclic
polytope (inside Gr(1, 5) = P4) with n vertices. Namely, the triangulation
given by C(1, n) uses the simplices {1, i− 1, i, j − 1, j} for all i, j satisfying
2 < i < j − 1 < n. One can verify that this is a triangulation, for example,
via the work of Rambau [Ram].

23. Scattering amplitudes

In this section, we give an informal discussion (intended to be comple-
mentary to the discussion in Section 1) of the theory of scattering ampli-
tudes intended for someone like myself who has no background in physics.
For a general introduction to scattering amplitudes, the reader is referred to
the books [ElHu, HePl]. For the relation between amplitudes and the to-
tally nonnegative Grassmannian, see the very extensive work [ABCGPT].
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However, we must warn the reader that most of this work is set in “momen-
tum space”, while the amplituhedron only appears to exist in “momentum-
twistor space”. For a discussion of the relation of the two settings see
[EHKLORS, ACCK, MaSk].

There are many other connections of scattering amplitudes with math-
ematics (see for example [DHP, GGSVV]), but we will only discuss the
story directly related to the tree amplituhedron. For recent work on loop
amplituhedra, see [ArTr13b, BaHe, FGMT].

Scattering amplitudes in particle physics are used to compute the proba-
bility that certain particle interactions occur. One starts by picking a quan-
tum field theory, which is usually fixed by writing down a Lagrangian. This
choice amounts to choosing the types of particles that will be studied and
the basic rules for their interaction. Scattering amplitudes correspond to
particle creation/annihilation experiments that occur in an isolated part of
the universe. To define an amplitude, one first decides on the list of say n
particles that will be involved (for example, one photon and one electron
incoming, and one photon and one electron outgoing). The scattering am-
plitude for this scattering process is then a function A(p1, p2, . . . , pn) of the
momenta of the n particles (other data like polarization vectors are often
also involved).

There is a formal expression for the function An = A(p1, p2, . . . , pn) as an
infinite sum of integrals of rational functions. The sum is over an infinite list
of increasingly complicated Feynman diagrams, which are graphs decorated
with some additional data. The integrals are over additional variables called
internal propagators, and the integrand is a function of the momenta pi
and the propagators. There is a formal (but infinite) procedure for writing
down such an expression for the amplitude once one is given the Lagrangian
that defines the quantum field theory. It is a notoriously difficult problem
to make sense (for example, “renormalization”) of these formal expressions
to compute the finite probabilities in particle physics experiments, or other
areas of physics where quantum field theories are used.

The particular quantum field theory relevant to the story of the to-
tally nonnegative Grassmannian and the amplituhedron is called “four-
dimensional super Yang-Mills”. In this theory, the particles to be consid-
ered are light-like particles: the momenta pi are vectors in four-dimensional
space-time that have zero length with respect to the Lorentzian metric.
There is a choice of a gauge group for this theory, which is chosen to be the
group SU(N); this symmetry group corresponds to internal symmetries of
the particles.

We now make two simplifications. There is an expansion

An = Atree
n +A1-loop

n +A2-loop
n + · · ·

whereAtree
n consists of the terms indexed by finitely many Feynman diagrams

that are trees, and these diagrams contribute terms that have no integrals.
We only consider Atree

n . Next, there is a trick called color-ordering that gives
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a formula of the form

Atree
n = (group theory factor)Atree

n ,

so that the answer Atree
n (p1, p2, . . . , pn) depends only on the kinematical data

(the momentum vectors) and not on the choice of gauge group. The group
theory factor is, roughly speaking, a sum over traces Tr(ξa1ξa2 · · · ξan) of
elements ξ ∈ su(N). Because of the cyclicity of the trace of a product of
matrices, the n momenta in Atree

n (p1, p2, . . . , pn) acquire a cyclic-ordering;
and the answer is cyclically symmetric. (Strictly speaking, the function
Atree

n (p1, p2, . . . , pn) that we shall discuss is the amplitude in the planar
sector.)

For me, this cyclicity is the simplest explanation for the mathematical
structures that arise. Planar bipartite graphs have rotational symmetry;
Grassmannians have an action of a cyclic group; rectangular shaped Young-
tableaux have a promotion operator; affine permutations have rotational
symmetry. I expect that the cyclic symmetry for the type A affine Lie algebra
will be playing a role.

It turns out that the formula for Atree
n (p1, p2, . . . , pn) is simplest not as

a rational function in the space-time momentum variables pi, but in terms
of something called spinor-helicity formalism. In these variables, the answer
exhibits an additional symmetry, called dual superconformal symmetry, that
was previously hidden; furthermore, superconformal symmetry and dual su-
per conformal symmetry glue together to give a Yangian algebra of infini-
tesimal symmetries.

When written in “super-momentum-twistor” coordinates, the answer
Atree

n is a function of four bosonic variables z1, z2, z3, z4 (really, a n × 4
matrix) and k fermionic variables η1, η2, . . . , ηk. Here, the fermionic vari-
ables are present because of the choice of the maximally supersymmetric
version of Yang-Mills theory. The supersymmetry gives rise to additional
types of particles in the quantum field theory; the fermionic variables act
as variables in a generating function over possible particle types. The addi-
tional parameter k corresponds (with a shift!) to the total “helicity” of the
particles involved: many different collections of particles have the same to-
tal helicity, and all amplitudes for such experiments are encoded in a single
Atree

k,n (z1, z2, z3, z4, η1, η2, . . . , ηk).
The differential form ωP of Section 22.1 for the case that P is the am-

plituhedron is a rational form ωSYM (Y, Z) where Y ∈ Gr(k, k+ 4) and Z is
a n× (k+ 4) matrix. The rational form is invariant under the simultaneous
action of GL(k+4) on Gr(k, k+4) and Mat(n, k+4). The matrix Z is some
basis of the span of the k + 4 vectors {z1, z2, z3, z4, η1, η2, . . . , ηk}, and the
point Y ∈ Gr(k, k+4) keeps track of the k-dimensional subspace spanned by
the fermionic vectors. In the amplituhedron form, the entire n×(k+4) matrix
is considered bosonic. Furthermore, while the original momentum variables
pi are real vectors, the form ωSYM (Y, Z) should be considered a complex
analytic object. To recover Atree

k,n from ωSYM one performs an integral on
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ωSYM involving delta functions and fermionic variables. This amounts to
a formal, algebraic procedure that produces an expression in the variables
{z1, z2, z3, z4, η1, η2, . . . , ηk}.

Entirely new considerations come into play when discussing the higher-
loop contributions to the amplitude – non-trivial integrals must be per-
formed. Due to my own unfamiliarity with this part of the subject, I will
not attempt to discuss it.
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