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ABSTRACT. We review the progress made recently on the mathematical under-
standing of prototypical stochastic partial differential equations in fluid me-
chanics, including the stochastic Burgers equation, stochastic passive scalar
equations and stochastic Navier-Stokes equation, with particular emphasis on
issues related to the problem of turbulence. Questions addressed include the
existence and uniqueness of invariant measures, construction of the invariant
measures and typical behavior of stationary solutions. Also discussed is the
interplay between regularity and dissipation in the inviscid limit. The concepts
and methods reviewed here include the one force — one solution principle, vari-
ational methods, master equations, generalized flows, reduction to Gibbsian
dynamics, hypoellipticity, etc.
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1. Introduction

The fundamental problem in stochastic hydrodynamics is the problem of tur-
bulence, which is widely regarded as the last unsolved problem in classical physics.
The physical issues are very well summarized in the book of Monin and Yaglom
“Statistical Fluid Mechanics” [86]. The mathematical issues, together with a re-
port on recent progress on the understanding of these issues, are the subject of this.
review.

We start with a physical description of the problem. We are interested in the
dynamics of a viscous fluid governed by the Navier-Stokes equation

(1) w+(u-Vu+Vp=vAu+f
V-u=0

Here u = (ug,u2,us) is the velocity field, p is the pressure, f represents the forcing
on the fluid, v is the viscosity of the fluid. It is helpful to non-dimensionalize the
system (1). Let U, L be the typical velocity and length scale respectively. Define
T= -[Lj, and perform a change of variable x = x'L, t = t'T, u = u'U. Omitting the
primes, we get

@) u + (u-V)u+Vp=Au+f
V-u=0
where Re = UVL is the dimensionless Reynolds number, which is the key parameter

in our problem. We are interested in the situation when Re is very large. Take a
typical car on the highway, we have U= 65 miles/hour = 3000 cm/s, L=length of
the car = 800 cm, v=viscosity of air = 0.132 cm?/s, which gives Re = 1.8 x 107.

In a high Reynolds number flow, the most ubiquitous phenomenon is the pres-
ence of a wide range of length scales and a hierarchy of eddies (swirls, vortices). The
size of the range of scales was estimated by Kolmogorov [59, 60] to be O(Re%Y),
on the assumption that there is a disparity between the length scales at which
energy is supplied to the system, and the scale £; at which energy is dissipated
through viscosity — the viscous cut-off scale. In between these two scales, energy is
transported but not dissipated, resulting in a constant energy flux €. This range is
called the inertial range.

Kolmogorov further postulated that the inertial range properties of a fully
developed turbulent flow is universal. Using a scaling argument, he predicted that

(3) <|u(x +r,t) — u(x,t)]"> ~ Cn}r]%g%

for £; < |r| € L, where C}, should be universal constants, { ) means either time
average or ensemble average over many realizations of the experiment. (3) means
that typical turbulent velocity fields are Holder continuous with exponent 1/3.
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Most notable special cases of (3) are found when n = 2 and 3. When n = 2,
one can represent (3) in Fourier space. Let @1 be the Fourier transform of u, and
E(k) = (X r<ij<rr1 18(K)|*) be the energy spectrum. Then (3) translates to

(4) Ek) = Cpebk™ 3 L7 <k < kg =451

This is the well-known —% spectrum. When n = 3, Kolmogorov derived, from the
Navier-Stokes equation, the relation

(5) (g x4 1,2) = e, 9)°) ~ — 2]

for 4 < |r| € L, assuming that the inertial range properties are homogenous and
isotropic. Here u is the component of the velocity field parallel to r. It is worth
emphasizing that (5) is among the very few results in turbulence theory that are
actually derived from the Navier-Stokes equation.

Kolmogorov’s theory was immediately challenged by Landau [48], who argued
that dissipation processes in turbulence are tied with the non-universal large scales,
hence the small scale inertial range properties cannot be truly universal. In reality,
dissipation is intermittent, dominated by strong but rare events. This means that
there are nontrivial corrections, to a mean-field theory such as Kolmogorov’s due
to fluctuation. Specifically, (3) should be changed to

(6) <|u(x +1,t) - u(x, t)|”> ~ CpL3~0n|r|on g}

u is said to have multi-fractal scaling if «, is not linear in n. Work on such
intermittency corrections has been a central theme in modern turbulence theory
[3, 4, 20, 48, 61].

We now turn to the mathematical formulation of the problem. To begin with,
we have to understand the sense of averaging, the bracket { ). Since a turbulent
flow is intrinsically unstable and stochastic — a small perturbation in the initial data
leads to large differences in the solution, it is natural to use a statistical description.
Therefore we will be interested in statistical steady states, the invariant measures of
the Navier-Stokes equation (2). We can now formulate the mathematical questions
as follows.

1. The existence and uniqueness of an invariant measure for the dynamics
of (2), for both finite and infinite Reynolds numbers. The existence of an
invariant measure at infinite Reynolds number ensures that there is sufficient
dissipation in the system even in the limit of zero viscosity. Uniqueness
guarantees that the dynamics is ergodic in the phase space, as is commonly
assumed in turbulence theory.

2. Let po be the invariant measure of (2) at infinite Reynolds number. We
can then study the regularities of the statistically stationary solutions. In
particular, we can study the decay of their energy spectrum.

At the present time, neither question is answered. Worse than that, we still
face the well-known problem that uniqueness of solutions to the three-dimensional
Navier-Stokes equation is still yet to be proved, leaving us with no starting point
to address these questions.

However, it is important to realize that, from a physical viewpoint, the prob-
lem of hydrodynamic turbulence is just one of many problems exhibiting turbulent
behavior, e.g. a wide range of active scales, slow algebraic decay of the energy
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spectrum, intermittent dissipation processes, etc. The mathematical issues dis-
cussed above are equally important in these problems. A list of such “generalized
turbulence problems” include:

1. Two-dimensional hydrodynamic turbulence.
Wave turbulence.

Shell models of turbulence.

Burgers turbulence.

Turbulent transport of passive scalars.

G 0N

These problems are closely related to the original turbulence problem and are
expected to be simpler to deal with. There are many more such problems in non-
equilibrium statistical physics outside the traditional areas of hydrodynamics. How-
ever, here we will restrict ourselves to problems in hydrodynamics.

Below we will discuss progress made recently on the problems 1, 4 and 5. Our
basic strategy is to consider the appropriate PDEs under a large scale stochastic
forcing and study the properties of the statistical steady states. For problems 4
and 5, we obtain rather precise descriptions of the small scales. For problem 1, we
prove ergodicity of the dynamics.

Before proceeding further, let us remark on the stochastic setting of our ap-
proach. Traditionally problems in PDEs have been studied using deterministic
methods. However, deterministic methods usually predict the worst-case scenario
and it is awkward to avoid atypical behavior such as starting from an unstable fixed
point. Therefore if our main interest is the typical behavior of solutions of a complex
system in phase space, it is much more advantageous to use a stochastic setting
which provides a natural framework to describe typical behavior of the solutions.
On the other hand, it is important, in a stochastic setting, to distinguish results
that are tied with the randomness in the formulation and those that are intrinsic
properties of the underlying PDEs.

2. Stochastic Burgers Equation
In this section, we consider the Burgers equation with stochastic forcing

du du 0%u
Besides being a prototype for nonlinear waves, (7) is also a canonical example in
non-equilibrium statistical physics. As such, it describes the statistical mechanics
of strings in a random potential. The string is assumed to be directed, i.e. there
exists a time axis such that the position of the string is a single-valued function
over this time axis. Vortex lines in high temperature superconductors [10], charge
density waves [43], directed polymers and stochastic interfaces in 1+ 1 dimensional
SOS models [58] are all examples of such strings. To see this connection, define the
partition function for the configurations of the strings over the time interval [0, ]
assuming that they are pinned at time ¢ at location z:

t
® 2= (o5 [ (FEOP+VE.N) dr)ew = 2),

where 8 = 1/kT, k is the Boltzmann constant, T is the temperature. The averaging
( ) is over all path ¢ such that £(t) = z. The first term in the exponent is the elastic
energy and the second term is the potential energy with V being the potential. The
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associated free energy ¢ = kT log Z satisfies
9]
9) af —1v 2 = kTAp+ V.
In one dimension, let u = Op/0z, we obtain (8) with v = kKT. When V is the
space-time white noise, (9) is the well-known KPZ equation [58].

2.1. Invariant Measures. The existence of an invariant measure for (2) is
only understood so far on finite domains. Consider, for example, (7) on [0, 27] with
periodic boundary condition. We will sometimes identify the domain as S*, the
unit circle. The forcing function can be expressed as:

(10) 33 t dt = Z fk dWL

where the {W;,(-)}’s are independent Wlener processes. We will assume that
O fi C

11 (- 3 1

(1) RO ECSY, 1@< 5

for all k. We will use (Q,F, P) to denote the probability space for the forcing
functions f, and w € §) to denote a typical realization of the force. F; denotes the
o-algebra generated by the forces up to time ¢.

When v = 0, (7) is understood in the weak sense with solutions satisfying the
entropy condition. The precise definition for the random case is given in [30]. In
this case, we write (7) as

u 10 ,
5 T2ae" =
In accordance with the conservative nature of the Burgers equation, we will
assume that the fi’s satisfy Js1 fe(z)dz = 0. Then (12) admits a conservation
law: f g1 u(z,t)dr = [g, u(z,0)dz. Without loss of generality, we will assume
f51 z,t)dz = 0 and restrict ourselves to the space of functions satisfying this
condltlon

A natural phase space for (12) is the Skorohod space D on S* which consists
of functions admitting only discontinuities of the first kind [9]. Let D be the Borel
o-algebra on D. (12) can then be viewed as a Markov process on D with transition
probability

(13) Pulus ) = | xalu,)P(d)
Q
where u € D, A € D, and

(12)

(1 ifSu(tued
(14) Xa(u,w) = { 0 otherwise

Here S, (t) denotes the solution operator of (12) at time ¢ with forcing w.

DEFINITION 1. An invariant measure po(du) of the Markov process (12) is a
measure on (D, D) satisfying

(15) o) = [ Pilu, Aod)
D
for any A € D and any t > 0.

THEOREM 2. [30]. (12) admits a unique invariant measure on the space D.
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The proof of Theorem 2 was based on the following variational characterization
of weak solutions of (12) satisfying the entropy condition. Let ¢ : [t1,t2] — R! be
a Lipschitz continuous curve. Define the action functional

Au® = [ (30 - 32 (ElDE als) ~ Walt) s

(16) + Y frlE(t2)) (Wi(t2) — Wi(t))
k
Then we have for 7 < t,
o £(r)
(17) u(z,t) = 3 g(ltr)liw{AT’t(f) +/O u(z,T)dz}

Minimizers of the functional in (16) satisfy the following Euler-Lagrange equation:
(18) dvy(s) = v(s)ds, dv(s) = ka 5))dWy(s)

Using (17), we can construct solutions of (12) as follows. Fix ¢t. For values of
z such that the minimizer to the functional (16) is unique, say &(-), then u(-,t) is
continuous at z, and u(z,t) = £(t). On the other hand, for values of z such that the
minimizers to the variational problem are not unique, then u(-,t) is discontinuous
at = with w(z+,t) = info{€a(t)} and u(z—,t) = sup,{€a(t)} where {£,} denotes
the family of minimizers of (16) such that &,(t) = =.

This construction is just a reformulation of the method of characteristics for
weak solutions. It is a variational formulation of the backward characteristics de-
fined in [23]. In particular, the Euler-Lagrange equation (18) is nothing but the
equation for the characteristics of (12).

Of particular interest to the construction of the invariant measure is a special
class of minimizers called the one-sided minimizers (OSM).

DEFINITION 3. A piecewise C*-curve € : (—00,0] — S* is a one-sided mini-
mizer if for any Lipschitz continuous § : (—00,0] = S* such that £(0) = £(0) and
& =¢& on (—o0, 7] for some T <0, we have

(19) As0(8) < Aso(9),
for all s < 7. Similarly, we define one-sided minimizers on (—oo,t], for t € RL.

Next we ask the following question: Given (z,t), how many OSMs ¢ exist such
that £(t) = 7 This question is answered by studying the intersection properties of
OSMs. As a general fact in the calculus of variations, two different OSMs cannot
intersect more than once. In other words, if &;,&; are two OSMs that there exist
tl,tg S Rl,t1 75 tz, and €1(t1) = fz(tl),fl(tz) = fg(tz), then 61 = 52 on their
common domain of definition [80]. However, more is true in the random case. If
& and & are two different OSMs, such that & (s) = &2(s) for some s, then neither
& nor &3 can be extended as an OSM beyond the interval (—oo, s]. This is because
that in the random case, two OSMs always have an effective intersection at t = —o0.
The precise formulation of this property is given in [30].

These intersection properties have far-reaching consequences. Let us fix ¢ = 0.
By considering the image of all OSMs at ¢t = —1, it is easy to see that the set

I, = {z € S* : there exist more than one OSM ¢ such that £(0) = =},
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can at most be a countable set for almost all w € 2. Therefore we can define:
(20) uy(z,0) = £(0),

where ¢ is the OSM such that £(0) = z. u,(-,0) is a well-defined function in L*°(S*)
for almost all w.

Similar construction can be carried out for any ¢ € R which defines u,(-,1).
Furthermore it is easy to conclude from the variational principle (17) that

(21) Uw(wt) :Sw(t)uw('ao)y

for t > 0. In other words, u, is a solution of (12). This is a special solution of
(12) for the given realization of the force w. This construction is an example of the
so-called “one force, one solution” principle, namely for almost every realization
of the force, we can associate one and only one special solution to that force. In
other words, the random attractor consists of one and only one trajectory. It is
straightforward to check that the distribution of the mapping:

(22) Dy :w — uy(+,0),

is an invariant measure for (12). Moreover ® satisfies the invariance principle:
(23) Do (f:w) = S (t)@o(w)

Therefore we have

THEOREM 4. [30]. There ezists an invariant mapping {®o} : @ = D satisfying
(23). Furthermore the invariant measure po is the distribution of ®o.

Theorem 4 states that the statistically stationary solutions are functionals of
the forcing. Uniqueness of the invariant measure follows from the fact that the
OSMs are largely unique.

It is shown in [93, 94] that for v > 0, (12) also admits a unique invariant.
mapping ®4 whose distribution is the unique invariant measure for (12), denoted
by p,. We have

THEOREM 5. [30].

(24) Pg(w) = Po(w),
in L}(SY) for almost every w € Q. Consequently
(25) Hy = Ho,
weakly.

We remark that (24), (25) are a different kind of convergence statement from
standard theorems on zero-viscosity limits of (12) studied in the PDE literature
[95, 97]. There we are given a sequence of initial data that converge in the inviscid
limit, and we ask whether convergence still holds at later times. Here we are
not given any initial data, and we proceed to establish convergence with the only
information that the solutions are defined for all t € R! in a special way using the
OSMs. Consequently the techniques used to prove Theorem & are very different
from the ones used in the PDE literature to study inviscid limits. See [30].

Our next task is to characterize the statistically stationary solutions. This
requires a non-degeneracy condition to the effect that the process (18) starting at
any ¢ € S' is transitive on S'. This condition is generically satisfied. However
it is violated if the sum in (10) contains only one term. We refer to [30] for a
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detailed formulation and examination of this condition. Under this non-degeneracy
condition, we have

THEOREM 6. [30]. For almost all w, u, satisfies the following:

1. There ezists a unique two-sided minimizer (TSM, defined below) y,, : R —
St which is a characteristic of (12) associated with the solution u..

2. There exists a unique so-called main shock v, : R* — S, which is a contin-

uous shock curve defined for all t € R*.

The TSM is a hyperbolic trajectory for the dynamical systems (18).

4. For any t € RY, there exist global stable and unstable manifolds associated
with y, at time t, denoted by W2(t) and WY(t) respectively, on the phase
space S x RL.

5. The graph of u,(-,t) is a subset of WX(t).

w

As a corollary, we have that for each fixed ¢, u, is almost surely a piecewise
smooth function.

DEFINITION 7. A piecewise C-curve ¢ : (=00, +00) — St is a two-sided min-
imizer if for any Lipschitz continuous £ : (=00, +00) — St such that £ = ¢ away
from a compact set, we have

(26) A-s,5(8) < A s(6),

for large enough s.

The possibility of establishing hyperbolicity of TSMs in the random case comes
from the following:

Basic CoLLisioN LEMMA 8. Assuming that the non-degeneracy condition holds.
Then there exists a constant py, depending only on the {fi}’s, with the following
property: Given an arbitrary pair of points (x1,z2) € [0,1]? at t = 0 whose positions
are Fo-measurable,

(27) P{z1,z5 merge before t =1} > pq.

Heuristically two points merge before ¢t = 1 if the forward characteristics em-
anating from them intersect before ¢ = 1. This of course depends on the forces as
well as the solution at ¢t = 0. The lemma states that independent of the solution
at ¢t = 0, one can always find a set of forces with positive measure under which the
two points merge.

The proof of the Basic Collision Lemma relies on PDE techniques and is given
in the Appendix D of [30].

The Basic Collision Lemma provides the mechanism for the origin of the hyper-
bolicity. In particular, the uniqueness of the TSM and the main shock is a simple
consequence of the Basic Collision Lemma.

The regularity and structural properties described here are used in [29, 34, 35]
to study the statistical behavior of the Burgers equation. A summary of these
results is given below.

2.2. Statistical Theory. We now address the questions frequently asked in
the physics literature regarding (12), building upon the regularity results described
in §2.1. Since we have established the existence of p which is the statistical steady
state at the inviscid limit, we can restrict our attention to this case. We warn the
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reader that some of the results described in this section are not fully rigorously
proved. This section is a summary of [34, 35]
We will denote by B the spatial correlation function of the forcing:

(f(z,t)f(y,s)) = 2B(z — y)é(t — s)
2.2.1. Structure Functions. The fact that u,, is piecewise smooth implies easily
that

@ i = (e =) = DL o

where p is the number density of the shocks, which is finite from the results described
earlier, s is the jump across the shocks, £ is the regular part of the velocity gradient:

(29) D (e t) = €(at) + 3 s(u 050 — 3),
J

with £(-,t) € L*(S1).

If we write Sp(r) = Cpro», forr < 1, then o, = pfor 0 <p < 1,and ap = 1, for
p > 1. This is a reflection of the fact that as far as regularity is concerned, almost
everywhere the solution is either Lipschitz continuous or discontinuous. The linear
part in the graph of a,, probes the Lipschitz continuous part of the solution. The flat
part probes the discontinuous part of the solution. Such a situation is sometimes
referred to as “bifractal”.

2.2.2. Velocity Gradient PDF. More difficult are the questions of probability
density functions (PDFs) for quantities such as u, du/0z and du(z,t) = u(z +
y,t) — u(y,t). In particular, the PDF of £ = du/8z (suitably defined), Q(¢), has
attracted a lot of attention in recent years. In the inviscid limit, it is agreed that
Q(&) has the behavior

Cf"‘|£‘|_a as § — —09,
(30) Q(e) ~ o
CpPe=8 /BB as & — +oo.
where C_,C,. are constants, By = —B,;(0). But many different values of o and 3

have been proposed (see [35] for a review).

A priori, there is even an issue how to define Q). In the inviscid limit one can
define the PDF for the velocity divided difference (u(y + 6,t) — u(y,t))/8, Q°(£,t)
and then take the limit as § = 0. An alternative is to first define the PDF of Ou/dx
for the viscous problem, call it Q¥ (¢,t), and then take the limit as v — O:

(3) Qe =lm Q" (€1, Q&Y = lim Q°(&,0).

While a fully rigorous proof was not constructed, [35] presented strong evidence
that for the case studied here,

(32) Q=Q.

Below we will concentrate on Q.
Using the calculus for functions of bounded variation [101], we can derive an

equation for )

0Q 0

T =0+ 5 (€Q) + B

9*Q

(33) e

+F(¢:1),
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where
0

(34) Fe=p[ sVis60ds<o
Here V(s,&,t) = Vi.(s,&,1)+V-(s,,t), Vi (s, &4, t) are the PDFs of (s(y, 1), £x(y, 1) =
Ou(y=+,t)/dy) conditional on y being a shock position. This equation should be
compared with the equation for Q”:

Q" . 92Qv o 1)0%
— . = v . v B oy _ > v

o =@ g e QN+ B V8§(<8332‘5>Q ),
where (9%¢/0x2|€) is the ensemble-average of 92¢/0x? conditional on £. We see
that

(35)

8 /0%
Fiet = -t (25000,
(& 1) 313%”65 52 (€)@
Even though we are primarily interested in statistical steady states, we have written

down the master equations for the more general case including transients.
Integrating (33), we get

(36) % | Qends = ©+oto) =0.
Consequently
(37) tim [ @ (enac # [ cotenas

since the left hand side vanishes due to homogeneity.
Even though (33) is not a closed equation since the form of F' is unknown, we
can already obtain from it non-trivial information. As an example, we have

(38) lim [67Q(6,6) =0,

[€l—=+

i.e. Q decays faster than |£]72 as £ - —cc.
This result rules out all the proposed value of a except that of [28] which gives
a=17/2.
(38) is obtained by combining (36) together with the following:
1. Take the first moment of (33) gives
d  [e3]Fe P
—(6) = [ QIT% + B((s62) + (s64))-
2. Along the shock, we have

%(p(s)) = —g((sé_) + <SE+>)7

which is a consequence of the equations for the dynamics of the shocks.
3. By the definition of F,

| R e = 5((6) + (564,

It can also be shown that éF(€,t) is absolutely integrable on R! for all ¢.
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2.2.3. Asymptotics for the Statistical Stationary State. In statistical steady
state, (33) becomes

d
(39) £Q + 3—5—(6262) + B

This is a second order ODE with an inhomogeneous term F. We can write the
general solutions of (39) as

(40) Q =Qs +C1Q1 + C2Qq,

d?Q

where @; and Q- are two linearly independent solutions of the homogeneous equa-
tion, and Qy is a particular solution. For example, we can take:

(41) Q1(6) = e b,
B ,

(12) Q@ =1-4— [ eevar,
(43) Qul6) = — / e - / | N

=5/ ¢ . ,
where

—_— 53 —_ E £ ’ 1 !

(44) A= g G(€)~F(§)+—B~l/~md£ EF(E).

2.2.4. Bounds from Realizability Constraints. Using the realizability constraint
Q € L*(RY), @ > 0, we can show that

(45) Q=Qs,

and

(46) lim £ 2eAF(€) =0.
£—+o0

Indeed, starting from Q = Qs + C1 Q1 + C2Q2, we have:

1. Qs € L'(RY), Q2 € L*(RY), but Q1 ¢ L*(R!). Therefore C; must be zero.

2. As |¢] = +o00, |Q2] > |Qs], but Q2 > 0as & = —o0, and Q2 < 0 as § — +o00.
Therefore Cy must be zero.

3. As € = +00, Qs > 0, iff (46) holds.

These statements can be established by evaluating ()o,()s using Laplace’s
method. We arrive at:

(47) Q&) ~ { €172 [ € F (€N e as £ & —o0,

Cite ™ as & — +o0.

Once again, we obtain (38). Furthermore we get § = 1 in (30).



120 WEINAN E

2.2.5. The Ezponent 7/2. Let W (s, &4, €—,z,t) be the PDF of

(u(y + iL”,t) - u(y - x,t),f(y + -T»t),é(y - x:t)):

condition on y being a shock location. Then

(49) Vils,6e0) = [ Wis,60,6-.0,0des
W satisfies an equation of the form [35]

ow
(49) ke oW + S,

where O is a differential operator in z, s, £+, S is a source term accounting for
shock creation and collision. Information on the source term S can be obtained
using local analysis around shock creation and collision points. Upon using this
information in (48), we get:

(50) F(&) ~ClE™™? ast— —oo,
Therefore
§
(51) Q) ~ 1€ / ER(E)dE = C_[g 2 as€ - —oo.

which confirms the prediction of [29].

The analysis in [35] that accomplishes this last step is quite involved. The
result of that is a confirmation of the geometric picture proposed in [29], namely
the leading order contribution to the left tail of @ comes from the boundary of the
set of the shocks, here the points of shock creation. This geometric picture may
have interesting consequences in higher dimension. The analysis in [35] is also a
success in working with the master equation without making closure assumptions.
In a sense closure in [35] is achieved through dimension reduction. The PDF of ¢
is first expressed in terms of the lower dimensional dissipative structures, here the
shocks. The PDF for the shocks and the shock environment is further expressed in
terms of the singular structures on the shocks, namely the points of shock creation
and collision, which are then amenable to local analysis. Clearly this approach
should be applicable to high dimensions and should yield more interesting results.

As we mentioned earlier, the value of @ has been a point of controversy for
sometime. Using operator product expansion, Polyakov [90] suggested the value
a= % Boldyrev [11] extended Polyakov’s analysis and suggested that « should
be in the interval [2, 3]. The value of & = 3 was obtained by Gotoh and Kraichnan
[52] who argued that the dissipation term can be neglected in the tails of the PDF.
Other values of a are proposed in [12]. E, Khanin, Mazel and Sinai [29] suggested
the value o = % by arguing that the dominant contribution comes from the region
near the points of shock creation. Very strong analytical support to this result
was given in [34, 35]. Numerical verification was hindered by the fact that most
numerical schemes contain too much numerical viscosity which pollutes the tails of
the PDF. Using an innovative Lagrangian approach, Bec was finally able to obtain
clean numerical results which give overwhelming support to the value a = % [7, 6].
However, we should remark that even though the prediction for the value of a in
[90] is likely to be incorrect, the master equation approach initiated there may have
strong impact in the field of turbulence theory.
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2.3. Stochastic Hamilton-Jacobi Equation in High Dimensions. Here
we briefly summarize the work of Iturriaga and Khanin [55] which extends some of
the results in [30] to high dimensions. The most natural setting is in the context
of stochastically forced Hamilton-Jacobi equations on a d-dimensional torus T¢ =
R? /7%

(52) et IV + Pk, =0

where F“(x,t) = E,{,V:l Fi(x)Wy(t), and {Wy(t)} are independent white-noises. If
we let u = Vi, then formally we obtain the d-dimensional Burgers system for u:

(53) u + (u-V)u+ VF(x,t) =0

This connection can be made rigorous if we add a viscous term. However this
only gives irrotational solutions of (53). In principle (53) can have solutions which
are not in the form of u = Vi and these solutions may have entirely different
properties.

The proper notion of weak solutions is that of the viscosity solution which can
also be constructed via the variational principle [75]:

plx,t) = inf (p(7(0),0) + AF (7))

where .
2= [ (3307 - ) dr

and the infimum is taken overall absolutely continuous curves « on [0,#] such that
~(t) = x. Here as in §2.1 we have restricted our attention to solutions that satisfy
Jrau(x,t)dz = 0, but extension to the general case of Jpau(x,t)dz = b # 0 is
straightforward (see [55]).

As in the one dimensional case, one can define the notion of OSMs and TSMs
(also called global minimizers). The existence of a unique invariant measure can be
proved by studying OSMs (see [55]).

The next natural question is the uniqueness and hyperbolicity of the TSM. In
this context, we have

THEOREM 9. [55]. Assume that the mapping
(Fr (), Fn () : T - RY

is an embedding. Then for almost all w there exists a unique two-sided minimizer
for the action AY.

The issue of hyperbolicity still remains open.

This theory is intimately related to the theory of homogenization for Hamilton-
Jacobi equation [76, 28, 40], especially the connection between the stationary so-
lutions to the Hamilton-Jacobi equation and minimizers of the Lagrangian systems
(the Aubry-Mather theory). In the deterministic context, such a connection has
been exploited in [27, 42, 56].

3. Stochastic Passive Scalar Equation

Consider the transport equation for the scalar field 6*(x,t) in R¢:
00"
ot

(54) + (u(x, t) - V)8* = kAG"
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where u is a given (turbulent) velocity field. (54) is the basic equation describing
the turbulent transport of a scalar field. Even though this problem is linear, it
shares many of the complexities of fully developed turbulence. In the past several
years, remarkable progress has been made on the understanding of the structures of
such scalar fields [2, 19, 50, 51, 92]. Much of this is based on sophisticated field-
theoretic techniques. Here we will discuss the mathematical work on this problem,
drawing mainly from the work in [36].

We will be interested in 6% in the limit as k — 0. It is known from classical
results that if u is Lipschitz continuous in x, then as x — 0, §* converges to 8, the
solution of

09
(55) 5t + (u(x,t) - V)8 = 0.
Furthermore, we can solve this PDE by the method of characteristics. If we define
{ws+(x)} as the flow generated by the velocity field u, satisfying the ordinary

differential equations (ODEs)

d‘ps)t (X)
dt

for s < t, then the solution of the transport equation in (55) for the initial condition
6%(x,0) = fp(x) is given by

(57) 0(x,t) = fo(g; (x)) = (0, 0(x))-

This classical scenario breaks down when u fails to be Lipschitz continuous in x,
which is precisely the case for fully developed turbulent velocity fields. In this case
Kolmogorov’s theory of turbulent flows suggests that u is only Hdlder continuous
with an exponent roughly equal to %— for d = 3. In such a situation the solution of
the ODEs in (56) may fail to be unique, and we then have to consider probability
distributions on the set of solutions in order to solve the transport equation in
(55). In terms of the ODE (56), this means that we have to consider the notion of
generalized flows {15, 16, 36, 38|.

When the regularity condition on u fails, it is natural to consider the limit of
physical regularizations. There are at least two natural ways to regularize (56) or
(565). The first is to add diffusion:

(58) def (x) = u(ef (%), )dt + V2kdB(t),

and consider the limit as k — 0. We will call this the x-limit. For x > 0, the
diffusion is non-degenerate, and has a unique solution according to Stroock and
Varadhan [96]. The second is to smooth out the velocity field. Let 1. be defined as
Ve (x) = e~ %p(x/e), where 1 is a standard mollifier: 1) > 0, Jpadx =1, ¢ decays
fast at infinity. Let u® = u . and consider

det (x
59) B0 _ (.,

in the limit as € — 0. We will call this the e-limit. Physically & plays the role
of molecular diffusivity, £ can be thought of as a crude model of the viscous cut-
off scale. In terms of the Prandtl number Pr = £ the &-limit corresponds to the
situation when Pr — 0, whereas the e-limit corresponds to the situation when
Pr — oo.

(56) = u(‘ps,t(x)ﬂ t)7 <ps,s(x) =X,
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There are two ways to think about probability distributions on the solutions of
the ODEs in (56). We can either think of it as probability measures on the path-
space (functions of t) supported by paths which are solutions of (56), or we can
think of it as transition probability at time ¢ if the starting position at time s is x.
In the classical situation when u is Lipschitz continuous, this transition probability
degenerates to a point mass centered at the unique solution of (56). When Lipschitz
condition fails, this transition probability may be non-degenerate and the system
in (56) is intrinsically stochastic. We will adopt this latter approach and use this
transition probability to define the “generalized flows”.

Definition. [15, 16, 38, 72] Let {g(x, s|dy,t)} be a family of probability measures,
which are continuous in (x, s,t), and satisfy

1.
0 [ [ {5207+ utrm) Vy6t,7) | oo shdy, e

- [ 4ty )90, sldy. )+ 6(0c5) =0

for all test functions ¢ € C*°([0,00) x R,
2. The Chapman-Kolmogorov equation

gx,sldy,t) = [ _g(x,sidz, gz 7ldy.
R

for all 7 € [s,1].
Then {g(x, s|dy,t)} is called a generalized flow.
This definition only takes into account the so-called separable generalized flows.
Non-separable generalized flows are considered in [38].
Before proceeding further, we relate the regularized flows in (58), (59) to the
solutions of the transport equations. Consider the k- regularization first. It is
convenient to introduce the backward transition probability

(61) 9" (x,t|dy, s) = Egd(y — wfs(x))dy, s<t,

where the expectation is taken with respect to B3(t), and ¢f ;(x) is the flow inverse to
@ ,(x) defined in (58) (i.e. ¢§,(x) is the forward flow and pf ;(x) is the backward
flow). The action of g* generates a semi-group of transformation

(62) Sl = | w)e*Getlays),

for all test functions 9. 6%(x,t) = Sf 1 (x) solve the transport equation in (54) for
the initial condition 8% (x,s) = 1 (x). Similarly, for the flow in (59), define

(63) Sia(x) =9(pis(x),  s<t
6°(x,t) = Sf s (x) solves the transport equation

€
(64) 06 + (uf(x,t) - V)6° =0,

ot
with initial condition #(x,s) = v (x). Similar definitions can be given for forward
flows but we will restrict attention to the backward ones since we are primarily
interested in scalar transport. The results given below generalize trivially to forward
flows.
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Ficure 1. In the x-limit, the particle coming from the left
along the highlighted trajectory has equal probablity to take the
two highlighted trajectories on the right.

T
i

3.1. A Simple Example of Generalized Flows. Let us consider the fol-
lowing example in the x-limit:

dz = sgn(zt)z?dt + V2rdB(t), z(0) =y

To avoid the discontinuity at ¢t = 0, we replace the drift term by 2t for z > %tz and
by —2t for z < —$t2. We will denote the solutions as zf(y). It is easy to see that
as £ — 0, zf(y) converges to the unique solution of %’f =z% if y # 0, and when
y = 0, zf(y) converges to the random process that takes the extreme trajectories
z1(t) = $t* and z2(t) = —1¢2, with equal probability (see Figure 1).

A slightly more interesting example is described in Figure 2. Here the velocity
field is time-dependent and fails to be Lipschitz continuous at the nodes. In Figure
2, instead of plotting u, we plotted the possible trajectories that are solutions of
the ODE fli—f = u. It is easy to check that in the s-limit, we obtain a symmetric
random walk on the separatrices, which are highlighted in Figure 2 by heavy lines.

3.2. Delta-correlated Gaussian Velocity Fields. In [63] Kraichnan in-
troduced a simple model of passive scalar transport by considering the advection
by a Gaussian, spatially non-smooth, Kolmogorov-like and white-in-time velocity
field. This class of velocity fiels is now referred to as the Kraichnan model. De-
finitive progress has been made in the last several years on the understanding of
the structure functions and intermittency associated with the Kraichnan model
(8, 19, 50, 51, 78, 92]. Much of these are done using fairly sophisticated pertur-
bative field theory. We will first present the mathematical framework, followed by
a summary of the statistical theory. We consider a generalization of the Kraichnan
model introduced in [51] that takes into account compressibility effects (see also
[72]). The velocity field u is assumed to be a statistically homogeneous, isotropic
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FIGURE 2. In the s-limit, a tracer particle performs a symmet-
ric random walk on the network formed by the highlighted trajec-
tories. ’

and stationary Gaussian field with mean zero and covariance

(65) E (%, tJus (¥, 5) = (Cobap — cap(x — y))3(t —5).

We assume that u has a correlation length £y, i.e. the covariance in (65) decays
fast for |x —y| > £y. Consequently cap(x) — Codag as |x|/fo — co. On the other
hand, we will be mainly interested in small scale phenomena for which x| < £o. In
this range, we take cag(x) = dag(x) + O(|x|?/€3) with

(66) dop(x) = Adf;g (x) + Bdiﬁ(x):

and

d5(0) = D (g + €527 )
(o7 T e
#2500 = D ((d+ €~ 16 — 2252 ) Ixl.

Here D is just a parameter. The parameters A and B measure the divergence and
rotation of the field u. A = 0 corresponds to incompressible fields with V -u =
0. B = 0 corresponds to irrotational fields with V x u = 0. The parameter &
measures the spatial regularity of u. For £ € (0,2), the local characteristic of u
fails to be twice differentiable. This means roughly that u is spatially only Holder
continuous with exponent % We call such velocity fields Kolmogorov-like. This
spatial behavior has important consequences on both the transport equation (55)
and the systems of ODEs (56).

Let S2 = A+ (d—-1)B,C? = A, P = (C?/§?. P €[0,1] is a measure of the
degree of compressibility of u.

The following result is a classification of the different regimes we obtain when
we consider the x- and e-limits.
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THEOREM 10. There exist three different regimes:

1. P > d/&%, the strongly compressible regime. In this case, there exists a
family of random maps {@{ (x)}, such that for all smooth test functions v
and for all (s,t,%x), s <t,

(68) E (S£(x) — $(9fa(x))* = 0,
as k — 0, and

w 2
(69) E (d(piy (%)) — $(e7,(x)))” =0,
as € = 0. Moreover, the limiting flow {¢¢ ,(x)} coalesces in the sense that

for almost all (t,x,y), X #y, we can define a time T such that —co < 7 < t
a.s. and

(70) Pis(x) = @5 (y) for s <.

2. P < (d+£—2)/2¢, the weakly compressible regime. In this case there exists
a random family of generalized flows g, (x,t|dy,s), such that for all test

function 1,

(71) 2o = [ 0 tdy, ),
Rd

satisfies
(72) E (S¢79(x) - S¢(x))” = 0,

as & = 0 for all (s,t,x), s < t, and

2
(73) E( [ 0 (6o () - Si,wix) da) =0,
R4

as € = 0 for all (s,t), s < t, and for all test functions n. Moreover,
9w (x,t|dy, s) is non-degenerate in the sense that there exists a v, such that
there exists a v, such that

(74) S¢ W (x) = (SE(x))* >0 as.

3. (d+ & —2)/26 < P < d/€?, the intermediate regime. In this case there
exists a random family of generalized flows g, (x,t|dy,s), such that for all
test function v and for all (s,t,%x), s < t,

(75) E (S99 (x) — S¢(x))* = 0

as k — 0. In the e-limit, the flows @7’} (x) converges in the sense of distribu-

tions, i.e. there exists a family of probability densities {Gn (X1, ... ,Xn, ty1,. ..

n=1,2,..., such that

B0 (x1), -, 0 (xn)) = / $(y1, - ¥a)

(76) Rdx---xRd
XGn(Xl: T :xnztb"la BRI £ %) S)dY1 <o dyn,
as € — 0 for any continuous function i with compact support. Furthermore,
there is coalesces in the e—limit in the sense that
(77) Ga(x1, %2, tly1,¥2,8) = Ga(x1,%s, ty1, 2, 5)

+A(917X1, X2, t) 5)5(),1 - y2)7

:an,s)d}’l t dl
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with A > 0 when t > s. Here G, is the absolutely continuous part of Go
with respect to the Lebesgue measure. Similar statements hold for the other
Gr’s. In particular, the {G,}’s differ from the moments of the k-limit g,
defined in (75).

The family of probability densities {G,} are consistent in the sense of Kol-
mogorov. Therefore there exists a stochastic flow defined on some probability space
with {G,} as its distribution [69].

Rephrasing the content of this result, we have strong convergence to a family
of flow maps in the strongly compressible regime for both the x-limit and the e-
limit. In the weakly compressible regime, we have strong convergence to a family of
generalized flows for the x-limit, but weak convergence to the same limit for the e-
regularization. In fact, using the terminology of Young measures [98], the limiting
generalized flow {g.,(x,t|dy, s)} is nothing but the Young measure for the sequence
of oscillating flow maps {¢§ (x)}. Finally, in contrast to what is observed in the
other two regimes, the e-limit and x-limit are not the same in the intermediate
regime.

Theorem 10 in its present form is found in [36]. Earlier Gawedzki, Vergassola
[51] and independently Le Jan and Raimond [72] considered the k-limit. In that
case there is only the difference of convergence to a family of flow maps in the
strongly compressible and intermediate regimes, and convergence to generalized
stochastic flows in the weakly compressible regime. Joint limits k,e — 0 were
studied in [37] and it was concluded that the limiting behavior depends on a new
“turbulent Prandtl number.”

iFrom Theorem 10, it is natural to define the solution of the transport equation
n (55) for the initial condition 8, (x,s) = fy(x) as

(78) 0.(x,8) = S2000) = [ o¥)a (.t ),

for the weakly compressible and the intermediate regimes in the x-limit (non-
degenerate cases), and as

(79) 0. (X,t) = 90((,0;:8()()),

for the strongly compressible regime. In the intermediate regime in the e-limit, it
makes sense to look at the limiting moments of 67 (x, t) since we have as € = 0

B8 xa,t) 65000, 8) > [ Go3) - Bol)
Rdx..-xR4
XGn(Xl, e 7X7’L7t|y15 L ,Yn,S)dY1 T dyn
An outline of the proof of Thoerem 10 is as follows. Define P(p|r, s) through
e-regularization as

(81) [ 0Pl s — ar = iy B ) - i @),

where 7 is a test function, and similarly through s-regularization. Here p = |y — 2|
and s < t. P(p|r,s) can be thought of as the probability density that two particles
have distance r at time s < t if their final distance is p at time ¢. For the Kraichnan
model, P satisfies the backward equation

oP 0 o?
(82) 5. = g CP) + 55

(80)

(a(r)P),
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for the final condition lim,_,o_ P(p|r,s) = é6(r — p), and a(r), b(r) have the behavior
a(r) = D(S? + £C*)rt + O(r? /43),
b(r) = D((d — 1+ €)8? — £C?)ré 1 + O(r/£3).

For 7 >> £y, a(r) tends to Co, and b(r) tends to Co(d—1)/r. The equation (82) then
reduces to a diffusion equation with constant coefficients. At r = 0 the equation
(82) is singular. The proof of Theorem 10 is essentially reduced to the study of this
singular diffusion equation.

The behavior of the structure functions in these different limits is discussed in
(36, 37, 51].

(83)

3.3. Invariant Measures. Here we study the existence of an invariant mea-
sure for the transport equation with appropriate forcing. We restrict attention to
the non-degenerate cases which include the weakly compressible regime and the
intermediate regime in the x-limit. In these regimes the limiting generalized flow
is non-degenerate and hence behaves as a non-trivial diffusion process. The conse-
quences of this is that there is a dissipation mechanism present (as we will discuss
further in Section 5), and the system losses memory. We show that the anomalous
dissipation is strong enough for the forced transport equation to have a unique
invariant measure for both the weakly compressible regime and the intermediate
regime in the k-limit.

Consider (compare with (55))

(84) % + (u(x,t) - V)0 = b(x,1t).
where b is a white-noise forcing such that
(85) E b(X,t)b(y, 8) = B(]X - yl)é(t - S)'

B(r) is assumed to be smooth and rapidly decaying to zero for r > L; L will
be referred to as the forcing scale. The solution of (84) for the initial condition
8., (x,s) = bp(x) is understood as

(86) B (x,t) = Sy s00(x) + / Sy b(x, T)dr.
Define the product probability space (Q, X Qp, Fu X Fp, Py X Pp), and the shift
operator Trw(t) = w(t + 7), with w = (wy,ws). We have

THEOREM 11. For d > 2, in the weakly compressible regime and in the inter-
mediate regime in the w-limit, for almost all w, there exists a unique solution of
(84) defined on R? x (—o0,00). This solution can be expressed as

t
(87) 0% (x,1) :/ Sy b(x, s)ds.

. o b
Furthermore the map w — 0% satisfies the invariance property

(88) 0F. (%, t) = 05 (x,t + 7).

Theorem 11 is the “one force, one solution” principle articulated in [30], and
discussed earlier. Because of the invariance property (88), the map in (87) leads to
a natural invariant measure. As a consequence we have
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COROLLARY 1. For d > 2, in the weakly compressible regime and in the inter-
mediate regime in the k-limit, there exists a unique invariant measure on L2 (R? x
Q) for the dynamics defined by (84).

To prove Theorem 11, we verify that the dissipation in the system is strong
enough in the sense that

(89) / / Sti4sb(%, s)ds) — 0,

as Ty, Tz — —oo for fixed z and ¢. The average in (89) is given explicitly by

(90) / / P(0|p, s)dpds,

where P satisfies (82). The convergence of the integral in (89) depends on the rate
of decay in |s| of P(0|p, s). The latter can be estimated by studying the equation in
(82) [36], which yields P(0|p, s) ~ Cp®|s|~%? with & = (d—1—£(£+1)P)/(1+£P)
for |s| large and p < fo. Hence, the integral in s in (90) tends to zero as T1,
Ty = —oo if d > 2. Tt follows that the invariant measure in (87) exists provided
that d > 2.

Since no anomalous dissipation is present in the coalescence cases, i.e the
strongly compressible regime and the intermediate regime in the e-limit, no in-
variant measure for the temperature field exists in these regimes. It makes sense,
however, to ask about the existence of an invariant measure for the temperature
difference, i.e. to consider

(01) (x,7,1) / S2,(b(x, 5) — b(y, 5))ds,

in the limit as T — —oco. When 6% exists, one has

(92) 007 (x,y,t) = lim_660,(x,y,t) = 05 (x,t) — 05 (y, 1),
——00

but it is conceivable that §0% exists in the coalescence cases even though 87 is not
defined. The reason is that coalescence of the generalized flow implies that the
temperature field flattens with time, which is a dissipation mechanism as far as
the temperature difference is concerned. Of course, this effect has to overcome the
fluctuations produced by the forcing, and the existence of the limit in (91) will
depend on how fast particles coalesce under the flow.

For finite ¢, if we consider two particles separated by a distance much longer
than the correlation length £y, the dynamics of their distance under the flow is gov-
erned by the equation in (82) for r > £y, i.e. by a diffusion equation with constant
coefficient on the scale of interest. It follows that no tendency of coalescence is
observed before the distance becomes smaller than £y, which does not happen fast
enough in order to overcome the the fluctuations produced by the forcing. In other
words,

LEMMA 2. In the coalescence cases, for finite £y, there is no invariant measure
with finite energy for the temperature difference.

Therefore it is natural to consider the limit as Iy — co. However we have to be
careful because the velocity field with the covariance in (65) diverges as £o — oo.
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The right way to proceed is to consider an alternative velocity v, taken to be
Gaussian, white-in-time, but non-homogeneous, with covariance

Eva(x,t)va(y, s)
(93) = (cap(x — ) + cap(a —y) — cap(x — y))8(t — 5).

For finite £y, one has v(x,t) = u(x,t) — u(a,t), where a is arbitrary but fixed.
However, v makes sense in the limit as £, — co. Denote by 9, (x, t) the temperature
field advected by v, i.e. the solution of the transport equation (84) with u replaced
by v:
(94) % + (v(x,t) - V)U = b(x,1).
Restricting to zero initial condition, it follows from the homogeneity of the forcing
that the single-time moments of 8,, and 9., coincide for finite £y, but in contrast to
0., ¥, makes sense as £y — co. Furthermore, Theorem 10 can be extended to (94)
in the limit as £5 — oo.

Let 69, (x,y,t) = 9, (x,t) — U, (y, t) where J,, solves the equation in (94). The
temperature difference §¢,, satisfies the transport equation

069

(95) e + (v(x,t) - Vx + v(y,t) - Vy)d0 = b(x,t) — b(y, ).

We have
THEOREM 12. In the limit as €y — oo, for almost all w, in the strongly and
the weakly compressible regimes, as well as in the intermediate regime if the flow

is non-degenerate, there ezists a unique solution of (95) defined on R? x (—o0, 00).
This solution can be expressed as

(96) 59%(x,y, 1) = / 52, (b(x, 5) — b(y, ))ds,

where S¢, is the semi-group for the generalized flow associated with the velocity
defined in (93) in the limit as £y — co. Furthermore the map w — §9% satisfies the
invariance property

(97) 69T, (%, ¥, 1) = 005 (x,y,t + 7).
An immediate consequence of this theorem is

COROLLARY 3. In the limit as £y — oo, in the strongly and the weakly com-
pressible regimes, as well as in the intermediate regime if the flow is non-degenerate,

there ezists a unique invariant measure on L2 (R? x Q) for the dynamics defined
by (95).

The proof of Theorem 12 proceeds similarly as the proof of Theorem 11. In the
non-degenerate cases, one studies the convergence of (compare with (89))

(98) B(/ " | Stiselblx,9) = bty 9)ds) =0,

as 11, Ty — —oo for fixed z and ¢t. The average in (98) can be expressed in terms
of P, and it can be shown that the expression in (98) converges as T3, To — —o0
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in the non-degenerate cases. In the strongly compressible regimes, because of the
existence of a flow of maps, (98) is replaced by

T2 2
(99) B( [ 0ex0,9) = b))
1

This average can again be expressed in terms of P, and it can be shown that the
convergence of the time integral in (99) depends on the rate at P looses mass at
r = 0+ (i.e. the rate at which particles coalesce). The analysis of the equation in
(82) shows that the process is fast enough in order that the integral over s in (99)
tends to zero as Ty, Ty = —oo in the strongly compressible regime. In contrast, the
equivalent of (99) in the intermediate regime in the e-limit can be shown to diverge
as Ty, Ty — —o0.

3.4. Correlation Functions and Zero Modes. In this section, we briefly
summarize the perturbation theory developed in [50, 19] on the behavior of the
n-point correlation functions. These results rely on the fact that a closed set of
equations for the single time correlation functions can be derived for the Kraichnan
model. We will restrict ourselves to the incompressible case when A = 0.

Consider

(100) Fo(x1, -+ ,Xn, t) = (0(x1,1) - (0(%Xn, 1))

where @ satisfies (84) Fb,_1 = 0 by summetry. Fy, satisfies

0 2n ,
(101) EFQH(X:U". 7X2n7t) = Z Caﬁ(x.} ”Xk)v?)zngQTl(X17 1x2'n>t)
7,k=1

2n
+2 5 B(xj — xg) Fana (X1, Xon ).

jiok=1 ik
i<k k

At statistical steady state, these equations reduce to

2n
(102) Z Caﬁ(Xj - xk)VZ,V’gan(xl, tet ,Xgn)
Jyk=1
2n
= -2 Z B(|Xj - XkDan._z(Xl, e, Xon )
s ik

Evaluation of the structures functions Sa,(r) = ((8(x + r,t) — 0(x,1))*") can in
principle be carried out once the solution of (102) is known. However, solving these
equations is a very difficult task and so far only perturbative methods have been
successful in some regimes.

A simple dimensional argument suggests that a Kolmogorov-like theory would
predict normal scaling exponents a, = Z—;—ép. We will see below that this is not
true for p > 2.

Our task is to analyze the behavior of Fy, for small [x; — xz|. We will restrict
ourselves to translation invariant solutions.
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(From (102), F3, has contributions from the inhomogeneous part Fb,_,, and
the homogeneous part, which at small distances are solutions of

(103) o Fon = Z dap(xj = xk) VAV Fon = 0
7,k=1
where
Tol
(104) dag(x) = D ((d €= 1)0as — gTQ-E) ré

(103) is obtained as the scaling limit of the homogeneous equation associated
with (102). The solutions of (103) are called zero modes [8, 19, 50]. This is an
important concept that characterizes the origin of the anomalous scaling, and the
leading order singularities of the correlation functions.

As an example, let us study the behavior of the 2-point function at d = 3. F5
satisfies

. 2 0 0F,

105 ) = :
(105) -3 (Dr 5 ) B(r)
It is easy to obtain from this equation that
(106) F2(r) =y — Clrz“E + .-

where Cy, C are constants depending on B and the neglected terms are of higher
order. Hence we have for Ss

(107) 52(7") = 027'2_5 4o

This implies that Sy obeys normal scaling. Note that the constant Cy is in general
non-universal.

Let us now look at the 4-point function Fy(x1,X2,x3,%4) and let x;; = x; —
Xr,J,k =1,---4. Fy has contributions from the “Gaussian” part:

(108) Fy(x12) F2(x34) + Fa(x13) F2(X24) + Fo(X14) Fa(x23),

which gives rise to normal scaling, as well as the contribution from the zero modes
which may be the dominant contribution to Sy. To find the precise form of the
zero modes is a very difficult task. Both [50] and [18] resorted to perturbation
techniques in either £ or 1/d. Here we follow [50] and write

(109) F = Eg + £Go + O(€%),

where Ej is the zero mode for the case when ¢ = 0. Using the notations Vi = Vg,
etc, we can write down an equation for Ey:

(110) —(A12 + Aoz + Azq — Vig - Vaz — Vaz - V34)Ep = 0.
Substituting (110) into (103), we obtain an equation for Go:
—AyGo+LEy =0

where

ﬂ

1

_ jk ik aB

Ap=Dy, + + Ay, L= E:(aﬁ—il |2>vjvk—§A4
J#k
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The precise form of Gy is quite complicated. YVe refer to [8, 50] for the details of
this calculation from which one obtains that F' must be homogeneous of degree

14 o
(111) g =4 — Ef + O(&%) =203 — pa,

where py = 2¢+O(£?) is the anomalous exponent. Numerical results of Frisch et.al
[49] has found very good agreement with (111).

4. Stochastic Navier-Stokes Equation

We are interested in two mathematical issues:

1. The existence and uniqueness of an invariant measure under physical condi-

tions.

2. The limiting behavior of the invariant measure as viscosity approaches zero.
Presently progress has only been made on the first issue. Here the main question
is the condition on the stochastic forcing under which uniqueness of the invariant
measure and consequently ergodicity of the dynamics can be proved.

4.1. Ergodicity When All Determining Modes are Forced. Consider

w + (u-V)u+ Vp=rvAu+ ¥
(112) { Vou=0
We will restrict ourselves to two dimension, and we will take W to be of the form
(113) W(x,t) =Y orB(t,w)er(x)
k

where the (;,’s are standard i.i.d complex-valued Brownian motion, and o € C, are
the amplitudes of the forcing, {ex(x) = (;;’:2) e]:r ,k € Z} are the complex eigen
basis of L? divergence-free vector fields on T?, the two dimensional torus.

Define B(u,w) = — Py, (u- V)w, A?u= —Py,Au where Py, is the L? pro-
jection operator onto the space of divergence-free vector fields. Let £ = 3, lok |2,
& =Y, [kox)?. Writing u(x) = 3, uger(x), we will define H* = {u = (ux)rez>,
S B2 ug|? < 0o} and L2 = HO.

We will use the standard probabilistic setup, namely we will work on a prob-
ability space (Q,F,F,P,6;), where (€, F,P) is the canonical probability space
generated by all By, F; is the o-algebra generated by Bi(s) for s <, and 6, is the
shift operator on Q defined by (8;dB:)(s) = dBi(s +t). Expectations with respect
to P will be denoted by E. We formally write (113) as an Ito differential equation
in L2:

(114) du(x,t) + vA%u(x, t)dt = B(u,u)dt + dW(x, t)

Even though technically unnecessary sometimes, we will assume that o) decays
exponentially fast in k. This is reasonable from a physical viewpoint. Under this
condition, it can be easily shown that for almost all realizations of the stochastic
forcing, the dynamics (112) is well-defined. Furthermore, for ¢ > s, let u(t,w; s, o)
be the solution of (112) at time ¢ satisfying the initial condition u(s) = uo, then
(112) generates a continuous stochastic semi-flow on L2

Pia(u0) = u(t,w; s, uo)

We will take the state space to be L? equipped with the Borel o-algebra.
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Definition. A measure u(du) on L? is invariant for the stochastic flow (114) if for
all bounded continuous functionals F on I? and ¢t > 0

(115 |, Peautan) = [ ER( aua)

Existence of an invariant measure is proved by Vishik and Fursikov [100], Flan-
doli and Maslowski [46]. The basic idea is to use the classical Krylov-Bogoliubov
theorem asserting the existence of invariant measures for general dynamical systems
on a compact state space. Here our state space is not compact, but since (112) is of
parabolic type, the solution operator is compact and this turns out to be sufficient.

The first uniqueness result was also proved by Flandoli and Maslowski [46].
Their result requires that the forcing amplitude oy, satisfy

(116) Chlk|7Y? < |ow| < Cylk|73/8¢

In this case the dynamics of the SNS (Stochastic Navier-Stokes) is dominated by
noise. The nonlinear term can be viewed as a perturbation of the linear equation
with noise. Such a condition is very rarely met in physical situations.

In his thesis, Mattingly proved that if the viscosity is sufficiently large, the one
force, one solution principle holds and hence the invariant measure must be unique
81, 82].

In the more general case, E, Mattingly and Sinai proved

THEOREM 13. [33] Assume that o # 0 for |k| < N where N? > %2@ and C

v3
is some absolute constant. Then (112) has a unique invariant measure on 2.

Results of a similar nature were also independently obtained by Kuksin and
Shirikyan [65, 66], Bricmont, Kupiainen and Lefevere [17], see also [86].

Theorem 13 says that if all the “determining modes” are forced, then the in-
variant measure is unique and hence the dynamics is ergodic in the phase space.

The main idea of the proof is to show that for solutions that are defined over
the time interval (—oo, 00), their high modes can be uniquely represented by the
past history of the low modes. This means that the dynamics of the Navier-Stokes
equation on its infinite-dimensional phase space can be represented by a finite-
dimensional system, but with memory. Ergodicity is then established by proving
that time averages of a continuous functional along a trajectory is independent of
the initial data of the trajectory. This last step is done using the Girsanov formula.

Below we explain these two steps in more detail.

Step 1. Reduction to Gibbsian dynamics.

We show that the Markovian dynamics of the infinite-dimensional Navier-
Stokes equations can be reduced to the Gibbsian dynamics of a finite-dimensional
system. To this end, we define two subspaces.

(117) L% :Spa‘n{ek?lkl SN}v ]]-‘J?L :Span{ek7[k| >N}
We will call L the set of low modes and L the set of high modes. Obviously

[? =12 @ L2. Denote by P, and Py the projections onto the low and high mode
p DLy

spaces.
We write u(t) = (1(t), h(t)), P.dW (t) = dW(t), PodW (t) = dW ()

dl(t) [-vA%1+ P,B(1,1)] dt

(118) + [PB(Lh) + P,B(h,1) + P,B(h,h)] dt + dW(t)
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dh(t) = [-vA’h+ P,B(h,h)]dt

(119) + [PnB(,h) + P,B(h, 1) + P, B(], D] dt + dW(t)

Define the set of “nice pasts” U C C ((—o0,0],L?) to consist of all v : (—oo, 0] — L?
such that:

1. v(t) isin H? for all t <0
2. The energy averages correctly. More precisely,

hI_n m/ [Av( s)|des—

3. The energy fluctuations are typical. More precisely, there exists a T = T(v)
such that

50

lv(t)|i2 <&+ max([t],T)%

for t < 0. It can be shown [33] that U contains almost all of the trajectories defined
on the whole time interval.

Given a function 1, defined up to time ¢, let us denote by ®, (1, ho) the solution
o (119) at time ¢ with initial condition hg at time s and the “forcing” 1.

LEMMA 4. [33] There ezists an absolute positive constant C such that if N z>
C%% then the following holds:

If there exists two solutions uy(t) = (1(t),hi(t)),u2(t) = (1(t),ha(t)) cor-
responding to some (possibly different) realizations of the forcing and such that
u;,us € U, then u; = us, i.e. hy = h,.

Furthermore given a solution u(t) = (1(t),h(t)) € U, any hg € L}, and t <0
the following limit exists

togn_loo ®4,,:(1,ho) =h

and h* = h(t).
PROOF. Let p(t) = h;(t) — ha(t). From (119) we have

d
E? — — uA%p + P, B(hy, hy) — PyB(hy, hy) + P,B(, p) + PuB(p,1)
=— VA2p+PhB(l+h1,p) + PhB(p,l+h2)
(120) = - vA’p+ P,B(uy,p) + PrB(p,uz) .

Taking the inner product with p, using the fact that (P,B(uy, p), p)r2 = 0, gives

5 g1Plie = —vIApliz + (PhB(p,uz), p)ie -
Using the fact that [21]

(PaB(p, ), phiz] <C [Aplya lplye Az

14 2 02 2 2
<'2“ |Apliz + By |p|L2 |Auglp.

we get

1d v C
plie < =5 18plLs + o A |t lplTs -

2dt
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Since p only contains modes with |k| > N, Poincaré inequality implies
d 2 2 02 2 2
G101t < (<o S il ol

Therefore we have, for ¢y <t <0,

C’2 t
(121)  |p(®)[E: < [p(to) 22 exp { —vNYt—to) + = [ |Awy(s)[Es ds} -
to
(From the second assumption on functions in U, we know that
lim ! /O |Aug(s)|2, ds = ‘o
t /4 2Ty
Hence for ¢y < T1, where T depends on ¢ and g, we have
é2 ot
~uN*(t—t0) + = [ |Aus(s)[fads < —%(t —to)
to

where v = vN? — giio If weset C = Q;, then our assumption on N implies v > 0.

Now using the last property of paths in U we have for any ¢ty < 7%,
i
p()[E2 <lo(to)liz exp{—5(t — to)}

<2[& + |t0]%]exp{—%(t —t)} =20

as tg — —oo where T, is some finite constant depending on w; and u,. This
completes the proof of the first part of the Lemma.

To prove the second part, observe that (121) only required control of |, tf) |Au(s) |i2 ds
for one of the two solutions. If we proceed as before letting the given solution wu(t)
play the role of uy and the solution to (119) starting from hg play the role of uy,
then we obtain the estimate

¢ [
(122)  |p(®)]72 < |h(to) — hol2, exp {—VN2(t —to) + 7/ [Au(s)[?, ds} .
to
Since u(t) = (1(¢), h(t)) € U, the same reasoning as before shows that p(t) goes to
zero as tp — —oco. Hence the limit exists and equals h(t). O

Denote by P the projection of U to low modes. Given an “initial low mode
past” L% in P, we can then uniquely construct the high mode at ¢t = 0, denoted
by h(0) = ®¢(L?), and the solution to the full system (118), (119), denoted by
u(t) = (1(¢),h(t)). We will denote the trajectory of the low mode on the time
interval (—oo,t] by L* and h(t) = ®;(L!). Using these notations we can rewrite
(118) and (119) as a history-dependent finite dimensional system

(123) di(t) = [-vA*1(t) + P,B(1(t),1(t)) + G(1(t), ®;(L*))] dt + dW (¢)
where

(124) G (Lh) = BB(l,h) + P,B(h,1) + F,B(h,h) .

Thus we have a closed formulation of the dynamics on the low modes given an
initial past in L® € P. We write L = SYL°. We reiterate that Lt is the entire

trajectory from time ¢ back to —oo whereas 1(t) is simply the value of the low modes
at time ¢.
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(123) is not Markovian, but rather Gibbsian (see the discussions in §4 of [33]).
Notice that the stochastic forcing in (123) is non-degenerate which implies ergod-
icity if it were Markovian.

Step 2. Ergodicity of the finite dimensional Gibbsian dynamics.

Our task is reduced to showing that the memory effect in (123) is not strong
enough to destroy ergodicity.

In order to show this, we prove that the measures induced by different initial
pasts for (123) are equivalent to each other.

The key idea is to realize that the Girsanov transformation can still be used for
memory-dependent systems. The main technical point is to cut-off the nonlinear
growth term so that the Novikov condition for the application of the Girsanov
formula is satisfied. For details we refer to [33].

It is proved in [83] that the empirical measures, starting from arbitrary initial
condition, converge to the unique invariant measure exponentially fast.

4.2. General Stochastic Dissipative PDEs. The philosophy presented in
the last section is applicable to general stochastic dissipative PDEs such as the
Ginzburg-Landau equation, the Kuramoto-Sivashinsky equation and the Cahn-
Hilliard equation. The general result, proved in [31], states that if all determining
modes are forced, the invariant measure is unique and the dynamics is ergodic.
Related results are also found in [64, 86, 83].

4.3. Ergodicity with Minimum Stochastic Forcing. The condition in
Theorem 13 is still unsatisfactory since the number of modes that need to be forced
goes to infinity as v — 0. The physically more interesting situation is when only
the large scale modes are forced. It is then natural to ask the question: what is the
smallest set of modes that have to be forced in order to have ergodicity?

To answer this question, let us consider the two-dimensional case and use the

vorticity formulation of the Navier-Stokes equation (n = %;—; - %z—-f-).

dn = {vAn— (u- V)n}dt + df
We will consider the case when the stochastic forcing has the following form.

(125) df = > owcos(k - x)dBx(t) + S~ esin(k - x)dBi(t)

keK keK

where the By’s and Bi’s are independent standard Wiener processes defined on a
probability space {2, F,P}. Here ux and vk are positive constants representing
the amplitude of the forcing. K is the set of modes that are forced. We will be
primarily interested in the case when K contains very few low modes.

Writing 7(x, 1) = 3y Mk(t) cos(k - x) + 3y 0w (t) sin(k - x) where the index k is
in the first quadrant. We can rewrite (125) as

sl
ik
(126) dn = Q—vIPPm+ Y G e )
jt+k=l1 J
itk
+ (i + pip) ¢ dt + o1dBy

j—k=1 lal*
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(127) dm = { -’ - Z HQ (mﬂkwmk)
jt+k=1
itk
+ 5 (= Mk + pym) § dt + ndm

j—k=1 il

where j1 = (—ja,j1). Here and in the rest of this section, we adopt the convention
that the summation is done only over terms in which the indices j, k,1 are in the
first quadrant.

E and Mattingly [32] considered finite dimensional approximations of (126)
and (127):

(128) dm = < —vllPm+ Z I !2 (—nime + 50
Jj+k=1
N j_L k
> T e+ ) o di + odBy
Jj—k=1
N .
i~k -k
(129) dm = —v1Pm— Y S (mic + pime)
Gy il
= gt
+ > ; |2 (—mskc + p57c) § dt +ndmy
i—k=1 J
N

where Z means that the sum is over indices j, k, 1 such that |j|co, [k|oo, [Ilco < N.
The main result of [32] is the following.

THEOREM 14. Let K; = {(0,1),(1,1)}, K, = {(1,0),(1,1)}. If K D Ky, or
K D K, then (128) and (129) has a unique invarient measure.

At the present time, there are still difficulties in extending Theorem 14 to
the full Navier-Stokes equation. The difficulty seems to be technical, in adapting
Malliavin calculus to the PDE. Some progress has been made in this direction in
[39].

It is not clear whether the condition in Theorem 14 is sharp. There are two
cases that are not covered by Theorem 14. One is when K = {(1,0)}. The other is
when K = {(1,0),(0,1)}. It would be interesting to understand what happens in
these two cases.

Again the existence of an invariant measure follows from standard compactness
results. The proof of uniqueness uses the following result of Harris [53].

Let {zn,n = 0,1,...} be a Markov process on a topological space X with
Borel o-algebra B. The Markov process {z,,n =0,1,...} is said to satisfy Harris’
condition if there exists a o-finite measure m on X such that if m(E) > 0, E € B,
then

Pso{2n € E infinitely often } =1
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for all starting points zo in X. Under this condition Harris proved that there is a
measure (Q, unique up to a constant multiplier, which solves the equation

Q(E) = /Xp(a;,E)Q(da:), for E € %B

where P(z,) is the transition probability distribution of the Markov process.
To establish Harris’ condition, we prove the following:

1. Starting from any initial position, the dynamics enters any neighborhood of
the origin infinitely often.
2. The transition probability distribution has a smooth density.

The main idea for proving (1) is to observe that in the absence of forcing,
solutions of (128)-(129) decay exponentially fast due to the viscous term. This
decay still holds when the forcing is small. The main idea for proving (2) is to
prove that the Fokker-Planck operator associated with (128)-(129) is hypoelliptic.

LEMMA 5. Assume that K1 C K or Ko C K. Then the Markov process (128)-
(129) has a transition density p:(z,y) which is C* in (z,y,t) for t > 0.

LEMMA 6. Fiz a At > 0 and an open neighborhood Uy of the origin. Then
given any initial condition 1o € RV+HD? -1

Py {n(nAt) € Up for infinitely manyn } =1 .

Using these lemmas uniqueness of the invariant measure follows quickly (see
132)).

We will not give the detailed proofs of these results here. Instead we will
reproduce the calculation that leads to the hypoellipticity of the Fokker-Planck
operator.

(128)-(129) is a degenerate diffusion process with analytic coefficients. The
regularity of the transition density of such processes can be studied using Malliavin
calculus. If we write the Fokker-Planck operator (the generator) of a diffusion
process in the form

(130) L=Xo+%ixg
j=1
then the transition density is smooth if at each point of the state space if
X;,i=12---1,
[(X;, X],5,k=0,1,---1
= (X5, [ Xk, Xioll s 5, K1 ke = 0,1, -1

span the tangent space [70, 54, 67, 87]. Notice that we allow Xo to enter the
higher-order brackets. This condition can be restated as: the ideal generated by
X1, X5 - X; in the Lie algebra generated Xo, X1, X2, - X; must have full rank at
every point. We denote by SPAN(n) the ideal generated by X1, Xz, -+ X; at the
point 7.
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The Fokker-Planck operator for (128)-(129) can be written as
N 2 N 2
1 0 1 0
131 =Xo+ = Pl = i 50
(131) L 0+220k(3ak) +21£Z](7k(3ﬂk)

where

N 1, k N P k 9
{ J (—ajak + Bjon) + Z d (o0 +ﬂj,3k) — V|l]2al} .

it B i WP A

P

N sl k N sl 5
{ 1 (@B — Bioue) + T (—ajBx + Byou) — Vllizﬂl} o

j+k=l1 leQ j~k=l |J|2 6181

We can now calculate

{a ( ! ! )—{—a ———1———+a ~———-1—————}(1J"-m)—?——
R \TmpE T mmpP) " meE T T i m 2 den

1 1 1 1 N
{ﬂl—m (W - "“—““““_ miz) “ﬂm-—lm‘g +ﬂ1+m—~——~|l+m12 } (1 m)a—ﬂl

N 1 1 1 1 N 8
= {ﬁl—m (—-I—I—n—lg + m) +,Bm~—l']‘!"n‘|'2‘ +5m+lm}(l 'm)é‘&]‘

N
1 1 1 1 J
> R Tl Sl — Omgl s ¢ (I m) —
"4 {a‘ "‘<1m12 |1—m|2>+“"‘ mpE ~ ¢ +'|1+m;2}( ™56

We emphasize our convention that the terms are present in the sums only if the
indices are in the first quadrant. If we denote by Qn = {j = (j1,72),0 < 71,52 <
N, (j1,72) # (0,0)}, then the first sum in X, should be written as

1 1 0
S (o) i

Ll-meQn

+ Z am_]w(l m)g&;ﬁ-

lm—1eQnN
1 0
— (1t m)—,
+ Z aHmll—!—mP( )60’1
Li+meQn

and similarly for the other terms.
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We then have

{X 8 ] m){( 1 ) o + 1 a n 1 ] }
™ Bl Imi2 "~ [k2/) 9Bmirk  Im[?0Bm_x  |k|? 8fk—m
o] = { (= ) o s )
™ Bane | Im|2  |k|2/ 8amik |m|? Bom-k  |k|? Bayx_m
o ] =04 - (i~ ) s~ s * s
T im|2 k|2 Bomtx Im|? 8am—x = |K|? Bc—m
o ] 1 1 o 1 3] 1 Is]
] = () s~ e~ )
[“‘ don | ( ) Im[2  |k|2/ 9Bm+ik |m|2 0Bm-k |kI? Ofk-m

Again the same summation convention as we discussed above applies.
Now fix any € RV+D*~1. Take m = (1,1),k = (0,1), then we have

o ] =3 (s * o)
m 6C¥k ——2 80{(172) 804(1,0)

o] =~
" 8,8 2 80[(1 2) 80:(1,0)

Therefore if K3 C K, then 52— aa( € SPAN(n). Similarly takek = (1,0),m =

) 3(1(1 0)
(1,2), we find 5>— - € SPAN(n) Proceeding in this way, we ﬁnd Ba(l o aa‘?o 5 €
SPAN(n), for l 5 N Take k = (1,0),m = (1, l) we get 6a € SPAN(n), for

1>0. Take k = ( 1) and m = (0,1) we get 3a - € SPAN(n ) By induction, we

,aﬁ(k o € SPAN(n) for all 0 < k,! < N, (k, 1) # (0,0).
This establishes hypoellipticity in the case when K; C K. The case when
Ky C K can be dealt with in the same way.

9
obtain Taan

5. Regularity and Dissipation

Formally, at the infinite Reynolds number limit, the Navier-Stokes equation
reduce to Euler’s equation which takes the form
w+(u-Viu+Vp=0
(133) { Vou=0
in the absence of forcing. For solutions of (2) and (133), one can define the energy
% [p lu]?d3z. For smooth solutions of (133), energy is conserved:

(134) /[uxtld%“ /luxO}d3

if there is no boundary effects. To prove (134), multiply (133) by u and integrate
by parts. However, turbulence theory is concerned with solutions of (133) that
dissipates energy. In fact, one of the basic assumptions in turbulence theory is
that under a fixed external forcing, £ = (v|Vu”|?) the energy dissipation rate
stays finite in the limit » — 0. Hence the limiting invariant measure, if exists,
supports singular Euler flows for which (|Vu|?) = +oo and energy is decreased in
the absence of forcing. This was pointed out by Onsager [88] in 1949. This is the
striking property shared by all three problems that we discussed: the hydrodynamic
turbulence in three dimension, the Burgers turbulence and the turbulent transport
of passive scalar fields, namely that formally in the inviscid limit, smooth solutions
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conserve energy, but our interest is on solutions that dissipate energy. Hence they
cannot be smooth and we are interested in their singularities. In the case of the
inviscid Burgers equation (the Burgers-Hopf equation)

1
(135) ue + 5(u?)z =0
the energy is %— [ u?dz, which is conserved for smooth solutions, aside from boundary
effects. However, it is well-known that solutions of (135) typically contain jump
discontinuities called shocks. Physically relevant jump discontinuities have to be
defined as the zero viscosity limit of the viscous problem

1
(136) ug + —2—(u2)w = Vg

as v — 0. Such solutions satisfy the so-called entropy condition [71] which dissi-
pates energy at the shocks. The statistics of the shocks give rise to the interesting
behavior of the correlation functions.

Similarly, for the passive scalar transport equation in the “inviscid limit”,

(137) 9, +(u-V)=0

If u is incompressible V - u = 0 then the energy, defined as 3 [ §>d’z, is conserved
when u is smooth. However, when u fails to be Lipschitz continuous, such as the
case of the Kraichnan model, the generalized flow associated with (137) is in general
non-degenerate and we have

[eenae = [[[ )o@t tly,0)gtx bz, Odydzda
< /Og(x)da:

We see in Section 3 that 6 is in general only Hélder continuous.

In [88], Onsager conjectured that the solutions of the 3D incompressible Euler’s
equation conserve energy if they are spatially Holder continuous with exponent
larger than 1/3, and cease to conserve energy if the exponent is less than 1/3. The
first half of this statement was proved in [22] in its sharp form formulated in terms
of Besov spaces. For simplicity of presentation, we will assume periodic boundary
condition on the domain D.

THEOREM 15. [22]. Letu = (u1,us2,us) € L3([0,T], By°°(D))n C([0,T), L*(D))
be a weak solution of the 3D incompressible Euler’s equation, i.e.

T/ (ta t)d zdt Ua (X, 0)ha (x, 0)d®
_./0 Duax, )é—-t—@ba(x,) T —/uax, «(%,0)d°z

T P T
—/ / ug (X, )ug (X, t)Vatbs(x, t)d odt —/ / p(x,t)Vatba(x,t)d3zdt =0,
o Jp o Jp

(summation convention is used) for every test function ¥ = (11,12, 13) € C°(D X
[0,T)) with compact support. If s > 3, then

/ |u(x,t)]2d3a::/ lu(x,0)|*d*z, for t€[0,T).
D D

Besov space is the natural setting for formulating this result since its definition
closely resembles the definition of structure functions except that the ensemble
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average is replaced by the spatial average. In fact, in more physical terms, Theorem
15 states that if

(138) (/D lu(x +1,8) — u(x, t)|3d3:1;)1/3 < Clxl*,

for a > 1/3, then & = 0. This is the deterministic analog of Kolmogorov’s 4/5 law.
It is clear from this that Theorem 15 is sharp. Furthermore, Theorem (15) suggests
that in the inviscid limit, turbulent velocity fields live in a space close to Bé/ 80,

This result further suggests that the typical “turbulent” velocity fields, the ones
that Kolmogorov was interested in when he discussed the inertial range, are the
smoothest velocity fields that dissipate energy. As far as regularity is concerned,
they live at the boundary between conservative and dissipative weak solutions.

An exception to this scenario might be two dimensional turbulence. It is easy
to prove, using the techniques in [25], that for the two-dimensional Euler’s equation
the enstrophy [ w?dz is conserved as long as it is finite. This observation was made
by E and Vanden-Eijnden (see [41]). It is likely that there are no intrinsic dissipa-
tion mechanism present in the two dimensional Euler equation, and dissipation has
to be added in order for the forced system to have an invariant measure.

6. Conclusions

Stochastic PDEs provide the natural framework for studying the longtime be-
havior of complex systems. In this regard, we have only touched upon one type
of behavior: the statistical stationary states. Another type that is often found in
applications is the self-similar behavior. In particular, there has been quite some
interest in recent years on the scaling behavior of Hamilton-Jacobi-like growth mod-
els [64] and Cahn-Hilliard-like models for phase ordering and phase separation [14].
The rigorous treatment of such scaling results often hinges on well-posedness of the
governing differential equation with rough initial data. Such a theory is available
for the Hamilton-Jacobi equation, thanks to the work of Crandall and Lions [75].
As a result, most of the results on the scaling behavior for Hamilton-Jacobi-like
growth models can be rigorously proved [85]. The scaling exponents often depends
on the statistics of the maximum value of a large number of identically distributed
random variables, which has been classified in the literature of probability the-
ory [73]. For phase ordering and phase separation type of problems, on the other
hand, the mathematical difficulties involved in defining solutions for the relevant
governing equations (here the various forms of curvature flows) with rough initial
data seem rather severe and rigorous treatment of physical theories such as the
Lifshitz-Slyozov theory [14] does not seem to be in sight.

In this review, we have concentrated on dissipative PDEs and hence omitted
work on invariant measures for Hamiltonian PDEs such as the nonlinear Schrédinger
equation. We refer to [13, 84] for details on these results. Also omitted is the work
on stochastic quantization, which is very relevant to our discussions on stochastic
Ginzburg-Landau equation [26, 57].

We end this review with a list of open problems on the topics that we discussed.

1. On stochastic Burgers and Hamilton-Jacobi equations, the most pressing
open problems seem to be the existence or nonexistence of an invariant
measure on R", and the hyperbolicity of the TSM in high dimensions.
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2. On the stochastic passive scalar equation, it is of great interest to describe
geometrically the structure of the stationary passive scalar field. In particu-
lar, we are interested in characterizing the numerically observed “cliffs” that
resulted in the saturation of the scaling exponents of the structure functions.

3. On the stochastic Navier-Stokes equations, from a technical point of view,
it is highly desirable to fully develop the machinery of Malliavin calculus
for PDEs. In connection with two dimensional turbulence, we would like to
study the inviscid limit of the stationary solutions in the presence of large
scale forcing and damping,.

Also of interest is the problem of weak turbulence or wave turbulence. This
concerns a large class of nonlinear dispersive wave equations such as the nonlinear
Schrodinger equation. Even though the predictions are quite precise at a physical
level, from a mathematical point of view, the problem is not very well formulated. It
would be interesting even to define the rather framework under which the problem
of weak turbulence can be studied in precise mathematical terms.
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