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1 The Zeta Function

In the first lecture we discussed the role played by symmetry in local spac-
ing statistics for quantizations of classical Hamiltonians. In this lecture we
discuss the role of symmetry in the local spacing distribution between zeros
of zeta functions.

We begin with Riemann Zeta Function ((s) and some phenomenology
associated with it:
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which converges for Re(s) > 1. ((s) has an analytic continuation and func-
tional equation [1]:

£(s) == 7*2T(s/2)¢(s) = £(1 - 9) (1.2)

&(s) has simple poles at s = 0 and s = 1 and is otherwise analytic. Write
the zeros p; of £(s) as:

1
pj = = + 15 (1.3)

Do

From (1.1) it is clear that [$(v;)] < 5. The well known Riemann Hy-
pothesis “R-H” asserts that y; € R. For the following questions of local
spacings, let’s assume RH (in numerical experiments that are quoted this
has been verified for the zeros examined). Order the zeros

o<y <r2<ra<n<n... (1.4)

here y_; = —v;,7 = 1,2,.... It is well known [2] that:

) TlogT
G 2 1y S TH ~ —2 (1.5)
™
as T — oo. Hence we form the local spacings by unfolding:
. .10 .
A= 11087 (1.6)
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The 4;’s have mean spacing one.

During the years 1980-1997 Odlyzko [3] has made an extensive and pro-
found numerical study of these zeros and in particular of the local spacings
of 4;. He found that these obey the GUE model perfectly. For example in
Figure 1.14 of [4] of Lecture 1, the consecutive spacings for the 7x107 zeros
beyond the 10%°-th zero are plotted against the density u;(GUE). At the
phenomenological level this is perhaps the most striking discovery about the
zeta function since Riemann. The big question is why is this so and what
does it tell us about the nature (e.g. spectral) of the zeros. Also what is
the symmetry which is responsible for this GUE or type II symmetric space
statistics (cf. (2.4) of Lecture I).

Odlyzko’s computations were inspired by the 1974 discovery of Mont-
gomery [5] that the pair-correlation is, at least for a restricted class of test
functions, equal to the GUE pair-correlation. Precisely he proves that as
N — o0,

Y sm-wo [ s@RGUB@E 01

1<j#k<N



Peter Sarnak 147

for any ¢ € S(R) for which the support of ¢ is contained in (—1,1) where
b(&) = ffooo e~ Mz (2 )dz. Note that Ro(¢) (see (2.8) of Lecture I) changes
its analytic character at £ = +1 and indeed the terms contributing to (1.7)
come from the “diagonal” [5,6]. Extending (1.7) to #’s whose support is
not contained in [-1,1] involves new non-diagonal contributions and this has
never been achieved (see Goldston Montgomery [7] for an equivalence). Note
that this already (albeit assuming RH) goes far beyond anything that one
can establish for the pair-correlation for the ¢;’s in Lecture I. The reason is
that the unfolding of y; is -y; logy; while for ¢; it is t?. This has the effect
on the right hand side of the analogue of (5.1) of Lecture I for {(s) (known
as the explicit formula see [6]) of facing logp < logT terms when support
¢ C (—1,1), while for the t; case we always have el terms (this has been
referred to as the exponential proliferation of periodic orbits in the latter
case).

More recently Hejhal (8] used Montgomery’s method to establish that
the triple correlation is the GUE triple correlation as computed in Dyson [9].
Rudnick and Sarnak [6] by a somewhat different method (which in fact does
not require RH) establish that all the n > 2 correlations are as predicted by
GUE. All of these results are restricted as above, that is they are proven in
the range of the Fourier transforms where only the “diagonal” contributions
constitute the main term. An interesting heuristic derivation of the n-level
correlations without any restrictions on the Fourier transforms has been
given by Bogomolny and Keating [4].

The zeta function is but the first of the zoo of L-functions for which
similar questions can be asked. There are the Dirichlet L-functions L(s, x)
defined as follows: ¢ > 1,x : (Z/qZ)* — S is a character and extend x to
Z by setting x to be periodic of period g and x(m) = 0 if (m,q) # 1. Then

oo

Lis0 =3 X T - o) (1.9
n=1 p

The analogue of (1.2), that is the analytic continuation and functional equa-

tion are known for these. Even more generally we have for each automorphic

cusp form f on GL,,/Q [10] an L-function L(s, f), which satisfies similar

properties [11]. A classical concrete form on GL2/Q is the form A(q) [12],

Alg)=q [[A-g™* =) r(n)¢" (1.9)
m=1 n=1
_ - T(n) -5 __ _ T(p) -8 —2s5\—1
L(s,A) =) —iEn = [Ia Ji7aP +p725)7L (1.10)

n=1 P
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In general the L-function of an automorphic form on GL,,/Q is an Euler
product of local factors of degree m in p~°. In all these cases an R-H for
L(s, f) is expected to hold.

The results of Rudnick-Sarnak [6] were carried out in this context and
they show that the n > 2 correlations (for ¢’s even more restricted as
m grows) are universally the GUE ones! Moreover at the numerical level
Rumely [13] has checked that the zeros of Dirichlet L-functions satisfy GUE
statistics and Rubinstein [14] has checked various G Lo L-functions and finds
that they all satisfy GUE local spacing statistics. We call this phenomenon,
that the high zeros of any L-function L(s, f), f a cusp form on GL,,/Q obey
GUE spacing laws, the “Montgomery - Odlyzko Law”.

2 Function Fields

One can get much insight into the source of the Montgomery-Odlyzko Law
by considering its function field analogue. The function field analogue of
((s) is due to Artin [15]. If k is a finite extension of the field F, of rational
functions with coefficients in the finite field Fy, its zeta function ((k,T) is
defined to be

((k,T) =[] (1 — Tty (2.1)

v

where the product is over all the places v of k£ [15]. One can also think
of ((k,T) as the zeta function of a nonsingular curve C/F, whose field of
functions is k. This geometric point of view is very powerful. For example the
Riemann-Roch Theorem on the curve plays the role of Poisson-Summation
in (1.2) and it yields [16]

_ P(kT)
((k,T) = =TV - 4D (2.2)

where P is a polynomial of degree 2g,g being the genus of k, as well as a
functional equation for {(k,T) when T is replaced by 1/¢T. The Riemann
Hypothesis for ((k,T) asserts that all the zeros of P lie on the circle |T| =
g~/2. This was established by Weil [17]. A key point in this proof is the
interpretation of the zeros of {(k,T) as the reciprocals of the eigenvalues of
Frobenius (which is the operation of raising the coordinates of points on the
corresponding curve C to the power ¢) acting on the first cohomology groups
of the curve C [17].

Turning to the distribution of the zeros of such a zeta function in (2.1),
we write its zeros as:

¢ = eig1/? j=1,...,2g. (2.3)
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Form the local spacing measures as in (2.1) and (2.2) of Lecture I and denote
them by pux(C/F,). For a fixed ((C/Fq,T) there are only 2¢(C) zeros and
so we cannot have a spacing law. We therefore let the genus g = g(C) go to
infinity. However this alone will not allow one to deduce a unique limiting
law since there are curves C/IF; of large genus which have a large number
of symmetries and for which the local spacings are Poissonian, see [18]. In
Katz-Sarnak [18] we therefore consider the typical curve of large genus g
and over a large field F,. We show [18] that as ¢ and g go to infinity the
local spacings follow the GUE model, that is the Montgomery-Odlyzko Law
is valid for these zetas. Precisely if My(F;) denotes the set of isomorphism
classes of curves of genus g over Fy, then k > 1:

1
lim lim —————— D C/F;),ux(GUE)) =0 2.4
i, T Ay, D k(O (GUE) (24)

Note that the double limit must be carried out in the order indicated. The
key ingredients in the proof of 2.4 are:

e The monodromy group of the family M, (or more accurately a closely
related family) [18] of curves of genus g, which arises through the rep-
resentation of the fundamental group of the family on the first coho-
mology group at a base curve. The first homology group comes with an
intersection pairing for cycles and the symplectic pairing is preserved
by the monodromy. In fact the monodromy turns out to be the full
symplectic group Sp(2g) and this is the key point.

e The Equipartition Theorem of Deligne [19,20] for the Frobenii for the
family, in the monodromy, as ¢ — oo.

e The Law of Large Numbers (2.5) of Lecture I for the scaling limits of
USp(2g) as g — oo.

Thus in the function field, the source of the GUE is clearly identified. In
part it is due to the universality of the local statistics for type II symmetric
spaces (2.4) of Lecture I. Also there is a symmetry behind the GUE law
— it comes from the scaling limits of the monodromies of the family. We
again see that it is more reasonable, at least to begin with, to examine these
local spacing statistics for families. In this function field case, at least if
the monodromies of the families and their scaling limits can be computed
— then one has a complete understanding (at least on letting ¢ — oo as is
done in (2.4)).
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3 Families in the Global case

We return to global zeta or L-functions, that is L(s, f) where f is an auto-
morphic cusp form of GL,,/Q, and consider families F, of such. We do not
offer a precise definition of what is meant by a family in this case, but rather
(since this is all that we have at present) we give numerous examples of
families. The set up is such that each f € F has a “conductor” ¢y € (0, 00)
(they are given explicitly in the examples below). For X a real parameter,
we assume that the sets Fx = {f € Flcy < X} are finite and that the
asymptotics of |Fx| as X — oo, are known. The scaling statistics which we
consider are the distributions of zeros of L(s, f) near s = 1/2, as f varies
over F ordered by conductor. That is we examine the numbers:

)
v log e W <@
U BT o< <o@ (31)
where 5+ z'y}] ) are the nontrivial zeros of L(s, f). That the scaling by —=- ogc

is approprlate will become clear from the results below. To measure these
distributions we form for F the analogues of the measures v; (e.g. (2.11) of
Lecture I) and the densities D; (e.g. (2.12) of Lecture I) as follows:

(J)

1 e log Cf
and for ¢ € S(R) a test function set:
_ vrlogey
D(f,¢) = %j¢>(————27r ) (3:3)
and
W(X,F,¢) = I > D(f,9) (3.4)

cf<X

Thus v;(X,F) measures the distribution, as f varies over JF, of the j-th
lowest zero of L(s, f) normalized as in (3.1), while W measures the density
the zeros which are within O(1/logcs) of s = 1/2. One hopes that as
X — oo the measures v;(X, F) converge to measures v;(F) and the densities
converge to [%_¢(z)W (F)(z)dz, for a suitable density W (F)(z). Indeed
for the function field analogue of the above with various families F, this is
proven in [18] using the same methods mentioned in Section 2. For these
cases the limiting measures v;(F) and the density W (F) are determined by
the “symmetry” G(F) which is the scaling limit of the monodromy groups.
They are determined (when G is one of the classical families) by (2.14) and
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(2.15) of Lecture I. We now list some examples of families of such F’s for
which some results along these line have been established. In all cases we will
assume RH for all L-functions (at the cost of restricting the test functions
further one can remove this assumption).

I: The family F of Dirichlet L-functions L(s,x) where x is a primitive
quadratic character (that is x2 = 1), mod ¢. The conductor c, is equal to q.

e From the function field analogue we expect that G(F) = Sp(o0), see
[21].

e [21] (see also Ozluk-Snyder [22]) W (X, F,¢) = [ #(z)w1(Sp, z)dz
as X — oo for ¢ € S(R) with support ¢ C (—2,2). Here w;(Sp,z) is
given in (2.16) of Lecture 1.

e Rubinstein [14] has investigated numerically the distributions of
vi(F,X),5=1,2and W(X,F) for X ~ 10'2 and finds an excellent fit
with the Sp(oco) predictions.

e The first to numerically compute zeros L(s, x) in this family for moder-
ate sized q appears to be Hazelgrove. He found that the zeros 'repel’ the
point s = 1/2 and this is sometimes called Hazelgrove’s phenomenon.
Now the density of v1(Sp) vanishes to second order at 0 (see [18]) and
this is unique to the Sp symmetry! So this Hazelgrove phenomenon is
a manifestation of the symplectic symmetry.

II: The family F of quadratic L(s, A ® x) of the GLy cusp form A of
weight 12 for I' = SLy(Z), see (1.9) above.

Ls,009x) = ;(1"/)2 x(n)n=s. (3.5)

n=1

The conductor cagy is ¢° (where x has conductor ¢). In this family half
of the L-functions have even functional equations and half, odd functional
equation, according to the sign of the “epsilon factor” eagy. We let F * be
the corresponding subfamilies.

e From the function field analogue we expect that G(F) = O(oc0). In
particular G(F) corresponds to the scaling limit through Ot (even) =
SO(even) or O~ (0dd) and G(F~) to Ot (odd) = SO(odd) or O~ (even),
see [21].

o ([21]) W(X,F*,¢) — ffooo ¢(z)w1(SO(even), z)dx,
W(X,F~,¢) = [2 ¢(x)w1(SO(odd), z)dz

for ¢ with support ¢ C (—1,1). The explicit densities w; (SO(even))
of w1(SO(odd)) are given in (2.16) of Lecture I.
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e Numerical experimentations by Rubinstein [14] with v;(X, F¥),j
1,2 and W (X, F*) with X ~ 10%, agree well with the O(oc0) predlc—
tions.

I1I: The family F of holomorphic (Hecke-eigen)-cusp forms of even inte-
gral weight k on SLy(Z)\ H? (see [12]) as k — oo. For f € F, L(s, f) is its
L-function and its conductor is Cy = k?. As in the last example half of these
L(s, f)’s have even functional equations and half odd. In fact the sign € is
1if k = 0(4) and -1 if k = 2(4). Let F* be the corresponding subfamilies.

e We expect, since the f’s are generic GLy forms, that G(F) = O(c0).

e Iwaniec-Luo-Sarnak [23] show that W(X,F*,¢) — ffooo o(z) x
xw1(SO(even),z)dz and W (X, F~,¢) = [°° ¢(z)w1(SO(odd), z)dz
for ¢ supported in (-2,2).

IV: The family F of holomorphic new-forms of a fixed even integral
weight k > 2 for T'o(NV) \ H [24]}, with N — oo. We assume that the central
character of f is trivial (i.e. trivial Nebentypus) and for simplicity we also
assume that N is prime. This time we average over smaller families - that
is over all f’s above on I'g(N), with N — oco. The conductor ¢y is N and,
as in the last two examples, approximately half of the signs ef are +1 and
half -1. Let Hi (V) denote the set of forms as above and H ki(N ) the subsets
whose corresponding €5 = +1.

e As in the last family we expect that G(F) = O(00).

e Iwaniec-Luo-Sarnak [23] prove that as N — oo

IE;(N—| Z D(¢, f) -—)/ ¢(2)w1 (SO(even), z)dz.
k FEHE(N)
_—_IH"1(N| S D)) —>/ $(z)wr (SO(0dd), 2)dz

k

feHE(N)
for any ¢ € S(R) support ¢ C (—2,2).

V: The family of symmetric square L-functions, L(S,V2f) (see [25]),
where F is in family III. There are Euler products of degree three and, by a
Theorem of Gelbart and Jacquet [10], they are L-functions of selfdual cusp
froms on GL3. The conductor ¢z is k2. The sign of the functional equation
ey25 1s always equal to 1.

'Here

To(N) = {( ¢ Z ) € SLz(Z):NIc}
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¢ Being generic selfdual forms on GL3 we expect G(F) = Sp(o0).

e In [23] it is proven that
oo
WEF )~ [ sahn(Spaldo

as X — oo for any ¢ € S(R) with support ¢ C (-%.%).
Remarks:

1. All of the above results confirm, to the extent that they apply, the
predictions of the claimed symmetry G(F). The Conjecture that the
density sums WA(X ,F,¢) converge to the claimed density without any

restrictions on ¢, will be called the Density Conjecture for the family
F.

2. The proofs of the results about the densities all proceed by expressing
D(f, $) via the explicit formula in terms of sums involving the Hecke
eigenvalues of f. What is then needed are techniques for averaging
the latter over f € F. For the families III, IV and V we use heavily
the tools developed in Iwaniec-Sarnak [26] (see below) for dealing with
these averages.

3. With the exception of II, all the results allow for the support of ¢
to be larger than [-1,1]. This is rather significant since w;(Sp)(€),
@1(SO(even))(€) and @1(SO(odd))(€) are all discontinious at & = +1.
This signals that new terms (“nondiagonal” enter into the main terms
of the asymptotics as soon as support ¢(¢) is larger than [-1,1]. Thus
what is shown here goes beyond anything established for the corre-
lations of high zeros (see the discussion following (1.7)), or for that
matter the diagonal analysis of Berry [27] (see the discussion after
(5.1) in Lecture I in the analogous analysis with the trace formula).
For the families III, IV and V these new non-diagonal terms arise out
of a far reaching analysis with Kloosterman sums (see [26] and (28] for
related issues). That these fundamentally new nondiagonal contribu-
tions yield the conjectured G(F) answers is very pleasing evidence for
the conjectures.

4 Applications

The interest in the zeros of L-functions lies in their fundamental influ-
ence on arithmetical problems. For example the question of vanishing of
an L-function at special points on the critical line arises in the Birch and
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Swinnerton-Dyer Conjectures [29, 30], in the Shimura correspondence (see
[31]) and in spectral deformation theory (Phillips-Sarnak [32]). The distri-
bution of zeros near s = 1/2 (that is the central value) discussed in Section
2.3 has immediate application to nonvanishing at this point. By varying the
test function ¢ in the Density Conjecture for any of the above families F,
together with the fact that W (F) does not give positive mass to the point
zero, implies (assuming the Density Conjecture) that as X — oo,

#{f € Fles < Xoep =1, L(5, ) #£0}
#{f € Fley < X,er =1}

1, (4.1)

and
#{f € Fles < X, = -1,L'(3,f) # 0} .
#{f € Fley < X,ep = -1}

The results of the last Section are approximations to the density Conjec-
ture and give corresponding approximations to (4.1) and (4.2). We illustrate
this with the family IV and with k = 2, this being perhaps the most inter-
esting arithmetically. By choosing ¢ € S(R) so that ¢(0) = 1, ¢(z) > 0
and [%_¢(z)W (F,z)dz is minimized (see [23]) we conclude from the den-
sity results in subsection 2.3 about family IV (which recall assume RH for
automorphic L-functions) that for N, prime and large enough:

#f e HYMILGN A0 | 9

1. (4.2)

#{f € Hf (N)} 16 (43)
#{f € Hy (N)|L'(3, f) # 0} 15
#{f € Hy (N)} ~ 16 (44)
and
|H2§N)| +o(lHy(N)) < D ord(%,L(s,f)) < %mz(zvn, (4.5)

fGHg(N)

where ord(sg, L(s, f)) is the order of vanishing of L(s, f) at s = s¢o. Note
that |Ha(N)| ~ & and as Murty [33] shows (and this does not assume RH)

that |Hy (N)| ~ &2&—@, the lower bound in (4.5) is immediate. Concerning
the upper bound in (4.5), Brumer [34] establishes such a result with 99/100
replaced by 3/2. One can reduce the 3/2 to 1 without appealing to the “off-
diagonal” analysis of the last Section but to get anything below 1 already
relies on extended ranges. A similar remark applies to (4.3), the off diagonal
analysis allowing a lower bound bigger than 50%. This is significant as we
will see below.

We can apply (4.3), (4.4), and (4.5) to the ranks of the Jacobians,
Jo(N)/Q, of the curves Xo(N) (equal analytically to I'o(N) \ H), by com-
bining these results with known partial results to the Birch and Swinnerton-
Dyer Conjecture (Kolyvagin [29] and Gross-Zagier [30]). Let My(N)/Q be
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the quotient of Jy(N) considered by Merel [35]. It corresponds to the f’s in
H (N) for which L(3, f) # 0 and is no doubt the largest quotient of Jy(N)
which is of rank zero. It is of great interest to know its size. Brumer [34] has
computed these for N < 10* and based on his findings he conjectures that:

iy 4imMo(N) 1 (4.6)
Noroo |H;'(N)|

. rankJo(N) 1

N Fmd (V) 2 (47)

Note that the Density Conjectures for this family via (4.1) and (4.2), and [29]
and [30] imply these Conjectures of Brumer. In the same way (4.3) and (4.4)
imply (still under RH) that for N large:

dim My(N) > %IH;(N)I (4.8)

and
rank Jo(N) > %g dim(Jo(N)). (4.9)

Moreover assuming the Birch and Swinnerton-Dyer Conjectures as well as
(4.5) yields, that for N large

2

It is remarkable that the results (4.3), (4.4) and (4.5) can be established un-
conditionally with almost as good quality. The techniques to achieve this are
quite different and more sophisticated than those used for the density results
for the families ITI, IV and V, though they both make use of the methods for
averaging developed in [26]. In [36], Duke examines the averages of L(}, f)
and L?(3, f) over the family H(N) and this allows him to show that at
least N/(log N)? of the L(3, f)'s are not zero. Introducing “mollifiers” and
other tools into the analysis of averages of L(%, f) and Lz(%, f), Iwaniec and
Sarnak [26] show the following:

im 7€ HY (N)IL(3,f) 2 (log N)~?}
1m T+
N—00 #{f € Hy (N)}

+o(N) < rank Jo(N) < % dimJo(N).  (4.10)

> (4.11)

1
5.

This unconditional result is rather close to the conditional result (4.3)
and moreover the 50% is of fundamental significance. In [26] it is shown
that if (4.11) holds with any C > 1/2 in place of 1/2 on the right hand side,
then there are no Siegel zeros! Of course the conditional result (4.3) is of no
relevance here since tautologically the RH’s imply that there are no Siegel
zeros. Using variations of the techniques above among many other ideas
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Kowalski and Michel [37] and independently VanderKam [38] have shown
that (4.3) and (4.4) hold unconditionally for some positive constants on the
right hand sides. All of these unconditional results when combined with
[29] and [30] lead to corresponding unconditional results towards Brumer’s
Conjectures. In another work, Kowalski and Michel [39] established that the
upper bound in (4.5) holds unconditionally with 99/100 replaced by a large
constant C.

5 Conclusion

P. Cohen once remarked to me that in a Colloquium talk, the first quarter
should be understandable by everyone, the second by the experts, the third
by the speaker and the end by no one. We now enter this final phase — at
least as far as this speaker goes.

The results for function fields, the numerical experiments and the ana-
lytic results about densities all point convincingly to the fact that the dis-
tribution of zeros for families follow the G(F) distributions. It is of course
possible that G(F) is simply an excellent model for predicting these densi-
ties. However based on what happens in the function field we believe that
there is in fact a symmetry group in the global case which is the source of
all of these phenomena. At a highly speculative level we expect (see [21])
that there is a natural spectral interpretation of the zeros of each L(s, f)
in terms of the eigenvalues of an operator U(f) on a Hilbert space H (an
interesting candidate for a spectral interpretation of the zeros of L(s, x)’s
has been put forth by Connes [40]). Furthermore for one of our families
F of such f’s we expect that these U(f)’s can all be naturally defined on
the same H. The symmetry G(F) will then take the form that the corre-
sponding operators U(F) all preserve a corresponding structure on H (e.g.
symplectic or orthogonal). The source of the distribution laws for families
might then come from a grand “Chebotarev Theorem” asserting that as f
varies over F with ¢f < X, the U(f)’s become equidistributed in the corre-
sponding space of operators. From this point of view it would follow from
the Law of Large Numbers (2.5) of Lecture I and the universality of type 11
symmetric spaces, that for the typical member f € F, L(s, f) satisfies the
Montgomery-Odlyzko Law. That every L(s, f) should satisfy this law, i.e.
individually, is then special to the global L-functions (as mentioned before it
does not apply in the function field or in the analogous Hamiltonian setting).
In order to understand the symmetry of an individual L(s, f) one should put
the L-function in as small as possible family. For example, the Riemann Zeta
function sits in the family I of Section 2.3 for which G(F) = Sp(o0).We in-
fer that in the proposed spectral interpretation of the zeros of the Riemann
Zeta function the operator should preserve a natural symplectic structure!
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The theme that there is a theory of families for global L-functions is a wel-
come one, since the proof by Deligne [19, 20] of the Weil Conjectures for
zeta functions of varieties over finite fields (that is the generalization of the
Riemann Hypothesis for function fields) uses the monodromy of families in
a fundamental way.

To end we remark that one lesson that may be learned from this discus-
sion on zeta functions that may apply to the case of Hamiltonians and in
particular the Basic Conjectures is the following: In formulating the basic
Conjecture for a family of Hamiltonians (i.e. that the measure theoretically
typical member satisfies the Basic Conjecture) there should be a calculation
which ensures that the family is large enough — just as the calculation of
the monodromy being large, was crucial in the proof of (2.4).
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