
✐

✐

“4-Phong” — 2024/8/12 — 23:21 — page 2255 — #1
✐

✐

✐

✐

✐

✐

Communications in

Analysis and Geometry

Volume 31, Number 9, 2255–2275, 2023

Kähler-Einstein metrics and
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The existence of Kähler-Einstein metrics on a Fano manifold is
characterized in terms of a uniform gap between 0 and the first
positive eigenvalue of the Cauchy-Riemann operator on smooth
vector fields. It is also characterized by a similar gap between 0
and the first positive eigenvalue for Hamiltonian vector fields. The
underlying tool is a compactness criteria for suitably bounded sub-
sets of the space of Kähler potentials which implies a positive gap.

1. Introduction

Starting with the works of Calabi [4] and Yau [28], a central problem in
Kähler geometry has been determining when a complex manifold admits a
constant scalar curvature Kähler metric in a given Kähler class. One of the
first obstructions to the existence of a cscK Kähler metric is the vanishing
of the Futaki invariant, which is a character defined on the Lie algebra of
holomorphic vector fields. The Yau-Tian-Donaldson conjecture [12, 26, 29]
(see also [23] for a review) asserts that the existence of a Kähler metric with
constant scalar curvature should be equivalent to the algebro-geometric no-
tion of K-stability. Two recent major advances on this conjecture have been
the solution of X.X. Chen, S. Donaldson, and S. Sun [7–9] of the case of
Kähler-Einstein metrics on Fano manifolds, and the more recent works by
X.X. Chen and J.R. Cheng [5, 6], which established the equivalence be-
tween the existence of a Kähler metric with constant scalar curvature and
an analytic notion of K-stability.

The K-stability condition of a Kähler class is the requirement that the
generalized Futaki invariant attached to a test configuration be non-negative,
and vanish only if the test configuration is a product. It is only one possi-
ble characterization of the existence of a canonical metric, and for both
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geometric and analytic reasons, it may be useful to have other characteri-
zations as well. In the case of Kähler-Einstein metrics, which are the focus
of the present paper, a notion of δ-invariant has been proposed by Fujita-
Odaka [13] and Blum and Jonsson [3], and it has been shown by R. Berman,
S. Boucksom, and M. Jonsson [1] that the existence of a Kähler-Einstein
metric is equivalent to the δ-invariant being greater or equal to 1. In a dif-
ferent and even earlier direction, it had been shown in [21, 23, 30] that the
Kähler-Ricci flow converges if the lowest strictly positive eigenvalue of the ∂̄
operator on vector fields remains bounded uniformly away from 0 along the
flow. It was suggested there [21–23] that it may be possible to characterize
the existence of a Kähler-Einstein metric in terms of lower bounds for this
eigenvalue, and this is the problem which we solve in the present paper.

More precisely, let X be a compact Kähler manifold with c1(X) > 0.
Fix a reference metric ω0 ∈ c1(X). For any ω ∈ c1(X), let Kω0

(ω) be the
K-energy1 of ω with respect to the reference metric ω0 ∈ c1(X), and uω be
the normalized Ricci potential of ω, as defined in (2.1) below. We define λω
to be the lowest strictly positive eigenvalue of the ∂̄ operator on the space
T 1,0(X) of (1, 0)-vector fields, i.e.,

λω = infV ∈T 1,0(X),V⊥ωH0(X,T 1,0)
∥∂̄V ∥2ω
∥V ∥2ω

(1.1)

where the subindex denotes the L2 norms taken with respect to the metric
ω, and ⊥ω indicates the perpendicularity condition with respect to ω. Let
Rω be the scalar curvature of ω. For each A > 0, we introduce the following
subset of the space of Kähler metrics in c1(X),

c1(X;A) = {ω ∈ c1(X); ∥uω∥C0 + ∥∇ωuω∥C0 + ∥Rω∥C0 ≤ A, Kω0
(ω) ≤ A},

(1.2)

and the corresponding eigenvalue gap for the set c1(X;A) by

λ(X;A) = inf
ω∈c1(X;A)

λω.(1.3)

If c1(X;A) is empty, we define λ(X;A) = ∞. Then we have the following
characterizations of the existence of a Kähler-Einstein metric:

1We refer the readers to [24] for the definition of K-energy and other relevant
functionals.
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Theorem 1. Let X be a compact Kähler manifold with c1(X) > 0 and
vanishing Futaki invariant. Then X admits a Kähler-Einstein metric if and
only if λ(X,A) > 0 for any A > 0.

Note that although the definition of the K-energy requires a choice of
reference metric ω0, under a change of reference metric, it just shifts by a
constant. Thus the above condition is invariant under a change of reference
metric, as it should be.

To explain the second characterization, we recall the following ob-
servations due by Futaki [14] (see also [21], Lemma 2). For any metric
ω ∈ c1(X), the differential operator operating on smooth functions Lωf =
−gij̄∂i∂j̄f + gij̄∂iuω ∂j̄f − f is non-negative, and its kernel is the space of
functions f with ∇f a holomorphic vector field. Let µω be the smallest pos-
itive eigenvalue of Lω. Then the corresponding eigenfunctions f satisfy the
identity

∫

X

|∇̄∇̄f |2e−uωωn = µω

∫

X

|∇̄f |2e−uωωn.(1.4)

Moreover

µω = inff∈C∞(X),
∫
X
fe−uωωn=0

∫

X
|∇̄∇̄f |2e−uωωn

∫

X
|∇̄f |2e−uωωn(1.5)

We introduce, in analogy with (1.3), the eigenvalue gap for Hamiltonian
vector fields by

µ(X;A) = inf
ω∈c1(X;A)

µω.(1.6)

Theorem 2. Let X be a compact Kähler manifold with c1(X) > 0 and
vanishing Futaki invariant. Then X admits a Kähler-Einstein metric if and
only if µ(X,A) > 0 for any A > 0.

For each A > 0, we have the easy bound µ(X;A) ≥ cA λ(X;A) for some
positive constant cA. Thus the condition λ(X;A) > 0 in Theorem 1 implies
the condition µ(X;A) > 0 in Theorem 2. However, there does not appear to
be a direct way to show that they are equivalent.

We now describe briefly our approach. One direction in Theorem 1 and
Theorem 2 is known, by combining the work of Perelman on the Kähler-Ricci
flow with the convergence results of [21] and [30]. The main problem is to
establish the other direction, namely that the existence of a Kähler-Einstein
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metric on X implies that the gaps λ(X;A) and µ(X;A) are strictly posi-
tive for any A > 0. For each fixed ω, the eigenvalues λω and µω are positive
by definition. So the desired statement can be interpreted as a compact-
ness statement with respect to a suitable topology. Our strategy for such a
statement is to view the Kähler potential φ of a metric ω ∈ c1(X,A) as the
solution of a Monge-Ampère equation with right hand side depending on the
Ricci potential uω. The C

α estimates are derived by combining the theorem
of Skoda-Zeriahi [31] with that of Kolodziej [16] following the idea of Guedj
[2]. Then the C3,α priori estimates can be obtained by combining methods
for the Monge-Ampère equation together with the recent techniques intro-
duced by Chen-Cheng [5] for the constant scalar curvature problem. Next,
the C2,α bounds imply the uniform equivalence of the metrics. This implies
in turn uniform estimates of the corresponding eigenvalues on vector fields,
using the arguments of [19] to handle the orthogonality condition with dif-
ferent metrics to holomorphic vector fields. The desired theorems follow.

2. C1,α estimates for metrics in c1(X;A)

First we set up the equation. Let n be the dimension of X. If ω is any metric
in c1(X), we define its Ricci potential uω by

Ric(ω)− ω = −i∂∂̄uω,
∫

X

e−uωωn =

∫

X

ωn(2.1)

where Ric(ω) = −i∂∂̄ logωn is its Ricci curvature form. Fix now a reference
metric ω0 ∈ c1(X), and let Ric(ω0) and u0 be its Ricci form and Ricci poten-
tial, respectively. We can then write ω = ω0 + i∂∂̄φ, where φ is normalized
to satisfy supXφ = 0. Since

−i∂∂̄(uω − u0) + i∂∂̄φ = Ric(ω)−Ric(ω0) = −i∂∂̄ log ω
n

ωn0
(2.2)

we find that φ satisfies the following complex Monge-Ampère equation

(ω0 + i∂∂̄φ)n = euω−u0−ϕ+cϕωn0(2.3)

where cϕ is a specific constant, which is determined because φ, uω, and u0
have all been normalized. It follows from the normalization of uω and φ that
cϕ ≤ 0.
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2.1. The Cα estimates on potential

The first step is the following Cα estimate.

Lemma 1. Assume that X admits a Kähler-Einstein metric ωKE, which
we take as reference metric ω0 = ωKE. Then there exists α > 0 with the
following property. For any ωϕ ∈ c1(X;A), there exists an automorphism g
of X such that ∥ψ − supψ∥Cα(ωKE) ≤ C(A), where g∗ωϕ = ωKE + i∂∂̄ψ.

Proof. Since X admits a Kähler-Einstein metric, we can apply the Moser-
Trudinger inequality. An early form of this inequality was first proved in
[26], a sharp version subsequently in [20] in the case of manifolds without
holomorphic vector fields, and the full sharp and general version in [11]. In
this form, it asserts that there exists an ϵ > 0 depending on X with the
following property: for any ωϕ ∈ c1(X;A), there exists a g ∈ G (here G is
the automorphism group of X) such that

A ≥ KωKE
(ωϕ) ≥ ϵJωKE

(g∗ωϕ)−
1

ϵ
(2.4)

where JωKE
(ϕ) =

∫

φωnωKE
− EωKE

(ϕ) and EωKE
is the Aubin-Yau functional

([24]) with reference metric ωKE. Thus if we write g∗ωϕ = ωKE + i∂∂̄ψ we
have

ψ − supψ ∈ SA0

= {θ ∈ E1(X,ωKE) ⊆ PSH(X,ωKE) : sup
X

θ = 0 and JωKE
(ωθ) ≤ A0}

where A0 = (A+ ϵ−1)ϵ−1, PSH(X,ωKE) is the space of plurisubharmonic
functions and E1(X,ω0) = {φ ∈ PSH(X,ωKE)|φ ∈ L1(X,ωnϕ)} is the space
of finite energy potentials. We now claim:

1) SA0
is compact with respect to the weak L1(ωn0 ) topology on

PSH(X,ω0)

2) Every element of SA0
has zero Lelong number at z for all z ∈ X.

3) For every p ≥ 1 there exists C(p, ω0, A) such that

∫

X

e−pθωn0 ≤ C(p, ωKE, A) for all θ ∈ SA0
.(2.5)

These follow as in [2] respectively from Lemma 4.13, Proposition 2.13
and Theorem 4.15 (due to Skoda and Zeriahi) of [10]. Next, applying (2.3)
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with φ = ψ − supXψ, we obtain for ω ∈ c1(X;A),

(ωKE +
√

−1∂∂̄ψ)n = e−(ψ−supψ)+uψ+cψωnKE ≤ C(A)e−(ψ−supψ)ωnKE

(2.6)

where we have used the fact that |uψ| ≤ A and cψ ≤ 0. Now if we apply (2.5)
to (2.6) we obtain that ∥ψ − supψ∥Cα(ωKE) ≤ C(A) for some α = α(n, p) ∈
(0, 1) by the theorem of Kolodziej [16]. □

2.2. C3,α estimates on potentials

We return to the study of the equation (2.3), for a general compact Kähler
manifold X and reference metric ω0, not necessarily Kähler-Einstein. The
goal of the present subsection is to establish the following lemma:

Lemma 2. Let φ be a smooth solution of the Monge-Ampère equation (2.3).
Assume that ∥φ∥C0 ≤ A, ∥uω∥C0 + ∥∇ωuω∥C0 + ∥∆ωuω∥C0 ≤ A. Then for
any α ∈ (0, 1), there exists a constant C = C(n,A, ω0, α) > 0 so that

∥φ∥C3,α(X,ω0) ≤ C.(2.7)

It is convenient to set F = −φ+ uω − u0 + cϕ, so the equation can be
written as

(ω0 + ∂∂̄φ)n = eFωn0 , sup
X

φ = 0,(2.8)

and note that F depends on the Kähler potential φ. To simplify the notation,
we shall denote uω by just u. Under the assumptions of the lemma, both φ
and u are bounded, so it follows from the fact that ω and ω0 have the same
volume that |cϕ| is bounded by a constant C(A,ω0) as well. Thus we have

0 <
1

C(A,ω0)
≤ eF ≤ C(A,ω0).(2.9)

We divide the proof of the lemma into the following steps:

1) Apply Chen-Cheng’s argument [5] to show ∆ω0
φ is in Lp(X,ω0) for any

p > 0, hence φ ∈ C1,β(X,ω0) for any β ∈ (0, 1) by elliptic estimates.
Here ∆ω0

is the Laplacian with respect to the reference metric ω0.

2) The Hölder continuity of φ and the assumption ∥∇u∥2
C0(X,ω) ≤ C(A)

implies that u ∈ C0,α′

(X,ω0) (see Lemma 6 below).
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3) By a theorem of Li-Li-Zhang [17] (which is an improvement of a result
of Yu Wang [27]), we get the C2,α′

(X,ω0) bound for φ.

4) After we show u ∈ C1,α′′

(X,ω0) by elliptic estimates, we get the C3,α

estimate for φ by differentiating the Monge-Ampère equation (2.3).

We begin by modifying the arguments in Chen-Cheng [5] to derive the
following estimates:

Lemma 3. There exists a constant C = C(A, n, ω0) > 0 with

sup
X

∥∇φ∥2C0(X,ω0)
≤ C.(2.10)

Proof. Denote Φ = −F − λφ+ 1
2φ

2 with a constant λ > 0 to be chosen later.
We calculate

∆ω

(

eΦ(|∇φ|2ω0
+ 3)

)

= (|∇φ|2ω0
+ 3)∆ωe

Φ + 2eΦRe⟨∇Φ, ∇̄|∇φ|2ω0
⟩ω(2.11)

+ eΦ∆ω|∇φ|2ω0
.

We consider the first term in (2.11).

∆ωe
Φ = eΦ(∆ωΦ+ |∇Φ|2ω)
= eΦ

(

(λ− 1)∆ω(−φ)−∆ωu+∆ωu0 + φ∆ωφ+ |∇φ|2ω + |∇Φ|2ω
)

≥ eΦ
(

(λ− 1− φ− C0)trωω0 − C + |∇φ|2ω + |∇Φ|2ω
)

where we used the assumption that |∆ωu| ≤ C(A), and C0 = C0(ω0) > 0 is
a constant satisfying −C0ω0 ≤ i∂∂̄u0 ≤ C0ω0.

To deal with the third term in (2.11), we introduce a normal coordinates
system for ω0 at the maximum point x0 ∈ X of eΦ(3 + |∇φ|2ω0

) such that
g0 = (g̃ij̄) = (δij) and dg0 = 0 at the point. Moreover, ω = (gīiδij) is diagonal
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at x0. We calculate at x0,

∆ω|∇φ|2ω0
= gpp̄

∂2

∂zp∂z̄p
(g̃ij̄φj̄φi)

= gpp̄
∂2g̃ij̄

∂zp∂z̄p
φj̄φi + gpp̄φīpφip̄ + gpp̄φīp̄φip

+ gpp̄ϕi
∂2φī
∂zp∂z̄p

+ gpp̄φī
∂2φi
∂zp∂z̄p

= R̃jk̄pp̄g
pp̄φkφj̄ + gpp̄φīpφip̄ + gpp̄φīp̄φip + gpp̄φi

∂2φī
∂zp∂z̄p

+ gpp̄φī
∂2φi
∂zp∂z̄p

≥ −C1trωω0|∇φ|2ω0
+ gpp̄φīpφip̄ + gpp̄φīp̄φip + 2Re(φiFī),

where R̃ij̄kl̄ is the bisectional curvature of the metric g0, −C1 is a lower

bound of R̃ij̄kl̄, and in the last inequality we have used the equation below
by taking derivatives on both sides of (2.8)

gpp̄
∂2φi
∂zp∂z̄p

= Fi, at x0.

Therefore, we get

∆ω

(

eΦ(|∇φ|2ω0
+ 3)

)

≥ eΦ
{

(|∇φ|2ω0
+ 3)

×
(

(λ− 1− φ− C0)trωω0 − C + |∇φ|2ω + |∇Φ|2ω
)

− C1trωω0|∇φ|2ω0
+ gpp̄φīpφip̄ + gpp̄φīp̄φip

+ 2Re(φīFi) + 2Re
(

gīiΦi(φjφj̄ī + φjīφj̄)
)

}

.(2.12)

The last two terms are equal to (note that at x0, φjī = φīiδij = (gīi − 1)δij)

2Re
(

− Φiφī − (λ− φ)|∇φ|2ω0
+ gīiΦi(gīi − 1)φī

)

=− 2(λ− φ)|∇φ|2ω0
− 2Re

(

⟨∇Φ, ∇̄φ⟩ω
)

≥− 2(λ− φ)|∇φ|2ω0
− |∇φ|2ω − |∇Φ|2ω,

the last two terms on the RHS can be absorbed by the corresponding terms
in the first line on the right hand side in (2.12), while

2Re(gīiΦiφjφīj̄) ≥ −gīiΦiΦīφjφj̄ − gīiφijφīj̄ = −|∇φ|2ω0
|∇Φ|2ω − gīiφijφīj̄ ,
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and the right hand side above can also be absorbed by terms in the first
and second lines of the right hand side in (2.12). So we get by combining
the above that at x0

0 ≥∆ω

(

eΦ(|∇φ|2ω0
+ 3)

)

≥eΦ
{

(|∇φ|2ω0
+ 3)

×
(

(λ− 1− φ− C0 − C1)trωω0 − C +
1

2
|∇φ|2ω

)

− 2(λ− φ)|∇φ|2ω0

}

≥eΦ
(

|∇φ|2ω0
(trωω0 +

1

2
|∇φ|2ω)− C|∇φ|2ω0

− C
)

≥eΦ
(

c(n,A)|∇φ|2(1+
1

n
)

ω0
− C|∇φ|2ω0

− C
)

(2.13)

where we choose λ = 2 + ∥φ∥L∞ + C0 + C1. In the last step we apply the
inequality below which follows from Young’s inequality (i.e. for a, b ≥ 0,

a
1

n b
n−1

n ≤ c(n)(12a+ b) for some c(n) > 0)

|∇φ|2ω0
≤ |∇φ|2ωtrω0

ω ≤ |∇φ|2ω(trωω0)
n−1

(ωn

ωn0

)

= eF
(

|∇φ|
2

n
ω (trωω0)

n−1

n

)n

≤ c(n)eF
(1

2
|∇φ|2ω + trωω0

)n

≤ C(n,A)
(1

2
|∇φ|2ω + trωω0

)n

.

From (2.13) we conclude that at x0, |∇φ|2ω0
≤ C(n,A). Since x0 is a max-

imum point of eΦ(|∇φ|2ω0
+ 3), we see that supX |∇φ|2ω0

≤ C(n,A). The
lemma is proved. □

We next apply the argument in the proof of Theorem 3.1 of Chen-Cheng
[5]. In our case the functions F and φ are bounded so we can simplify the
proof a little bit.

Lemma 4. For any p > 0, there exists a constant Cp = C(n,A, ω0, p) > 0
such that

∫

X

(trω0
ω)pωn0 ≤ Cp.

Proof. We fix a constant α ≥ 1 which will be determined later. For notational
simplicity, we write Ψ = −αF − λαφ, and calculate ∆ω(e

Ψtrω0
ω),

∆ω(e
Ψtrω0

ω) = eΨtrω0
ω(∆ωΨ+ |∇Ψ|2ω) + 2eΨRe⟨∇Ψ, ∇̄trω0

ω⟩ω(2.14)

+ eΨ∆ωtrω0
ω.
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We use a normal coordinates system of ω0, so that ω0 = (δij), dg0 = 0 and g
(i.e. ω) is diagonal at a given point. By the standard calculations as in Yau
[28], the last term in (2.14) satisfies

eΨ∆ωtrω0
ω ≥ eΨ

(

− C2trωω0 trω0
ω + gīigjj̄φij̄kφjīk̄ +∆ω0

F −Rω0

)

where −C2 is a lower bound of the bisectional curvature of ω0, φij̄k denotes
the covariant derivative of φ under∇ω0

and Rω0
is the scalar curvature of ω0.

We cannot apply the usual maximum principle here because apriori ∆ω0
F

is not bounded.
The second term in (2.14) satisfies

2eΨRe⟨∇Ψ, ∇̄trω0
ω⟩ω ≥ −2eΨ|∇Ψ|ω|∇trω0

ω|ω

≥ −eΨtrω0
ω|∇Ψ|2ω − eΨ

|∇trω0
ω|2ω

trω0
ω

≥ −eΨtrω0
ω|∇Ψ|2ω − eΨgīigjj̄φij̄kφjīk̄,

where in the last step we use the inequality belowas in [28]

|∇trω0
ω|2ω =

∑

i

gīi
∣

∣

∑

k

φkk̄i
∣

∣

2 ≤ trω0
ω
∑

i

gīi
∑

j

gjj̄φjj̄iφj̄jī

≤ trω0
ωgīigjj̄ φij̄kφjīk̄.

The first term in (2.14) is

eΨtrω0
ω∆ωΨ = eΨtrω0

ω
(

α∆ωφ− α∆ωu+ α∆ωu0 − λα∆ωφ
)

≥ eΨtrω0
ω
(

(λα− α− C0)trωω0 − C(n,A)α
)

,(2.15)

where as before C0 > 0 satisfies −C0ω0 ≤ i∂∂̄u0 ≤ C0ω0. Combining the
above inequalities we get

∆ω(e
Ψtrω0

ω) ≥ eΨ
(

(λα− α− C0 − C2)trω0
ωtrωω0

− C(n,A)αtrω0
ω +∆ω0

F −Rω0

)

≥ eΨ
(

α(trω0
ω)

n

n−1 e−
F

n−1 − C(n,A)αtrω0
ω +∆ω0

F −Rω0

)

≥ eΨ
(

c0α(trω0
ω)

n

n−1 +∆ω0
F − C(n,A)α

)

(2.16)

where we choose λ = C0 + C2 + 2, c0 = c0(n,A, ω0) > 0 depends on the

lower bound of e−
F

n−1 , and in the last step we apply Young’s inequality
trω0

ω ≤ ε(trω0
ω)

n

n−1 + C(ε) for a suitable choice of small ε > 0.
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We denote v := eΨtrω0
ω > 0 and for any p ≥ 1 we have by (2.16)

∆ωv
p = pvp−1∆ωv + p(p− 1)vp−2|∇v|2ω
≥ pvp−1eΨ

(

c0α(trω0
ω)

n

n−1 +∆ω0
F − C(n,A)α

)

+ p(p− 1)vp−3eΨ|∇v|2ω0
,

(2.17)

where in the inequality we have applied the observation that v|∇v|2ω =
eΨtrω0

ω|∇v|2ω ≥ eΨ|∇v|2ω0
. Integrating the inequality (2.17) over X against

the volume form ωn = eFωn0 , we obtain

∫

X

(

vp−1eΨ+F
(

c0α(trω0
ω)

n

n−1 +∆ω0
F
)

+ (p− 1)vp−3eΨ+F |∇v|2ω0

)

ωn0

≤ C(n,A)α

∫

X

vp−1eΨ+Fωn0 .(2.18)

To deal with the term involving ∆ω0
F , we will apply the integration by

parts. We calculate

∫

X

vp−1eΨ+F∆ω0
Fωn0 =

∫

X

vp−1e−(α−1)F−λαϕ∆ω0
Fωn0

=

∫

X

(

− (p− 1)vp−2e−(α−1)F−λαϕ⟨∇v, ∇̄F ⟩ω0

+vp−1e−(α−1)F−λαϕ(α− 1)|∇F |2ω0

+vp−1e−(α−1)F−λαϕλα⟨∇φ, ∇̄F ⟩ω0

)

ωn0 .(2.19)

The second term in the right hand side of (2.19) is good. The first term in
(2.19) satisfies

∫

X

−(p− 1)vp−2e−(α−1)F−λαϕ⟨∇v, ∇̄F ⟩ω0

≥−
∫

X

(p− 1)vp−2eΨ+F |∇v|ω0
|∇F |ω0

≥−
∫

X

α− 1

4
vp−1e−(α−1)F−λαϕ|∇F |2ω0

−
∫

X

(p− 1)2

α− 1
vp−3eΨ+F |∇v|2ω0

≥−
∫

X

α− 1

4
vp−1e−(α−1)F−λαϕ|∇F |2ω0

−
∫

X

vp−3eΨ+F |∇v|2ω0

if we take α = α(p) ≥ p+ 2. These negative terms will be cancelled by the
positive terms from (2.19) and (2.18). Next we look at the third term on the
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right hand side of (2.19). By Lemma 3 we have a bound on supX |∇φ|ω0
,

and thus
∫

X

vp−1e−(α−1)F−λαϕλα⟨∇φ, ∇̄F ⟩ω0

≥ − Cλα

∫

X

vp−1e−(α−1)F−λαϕ|∇F |ω0

≥ − α− 1

4

∫

X

vp−1e−(α−1)F−λαϕ|∇F |2ω0
− Cα2

α− 1

∫

X

vp−1e−(α−1)F−λαϕ

≥ − α− 1

4

∫

X

vp−1e−(α−1)F−λαϕ|∇F |2ω0
− Cα

∫

X

vp−1e−(α−1)F−λαϕ.

Plugging the above inequalities into (2.18) and re-organizing, it follows that
∫

X

c0αv
p−1eΨ+F (trω0

ω)
n

n−1ωn0 ≤ C(n,A)α

∫

X

vp−1eΨ+Fωn0 .

Note that Ψ and F are both bounded by C(n,A), so we conclude that there
exists a constant Cp = C(n,A, ω0, p) > 0 such that

(2.20)

∫

X

(trω0
ω)p−1+ n

n−1ωn0 ≤ Cp

∫

X

(trω0
ω)p−1ωn0 .

When p = 2
∫

X

trω0
ωωn0 =

∫

X

(n+∆ω0
φ)ωn0 = n

∫

X

ωn0

is clearly bounded. Now we define a sequence {pk} with p0 = 2 and pk =
2 + n

n−1k. Then (2.20) implies that

∫

X

(trω0
ω)pkωn0 ≤ Ck

∫

X

(trω0
ω)pk−1ωn0 .

Since pk → ∞ as k → ∞, iterating the inequality above gives that there
exists a constant Ck = C(n,A, ω0, k) > 0 such that

∫

X

(trω0
ω)pkωn0 ≤ Ck.

Lemma 4 then follows from this inequality and the Hölder inequality. □

The next step is to establish C3,α bounds on the potential φ. This can
be deduced from the result of Theorem 1.6 in [6], but in our special setting
we can provide a simpler and direct proof as follows.



✐

✐

“4-Phong” — 2024/8/12 — 23:21 — page 2267 — #13
✐

✐

✐

✐

✐

✐

Kähler-Einstein metrics and eigenvalue gaps 2267

Lemma 5. For any β ∈ (0, 1), there exists a constant Cβ =
C(n,A, ω0, β) > 0 such that

∥φ∥C1,β(X,ω0) ≤ Cβ .

Proof. By Lemma 4, f := ∆ω0
φ ∈ Lp(X,ωn0 ) for any p > 0. By the W 2,p-

estimates for linear elliptic equations (c.f. Theorem 9.11 in [15]), we have

∥φ∥W 2,p(X,ω0) ≤ C(∥φ∥Lp(X,ωn
0
) + ∥f∥Lp(X,ωn

0
)) ≤ Cp.

The C1,β(X,ω0) bound of φ then follows from the Sobolev embedding the-
orem (c.f. Corollary 7.11 in [15]) by taking p > 1 sufficiently large. □

Lemma 6. The Ricci potential u of ω = ω0 + i∂∂̄φ satisfies

∥u∥Cα(X,ω0) ≤ Cα(n,A, ω0),

for any α ∈ (0, 1).

Proof. Observe that

|∇u|2ω0
≤ |∇u|2ωtrω0

ω ≤ Atrω0
ω.

By Lemma 4, it follows that |∇u|ω0
∈W 1,p(X,ω0) for any p > 1. The lemma

then follows from the Sobolev embedding theorem by taking p > 1 suffi-
ciently large. □

To prove the C2,α-estimate of φ, we need the following recent result of
Li-Li-Zhang, which weakens the condition of Y. Wang’s result [27] on the
regularity assumption of φ.

Lemma 7 ([17] Theorem 1.2). Let B2 ⊂ Cn be the Euclidean ball with
radius 2 and center 0. Suppose φ ∈ PSH(B2) ∩ C(B2) solves the complex
MA equation

detφij̄ = f, in B2

with f ≥ λ > 0 for some positive λ ∈ R and f ∈ Cα(B2) for some α ∈ (0, 1).
If φ ∈ C1,β(B2) for some β > 1− α

n(2+α)−1 , then φ ∈ C2,α(B1) and the

C2,α(B1)-norm of φ depends only on n, α, β, λ, ∥φ∥C1,β(B2) and ∥f∥Cα(B2).

We arrive now at the C2,α estimates for φ:
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Lemma 8. Under the conditions spelled out in the statement of Lemma 2,
there exists α > 0 with

∥φ∥C2,α ≤ C(n,A, α)(2.21)

for some constant C(n,A, ω0).

Proof. We note that by Lemma 1 and Lemma 6, the function on the right
hand side of (2.3) has uniform C0,α′

(X,ω0) estimate. Lemma 5 provides the
C1,β(X,ω0) estimates of the Kähler potential φ. Then Lemma 7 proves the
C2,α(X,ω0) estimates of φ. □

The following lemma is the key lemma that we shall need later for the
proof of Theorem 1 and Theorem 2. It is an immediate consequence of the
C2,α(X,ω0)-estimates of φ, and the fact that the right hand side eF of the
Monge-Ampère equation (2.3) is bounded above and below:

Lemma 9. There exists a constant C = C(n,A, ω0) ≥ 1 such that

C−1ω0 ≤ ω ≤ Cω0,

and u ∈ C1,α(X,ω0) for any α ∈ (0, 1).

Finally, we can complete the proof of Lemma 2. By Lemma 8, the metric
gj̄i has uniform C2,α norm. By Lemma 6 and Cramer’s rule, its inverse gij̄

also has uniform C0,α(X,ω0) norm. The equation that Rω − n = ∆ωu can
be written locally in holomorphic coordinates as

gij̄
∂2u

∂zi∂z̄j
= Rω − n ∈ L∞.

Then the C1,α(X,ω0)-norm of u follows from theW 2,p-estimates and Sobolev
embedding theorem (c.f. [15]).

Finally, once we have the C1,α(X,ω0)-norm of u, we can take ∂
∂zi

on both
sides of the equation (2.3) and apply local Schauder estimates to conclude
that

(2.22) ∥φ∥C3,α(X,ω0) ≤ C(n,A, ω0, α).

The proof of Lemma 2 is complete.
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3. Proof of Theorem 1

One direction in Theorem 1 is a direct consequence of known results. Assume
that λ(X;A) > 0 for any A. By the work of Perelman (see [25] for a detailed
account), for any given initial data in c1(X), the orbit of the Kähler-Ricci
flow lies in a set c1(X;A) for some A > 0. Thus a positive lower bound for
λ(X;A) implies a positive lower bound for the eigenvalue λ(ω) along the
Kähler-Ricci flow. By the results of [21, 30], the flow converges then to a
Kähler-Einstein metric.

The main issue in the present paper is to establish the other direction,
namely that λ(X;A) > 0 for any A > 0 if a Kähler-Einstein metric is as-
sumed to exist. But then for any fixed A > 0, and any ω ∈ c1(X;A), after
replacing ω by g∗ω for some g ∈ G,2 we can apply Lemma 1 to conclude
that these ω have potentials uniformly bounded in Cα-norm for some fixed
α > 0. By Lemma 9, they are all equivalent. The desired bound for λ(X;A)
is then a consequence of the following lemma, which was essentially proved
in [19], Lemma 1:

Lemma 10. Let ω, ω̃ be two metrics in c1(X) which are equivalent, in the
sense that

κ−1ω ≤ ω̃ ≤ κω(3.1)

for some constant κ > 0. Let λω and λω̃ be the corresponding eigenvalues,
as defined in (1.1). Then

c(κ, n)−1λω ≤ λω̃ ≤ c(κ, n)λω(3.2)

for some constant c(κ, n) > 0 depending only on κ and the dimension n.

Proof. Since this lemma is essential for our considerations and since its proof
is short, we include the proof for the reader’s convenience. In the definition
(1.1) for λω and λω̃, the norms ∥∂̄V ∥ω and ∥∂̄V ∥ω̃ as well as the norms ∥V ∥ω
and ∥V ∥ω̃ are already equivalent, since the metrics ω and ω̃ are equivalent,
and so are their volume forms ωn and ω̃n. The main issue is the difference
in the orthogonality conditions ⊥ω and ⊥ω̃. To address this issue, consider

2Note that λω = λg∗ω for g ∈ G.
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any vector field V with V ⊥ω H
0(X,T 1,0) and decompose it as

V = Ṽ + E(3.3)

with Ṽ ⊥ω̃ H
0(X,T 1,0) and E ∈ H0(X,T 1,0). Taking inner products with

respect to the metric ω gives

0 = ⟨Ṽ , E⟩ω + ⟨E,E⟩ω(3.4)

and hence by the Cauchy-Schwarz inequality,

∥E∥ω ≤ ∥Ṽ ∥ω.(3.5)

We can now write for some constant c1(κ, n)

∥∂̄V ∥2ω = ∥∂̄Ṽ ∥2ω ≥ c1(κ, n)∥∂̄Ṽ ∥2ω̃(3.6)

because ω and ω̃ are equivalent, and at the same time, by the same equiva-
lence and the triangle inequality,

∥V ∥2ω ≤ 2∥Ṽ ∥2ω + 2∥E∥2ω ≤ 4∥Ṽ ∥ω ≤ c2(κ, n)∥Ṽ ∥2ω̃.(3.7)

It follows that

∥∂̄V ∥2ω
∥V ∥2ω

≥ c1(κ, n)

c2(κ, n)

∥∂̄Ṽ ∥2ω̃
∥Ṽ ∥2ω̃

≥ c1(κ, n)

c2(κ, n)
λω̃(3.8)

and hence λω ≥ c1(κ,n)
c2(κ,n)

λω̃. Reversing the roles of ω and ω̃ gives the inequality
in the opposite direction. The lemma is proved, completing the proof of
Theorem 1. □

4. Proof of Theorem 2

Again, one direction of the theorem follows from the results of Perelman and
[20, 30]. To prove the other direction, namely that the existence of a Kähler-
Einstein metric implies a strictly positive gap µ(X;A) for any A > 0, we
argue by contradiction. Recall the operator Lω defined for a metric ω with
Ricci potential u by Lωf = −gjk̄∇j∇k̄f + gjk̄∇k̄f∇ju − f and whose
eigenvalues and eigenfunctions satisfy the identity (1.4).

Assume then that X is Kähler-Einstein, and that there exists a sequence
of metrics ωj = ω0 + i∂∂̄φj ∈ c1(X;A) such that the eigenvalues µj of the
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operator Lωj goes to 0 as j → ∞. For any fixed A > 0, and any ω ∈ c1(X;A),
after replacing ω by g∗ω for some g ∈ G, we can apply Lemma 1 to conclude
that these ω have potentials uniformly bounded in Cα-norm for some fixed
α > 0. We take fj to be eigenfunctions of Lωj with eigenvalues µj , normalized
by ∥fj∥L2(X,e−ujωnj )

= 1. It follows from straightforward calculation that for

any holomorphic vector field V ∈ H0(X,T 1,0X)

(4.1)

∫

X

⟨∇ωjfj , V ⟩ωje−ujωnj = 0.

By Lemma 9 and Lemma 8, we can apply the elliptic estimates to fj , which
satisfies the linear equation

−gpq̄j ∇p∇q̄fj + gpq̄j ∇q̄fj∇puj − fj = µjfj

to conclude that

∥fj∥C2,α(X,ω0) ≤ C(n,A), ∀ j.
Up to a subsequence, we may assume the Ricci potentials uj converge in
C1,α to a function u∞ ∈ C1,α, the metrics ωj converge in C1,α to a metric
ω∞ ∈ C1,α, and the functions fj converge in C

2,α to a function f∞ ∈ C2,α. In
particular, we have ∥f∞∥L2(X,e−u∞ωn

∞
) = 1. Passing to the limit, (4.1) gives

that

(4.2)

∫

X

⟨∇ω∞
f∞, V ⟩ω∞

e−u∞ωn∞ = 0, ∀V ∈ H0(X,T 1,0X).

Observe that the equations (i.e. (1.4))
∫

X

|∇̄∇̄fj |2ωje
−ujωnj +

∫

X

|∇̄fj |2ωje
−ujωnj = (1 + µj)

∫

X

|∇̄fj |2ωje
−ujωnj

hold for any j. Since µj → 0, passing to limit we get

∫

X

|∇̄∇̄f∞|2ω∞

e−u∞ωn∞ = 0,

which implies ∇∇f∞ = 0, i.e. ∇ω∞
f∞ is a holomorphic vector field. From

(4.2) we conclude that
∫

X
|∇f∞|2ω∞

e−u∞ωn∞ = 0. However, this contradicts
the identity

1 =

∫

X

f2∞e
−u∞ωn∞ =

∫

X

|∇f∞|2ω∞

e−u∞ωn∞.

The proof of Theorem 2 is complete.
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We observe that this argument could have been used also for the proof
of Theorem 1. However, the argument there is more direct, and provides
more precise information on the bounds for λω.

5. Further remarks

We note that in Theorem 1, we cannot in general replace the gap λ(X;A)
for each A > 0 by the gap λ(X) = infω∈c1(X)λω over all of c1(X). A simple
counterexample is provided by the 2-dimensional sphere, which admits a
Kähler-Einstein metric, but can be seen to have

λ(S2) = 0(5.1)

as follows. Let η : R → R be a smooth increasing function such that η = 0 on
(−∞, 1/3] and η = 1 on [2/3,∞). Let a,N > 0 and let f : [0, 3N + 2] → R
be a non-negative concave function, positive and smooth on (0, 3N + 2) such
that

1) f(0) = f(3N + 2) = 0

2) f(x) = a for x ∈ [1, 3N + 1]

and let X be the surface obtained by revolving the graph of y = f(x) around
the x axis. Thus X is a smooth manifold (if we choose f so that its tangent
line is vertical at 0 and 3N + 2 and is tangent to the graph to infinite order),
looks like a cigar, is flat between x = 1 and x = 3N + 1 and is diffeomorphic
to S2. Moreover, we can choose a so that the area of X is 1 (so a is roughly

1
3N ·2π ). Let gN be metric obtained by restricting the euclidean metric in R3.
Let V1 be a smooth vector field on X defined as follows.

V1 = η(x− 1)η(N + 1− x)
∂

∂x

so V1 is a smooth vector field on X compactly supported in {(x, y, z) ∈M :
x ∈ (1, N + 1)}. Similarly we define V2 supported in (N + 1, 2N + 1) and V3
supported in (2N + 1, 3N + 1).

Next we let

V = c1V1 + c2V2 + c3V3(5.2)

where the ci ∈ R are chosen so that V is orthogonal to the 3-dimensional
space of holomorphic vector fields and c21 + c22 + c23 = 1. Now |Vi| is roughly
equal to 1 so ∥Vi∥L2 ∼ 1/3 so ∥V ∥L2 ∼ c21∥V1∥2L2 + c22∥V2∥2L2 + c23∥V3∥2L2 ∼
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1
9 . On the other hand ∇V1 = 0 for 2 < x < N so ∥∇V1∥2L2 = O( 1

N
) which

implies ∥∇V ∥2L2 = O( 1
N
). In particular, λωN ≤ O( 1

N
). This establishes our

claim.
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