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The stable Kauffman conjecture posits that a knot in S3 is slice if
and only if it admits a slice derivative. We prove a related state-
ment: A knot is handle-ribbon (also called strongly homotopy-
ribbon) in a homotopy 4-ball B if and only if it admits an R-link
derivative; i.e. an n-component derivative L with the property that
zero-framed surgery on L yields #n(S1 × S2). We also show that
K bounds a handle-ribbon disk D ⊂ B if and only if the 3-manifold
obtained by zero-surgery on K admits a singular fibration that ex-
tends over handlebodies in B \D. This can be viewed as a version
of a classical theorem of Casson and Gordon for homotopy-ribbon
fibered knots, here extended to handle-ribbon knots that need not
be fibered.
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1. Introduction

One of the most well-known open problems in knot theory is the slice-ribbon
conjecture of Fox, which proposes that every knot K ⊂ S3 that bounds a
smooth disk in B4 also bounds an immersed ribbon disk in S3 [Fox62].
In other words, if K is slice, then K is ribbon. In this paper, we focus
on characterizing sliceness, ribbonness, and an intermediate condition using
derivative links. For a knot K ⊂ S3 and genus g Seifert surface F for S, a
derivative L for K in F is a g-component link such that L ⊂ F , F − L is
a connected planar surface, and ℓk(Li, L

+
j ) = 0 for all i, j, where L+

j is a
parallel copy of Lj pushed off of F .

The following proposition is well-known; see [CD15] for a proof.

Proposition 1.1. A knot K ⊂ S3 is ribbon if and only if K has an unlink
derivative U .

A g-component link L ⊂ S3 is slice if L bounds a collection of g pairwise
disjoint smooth disks in the 4-ball. Regarding sliceness, Cochran and Davis
made the following conjecture:

Conjecture 1.2 ([CD15, stable Kauffman conjecture]). A knot K ⊂
S3 is slice if and only if K has a slice derivative L.

In this work, we examine an intermediate family of knots. A knot K ⊂
S3 is said to be handle-ribbon if K bounds a disk D in a homotopy 4-
ball B such that the exterior of D can be built without 4-dimensional 3-
handles. An n-component link L ⊂ S3 is called an R-link if the manifold
obtained by 0-surgery on each component of L is #n(S1 × S2). In parallel
with Proposition 1.1 and Conjecture 1.2, we prove

Theorem 1.3. A knot K ⊂ S3 is handle-ribbon in a homotopy 4-ball if and
only if K has an R-link derivative on some Seifert surface for K.

Since every R-link is slice into a homotopy 4-ball, it follows that handle-
ribbon knots satisfy the stable Kauffman conjecture. We note that one di-
rection of Conjecture 1.2 is straightforward: If K has a slice derivative L in
a surface F , then a slice disk for K is obtained by taking the union of F − L
and copies of the disks in B4 bounded by L (i.e. a slice disk is obtained by
compressing F along slice disks bounded by L). The reverse direction re-
mains open, although we should note that Cochran and Davis disproved the
Kauffman conjecture, which posited that every (genus one) Seifert surface
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for a slice knot contains a slice derivative. To the contrary, they exhibited a
genus one knot K without this property (although their example does have
a genus two surface with such a derivative) [CD15].

The reader may observe that our notion of a handle-ribbon knot is the
same as a strongly homotopy-ribbon knot appearing elsewhere in the lit-
erature [LM15, MZ21, HKP20]. We feel that handle-ribbon knot is more
accurately descriptive. We elaborate further in Remark 2.2 in Section 2 be-
low.

Our work also generalizes a classical theorem of Casson and Gor-
don about homotopy-ribbon knots, a condition slightly weaker than being
handle-ribbon (see Section 2 for relevant definitions and a detailed discus-
sion). They proved

Theorem 1.4 ([CG83]). A fibered knot K ⊂ S3 is homotopy-ribbon in a
homotopy 4-ball if and only if the fibration of the 0-surgery on K extends
over handlebodies.

Using Theorem 1.3, we can make an analogous statement for handle-
ribbon knots, dropping the condition that K must be fibered.

Theorem 1.5. A knot K ⊂ S3 is handle-ribbon in a homotopy 4-ball if and
only if there exists a singular fibration of the 0-surgery on K that extends
over handlebodies.

We offer two precise versions of Theorem 1.5; these assertions appear
as Theorems 4.4 and 5.3. Theorem 4.4 extends a singular fibration p from
the 0-surgery on K, denoted S3

0(K), to a generic map (or Morse-2 function)
P from a 4-manifold X to the annulus S1 × I which maps ∂X to S1 × {0}
and restricts to p on ∂X = S3

0(K). Alternatively, Theorem 5.3 uses tools
developed by the first author in [Mil18] to produce a circular Morse func-
tion p̃ : X → S1 such that p̃|∂X = p. In either case, regular fibers of p are
capped off by handlebodies in X. The proofs of Theorems 4.4 and 5.3 are
quite different, so we have included both. The existence of either type of
extension is equivalent, since both are equivalent to K being handle-ribbon
in a homotopy 4-ball, although the definition via circular Morse functions
is less rigid than the definition via generic maps. This flexibility may give a
strategy for finding singular fibrations with smaller genus fibers that admit
extensions (see Remark 5.6).

The plan of the paper is as follows: In Section 2, we offer definitions and
discuss handle-ribbon knots and homotopy-ribbon knots in greater detail. In
Section 3, we prove Theorem 1.3, and in Section 4, we prove Theorem 4.4. In
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Section 5, we adapt techniques from work of the first author [Mil18] to prove
Theorem 5.3. Finally, in Section 6, we demonstrate that the extensions of
singular fibrations over handlebodies by generics maps give rise to natural
trisections, generalizing work of Jeffrey Meier and the second author [MZ18,
MZ20].

2. Preliminaries

All work is in the smooth category, where Sn and Bn denote the standard
smooth n-sphere and n-ball, respectively. All manifolds appearing in this pa-
per are assumed to be orientable, even when this is not explicitly stated. If Y
is a submanifold of X, let X \ Y = X − η(Y ), where η(·) represents an open
regular neighborhood. A closed 3-manifold Y is obtained by Dehn surgery
on a knot K ⊂ S3 with slope a/b if Y is constructed by gluing a solid torus
V to S3 \K via a diffeomorphism of their boundaries that maps a meridian
of V to the a/b curve on ∂(S3 \K) in preferred coordinates. In this case, Y
is denoted Y = S3

a/b(K). The dual K∗ to K is the core of the surgery solid

torus V ⊂ S3
a/b(K). These concepts and notation extend to n-component

links L ⊂ S3, where the boundary slope a/b is replaced with an n-tuple of
boundary slopes corresponding to the n boundary components of S3 \ L. A
closely related idea is a knot trace or link trace: Given a boundary slope a/b
and a knot K ⊂ S3, the knot trace Xa/b(K) is defined to be the compact
4-manifold obtained by attaching a 4-dimensional 2-handle to B4 along K
with framing a/b. The key relationship here is that ∂(Xa/b(K)) = S3

a/b(K).

A relative handle decomposition of Xa/b(K) is obtained by attaching a 2-
handle to K∗ ⊂ S3

a/b(K) and capping off the resulting S3 boundary com-
ponent with a 4-handle. Link traces are defined similarly. We also use the
notion of relative traces: The relative trace Ba/b(K) is obtained by attaching
a 2-handle to K × {1} ⊂ S3 × I with framing a/b. Thus, the trace Xa/b(K)
may be obtained by capping off the S3 boundary component of the relative
trace Ba/b(K) with a 4-ball.

A collection of links with interesting traces is the family of R-links.
Recall that an n-component link L ⊂ S3 is an R-link if S3

0⃗
(L) (the mani-

fold obtained by performing 0-surgery on each component of L) is the 3-
manifold #n(S1 × S2). This nomenclature arises from Property R conjec-
ture (proved by Gabai [Gab87]), which asserts that the only 1-component
R-link is the unknot. The generalized Property R conjecture (GPRC, Kirby
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Problem 1.82 [Kir78]) proposes that every R-link is handleslide equiva-
lent to an n-component unlink. The GPRC is discussed in great detail
in [GST10].

The study of R-links is closely related to the smooth 4-dimensional
Poincaré conjecture (S4PC): If L is an n-component R-link, then L gives
rise to a closed 4-manifold XL built from a 0-handle, n 2-handles, n 3-
handles, and a 4-handle, obtained by capping off the link trace X0⃗(L) (made
up of a 0-handle and n 2-handles) with n 3-handles and a 4-handle, where
the condition S3

0⃗
(L) = #n(S1 × S2) implies that the capping off is possible.

Moreover, this capping is unique (up to diffeomorphism) by Laudenbach-
Poenaru [LP72], and thus L completely determines XL up to diffeomor-
phism. Note that XL is simply-connected (since it can be built without
1-handles), and χ(XL) = 2, so that XL is a homotopy 4-sphere. Conversely,
if X is any homotopy 4-sphere with a decomposition with no 1-handles, then
X gives rise to an R-link L (the attaching link for the 2-handles in X) such
that X = XL.

2.1. Between ribbonness and sliceness

Consider S3 as the boundary of a homotopy 4-ball B. If L ⊂ S3 bounds
a collection D of pairwise disjoint, properly embedded disks in B, we will
consider various restrictions on the disksD. First we state a standard lemma,
see e.g. [LN, Lemma 2.2.1] for the statement for knots (but with a proof
applying to links). For another proof, see Lemma 2.1 of [MZ20].

Lemma 2.1. If (S3, L) = ∂(B,D), then ∂(B \D) = S3
0⃗
(L).

Suppose that (S3, L) = ∂(B4, D). If the restriction of the radial Morse
function h on B4 to D is Morse and contains only saddles and minima (but
no maxima), then the disks D and link L are called ribbon. In a natural con-
struction (see [GS99, Section 6.2], for example), the critical points of h|D for
a ribbon disk D can be used to give a handle decomposition of B4 \D with
a 0-handle, 1-handles, and 2-handles (but no 3-handles). This construction
motivates the next definition: If (S3, L) = ∂(B,D), where B is any homotopy
4-ball, such that B \D has a handle decomposition without 3-handles, then
the disks D and link L are called handle-ribbon in B. (Handle-ribbon knots
are also called strongly homotopy-ribbon elsewhere; see Remark 2.2 below.)
Turning this handle decomposition upside down yields a relative handle de-
composition of B \D obtained by attaching 2-, 3-, and 4-handles to S3

0⃗
(L),

and thus the map i∗ : π1(S
3 \ L) → π1(B \D) induced by inclusion must be



✐

✐

“1-Miller” — 2024/8/1 — 0:23 — page 2162 — #6
✐

✐

✐

✐

✐

✐

2162 M. Miller and A. Zupan

surjective, since the inclusion factors through the inclusion S3 \ L →֒ S3
0⃗
(L).

Thus, if (S3, L) = ∂(B,D), where i∗ : π1(S
3 \ L) → π1(B \D) is surjective,

then the disks D and the link L are called homotopy-ribbon in B. Finally,
for any (S3, L) = ∂(B,D) without restrictions, the disks D and link L are
called slice in B.

In summary, we have the following nested inclusions.

(1) {ribbon links} ⊂ {handle-ribbon links} ⊂ {homotopy-ribbon links}

⊂ {links that are slice into homotopy 4-balls}.

However, none of these containments is known to be strict. The slice-ribbon
conjecture (for links) posits that when only considering B4, all of these
containments are equivalences. Thus, affirmative answers to the slice-ribbon
conjecture and the relative 4D Poincaré conjecture (that every homotopy
4-ball is diffeomorphic to B4) would together imply all containments in (1)
are equivalences.

Note that any R-link L can be used to build a homotopy 4-ball BL by
removing the 0-handle ofXL, where the cores of the 2-handles attached along
L become handle-ribbon disks for L in BL. Using this principle as a guide,
Gompf, Scharlemann, and Thompson constructed their famous potential
counterexamples to the slice-ribbon conjecture in [GST10].

Remark 2.2. Our presented definition of a homotopy-ribbon knot agrees
with that of Casson-Gordon [CG83] but differs from that of Cochran [Coc83].
To unify these two definitions, Meier and Larson renamed Cochran’s alterna-
tive to be a strongly homotopy-ribbon knot [LM15], which has been used by
several other authors as well [MZ21, HKP20]. In this paper, we have decided
to use handle-ribbon knot in the place of strongly homotopy-ribbon knot,
since we judge “handle-ribbon” to be more clearly descriptive. Whereas a
homotopy-ribbon knot bounds a disk satisfying the same homotopy-theoretic
condition as a ribbon disk, a handle-ribbon knot bounds a disk whose com-
plement admits a handle decomposition resembling that of a ribbon disk.

2.2. Stable equivalence of R-links

Suppose that L is a framed link, with components L1, L2 ⊂ L. Let α be a
framed arc connecting L1 and L2 and with α̊ disjoint from L. Then L1 ∪
L2 ∪ α has a framed pair of pants neighborhood N ⊂ S3, where the framed
link consisting of two boundary components of N (with surface framing) is
isotopic as a framed link to L1 ∪ L2, and the third boundary component of
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N , call it L′
1, is said to be related to L1 and L2 by a handleslide. If L′ is

the link obtained by replacing L1 with L′
1, we say L and L′ are handleslide

equivalent, and it is well-known that if L is a (zero-framed) R-link, then L′

is also an R-link, with X ′
L = XL.

Additionally, if L is an R-link and U is an unlink, then the split union
L ⊔ U is also an R-link, withXL⊔U = XL. From a 4-dimensional perspective,
the relative handle decomposition of XL⊔U is obtained by adding |U | pairs
of canceling 2- and 3-handles to the handle decomposition of XL (where |U |
denotes the number of components of U). Thus, we say that two R-links L
and L′ are stably equivalent if there are unlinks U and U ′ such that L ⊔ U
and L′ ⊔ U ′ are handleslide equivalent. In this case, we again haveXL′ = XL,
where the relative handle decompositions are related by handleslides and by
adding/deleting canceling pairs of 2- and 3-handles. As an example, consider
the following lemma, which we use in Section 3.

Lemma 2.3. Suppose that K has a derivative L such that K ∪ L is an
R-link. Then L is an R-link, and L and K ∪ L are stably equivalent.

Proof. Suppose L ⊂ F , where F is a Seifert surface for K. Since F \ L is
planar, there is a sequence of handleslides in F of K over components of L
converting K to a trivial curve in F \ L, and thus K ∪ L and L are stably
equivalent. □

Remark 2.4. In Lemma 2.3, if K is a boundary link (i.e. K bounds a
Seifert surface in which every component has one boundary component)
rather than a knot, and L is an R-link derivative for K, then the same
argument applies to show that L is an R-link and that L,K ∪ L are sta-
bly equivalent. We do not discuss boundary links more in this paper, but
refer the interested reader to [JKP14] for relevant definitions (such as the
derivative of a boundary link) and more information.

In order to better understand handleslide equivalence, we will repeat-
edly use the next lemma, the content of which is contained in the proof of
Proposition 3.2 from [GST10].

Lemma 2.5. Let K and J be disjoint 0-framed links in S3. If K is isotopic
in S3

0⃗
(J) to another link K ′ disjoint from the duals J∗, then K ∪ J and

K ′ ∪ J are handleslide equivalent in S3.

Proof. The lemma follows immediately from the observation that any iso-
topy of K in S3

0⃗
(J) that passes a strand of K through a dual in J∗ can
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be realized as a move in S3
0⃗
\ J∗ by banding K to a meridian of J∗. But

S3
0⃗
\ J∗ = S3 \ J , where a meridian of J∗ in the former is a 0-framed pushoff

in the latter, so this banding is precisely a handleslide over a component of
J in S3. □

2.3. The characterization of Casson and Gordon

In a classical and celebrated result, Casson and Gordon provided an alternate
characterization for fibered knots that are homotopy-ribbon in a homotopy
4-ball. A knot K in S3 is fibered if K has a Seifert surface F such that S3 \K
is the mapping torus F ×φ S1, where φ : F → F is a diffeomorphism such
that φ|∂F is the identity. By capping off each fiber of F ×φ S1 with a disk,

we can extend the fibration of S3 \K over S3
0(K), where F̂ is the (closed)

capped off Seifert surface, φ̂ : F̂ → F̂ is the natural extension of φ to F̂ , and
S3
0(K) = F̂ ×φ̂ S1. The map φ̂ is called the closed monodromy associated

to the fibered knot K. If there exists a handlebody H with F̂ = ∂H and a
diffeomorphism Φ : H → H such that Φ|∂H = φ̂, we say that φ̂ extends over
H. With these definitions, we can state Casson-Gordon’s result:

Theorem 2.6 ([CG83]). A fibered knot K ⊂ S3 is homotopy-ribbon in
a homotopy 4-ball B if and only if the closed monodromy associated to K
extends over a handlebody H.

In this case, there is a homotopy 4-ball B′ (possibly different from B)
containing a homotopy-ribbon disk D such that B′ \D = H ×Φ S1, so that
each fiber F̂ in the fibration of ∂(B′ \D) = S3

0(K) = F̂ ×φ̂ S1 is capped
off with a handlebody fiber of H ×Φ S1. For this reason, we say that the
fibration of S3

0(K) extends over handlebodies.
In the Sections 4 and 5, we discuss how a singular fibration can extend

over handlebodies in order to prove an analogue of Casson-Gordon’s theorem
in the case that K is not fibered.

3. R-link derivatives

In this section, we prove Theorem 1.3. First, we offer a lemma connecting
handle-ribbon knots and R-links.

Lemma 3.1. A knot K ⊂ S3 is handle-ribbon in a homotopy 4-ball if and
only if K is a component of some R-link J .
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Proof. Suppose K is handle-ribbon, and let D be a handle-ribbon disk for
K in a homotopy 4-ball B. Then B \D has a relative handle decomposi-
tion without 1-handles. Let J ′ ⊂ ∂(B \D) = S3

0(K) be the attaching link
for the 2-handles. After an isotopy, we can assume that J ′ ⊂ S3 \K, and
thus we can attach a 0-framed 2-handle along K, followed by the relative
handle decomposition of B \D to obtain a relative handle decomposition of
B without 1-handles such that J ′ ∪K is the attaching link for the 2-handles.
Since B is a homotopy 4-ball, this handle decomposition has n 2-handles and
n 3-handles for some n, from which it follows that J ′ ∪K is an R-link.

On the other hand, if K is a component of an R-link J , then the ho-
motopy 4-ball BJ has a relative handle decomposition without 1-handles. It
follows that for a core D of the 2-handle attached along K in BJ , the com-
plement BJ \D also has a relative handle decomposition without 1-handles,
so that D is a handle-ribbon disk for K in BJ . □

Remark 3.2. The proof of Lemma 3.1 yields the same result for links: a
link in S3 is handle-ribbon in a homotopy 4-ball if and only if it is a sublink
of an R-link.

We introduce a new notion generalizing a derivative of a knot on a
Seifert surface, which we call a partial derivative, as follows. Let K be a
knot in S3 with Seifert surface F , and suppose that J ⊂ F is a link such
that ℓk(Ji, J

+
j ) = 0 for all i, j and no two components of J are homotopic in

F . This definition mirrors the definition of a derivative link, except that we
do not require F \ J to be a connected planar surface. We call J a partial
derivative for K if K ∪ J is an R-link. The next lemma gives a procedure
for converting a partial derivative for K to a derivate link for K.

Proposition 3.3. Suppose that K has a partial derivative J in F such that
K ∪ J is an R-link. Then F contains an R-link derivative L for K, where
L is stably equivalent to K ∪ J .

Proof. Let J be the collection of partial derivatives J ′ ⊂ F such that K ∪ J ′

is stably equivalent to K ∪ J . By assumption J is nonempty. Let J ′ be an
element of J with the greatest number of link components. We claim that
F \ J ′ is a union of planar surfaces. If not, then F \ J ′ has a component F ′

with genus at least one and nonempty boundary. In the 3-manifold S3
0⃗
(K ∪

J ′) = #|K∪J ′|(S1 × S2), the surface F ′ can be capped off with copies of
meridians {Di} of the surgery solid tori corresponding to K ∪ J ′ to get a
closed surface F̂ ′. Since every surface of positive genus in #|K∪J ′|(S1 × S2)
is compressible, there exists a compressing disk D for F̂ ′ with boundary C.
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After isotopy, we may assume that C is disjoint from the disks
{Di} used to cap off F ′, and thus C ⊂ S3 \ (K ∪ J ′). Let J ′′ = J ′ ∪ C,
where C is framed by the disk D. Since C is isotopic to an unknot-
ted curve in S3

0⃗
(K ∪ J ′), it follows from Lemma 2.5 that C can be

handleslid over K ∪ J ′ in S3 to become unknotted and unlinked, and
thus K ∪ J ′′ is stably equivalent to K ∪ J ′. In addition, J ′′ ⊂ F , where
each component has surface framing zero and C is not homotopic to
any component of J ′, since C is an essential curve in F ′. But this im-
plies that J ′′ ∈ J , so that J ′ is not maximal, a contradiction. We con-
clude that a maximal element J ′ cuts F into planar components (in
fact, pairs of pants, although this observation is not necessary for the
proof).

Let L be a maximal sublink of J ′ which does not separate F . It follows
that L is a derivative of K in F. By sliding the components of J ′ \ L over L
we get the split union of L and an unlink U . It follows that K ∪ L is an R-
link, and by Lemma 2.3, L is an R-link derivative which is stably equivalent
to K ∪ L and thus K ∪ J , as desired. □

Proof of Theorem 1.3. Recall that we are aiming to prove that a knot in
S3 is handle-ribbon in a homotopy 4-ball if and only if it has an R-link
derivative on some Seifert surface.

We prove the easier direction first. Suppose L is an R-link derivative
for K contained in a Seifert surface F for K. As in Lemma 2.3, a sequence
of handleslides in F of K over the components of L converts K into an
unknotted, unlinked component U . It follows that L ∪ U is an R-link, and
thus L ∪K is an R-link as well. By Lemma 3.1, K is handle-ribbon.

For the more difficult direction, suppose that K is handle-ribbon, so
that there is an R-link K ∪ J by Lemma 3.1. Let F ′ be any Seifert surface
for K, chosen to meet J minimally. We claim that F ′ ∩ J = ∅. If not, then
there is a component Ji of J such that Ji ∩ F ′ ̸= ∅, and using the fact that
lk(K, Ji) = 0, we have that Ji meets F ′ in points of opposite orientation. It
follows that there is an arc α ⊂ Ji with both endpoints on the same side of
F ′ and interior disjoint from F ′, so that the result F ′′ of tubing F ′ along
α is a Seifert surface for K such that |F ′′ ∩K| < |F ′ ∩K|, a contradiction.
(See Figure 1.) We conclude that F ′ ∩K = ∅.

For each component Ji of J , let Ti be an embedded torus containing Ji
with surface framing equal to the zero framing, and such that the Ti ∩ F ′ = ∅
and the tori {Ti} are pairwise disjoint. Then, we can tube the tori {Ti} to
F ′, yielding a Seifert surface F for K such that the R-link J is contained
in F such that each component has surface framing zero. It follows that J
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Figure 1: Since the algebraic intersection number of F ′ with each component
Ji of J is zero, we can add a tube to F ′ to find a surface F ′′ intersecting J
in two fewer points.

is a partial derivative for K, and thus by Proposition 3.3, K has an R-link
derivative. □

In Theorem 1.4 of [MZ20], Jeffrey Meier and the second author proved
that if K ∪ J is a 2-component R-link and K is fibered, then K ∪ J is stably
equivalent to K ∪ L, where L is an R-link derivative contained in a fiber sur-
face for K, from which it follows that the closed monodromy for K extends
over the handlebody determined by L. Our work provides a shorter and far
less technical proof of that fact:

Theorem 3.4. If K ∪ J is an R-link such that K and J are knots and
K is fibered, then K ∪ J is stably equivalent to K ∪ L, where L is an R-
link derivative for K contained in a fiber surface F . In this case, the closed
monodromy for K extends over the handlebody determined by L.

Proof. Let F̂ denote the closed fiber for the fibered 3-manifold S3
0(K). As

in [MZ20] (which in turn adapts work in [GST10]), we use a result of
Scharlemann-Thompson [ST09] to conclude that J is isotopic into F̂ with
surface framing equal to the zero framing. Thus, J is a partial derivative
for K, and by Proposition 3.3, there exists an R-link derivative L ⊂ F such
that L is an R-link.

To see that the monodromy φ̂ for K extends as desired, let g = |L| and
note that BK∪L has a relative handle decomposition with (g + 1) 2-handles,
(g + 1) 3-handles, and a 4-handle. To build BK∪L, start with relative 0-
trace B0(K), the union of I × S3 and a 2-handle attached along K. Next,
let H denote the abstract 3-dimensional handlebody obtained by attaching
2-handles to F̂ along L, followed by one 3-handle. Attach a copy of H × I to
a collar neighborhood of L× I ⊂ F̂ × I ⊂ S3

0(K). This attachment amounts
to gluing g 2-handles along L followed by a single 3-handle. Since the relative
handle decomposition contains g more 3-handles and a 4-handle, it follows
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that the resulting boundary component is #g(S1 × S2). By the construc-
tion, this boundary is diffeomorphic to the union of H × {0}, H × {1}, and
a product region F̂ × I, since S3

0(K) is fibered. Thus, we can cap off the
boundary with another copy of H × I to obtain BK∪L. In the process, we
see that we have constructed BK∪L by capping off each F̂ fiber of S3

0(K)
with a copy of H determined by L, and we conclude that φ̂ extends over
handlebodies. □

Remark 3.5. The interested reader should note that embedded in the
highly technical analysis contained in Section 4 of [MZ20] are more fine-
tuned statements about the closed monodromy φ̂, including the assertion
that the leveled curve J is necessarily non-separating in F̂ and restric-
tions on the iterated images of J under φ̂. Our proof here does not recover
these details, even though it suffices to give an alternate proof of the theo-
rem.

In the next two sections, we explore a more complicated version of the
capping off in the proof of Theorem 3.4 that occurs when we assume S3

0(K)
is non-fibered, culminating in a Casson-Gordon-like theorem in the more
general case.

4. Singular fibrations, handlebody extensions,

and generic maps

One goal of this paper is to extend Casson and Gordon’s work to non-fibered
knots. For an arbitrary knot K ⊂ S3, the exterior S3 \K does not a priori
admit a fibration; however, it does always admit a singular fibration, on
which we will focus in this section and the next.

For our purposes, a singular fibration p : Y → S1 is a circle-valued Morse
function such that fibers are connected. In this case, regular fibers of p are
closed surfaces, and singular fibers are singular surfaces. In addition, p has
the same number of index one and index two critical points (and no critical
points of index zero or index three). If there exists a pair of regular fibers
in Y separating the set of index one critical points and the set of index
two critical points, the singular fibration is called self-indexing. These two
regular surfaces have minimal and maximal genera among regular surfaces,
and thus they are called thin and thick surfaces, respectively. A self-indexing
singular fibration determines a circular Heegaard splitting (see [MG09]) by
cutting open along the thin and thick surfaces. It is well-known that any
singular fibration can be homotoped to a self-indexing one.
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Singular fibrations are used to define the Morse-Novikov number of a
knot: MN(K) = min{number of critical points in a singular fibration of S3 \
K}. Clearly, a knot K is fibered if and only if MN(K) = 0; Goda [God07]
has computed MN(K) for all prime K through ten crossings.

To prove the results in this section, we employ tools coming from generic
maps or Morse-2 functions on 4-manifolds, a natural analogue of Morse
functions. A generic map (or Morse-2 function [GK12]) is a smooth map
f : X → Σ, where Σ is a compact surface, and f is a submersion away
from an embedded 1-manifold Zf ⊂ X (called the singular locus of f). In
addition, for each point y ∈ Zf , there are local coordinates (t, x1, x2, x3)
about y and (u, v) about f(y) such that f(t, x1, x2, x3) = (t,±x21 ± x22 ± x23)
or f(t, x1, x2, x3) = (t, x31 + tx1 ± x22 ± x23). In the first case, y is a called a
fold point, and in the second case, y is called a cusp point. The singular locus
is well-understood; it consists of fold circles and components containing fold
arcs and isolated cusp points. If X has nonempty boundary, we require that
f map ∂X into ∂Σ, where f |∂X is a circle-valued Morse function. See the
comprehensive discussion in [BS18] for further details.

Fold arcs are either definite if all the signs agree or indefinite if the
signs differ; a fold arc does not have a well-defined index since it can be
parametrized in two different ways. An important observation is that in
a neighborhood of a fold arc, X is locally diffeomorphic to Y × I for a
compression-body Y (in the indefinite case) or a 3-ball Y (in the definite
case), and the function f is given in local coordinates by p× id, where
p : Y → I is the natural Morse function with a single critical point. Thus,
for any 3-manifold Y and Morse function p : Y → I, there is a generic map
p× Id : Y × I → I × I. As in [BS18], we label images of fold arcs in the
immersed 1-manifold f(Zf ), called the base diagram, with arrows, where the
arrows point in the direction of 3-dimensional 2- or 3-handle attachment.

In what follows, we parametrize S1 as R/2πZ, with θ ∈ R/2πZ corre-
sponding to eiθ ∈ S1 ⊂ C. In general, we assume that for a self-indexing
singular fibration p : Y → S1, the thin surface is isotopic to p−1(0) and the
thick surface is isotopic to p−1(π). We say that a self-indexing singular fibra-
tion p : Y → S1 extends over handlebodies to a generic map if there exists
a compact 4-manifold X with ∂X = Y and a generic map P : X → S1 × I
with the following properties:

1) P (∂X) = S1 × {0} and P |∂X = p.

2) P has a single definite fold circle whose image is S1 × {1}.
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3) The directed segments {θ} × I agree with the arrows of the base di-
agram P (ZP ) (such a map is called directed) and meet P (ZP ) trans-
versely except at singularities of p and at cusp points.

4) The cusp points of P (ZP ) are contained in {π} × I, and the number
cusp points equals the number of index one or index two critical points
of p.

Condition (1) confirms that P is an extension of p. Condition (2) is neces-
sary to ensure that the regular fibers of P are connected surfaces. Conditions
(3) and (4) are necessary for a more complicated reason: If K is a knot in
S3 and S3

0(K) has a singular fibration p that extends over handlebodies to
P : X → S1 × I, then there is a compact 4-manifold BP (K) obtained by
gluing X to the relative trace B0(K) along their common boundary com-
ponent S3

0(K) via the identity map. Conditions (3) and (4) guarantee that
the 4-manifold BP (K) is a homotopy 4-ball. Finally, it follows from condi-
tion (3) that away from cusp points and singularities of p, the inverse image
P−1({θ} × I) is a handlebody with boundary p−1(θ), justifying the assertion
that P extends p over handlebodies. If P1 is the projection of P onto the
S1 coordinate, it also follows that P1 : X → S1 is a circular Morse function
with both boundary critical points (coinciding with critical points of p) and
interior critical points (coinciding with cusp points), and thus P1 is an exam-
ple of the type of extension defined in Section 5. A good treatment of Morse
theory on manifolds with boundary is contained in [BNR16]. If a singular
fibration p : S3

0(K) → S1 extends over handlebodies to P : X → S1 × I, the
base diagram P (ZP ) must fit into the template shown in Figure 2. In boxes
labeled “braid,” (and similarly in Figures 3 and 4) we mean that fold arcs
here may intersect but may not have cusps and may never be tangent to a
radial line {pt} × I ⊂ S1 × I.

We also remark that in the case that p is an honest fibration (so that
p has no critical points), then Casson-Gordon’s Theorem 2.6 implies that
the closed monodromy φ̂ admits a handlebody extension Φ : H → H, and
it is straightforward to construct a Morse-2 function P : H ×Φ S1 → S1 × I
with the desired properties such that P1 is the natural projection to S1, and
the second coordinate function P2 restricts to a standard Morse function
on each handlebody fiber. Thus, our definition coincides with Casson and
Gordon’s classification when p is a fibration.

Next, we connect extensions over handlebodies to ideas about R-links
discussed above.
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Figure 2: The base diagram of an extension P : X → S1 × I.

Lemma 4.1. Suppose that K ⊂ S3 admits a self-indexing singular fibration
p : S3

0(K) → S1 that extends over handlebodies to P : X → S1 × I. Then K
has an R-link derivative L such that BL = BP (K).

Proof. Let F̂ ⊂ S3
0(K) be the thin surface p−1(0) corresponding to the sin-

gular fibration p, with k the genus of F̂ , and let H = P−1({0} × I) be the
handlebody in X whose boundary is F̂ . The dual K∗ ∈ S3

0(K) meets F̂ in a
single point, so that F = F̂ \K∗ is a Seifert surface for K in S3. Choose a
link L ⊂ F̂ \K∗ such that L is a k-component link framed by F and bound-
ing a collection of disks in H cutting H into a 3-ball. We claim that L is an
R-link derivative for K.

We use a collar neighborhood I ×H ⊂ X to begin building a relative
handle decomposition for BP (K). Observe that X contains the union of
S3
0(K)× I along with k 2-handles attached to L with the surface framing

of L in F . In addition, the cores of these 2-handles cut I ×H into I ×B3

which can be capped over with a 3-handle. Let X0 ⊂ X be the union of
S3
0(K)× I, these k 2-handles, and the 3-handle. Then B0(K) ∪X0 can be

built with (k + 1) 2-handles attached along K ∪ L ⊂ S3 and a 3-handle.
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Thus, to prove that K ∪ L (and thus L) is an R-link, it suffices to show that
X1 = X \X0 is a 1-handlebody built from a 0-handle and k 1-handles.

For small δ, ε > 0, we may assume that S3
0(K)× I is given by P−1(S1 ×

[0, δ]), and the collar neighborhood I ×H ⊂ X is given by P−1([−ε, ε]×
[δ, 1]), so that X0 = P−1(S1 × [0, δ]) ∪ P−1([−ε, ε]× [δ, 1]). It follows that
X1 = P−1([ε, 2π − ε]× [δ, 1]). Decompose X1 into

X− = P−1([ε, π − ε]× [δ, 1])

Xπ = P−1([π − ε, π + ε]× [δ, 1])

X+ = P−1([π + ε, 2π − ε]× [δ, 1]).

Suppose g is the genus of the thick surface of p, and letH± be the genus g
handlebodies given by P−1({π ± ε} × I). Then, since P is a directed generic
map (whose base diagram is divided as shown in Figure 3), it follows that
X± is diffeomorphic to H± × I, so that X1 deformation retracts to Xπ.
Using the base diagram for Xπ, a small neighborhood of the definite fold
contributes a 0-handle to Xπ, a small neighborhood of an indefinite fold
without a cusp contributes a 1-handle to Xπ, and a small neighborhood of
an indefinite fold with a cusp does not change the topology of Xπ. Thus,
Xπ is a 1-handlebody built from a 0-handle and k 1-handles, where k is the
number of indefinite folds without cusps, completing the proof. □

Figure 3: The base diagram of P divided into regions lifting to X0, Xπ,
and X±.
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This proposition establishes the first half of the equivalence offered in
Theorem 4.4 below. To prove the other direction, we require the power
afforded to us by Waldhausen’s Theorem. See [Sch07] for further details
about the theorem.

Theorem 4.2 ([Wal68]). For every g, k with g ≥ k ≥ 0, it is the case that
#k(S1 × S2) has a unique genus g Heegaard splitting up to isotopy.

We will also need to build a handlebody extension P of a given singu-
lar fibration, and we accomplish this task in pieces. The most important
component of this piecewise construction is given in Lemma 4.3 below. For
our purposes, a Morse function h : Y → [0, 3] is self-indexing if h has one
index zero critical point occurring at h−1(0), one index three critical point
occurring at h−1(3), all index one critical points of h occur in h−1(0, 1) and
all index two critical points of h occur in h−1(2, 3). This implies that for
t ∈ [1, 2], the level set h−1(t) is a regular surface separating the index one
critical points from the index two critical points. Note that this definition is
somewhat nonstandard.

Lemma 4.3. Fix g ≥ k ≥ 0. Let h : #k(S1 × S2) → [0, 3] be a self-indexing
Morse function. Viewing h as a map to (I × {0}) ∪ ({1} × I) ∪ (I × {1}) ⊂
I × I, with the natural time direction reversed in I × {1}, there exists a
generic map Q : ♮k(S1 ×B3) → I × I extending h, where the base diagram
of Q has k indefinite folds without cusps, g − k indefinite folds containing
a single cusp, and a single definite fold mapping to {0} × I, as shown in
Figure 4.

Proof. Choose a Heegaard diagram (α, β) compatible with h. By Wald-
hausen’s Theorem, (α, β) is handleslide equivalent to a standard diagram
(α′, β′), in which α′

i = β′
i for 1 ≤ i ≤ k and α′

i ∩ β′
j = δij for k + 1 ≤ i, j ≤ g.

Let H = h−1([0, 1]), let H ′ = h−1([2, 3]), and let Σ = h−1(3/2), so that
h−1([1, 2]) = Σ× I and #k(S1 × S2) decomposes asH ∪ (Σ× I) ∪H ′. Since
α and α′ are equivalent, there exists a 1-parameter family of Morse func-
tions ht : H → I, where t ∈ [0, 1/3], h0 = h|H , and the cut system α′ is com-
patible with h1/3. Then ht gives rise to Q : H × [0, 1/3] → I × [0, 1/3] by
Q(x, t) = (ht(x), t), where the base diagram for Q is braided as shown in
the bottom third of Figure 4.

A parallel construction produces a 1-parameter family of Morse func-
tions gt : H

′ → I, where t ∈ [2/3, 1], g1 is equal to h|H′ with time direction
reversed, and g2/3 is compatible with the cut system β′. As such, gt gives
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rise to Q : H ′ × [2/3, 1] → I × [2/3, 1] by Q(x, t) = (gt(x), t), where the base
diagram for this portion of Q is braided as shown in the top third of Figure 4.

The last step is to complete the extension of Q over ♮k(S1 ×B3). Along
the boundary of our current extension Q, we have

(H × {1/3}) ∪ (Σ× [1/3, 2/3]) ∪ (H ′ × {2/3})

mapping to

(I × {1/3}) ∪ ({1} × [1/3, 2/3]) ∪ (I × {2/3}),

where the standard Heegaard diagram (α′, β′) is compatible with the in-
duced Morse function along the boundary. For each of the g − k pairs of
curves α′

i ∩ β′
j = δij , where k + 1 ≤ i, j ≤ g, we can extend Q by introduc-

ing a fold arc with a single cusp, which has no effect on the topology of the
domain but modifies the range to be (I × [0, 1/3]) ∪ ([1/2, 1]× [1/3, 2/3]) ∪
(I × [2/3, 1]). Finally, for each of the k curves in α′ ∩ β′, we can extend Q
by mapping a 4-dimensional 3-handle to a rectangular region containing a
single vertical indefinite fold arc, followed by a 4-handle mapping to a verti-
cal definite fold arc in {0} × [1/3, 2/3]. The result is a map Q : X → I × I,
where X is obtained by attaching k 3-handles and a 4-handle to a collar of
#k(S1 × S2), so that X = ♮k(S1 ×B3), as desired. □

Figure 4: A generic map from a 4-dimensional 1-handlebody to I × I.

Now, we put all of these tools together to prove the next theorem. To-
gether with Theorem 1.3, this establishes one of the two versions of Theo-
rem 1.5 described in the introduction.

Theorem 4.4. Suppose K is a knot in S3. Then K has an R-link derivative
L if and only if there exists a self-indexing singular fibration p of S3

0(K)
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that extends over handlebodies to a map P : X → S1 × I. Moreover, the 4-
manifolds BL and BP (K) are diffeomorphic.

Proof. The reverse implication is the content of Lemma 4.1. For the other
implication, suppose that K has an R-link derivative L contained in a Seifert
surface F , and let F̂ denote the closed surface in S3

0(K) obtained by capping
∂F with a disk in the surgery solid torus. Then S3

0(K) \ F̂ is connected, and
there is a (potentially not self-indexing) Morse function p1 : S

3
0(K) \ F̂ → I

with only index one and two critical points and such that the two parallel
copies of F̂ composing ∂(S3

0(K) \ F̂ ) are p−1
1 ({0, 1}). Generically, there is a

homotopy from p1 to a map p2 in which all index one critical points occur
below the index two critical points, and finally re-gluing S3

0(K) \ F̂ along
F̂ yields a self-indexing singular fibration p : S3

0(K) → S1 in which F̂ is a
thin surface. Note that H1(S

3
0(K)) = Z, which implies that the fibers of p

are connected.
The R-link L is stably equivalent to the R-link K ∪ L by Lemma 2.3,

where BK∪L has a relative handle decomposition with k + 1 2-handles, k + 1
3-handles, and a 4-handle, with k = |L|. Flipping this decomposition yields
a handle decomposition for BK∪L with a 0-handle, k + 1 1-handles, and
k + 1 2-handles. Consider the 4-manifold X ⊂ BK∪L consisting of the 0-
handle, k + 1 1-handles, and k 2-handles, so that BK∪L is obtained from X
by attaching a 2-handle along the dual K∗. It follows that ∂X = S3

0(K). We
claim that p extends over handlebodies to a map P : X → S1 × I.

To build P , we note first that there is a natural map P from a collar
S3
0(K)× I ⊂ X to an annulus by taking p× Id. The 4-manifold X has a

relative handle decomposition obtained by attaching k 2-handles to L×
{1} ⊂ F̂ × {1} ⊂ S3

0(K)× I, followed by k + 1 3-handles and a 4-handle. A
collar neighborhood I × F̂ in S3

0(K)× {1} bounds a collar neighborhood
I ×H of a 3-dimensional genus k handlebody H in X, where I ×H can
be constructed by attaching the k 2-handles to L ⊂ F̂ and capping off the
resulting I ×B3 with a 3-handle (as in the proof of Lemma 4.1). Let X0 =
(S3

0(K)× I) ∪ (I ×H). There is a natural generic map from I ×H to I × I
with k indefinite folds and one definite fold, which can be used to extend P
to a generic map from X0 to the region A0, which is shaped like a magnifying
glass and shown at left in Figure 5.

Now, there is a diffeomorphism from A0 to the region A1, transforming
the base diagram as shown in the right of Figure 5. In an abuse of notation,
let P be the resulting generic map from X0 to A1. Finally, let X1 = X \X0.
Then X1 is a 4-dimensional genus k handlebody, so that ∂X0 = #k(S1 ×
S2). Since the original singular fibration p was self-indexing, it follows that
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Figure 5: At left, the region A0, and at right, its image A1 under diffeomor-
phism.

our constructed map P induces a self-indexing Morse function on ∂X0, which
can be capped off by a generic map Q of the form given in Lemma 4.3
and shown in Figure 4, extending P over X. By inspection, p extends over
handlebodies to P : X → S1 × I, and by construction we have that BL =
BK∪L = BP (K), completing the proof. □

5. An alternate perspective: circular Morse functions

In this section, we provide another interpretation of Theorem 1.5, proving
Theorem 5.3 following the techniques in [Mil18]. This theorem asserts that
K is handle-ribbon in a homotopy 4-ball if and only if there exists a singu-
lar fibration of S3

0(K) that extends over handlebodies via a circular Morse
function (defined below). Because the forward direction of Theorem 5.3 also
follows from Theorems 1.3 and 4.4 (as we will explain at the start of the proof
of Proposition 5.5), we omit some details in this argument. This section is
meant to illustrate a different perspective; both proofs are constructions, but
the proof here builds a 1-parameter family of singular fibrations instead of a
generic map to an annulus. For a given handle-ribbon knot K and singular
fibration p : S3

0(K) → S1, the 1-parameter family constructed here could be
used to construct a generic map, possibly with smaller genus fibers than an
extension P : X → S1 × I of p constructed in Section 4, but at the expense
of having a more complicated graphic (see Remark 5.6 below).

Suppose that Y is a 3-manifold and pt : Y → S1 is a smooth family of
singular fibrations such that each pt has the same set of fibers. Suppose
further that pt0 has an index one or two critical point, so that there is a
singular fiber p−1

t0 (θ) containing a cone point q. We say that this singularity
is type II or compressing (in the language of [Mil18]) if a neighborhood
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of q in
⋃

t p
−1
t (θ) intersects p−1

t (θ) in an annulus for t ∈ (t0 − ε, t0) and a
pair of disks if t ∈ (t0, t0 + ε). See Figure 6. The type of a cone is a stable
property in that if the type of a cone ever changes as t increases, then there
is some t′, θ′ for which the type of a cone in p−1

t′ (θ′) is undefined. In this
case,

⋃
t p

−1
t (θ′) is a singular 3-manifold. A type II cone p−1

t (θ) contributes
a 3-dimensional 2-handle to

⋃
t p

−1
t (θ). See [Mil18] for further details.

Figure 6: A type II critical point of pt0 . We draw a neighborhood of the
critical point for t ∈ [t0 − ε, t0 + ε].

Suppose now X is a compact 4-manifold and p̃ : X → S1 is a circu-
lar Morse function, with Y = ∂X and p = p̃ |Y . On a collar neighborhood
Y × I ⊂ X, of Y , where Y = Y × {0}, p̃ induces a smooth family of singu-
lar fibrations pt, where p = p0 and each pt has the same fibers as p0, up to
reparametrization of S1. For each boundary critical point q of p̃, we assume
by genericity that each singularity of pt has a well-defined type for small
t > 0, and we say the boundary critical point is type II if the correspond-
ing singularity of pt has type II for small t > 0. If y1 ∈ p−1

0 (θ) is an index
one critical point of p0 which is type II, then y1 contributes a 1-handle to
∪tp

−1
t (θ − ε, θ + ε). If y1 ∈ p−1

0 (θ) is an index two critical point of p0 which
is type II, then y2 contributes no handles to ∪tp

−1
t (θ − ε, θ + ε). In the lan-

guage of [BNR16], index one type II boundary critical points contribute right
half-handles while index two type II boundary critical points contribute left
half-handles.

Let K ⊂ S3 be a knot and suppose there exists a singular fibration p of
S3
0(K) that extends to a circular Morse function p̃ : X → S1 so that every

critical point of p̃ is either a boundary critical point of type II or an interior
critical point of index two, the number of boundary critical points is twice
the number of interior critical points, and the regular fibers of p̃ are 3-
dimensional handlebodies. Then we say that p extends over handlebodies to
the circular Morse function p̃.
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Remark 5.1. If p̃ : X → S1 is a circular Morse function with n index one
type II boundary critical points, n index two type II boundary critical points,
m interior index two critical points, and no other critical points, then χ(X) =
m− n. Therefore, requiring that the number of boundary critical points be
twice the number of interior critical points (i.e. n = m) is equivalent to
requiring χ(X) = 0.

Remark 5.2. Despite the fact that the circular Morse function p̃ : X → S1

could also be described as a singular fibration, we use singular fibration
exclusively for a circular Morse function p : Y → S1, where Y is a 3-manifold,
as an attempt to avoid confusion. Note that the definition here is more
relaxed than extending over handlebodies to an annular generic map as
in Section 4; if a self-indexing singular fibration p : Y → S1 extends over
handlebodies to the generic map P : X → S1 × I, then the projection P1 :
X → S1 is an extension of p over handlebodies to the circular Morse function
P1. On the other hand, a singular fibration p need not be self-indexing
to admit an extension over handlebodies to a circular Morse function, for
example.

We can now state the main theorem from this section.

Theorem 5.3. A knot K ⊂ S3 is handle-ribbon in a homotopy 4-ball if
and only if there exists a singular fibration p : S3

0(K) → S1 that admits an
extension over handlebodies to a circular Morse function p̃ : X → S1.

We prove the reverse direction of Theorem 5.3 in the following lemma.

Lemma 5.4. Let K ⊂ S3 be a knot and p a singular fibration of S3
0(K).

Suppose p extends over handlebodies to a circular Morse function p̃ : X →
S1. Then K is handle-ribbon in a homotopy 4-ball.

Proof. It suffices to show that X has a handle decomposition with a sin-
gle 0-handle, c+ 1 1-handles, and c 2-handles for some integer c. In this
case, gluing the relative trace B0(K) to X along S3

0(K) yields a compact 4-
manifold B built from a single 0-handle, c+ 1 1-handles, and c+ 1 2-handles
with ∂B = S3, so that B is a homotopy 4-ball. Moreover, K bounds a cocore
of a 2-handle in B, implying that K is handle-ribbon in B.

To see that X has such a handle decomposition, let H be a regular
fiber of X, so that X contains a collar neighborhood H × [−ε, ε]. Since H
is a handlebody by assumption, H × [0, ε] has a handle decomposition with
one 0-handle and g 1-handles, where g is the genus of H. Suppose that
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p̃ : X → S1 has n interior index two critical points and 2n boundary critical
points; as critical points of p, the boundary critical points consist of n index
one critical points and n index two critical points.

Since the boundary critical points are type II, and using the language and
machinery from [BNR16], passing through each index one boundary critical
point corresponds to attaching a right half-handle of index one, whereas pass-
ing through each index two boundary critical point corresponds to attaching
a left half-handle of index three. By Lemmas 2-18 and 2-19 of [BNR16], a
right 1-half-handle attachment corresponds to attaching a 4-dimensional 1-
handle, while a left half-handle attachment has no effect on topology. Thus,
let X ′ = X \ (H × [−ε, 0]). Then X ′ is obtained from H × [0, ε] by attaching
n 1-handles (corresponding to boundary critical points of index one) and n
2-handles (corresponding to the interior critical points of p̃).

Suppose the 3-dimensional handlebody H is a regular neighborhood of
the graph Γ, where Γ has one 0-cell and g 1-cells, e1, . . . , eg. Since X =
X ′ ∪ (H × [−ε, 0]), we can obtain X from X ′ by attaching a 1-handle along
3-dimensional neighborhoods of the vertex of Γ in H × {−ε} and H × {0},
followed by attaching g 2-handles along the curves ei × [−ε, 0]. We conclude
that X has a handle decomposition with a single 0-handle, (g + n+ 1) 1-
handles, and (g + n) 2-handles, completing the proof. □

Next, we prove the forward direction of Theorem 5.3.

Proposition 5.5. Suppose that K is handle-ribbon in a homotopy 4-ball
B. Then there exists a singular fibration p : S3

0(K) → S1 and an extension
p̃ : X → S1 of p over handlebodies.

Proof. Let us first observe why this follows from Theorems 1.3 and 4.4, as
noted at the start of this section. By Theorem 1.3, K has an R-link deriva-
tive. Then by Theorem 4.4, there exists a self-indexing singular fibration p of
S3
0(K) that extends over handlebodies to a map P : X → S1 × I. (Note this

is an extension in the sense of Section 4.) Then by Remark 5.2, P projects to
a map P1 : X → S1 that is an extension of p over handlebodies, as desired.

We now give an alternate proof using a different construction. As noted
in Remark 5.2, extending p over handlebodies to a function from X to S1 is,
in theory, less restrictive than extending p over handlebodies to a function
from X to S1 × I. Thus, in principle the next construction may yield fibers
of lower genus.

Suppose that the knot K is handle-ribbon in a homotopy 4-ball B. As in
Lemma 3.1, we have thatX = B \D admits a relative handle decomposition
with c 2-handles, c+ 1 3-handles, and a single 4-handle (for some c). This
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handle decomposition induces a self-indexing (in the usual sense, with index
i critical points at height i) Morse function h on X, where h : X → [1, 4],
∂X = h−1(1), h has c index two critical points at height 2 corresponding to
the 2-handles, c+ 1 index three critical points at height 3 corresponding to
the 3-handles, and one index four critical point at height 4 corresponding
to the 4-handle. For notational convenience, we let Yt = h−1(t), noting that
Yt is a smooth 3-manifold for t ̸= 2, 3, 4 and Y1 = ∂X. In this case, Yt ∼= ∂X
for t ∈ [1, 2), Yt ∼= #c+1(S1 × S2) for t ∈ (2, 3), and Yt ∼= S3 for t ∈ (3, 4).

We will construct a family of singular fibrations pt : Yt → S1, with
t ∈ [1, 4], so that p̃ : X → S1 given by p̃(x) = ph(x)(x) extends p1 over han-
dlebodies as in the definition above. While we assume the singular fibration
p1 of ∂X has connected fibers, we relax the restriction that a singular fi-
bration must have connected fibers for other pt in this family. We break
this procedure into seven steps, which roughly consist of the following short
descriptions.

1) We construct a suitable singular fibration p1 on ∂X = h−1(1). We
choose p1 so that attaching circles of 2-handles (i.e. descending man-
ifolds of index-2 points inside h−1(1)) lie in fibers of p1 with correct
framing.

2) We extend p1 to pt on h−1(t) for t ∈ [1, 2 + ϵ]. In words, we “extend p
over the 2-handles of X.” Because we chose p1 to have a simple local
model near the attaching circles of 2-handles of X, we can obtain this
extension explicitly.

3) We extend pt to h
−1(t) for t ∈ [2 + ϵ, 3− ϵ]. We arrange for p3−ϵ to have

a simple local model near the attaching 2-spheres of 3-handles of X.

4) We extend pt to h−1(t) for t ∈ [3− ϵ, 3 + ϵ]. In words, we “extend
p over the 3-handles of X.” Because of the work we did in Step 3
(arranging for p3−ϵ to have a nice local model near each 3-handle
attaching sphere), we can do this extension explicitly.

5) We extend pt to h−1(t) for t ∈ [3 + ϵ, 3 + 3ϵ] and arrange that p3+3ϵ

has exactly one index zero and exactly one index three critical point
(and some number of index one and two points).

6) We extend pt to h−1(t) for t ∈ [3 + 3ϵ, 3 + 7ϵ] and arrange that p3+7ϵ

has exactly one index zero critical point, one index three critical
point, and zero index one or two critical points. To do this, we use
Waldhausen’s theorem to argue that we can cancel index one and
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two critical points in pairs as t increases. This is the only step that
introduces interior critical points to p̃, all of which are index two.

7) We extend pt to the rest of X. In words, we “extend p over the
4-handle of X.”

Now we begin the steps in more detail.
Step 1: Constructing the initial singular fibration p1. View

the attaching circles of the 2-handles as a framed c-component link L in
S3
0(K) = ∂X. As in the proof of Theorem 1.3, there exists a Seifert surface

F for K such that the capped off surface F̂ ⊂ S3
0(K) contains L, with the

surface framing agreeing with the framing of L. Since [F̂ ] is a generator of
H2(S

3
0(K)) = Z, there exists singular fibration p1 : S

3
0(K) → S1 such that

F̂ is a regular level. Suppose p1 has 2n singularities (of which n are index
one and n are index two).

Step 2: Extending p1 over the 2-handles of X. To this end, for some
small ε > 0, we let pt have the same level sets as p1 for all t ∈ [1, 2− ε]. For
t ∈ (1, 2− ε], we reparametrize pt near the singularities of p1 so that each
singularity of pt is type II (as described above). As t increases from 2− ε
to 2 + ε, we introduce c singularities of type II into pt, one corresponding
to each 2-handle in X, as illustrated in Figure 7, which depicts a pt in a
neighborhood of each index two critical point of h, where t ∈ (2− ε, 2 + ε).
Recall that a neighborhood of a type II cone point evolves from an annulus
to two disks as t increases, and in this case, a core of the annulus is a
component of the attaching link L, whose framing agrees with the surface
framing.

Figure 7: A neighborhood of an index two critical point of h. Each frame
shows a neighborhood in the 3-manifold Yt, which is doubled along the
interior boundary, and with colored surfaces representing fibers of pt. The
height t increases from left to right.
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The end result of this step, the singular fibration p2+ε of Y2+ε, has 2n+
2c singularities, of which n+ c are index one and n+ c are index two. All
of these singularities are type II. We extend further by letting pt have the
same level sets as p2+2ε for t ∈ [2 + ε, 3− 4ε], reparametrized so that all
singularities are always type II.

Step 3: Standardizing pt near the attaching spheres of 3-handles
of X. (This step is essentially [Mil18, Movie 20].) View the attaching spheres
of the 3-handles as c+ 1 disjoint 2-spheres S1, . . . , Sc+1 in Y3−4ε. These
spheres intersect the fibers of p3−4ε, inducing singular fibrations of each Si

(after a small perturbation if necessary). For each i, if there are any saddle
tangencies of Si with fibers of p3−4ε, then we may add pairs of canceling
index zero and one or index two and three critical points to pt between
t = 3− 4ε and t = 3− 3ε, where we parametrize all cone singularities to be
type II. After this process is complete, we reposition the critical points of
pt between t = 3− 3ε and t = 3− 2ε so that there are exactly two points in
each Si that are tangent to fibers of p3−2ε. See Figure 8.

Figure 8: A movie of pt for t ∈ [3− 4ε, 3− 2ε], with four depictions of dif-
ferent Yt, t increasing. We draw pt near one hemisphere of Si.

Between t = 3− 2ε and t = 3− ε, and for each attaching sphere Si, we
add an additional canceling pair of index zero and 1 critical points and a
canceling pair of index two and 3 pairs of critical points to pt (taking cones
to be type II), so that each Si contains one index one critical point and one
index two critical point of p3−ε, and the other intersections of fibers of p3−ε

with Si are closed curves. See Figure 9.
Step 4: Extending pt across the 3-handles of X. In step 3, we

imposed a local model of p3−ε in a neighborhood of the descending sphere
of each 3-handle of X. We can now extend pt over all of the 3-handles, t ∈
[3− ε, 3 + ε], by compressing each fiber intersecting the 3-handle attaching
circle, as in Figure 10. (This is [Mil18, Movie 7: death movie 1].) Note that
extension across each 3-handle eliminates two critical points from pt. Thus,
if m is the total number of additional index zero and one or index two and
three pairs added in step 3, then m ≥ 2(c+ 1) by construction, and p3+ε
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Figure 9: A movie of pt for t ∈ [3− 2ε, 3− ε], with four depictions of Yt,
t increasing. The two images in each column are glued along the interior
sphere, which represents an attaching sphere Si of a 3-handle.

Figure 10: A movie of pt for t ∈ [3− ε, 3 + ε], with four depictions of Yt,
t increasing. Each picture is doubled along the interior boundary, which
represents the attaching sphere of a 3-handle.

has 2n+ 2c− 2(c+ 1) + 2m = 2n− 2 + 2m critical points, of which m are
index zero or three, and the remaining 2n− 2 +m are index one or two.

Step 5: Canceling index zero and three critical points of pt.
Note Y3+ε

∼= S3. At this point, the singular fibration p3+ε has critical points
of each index. We will eliminate extra index zero critical points pf p3+ε

using essentially the proof of [Mil18, Lemma 4.2]; suppose now that p3+ε

has more than one index zero critical point. Without loss of generality, say
F0 is a fiber of p3+ε containing all index zero critical points of p3+ε. Fix a
gradient-like vector field ∇ for p3+ε. Then there is an arc γ between two
index zero points q1, q2 ∈ F0 so that γ is parallel to ∇ and intersects exactly
one critical point r (which must be index one) of p3+ε in its interior. The
map p3+ε : γ → S1 = [0, 2π]/ ∼ gives a natural distance function dγ on γ.
Suppose dγ(q1, r) ≤ dγ(r, q2). Then we may extend pt to t ∈ [3 + ε, 3 + 2ε]
while canceling q1 and r along γ. (We use [Mil18, Movie 11] to move the
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cancelled critical points to be close together and [Mil18, Movie 1] to remove
the two critical points.)

Repeat this step and its dual for index three critical points as necessary
for t ∈ [3 + 2ε, 3 + 3ε] until p3+3ε has exactly one index zero and one index
three critical point. In the process, we have performed m− 2 cancellations,
so that p3+3ε has n index one and n index two critical points remaining.

Step 6: Canceling index one and two critical points of pt. Since
Y3+3ε is S3 and S3 is simply-connected, we can lift p3+3ε to obtain a Morse
function p̂3+3ε : Y3+3ε → R. In this case, the image of p̂3+3ε(Y3+3ε) is the
interval [a, b], with the index zero critical point occurring at height a and the
index three critical point occurring at height b. By composing the straight-
line homotopy from [a, b] to [0, π] and the covering map R → S1 between
t = 3 + 3ε and 3 + 4ε, we may assume that the image of p3+4ε is [0, π], so
that p3+4ε is an interval-valued Morse function.

Now extend pt across t ∈ [3 + 4ε, 3 + 5ε] while exchanging heights of
critical points (via e.g. [Mil18, Movie 11]) so that p3+5ε is self-indexing. Let
Σ be a thick surface for p3+5ε. By choosing α and β curves on Σ that bound
disks intersecting index one or index two critical points (respectively), we
obtain a Heegaard diagram for S3. See Figure 11. Extend pt across t ∈
[3 + 5ε, 3 + 6ε] while exchanging the heights of critical points to achieve
handleslides of this Heegaard diagram, as in Figure 11. By Theorem 4.2, we
may then take the Heegaard splitting of S3 induced by p3+6ε to be standard.

Figure 11: Top: The surface Σ and some index one critical points of p3+5ε on
one side of Σ. We draw α curves on Σ, which each bound a disk intersecting
one index one critical point. As t increases, we may exchange the heights of
the index one critical points to achieve handle slides of the α curves.

Now extend pt across t ∈ [3 + 6ε, 3 + 7ε]. For each geometrically dual α
and β curve, during this time interval we cancel the corresponding pair of
index one and index two critical points. By construction, the only critical
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points of p̃ occur when a critical point of some pt changes type, or when a
pair of index one and index two critical points of the same type are canceled.
In the latter case, each cancellation introduces an index two critical point
into the extension p̃, and thus we conclude p̃ has precisely n of these. See
Figure 12.

Figure 12: Left to right: we cancel an index one and an index two critical
point of pt as t increases from 3 + 6ε to 3 + 7ε. The cancelled critical points
are opposite index but both type II, so this introduces a singularity into the
extension p̃ : X → S1. In this picture, one fiber of p̃ is singular.

Step 7: Extending pt across the 4-handle of X.
Finally, p3+7ε has an index zero critical point, an index three critical

point, and no index one or 2 critical points. We then extend pt across the
4-handle of X by attaching a 3-ball to each sphere fiber of p3+6ε. Thus, we
obtain the extension p̃ : X → S1.

By construction, p̃ has exactly n interior critical points of index two (in-
troduced in Step 6) and 2n type II boundary critical points. Moreover, for all
t, the index one and index two critical points of pt are type II (compressing),
and thus the regular fibers of p̃ are obtained from the regular fibers of p by
attaching 2- and 3-handles. That is, the regular fibers of p̃ are handlebodies,
as desired. □

Theorem 5.3 follows immediately from a combination of the statements
in Lemma 5.4 and Proposition 5.5.

Remark 5.6. Note that in the proof of Proposition 5.5, if each 2-handle
attaching circle of X lies in some fiber of p (with surface framing equal
to its framing), then we may skip step 1. (In fact, it is not difficult to
use [Mil18, Movie 19] to amend step 2 to apply if the attaching circles of
X are each tangent to fibers of p exactly twice and transverse otherwise.)
Measuring the complexity of a singular fibration by the genera of its regular
surfaces, the relaxed definition may give rise to simpler singular fibrations
admitting extensions as compared to those admitting extensions to a generic
map P : X → S1 × I as in Section 4. In particular, as noted above, the
singular fibration of ∂X in Proposition 5.5 need not be self-indexing for the
construction to work. On the other hand, given extensions P : X → S1 × I
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and p̃ : X → S1 for the same 4-manifoldX, the extension P induces a handle
decomposition via Lemma 4.1 with fewer handles than the one produced by
p̃ using Lemma 5.4.

Remark 5.7. One might wonder whether it could possible to strengthen
Theorem 1.5 to show that if K ⊂ S3 is handle-ribbon in a homotopy 4-ball,
then every singular fibration of S3

0(K) extends over handlebodies. Unfortu-
nately, this is not the case. Using either definition of extension over han-
dlebodies, if every singular fibration of S3

0(K) extends over handlebodies,
then every Seifert surface F for K has a handle-ribbon derivative: Given F ,
we can construct a singular fibration p with F̂ as a regular fiber. If p ex-
tends over handlebodies, then F̂ bounds a handlebody H in a 4-manifold X,
where the union of the relative trace B0(K) and X is a homotopy 4-ball B.
Any link L ⊂ F̂ bounding disks cutting H into a 3-ball can be isotoped into
F ⊂ S3, and by Lemma 4.1 or Lemma 5.4, we have that L is handle-ribbon in
B. However, as mentioned in the introduction, Cochran-Davis showed that
there exists a ribbon knot K with a genus one Seifert surface F such that
F contains no slice derivative [CD15]; thus, no singular fibration containing
F̂ as a fiber can extend over handlebodies (in either sense).

6. Natural trisections of singular handlebody extensions

In this section, we study decompositions of the homotopy 4-spheres ap-
pearing in the context of extending a singular fibration to a generic map
P : X → S1 × I. Recall that an R-link L can be viewed as a Kirby diagram
for a homotopy 4-sphere XL, or a relative Kirby diagram for a homotopy
4-ball BL. By Theorem 1.3, every knot K that is handle-ribbon in a homo-
topy 4-ball B has an R-link derivative L such that B = BL. In addition, by
Theorem 4.4, there exists a self-indexing singular fibration p : S3

0(K) → S1

extending to P : X → S1 × I, where BL = BP (K). We let XP (K) denote
the homotopy 4-sphere obtained by capping off BP (K) with a 4-ball, so
that in this case we have XL = XP (K). The aim of this section is to show
that the homotopy 4-sphere XL = XP (K) admits a natural 4-manifold tri-
section. One motivation for this investigation is to better understand the
stable generalized Property R conjecture (the stable GPRC), which asserts
that every R-link is stably equivalent to an unlink. In [MZ18], Meier and
the second author formulated an equivalent characterization of the stable
GPRC via trisections.
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Trisections of smooth 4-manifolds were introduced by Gay and Kirby
in [GK16], in which they showed that every 4-manifold X admits a trisec-
tion T , a decomposition X = X1 ∪X2 ∪X3, where Xi is a 4-dimensional
1-handlebody and each intersection Xi ∩Xj is a 3-dimensional handlebody.
These criteria imply that the triple intersection X1 ∩X2 ∩X3 is a closed
surface Σ, which we call the central surface. The complexity of the trisec-
tion is encoded in the parameters g = g(Σ) and ki = rk(π1(Xi)); we call
T a (g; k1, k2, k3)-trisection. If k1 = k2 = k3, then T is said to be balanced ;
otherwise, it is unbalanced. All trisections in this paper will be unbalanced.

The results here extend work of Meier and the second author, which we
will obtain as a special case.]

Proposition 6.1 ([MZ20, Proposition 9.1]). Suppose K is a fibered
homotopy-ribbon knot in S3 with genus g fiber and fibration p : S3

0(K) → S1.
Then for any handlebody extension P : X → S1 × I of p, the corresponding
homotopy 4-sphere XP (K) admits a (2g; 0, g, g)-trisection.

For the proof, we invoke the framework from [MZ18]. Suppose L ⊂ S3

is an R-link. We say that a Heegaard surface Σ for S3 is admissible with
respect to L if L is isotopic into a core of one of the handlebodies H cut out
by Σ, so that H \ L is a compression body. Equivalently, Σ is admissible if
the n-component link L = {Li} is isotopic into Σ and there exist a collection
of n compressing disks {Di} such that |Li ∩Dj | = δij . We will use

Lemma 6.2 ([MZ18, Lemma 4]). Suppose L ⊂ S3 is an n-component
R-link with admissible genus g Heegaard surface Σ. Then XL admits a
(g; 0, n, g − n)-trisection.

For the next proof, it is important to note for any knot K and singular fi-
bration p : S3

0(K) → S1, there is a singular open book decomposition (K, p′)
induced by removing the dual K∗ from S3

0(K). (Here, writing that (K, p′)
is a singular open book decomposition means that p′ : S3 \N(K) → S1 is a
generic map where all regular fibers of p′ are connected Seifert surfaces for
K and all fibers of p′ meet ∂(S3 \N(K)) in a longitude of K.)

Proposition 6.3. Suppose K is a handle-ribbon knot in S3 and that p
is a self-indexing circular Morse function on S3

0(K) whose thin and thick
surfaces have genus k and ℓ, respectively. For any handlebody extension of
P : X → S1 × I of p, the corresponding homotopy 4-sphere XP (K) admits
a (k + ℓ; 0, k, ℓ)-trisection.
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Proof. Suppose that P : X → S1 × I extends p over handlebodies, and let F̂
and Ĝ denote the thin and thick surfaces of p, respectively. By the proof of
Theorem 4.4, there exists an R-link derivative L ⊂ F̂ , where XL = XP (K).
Let. p′ : S3 −K → S1 be the singular open book decomposition induced by
p, discussed above, and let F and G be the Seifert surfaces corresponding
to F̂ and Ĝ. We may assume that F ∩G = K and L ⊂ F .

We claim that Σ = F ∪G is a Heegaard surface for S3 that is admis-
sible with respect to L: Since p is self-indexing, Σ cuts S3 into two com-
ponents, each of which is diffeomorphic to (F × I) ∪ (1-handles). Since F
has nonempty boundary, F × I is a handlebody, and thus so is (F × I) ∪
(1-handles), so that Σ is a Heegaard surface for S3. To see that Σ is admis-
sible, let k = g(F ), so that L = {Li} is a k-component link, and choose k
pairwise disjoint properly embedded arcs {ai} in F such that |Li ∩ aj | = δij .
Then each arc aj gives rise to a compressing disk Dj = aj × I ⊂ F × I,
and after a small isotopy of aj , this disk can be chosen to be disjoint
from the feet of the 1-handles, so that Dj is also a compressing disk for
(F × I) ∪ (1-handles). We conclude that Σ is admissible.

Finally, if ℓ = g(G), Lemma 6.2 implies that XP (K) = XL admits a (k +
ℓ; 0, k, ℓ)-trisection as desired. □

Note that in the case thatK is a fibered knot, Proposition 6.1 is a special
case of Proposition 6.3, since g(G) = g(F ) in the fibered case.

Proposition 6.4. Let K be as in Proposition 6.3. Then an adaptation of
the construction of Proposition 6.3 naturally yields

(
k
n

)
potentially inequiv-

alent (k + ℓ; 0, k + n, ℓ− n) trisections of XP (K) for each 0 ≤ n ≤ ℓ− k.
When n = 0, this is just the construction of Proposition 6.3.

Proof. One should note that the components of the trisection T given in
Proposition 6.3 arise naturally using a base diagram P (ZP ). Suppose that
K is handle-ribbon in S3, with singular fibration p : S3

0(K) → S1 extending
over handlebodies to P : X → S1 × I. As stated above, the first coordinate
function P1 : X → S1 is a circular Morse function whose embedded fibers
are handlebodies. Let D be the corresponding handle-ribbon disk for K in
BP (K), so that X = BP (K) \D. As in the 3-dimensional case, P1 induces a
singular open book decomposition P ′

1 : BP (K)−D, where the restriction of
P ′
1 to S3 −K is the singular open book p′ : S3 −K → S1, and each regular

fiber of P ′
1 is an embedded handlebody, whose boundary is a fiber of p′

capped off with the disk D.
Let X1 be the 4-ball attached to BP (K) to get XP (K). We will define

X2 and X3 so that the following holds:
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1) X1 ∩X2 = (p′)−1([0, π]),

2) X1 ∩X3 = (p′)−1([π, 2π]), and

3) X1 ∩X2 ∩X3 = (p′)−1({0}) ∪ (p′)−1({π}),

so that as in the proof of Proposition 6.3, the central surface is the connected
sum of the thin surface (of genus k) and thick surface (of genus ℓ) of p, viewed
as having K as a common boundary component. For the moment, we have
left X2 ∩X3 undefined. This intersection should be the boundary connected
sum of two handlebody fibers, call them H0 and Hπ, of the singular open
book P ′

1 : BP (K)−D → S1. It is clear thatH0 must be (P ′
1)

−1(0). Less clear
is the handlebody Hπ, since all of the interior critical points of P1 occur at
the critical value π; thus, we have a choice to make (in fact, we have 2ℓ−k

such choices, as we will see below).
Note that X− = (P ′

1)
−1([0, π − ε]) and X+ = (P ′

1)
−1([π + ε, 2π]) are 4-

dimensional 1-handlebodies satisfying rk(π1(X±)) = ℓ. See Figure 3. Clearly,
we want X− ⊂ X2 and X+ ⊂ X3, but the question is where to put the ℓ− k
cusps contained in the portion of the base diagram P (ZP ) contained in [π −
ε, π + ε]× I. Let Xπ = (P ′

1)
−1([π − ε, π + ε]). Here, the cusps can be viewed

as corresponding to 4-dimensional 2-handles, since Xπ can be obtained by
attaching ℓ− k 2-handles to a collar neighborhood of (P ′

1)
−1(π − ε). In the

construction in Proposition 6.3, we have X2 = X− ∪Xπ, and the ℓ− k 2-
handles cancel ℓ− k 1-handles of X−, yielding the 1-handlebody X2 with
rk(π1(X2)) = k, as in the conclusion of the proposition.

However, in a dual construction we could add Xπ to X+, or we could
even break Xπ into its constituent 2-handle pieces, attaching some of the
2-handles to X− to obtain X2 and some to X+ so obtain X3. This choice is
equivalent to choosing an arc γ ⊂ S1 × I connecting {π} × ∂I, transverse to
the I coordinate of S1 × I, and such that γ avoids the cusp points of P (ZP ).
Then γ partitions the cusp points of P (ZP ) into “upper” and “lower” cusp
points, so that up to isotopy, where are 2ℓ−k choices for γ. See Figure 13
for an illustration. For a particular choice, we let Hπ = P−1(γ), so that
Hπ is an embedded handlebody, and setting X2 ∩X3 = H0 ∪Hπ as above
determines a (k + ℓ; 0, k + n, ℓ− n)-trisection Tγ of XP (K), where n is the
number of lower cusp points determined by the arc γ, with 0 ≤ n ≤ ℓ− k.
The trisection produced by Proposition 6.3 agrees with Tγ when n = 0. □
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Figure 13: In Remark 6.4, the choice of the arc γ determines the trisection
Tγ . The cusps just above γ contribute 2-handles to X2 while the cusps just
below γ contribute 2-handles to X3.

Question 6.5. What is the relationship between different elements of the
family {Tγ} of trisections of XP (K)? Is it possible that two of these tri-
sections that differ by a single cusp are related by a single (unbalanced)
stabilization and destabilization?

For more detailed constructions (including trisection diagrams) in the
fibered case and further connections to the stable GPRC, the reader is en-
couraged to see Section 9 of [MZ20].
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