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1. Introduction

The systole of a compact Riemannian manifold M is the least length of
a non-contractible loop on M . The systole sys(M) of M and the volume
Vol(M) of M are deeply related and have been the focus of considerable
research. For instance, Gromov [14] showed that for a closed aspherical n-
manifold M , there exists a constant c := c(n) such that

sys(M) ≤ cVol(M)1/n.(1)

Note that all compact locally symmetric spaces of nonpositive curvature are
closed aspherical.

Of particular interest has been the study of how systoles grow along
congruence covers of a given base manifold M . Buser and Sarnak [8] showed
that when M is a compact arithmetic hyperbolic surface arising from a
quaternion division algebra over Q there exists a constant c := c(M) such
that the principal congruence covers {MI} of M satisfy

sys(MI) ≥
4

3
log(g(MI))− c,(2)

where g(MI) denotes the genus of MI and log denotes the natural loga-
rithm. This result was later extended to principal congruence covers of ar-
bitrary compact arithmetic hyperbolic surfaces by Katz, Schaps and Vishne
[19]. Furthermore, Katz, Schaps and Vishne proved an analogous result for
compact arithmetic hyperbolic 3-manifolds; namely, for a suitable constant
c := c(M), the principal congruence covers {MI} of M satisfy

sys(MI) ≥
2

3
log(∥MI∥)− c,(3)

where ∥MI∥ denotes the simplicial volume of MI (see [36, Chapter 6]). These
results were later generalized by Murillo to arithmetic hyperbolic manifolds
of dimension n which are of the first type [29] and to Hilbert modular vari-
eties [28] in the case that I varies across the set of prime ideals in a certain
number field.

The goal of this paper is to prove a generalization of the aforementioned
Buser–Sarnak inequality (2) for all arithmetic simple locally symmetric man-
ifolds.

Unlike in the case of hyperbolic manifolds, there are multiple natural
choices for how to scale the metric on a generic locally symmetric manifold.
In Section 2 we discuss such choices and explain in detail how scaling the
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metric affects the systole, volume, and systole growth up a tower of covers.
For instance, in Proposition 2.2 we show the important property that if sys-
tole growth is at least logarithmic up a tower relative to a given metric, then
for any rescaling of the metric, systole growth is still at least logarithmic.

Before proving the general case, we focus on standard special linear
manifolds. A special linear manifold of degree n is a manifold of the form
MΓ := Γ\ SLn(R)/ SO(n) where Γ ⊂ SLn(R) is a torsion-free lattice. We
call such lattices standard when they arise from central simple algebras (see
Section 4), and we note that this terminology is in analogy to how arith-
metic hyperbolic manifolds arising from quadratic forms are called standard
arithmetic hyperbolic manifolds [26, 4.10]. Note that standard special linear
manifolds are arithmetic and standard special linear manifolds of degree 2
are arithmetic hyperbolic surfaces.

With Proposition 2.2 in mind, we choose a convenient normalization
of the metric on special linear manifolds so that the sectional curvature is
bounded between 0 and −1, and we call this normalization the geometric
metric g. Given a standard special linear manifold M and a rational prime
p, we denote by {Mpm} the principal p-congruence tower of M (see Section
5). We show that the systole growth up all but finitely many p-congruence
towers is at least logarithmic in volume. Note that by defining the systole
of a noncompact locally symmetric manifold to be the minimal length of a
closed geodesic, we may consider systole growth along congruence towers of
such noncompact manifolds as well.

Theorem A. Let M be a standard special linear manifold of degree n,
n ≥ 2. There exists a constant c := c(M, g) such that for all but finitely many
primes p and all positive integers m,

sys(Mpm , g) ≥ 2
√
2

n(n2 − 1)
log(Vol(Mpm , g))− c.(4)

Remark. We thank our referee for pointing out that in [15, 3.C.6], Gromov
outlined an approach to show that if M is a compact special linear mani-
fold M , then there exists a constant C := C(M, g) such that sys(Mpm , g) ≥
C log(Vol(Mpm , g)). While Gromov did not provide any explicit value for C,
our Theorem A can be considered a natural development of this approach.

In the special case when n = 2 andM is compact, the Gauss–Bonnet the-
orem states that the genus g(Mpm) ofMpm satisfies g(Mpm) = Vol(Mpm ,g)

2π + 1,
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and hence Theorem A gives

sys(Mpm) ≥
√
2

3
log(g(Mpm))− c′

where c′ = c′(M) is a constant. Observe that this is close to recovering (2).
These methods enable us to prove a similar result for noncompact stan-

dard real, complex, or quaternionic arithmetic manifolds (see Section 8 for
constructions). Unless otherwise stated, real hyperbolic manifolds will be
given the hyperbolic metric in which they have constant sectional curvature
−1, and the systole and volume will be scaled accordingly. Similarly, we
scale the metrics on complex and quaternionic hyperbolic manifolds so that
their sectional curvature is bounded between −1 and −1

4 .

Theorem B. Let N be a noncompact standard real (resp. complex, quater-
nionic) arithmetic hyperbolic manifold of dimension n (resp. 2n, 4n), n ≥ 2.
There exists a constant c2 := c2(N) such that for all but finitely many primes
p and all positive integers m,

sys(Npm) ≥ c1 log(Vol(Npm))− c2,(5)

where

c1 =





2
√
2

n(n+ 1)2
when N is real hyperbolic,

1

n(n+ 1)(n+ 2)
when N is complex hyperbolic,

1

2
√
2(n+ 1)2(2n+ 3)

when N is quaternionic hyperbolic.

Note that in [29] Murillo used different methods in order to obtain,
in the case that N is a standard real arithmetic hyperbolic n-manifold, a
result analogous to Theorem B with a constant of 8

n(n+1) . Moreover, in an

appendix to [29] Dória and Murillo show that the constant 8
n(n+1) is sharp.

More recently, Emery, Kim, and Murillo [12] analyzed compact quaternionic
hyperbolic manifolds and gave a sharp lower bound with c1 =

4
(n+1)(2n+3) .

It is not known what the optimal constants are in the cases of noncompact
complex and quaternionic hyperbolic manifolds.

A major ingredient in our proofs of Theorems A and B is our Trace-
Length Bounds Theorem 3.1. In both SL2(R) and SL2(C), the translation
length of a semisimple element can be understood in terms of the trace of the
element. This relationship has proven to be extremely useful, as the trace
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is well understood from a number theoretic perspective. In SLn(R), n ≥
3, the relationship between translation length and trace is more nuanced.
Nevertheless, in our Trace-Length Bounds Theorem 3.1 we prove upper and
lower bounds for the translation length of a semisimple element in terms of
the element’s trace.

In Section 7 we show that each arithmetic, simple, locally symmetric
manifold of noncompact type N is commensurable to an immersed to-
tally geodesic submanifold of a standard special linear manifold of explic-
itly bounded degree (Theorem 7.1). Relative to this immersion, we endow
each N with the subspace metric which we also denote g. For each ratio-
nal prime p, this immersion induces a p-congruence tower {Npm} above N .
While the induced p-congruence tower seems dependent upon the immer-
sion, it is in fact natural in that it is commensurable of bounded distance
(see Section 2) to the tower associated to the principal congruence subgroups
ker(G(Ok) → G(Ok/p

mOk)) (see Remark 7.3).
In addition to its associated metric volume, each N has what we will call

its arithmetic measure µa(N), by which we will mean its volume according to
Prasad’s volume formula [32]. We believe that µa is the most natural measure
for a general N , the most easily computable thanks to Prasad’s volume
formula [32, Theorem 3.7], and hence that stating our general results in
terms of µa is most likely to be of use. That being said, there is an analogous
statement for when arithmetic measure is replaced by metric volume.

Theorem C. Let N be an arithmetic, simple, locally symmetric manifold of
noncompact type of dimension n and arithmetic measure µa(N) < v. Then
for all but finitely many primes p and all positive integers m,

sys(Npm , g) ≥ c1 log(µa(Npm))− c2,(6)

where c1 := c1(n, v) and c2 := c2(N) are explicit constants.

Simple locally symmetric manifolds that are neither real nor complex
hyperbolic are arithmetic, and hence Theorem C applies. In the case of
arithmetic hyperbolic manifolds with the hyperbolic metric, we prove the
following theorem which makes explicit the dependence of the multiplicative
constant on the volume.

Theorem D. Let N be an arithmetic hyperbolic n-manifold with hyperbolic
volume less than V . There exists an absolute, effectively computable constant
c1 := c1(n) > 0, and a constant c2 := c2(N) such that for all but finitely
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many primes p and all positive integers m,

sys(Npm) ≥ c1
(log(V ))3.5

log(Vol(Npm))− c2.(7)

Observe that Theorem D applies to all arithmetic hyperbolic manifolds,
not just those which are standard.

In Section 9, we show how to explicitly compute the constants c1 from
the previous two theorems. Observe that the multiplicative constants in The-
orems A and B depend only on dimension, while the multiplicative constants
in Theorems C and D depend on dimension and volume.

Remark. All of the results in this paper hold as well for simple locally
symmetric orbifolds. Note that in the context of locally symmetric orbifolds
a closed geodesic is not defined to be locally length minimizing but rather to
be a closed curve that lifts to a closed geodesic in a finite-sheeted manifold
cover.

Acknowledgements. The second and third authors were partially sup-
ported by the U.S. National Science Foundation grants DMS 1107452,
1107263, 1107367 “RNMS: Geometric Structures and Representation Va-
rieties” (the GEAR Network). The second author was partially supported
by a Simons Collaboration Grant and NSF Grant Number DMS-1905437.
We would also like to thank the referees for several useful suggestions.

2. Preliminaries on metrics, lengths, volumes, and towers

In this paper we assume some familiarity with Riemannian manifolds, Lie
groups, Lie algebras, and symmetric spaces. All locally symmetric spaces
will be assumed to be of noncompact type, and we will simply refer to them
as locally symmetric spaces. For a detailed reference on these topics, we refer
the reader to [17]. We now record a few facts and establish terminology that
we use throughout this paper and which enable us to discuss a general theory
of systole growth up towers of covers.

Let (M, g) be a finite volume Riemannian manifold and c1, c2 ∈ R be
constants such that

sys(M, g) ≥ c1 log(Vol(M, g))− c2.(8)

Such a systole-volume bound behaves nicely when scaling the metric or
lifting to covers:
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Lemma 2.1.

(i) If α ∈ R>0, then sys(M,αg) ≥ c′1 log(Vol(M,αg))− c′2 where

c′1 =
√
αc1 c′2 =

√
α

(
c2 +

c1 dimM

2
logα

)
.

(ii) If MI → M is an s-sheeted cover, then sys(MI) ≥ c1 log(Vol(MI))−
c′2. where

c′2 = c2 + c1 log s.

Proof. Scaling the metric scales the corresponding systole and volume (see
[9, Chapter 1]):

sys(M,αg) =
√
α sys(M, g) Vol(M,αg) = α

dimM

2 Vol(M, g).(9)

An s-sheeted cover satisfies Vol(MI) = sVol(M). The results follow by sub-
stituting these values into (8). □

A tower of covers {MI}I∈S of M is a set of finite sheeted covers of
M indexed by a poset S such that if I < J , then MJ covers MI . If the
systole of each manifold in the tower satisfies a logarithmic volume lower
bound as in (8) with the same constants c1 and c2, then we say the systole
growth is at least logarithmic in volume up the tower. In other words, the
systole growth up a tower of covers {MI}I∈S of M is at least logarithmic in
volume if there are constants c1 and c2 which depend only on M such that
sys(MI) ≥ c1 log(Vol(MI))− c2 for all manifolds MI in the tower.

Two locally symmetric spaces M and M ′ are commensurable if they
share a common finite sheeted cover. Equivalently, if Γ and Γ′ are their
corresponding lattices, then Γ ∩ Γ′ has finite index in Γ and Γ′. If {MI}I∈S is
a tower of covers of M , then we define the associated induced tower {M ′

I}I∈S
of M ′ where, for each I ∈ S, M ′

I is the finite sheeted cover of MI of degree
|M ′

I : MI | ≤ |Γ : Γ ∩ Γ′| associated to the lattice π1(MI) ∩ Γ′.
We define two towers {MI}I∈S and {M ′

I}I∈S to be commensurable, if
there exists a tower {M ′′

I }I∈S where for each I ∈ S, M ′′
I is a common fi-

nite sheeted cover of MI and M ′
I . We define commensurable towers to be of

bounded distance if there exists an integer s ≥ 1 such that for each I ∈ S, the
covering maps M ′′

I → MI and M ′′
I → M ′

I are of no more than s sheets. Com-
mensurable of bounded distance is an equivalence relation between towers.
Induced towers are of bounded distance.
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It follows from Lemma 2.1 (ii) that if the systole growth up {MI}I∈S is
at least logarithmic in volume, and {M ′

I}I∈S is commensurable of bounded
distance to {MI}I∈S , then the systole growth up {M ′

I}I∈S is also at least
logarithmic in volume, and furthermore, they have the same multiplicative
constant. We record these observations in the proposition below.

Proposition 2.2. Let M be a finite volume locally symmetric space and
{MI}I∈S be a tower of covers of M . If systole growth is at least logarithmic
in volume up the tower, then:

(i) this property is independent of the scaling of the metric;

(ii) the systole growth is at least logarithmic in volume up a commensurable
tower of bounded distance; and

(iii) upon fixing the metric, the multiplicative constant c1 is an invariant of
the bounded distance commensurability class of {MI}I∈S .

Sometimes it is more convenient or natural to work with the scaled
measure µβ = βVol, β ∈ R>0, on N . For example, for compact hyperbolic
n-manifolds, Gromov showed that there exists a constant β := β(n) such
that simplicial volume is β times hyperbolic volume [36, Theorem 6.2]. In
Section 9, we shall be considering the arithmetic measure of an arithmetic
simple locally symmetric space, which is a scaling of the metric volume.
A direct computation shows that that if there exists constants c1 and c2
such that sys(N) ≥ c1 log(Vol(N))− c2, then sys(N) ≥ c1 log(µβ(N))− c′2
for c′2 = (c2 − c1 log β). In such a case, it follows that systole growth up a
tower is at least logarithmic in metric volume if and only if systole growth
is at least logarithmic in measure (c.f. (3)).

The symmetric space SLn(R)/ SO(n) comes naturally equipped with two
Riemannian metrics: (1) the Killing metric determined by the Killing form
B(X,Y ) = 2n tr(XY ) on sln(R) and (2) the geometric metric, in which the
hyperbolic slices corresponding to the natural inclusions SL2(R) → SLn(R)
have constant sectional curvature of −1. These metrics are constant multi-
ples of one another. Relative to the scaled Killing form αB, α ∈ R>0, the
curvature of a section determined by orthonormal vectors X,Y ∈ sln(R) is
K(X,Y ) = 2n

α tr([X,Y ]2) [17, V.3.1]. It follows that the geometric metric is
determined by

⟨X,Y ⟩ := 1

n
B(X,Y ) = 2 tr(XY ), X, Y ∈ sln(R).(10)
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Many papers on locally symmetric spaces use the Killing metric (for
instance [33]), however since we are interested in isometric immersions of
locally symmetric spaces of smaller dimensions, it will be more convenient
to normalize to the geometric metric.

Each x ∈ SLn(R) has Jordan decomposition x = xsxu where xs is semi-
simple and xu is unipotent. Semisimple elements in SLn(R) are diagonaliz-
able (possibly over C). When Γ is a cocompact lattice in SLn(R), the Gode-
ment Compactness Criterion implies that it only has semisimple elements
[27, Theorem 5.3.3]. Every semisimple element has a polar decomposition
x = xhxe where its hyperbolic part xh has all positive real eigenvalues and
its elliptic part xe has eigenvalues that lie on the unit circle. In particular, if
{a1, . . . , an} are the eigenvalues of x, then {|a1| , . . . , |an|} are the eigenval-
ues of xh. Unless stated otherwise, in what follows x ∈ SLn(R) will denote
a semisimple element and {a1, . . . an} its eigenvalues.

Each x stabilizes and translates along a geodesic axis in SLn(R)/ SO(n).
Let ℓ(x) denote the translation length of x relative to the geometric metric
on SLn(R)/ SO(n). Closed geodesics in Γ\ SLn(R)/ SO(n) are in bijective
correspondence with Γ-conjugacy classes of semisimple elements in Γ. The
length of a closed geodesic associated to the class of x is the translation
length of x.

Let A ⊂ SLn(R) denote the Lie subgroup of diagonal matrices with pos-
itive entries and let a denote its Lie algebra. The map log : A → a ⊂ sln(R),
sending (b1, . . . , bn) 7→ (log(b1), . . . , log(bn)) is an isomorphism. Then y =
diag(|a1| , . . . , |an|)) ∈ A is SLn(R)-conjugate to xh. Let Y = log(y). Us-
ing (10), (c.f. [22, Section 12.1], [33, Prop. 8.5])

ℓ(x) = ℓ(xh) = ℓ(y) =
√

⟨Y, Y ⟩ =
√

2 tr(Y 2) =

√√√√2

n∑

i=1

(log |ai|)2.(11)

3. Trace-length bounds theorem

In this section we state and prove a fundamental relationship between the
traces and translation lengths of elements x ∈ SLn(R). These relationships
are particularly valuable since they enable us to leverage number theoretic
techniques to analyze traces, thereby giving us geometric data about lengths.
The proof of the theorem uses a variety of analytic techniques.
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Theorem 3.1 (Trace–Length Bounds). For x ∈ SLn(R) semisimple,

√
2 arccosh

(
tr(xh)

n

)
≤ ℓ(x) ≤

√
2n arccosh

((
tr(xh)

n

)n−1
)
.(12)

Furthermore, if | tr(x)| ≥ 1, then

√
2 arccosh

(
max

{
1,

|tr(x)|
n

})
≤ ℓ(x)(13)

≤
√
2n arccosh



(
2

n∑

l=1

| tr(xl)|
)n−1


 .

Remark 3.2. When n = 2, it is known that for x hyperbolic with eigen-
values a and 1

a ,

ℓ(x) = 2 log |a| = 2arccosh

( |tr(x)|
2

)
.(14)

Observe that (12) gives a tight upper bound. For n ≥ 3, no such direct
equality is known.

Remark 3.3. In (13) the condition that |tr(x)| ≥ 1 is necessary to apply
Proposition 3.8 to get the upper bound on ℓ(x).

The remainder of this section is dedicated to proving Theorem 3.1. The
lower bounds follow from (11) and Proposition 3.5 (below), while Proposi-
tions 3.7 and 3.8 (below) along with (11) yield the upper bounds. Recall that
for x ∈ SLn(R) semisimple, its eigenvalues a1, . . . an are complex numbers
that satisfy

∑n
i=1 ai = trx and

∏n
i=1 ai = 1.

Lemma 3.4. For any {ai}ni=1 ⊂ C and β ∈ R, if

n∏

i=1

ai = 1, then

n∑

i=1

|ai|β ≥ n.
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Proof. This is simply an application of the arithmetic and geometric means
inequality:

1

n

n∑

i=1

∣∣∣aβi
∣∣∣ ≥

(
n∏

i=1

∣∣∣aβi
∣∣∣
) 1

n

=

∣∣∣∣∣

n∏

i=1

ai

∣∣∣∣∣

β

n

= 1.

□

Proposition 3.5. For any {ai}ni=1 ⊂ C satisfying

n∏

i=1

ai = 1, we have:

arccosh

(
max

{
1,

1

n

∣∣∣∣∣

n∑

i=1

ai

∣∣∣∣∣

})
≤ arccosh

(
1

n

n∑

i=1

|ai|
)

≤

√√√√
n∑

i=1

(log |ai|)2.

Note that in Proposition 3.5, we can replace each ai with a−1
i in the two

inequalities on the left and get the identical bound on the right.

Proof. We will begin by proving an inequality for the sum inside of arccosh.

1

n

∣∣∣∣∣

n∑

i=1

ai

∣∣∣∣∣ ≤
1

n

n∑

i=1

|ai| =
2

n

(
n∑

i=1

1

2

(
elog|ai| + e− log|ai|

)
− 1

2

n∑

i=1

|ai|−1

)

=
2

n

(
n∑

i=1

cosh(log |ai|)−
1

2

n∑

i=1

|ai|−1

)

=
2

n

(
n+

∞∑

m=1

(
n∑

i=1

(log |ai|)2m
(2m)!

)
− 1

2

n∑

i=1

|ai|−1

)
(15)

≤ 2

n


n

2
+

∞∑

m=1




(∑
i(log |ai|)2

)m

(2m)!




(16)

≤ 2

n

(
n

2

∞∑

m=0

((√∑
i(log |ai|)2

)2m

(2m)!

))

= cosh




√√√√
n∑

i=1

(log |ai|)2

(17)
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Equations (15) and (17) follow from the Taylor Series expansion of cosh(x) =
∞∑

m=0

x2m

(2m)!
, while equation (16) makes use of Lemma 3.4 to get

n− 1

2

∑

i

|ai|−1 ≤ n

2
.

Since arccosh(x) is increasing on [1,∞) and
∑

i |ai| ≥ n by Lemma 3.4, we
have:

arccosh

(
max

{
1,

1

n

∣∣∣∣∣

n∑

i=1

ai

∣∣∣∣∣

})
≤ arccosh

(
1

n

n∑

i=1

|ai|
)

≤

√√√√
n∑

i=1

(log |ai|)2.

□

Lemma 3.6. For any {ai}ni=1 ⊂ C satisfying

n∏

i=1

ai = 1 and any β > 0 we

have:

cosh


β

√√√√ 1

n

n∑

i=1

(log |ai|)2

 ≤ 1

2n

∑

i

(
|ai|β + |a−1

i |β
)

Proof.

cosh


β

√√√√ 1

n

n∑

i=1

(log |ai|)2

 =

∞∑

m=0

1

(2m)!

(
1

n

n∑

i=1

(β log |ai|)2
)m

(18)

≤
∞∑

m=0

1

(2m)!

(
1

n

n∑

i=1

(β log |ai|)2m
)

(19)

=
1

n

n∑

i=1

cosh
(
log |ai|α

√
n−1
)

=
1

2n

n∑

i=1

(
|ai|β + |a−1

i |β
)

(20)

In (18) we used the Taylor Series expansion of cosh(x). In (19) we used
that, for m = 0, 1 it is trivially true and for m ≥ 2, f(x) = xm is convex

when x > 0 so we can apply Jensen’s inequality: f
(∑

xi

n

)
≤

∑
f(xi)
n . □
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Proposition 3.7. For any {ai}ni=1 ⊂ C satisfying

n∏

i=1

ai = 1 and any β > 0

we have:

√√√√
n∑

i=1

(log |ai|)2 ≤
√
n

β
arccosh



(
1

n

n∑

i=1

|ai|β
)n−1


 .

Proof. First we want to bound 1
2n

∑
i

(
|ai|β + |a−1

i |β
)
from Lemma 3.6. Note

that for any i, a−1
i =

∏
j ̸=i aj . So

∑
i a

−1
i =

∑
i

∏
j ̸=i aj , which is an el-

ementary symmetric polynomial that arises as the coefficient of the lin-
ear term in the characteristic polynomial

∏
(x− aj). Similarly,

∑
i |ai|−β =∑

i

∏
j ̸=i |aj |β . We can use this and Maclaurin’s Inequality [1] to bound∑

i |ai|−β above by
∑

i |ai|β . In particular,

1(
n
1

)
n∑

i=1

|ai|β ≥


 1(

n
n−1

)
n∑

i=1

∏

j ̸=i

|aj |β



1

n−1

≥
(

n∏

i=1

|ai|β
) 1

n

= 1.

Simplifying this,

1

n

n∑

i=1

|ai|β ≥
(
1

n

n∑

i=1

|ai|−β

) 1

n−1

≥ 1

so

1

nn−2

(
n∑

i=1

|ai|β
)n−1

≥
n∑

i=1

|a−1
i |β ≥ n.

We use this to bound inequality (20) as follows:

1

2n

n∑

i=1

(
|ai|β + |a−1

i |β
)
≤ 1

2n




n∑

i=1

|ai|β +
1

nn−2

(
n∑

i=1

|ai|β
)n−1




≤ 1

2n


 2

nn−2

(
n∑

i=1

|ai|β
)n−1




=

(
1

n

n∑

i=1

|ai|β
)n−1

,
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where, in the last inequality, we use that 1
n

∑
i |ai|β ≥ 1 by Lemma 3.4 and

so
(
1
n

∑
i |ai|β

)n−1 ≥ 1
n

∑
i |ai|β . Hence (18) is bounded above as follows:

cosh


β

√√√√ 1

n

n∑

i=1

(log |ai|)2

 ≤

(
1

n

n∑

i=1

|ai|β
)n−1

,

which we can re-write to get the desired result:

√∑

i

(log |ai|)2 ≤
√
n

β
arccosh



(
1

n

∑

i

|ai|β
)n−1




since arccosh(x) is increasing on [1,∞). □

For x ∈ SLn(R), let

px(X) = Xn − s1(x)X
n−1 + s2(x)X

n−2(21)

− · · ·+ (−1)n−1sn−1(x)X + (−1)n

be the characteristic polynomial of x where sj(x) denotes the jth elemen-
tary symmetric polynomial in the eigenvalues of x (e.g. tr(x) = s1(x) and
det(x) = sn(x) = 1). Newton’s identities [18] state that for all 1 ≤ j ≤ n,

jsj(x) = sj−1(x) tr(x)− sj−2(x) tr(x
2)(22)

+ · · ·+ (−1)j−2s1(x) tr(x
j−1) + (−1)j−1 tr(xj)

In particular, these recursively show that each sj(x) can be written as a
linear combination of {tr(x), tr(x2), . . . tr(xj)}. Fujiwara’s bound [13, 24],
applied to our context states that if λ is a root of the characteristic polyno-
mial (21), then

|λ| ≤ 2max
{
|s1(x)| , |s2(x)|

1

2 , . . . , |sn−1(x)|
1

n−1 , 2−
1

n

}
.(23)

Relationships (22) and (23) are used in the proof of the following proposition.

Proposition 3.8. For each n, there exists a continuous function Fn : Rn →
R such that if x satisfies |tr(x)| ≥ 1, then

tr(xh) ≤ Fn(tr(x), tr(x
2), . . . , tr(xn)).

One such continuous function is: Fn(z1, . . . , zn) = 2n
∑n

j=1 |zj |.
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Proof. Claim: For 1 ≤ k ≤ n− 1, k|sk(x)| ≤
(∑k

l=1 | tr(xl)|
)k

.

This is true for k = 1 since |s1(x)| = | tr(x)|. Suppose it is true for 1 ≤ k ≤
j − 1 < n− 1. Then, using Newton’s Identities, for k = j:

j|sj(x)| ≤ |sj−1(x) tr(x)|+ |sj−2(x) tr(x
2)|+ · · ·+ |s1(x) tr(xj−1)|+ | tr(xj)|

≤ | tr(x)|
j − 1

(
j−1∑

l=1

| tr(xl)|
)j−1

+
| tr(x2)|
j − 2

(
j−2∑

l=1

| tr(xl)|
)j−2

+ · · ·+ | tr(xj−1) tr(x)|+ | tr(xj)|

≤
(

j−1∑

l=1

| tr(xl)|
)j−1( | tr(x)|

j − 1
+

| tr(x2)|
j − 2

+ · · ·+ | tr(xj−1)|+ | tr(xj)|
)

≤
(

j∑

l=1

| tr(xl)|
)j

,

where we use the assumption |tr(x)| ≥ 1 in the third inequality. This proves
the claim. Combining this bound with (23) and using that 2−

1

n < 1 we get:

tr(xh) ≤ n max
1≤i≤n

|ai| ≤ 2n

(
n∑

l=1

| tr(xl)|
)

□

4. Central simple algebras over Q and their

associated orbifolds

A general reference for orders in central simple algebras, the topic of this
section, is Reiner [34].

Let A be a central simple algebra over Q of dimension n2 ≥ 4. By Wed-
derburn’s structure theorem there exists a positive integer m and central di-
vision algebraD overQ such thatA ∼= Mm(D). Therefore n2 = m2 dimQ(D).

Suppose now that p is prime and consider the central simple algebra
A⊗Q Qp

∼= Mm(D ⊗Q Qp) over Qp, where Qp denotes the field of p-adic
numbers. This algebra also has dimension n2 and, by Wedderburn’s theorem,
is isomorphic to Mmp

(Dp) for some positive integer mp and central division
algebra Dp over Qp. If the dimension of Dp is greater than 1 (equivalently,
mp < n) then we say that p ramifies in A. Otherwise p is unramified in A.
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Let K be an extension field of Q for which there is an isomorphism of
K-algebras

h : A⊗Q K → Mn(K).

Given an element x ∈ A⊗Q K the characteristic polynomial of h(x) is well-
defined and does not depend on the isomorphism h. For an element a ∈ A,
the reduced characteristic polynomial of a is defined as the characteristic
polynomial of h(a⊗ 1) and is of the form

Xn − tr(a)Xn−1 + · · ·+ (−1)n nr(a).

We call tr(a) the reduced trace of a and nr(a) the reduced norm of a. Note
that the reduced norm satisfies nr(a) = det(h(a⊗ 1)) and is therefore mul-
tiplicative.

We now define orders in central simple algebras over Q. Let A be a
finite dimensional central simple algebra over Q. A Z-order O of A is a
subring of A which is also a finitely generated Z-submodule of A for which
O ⊗Z Q ∼= A. An order of A is maximal if it is not properly contained in
any other order of A. A fundamental result [34, Theorem 8.6] is that if O is
an order of A then the reduced characteristic polynomial of an element of
O lies in Z[X]. In particular if x ∈ O then both the reduced trace tr(x) and
the reduced norm nr(x) of x are integers.

We now discuss the construction of locally symmetric orbifolds from
maximal orders in central simple algebras. Let A be a central simple algebra
of dimension n2 over Q for which A⊗Q R ∼= Mn(R), and O be a maximal
order of A. Denote by O1 the multiplicative subgroup of O× consisting of
those elements with reduced norm one and by Γ the image of O1 in SLn(R).
Defined in this manner, Γ is a lattice in SLn(R) with finite covolume [5] (see
also [27, Proposition 6.8.9]). Let MΓ = Γ\ SLn(R)/ SO(n) be the associated
special linear orbifold. This orbifold is a manifold if and only if Γ is torsion-
free and is compact if and only if A is a division algebra. We call any orbifold
commensurable with MΓ a standard special linear orbifold of degree n.

Remark 4.1. Not every lattice in SLn(R) arises from the aforementioned
construction. In particular there exist lattices in SLn(R) that are not com-
mensurable with the ones coming from central simple algebras over Q.
For example, there are constructions coming from Hermitian forms over
quadratic extensions of number fields that give rise to cocompact lattices
in SLn(R). (See [37, Table 2] for the full classification of k-forms of SLn).
Nevertheless we are able to restrict our attention to the lattices arising from
central simple algebras because they are universal in the sense that all other
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lattices virtually embed into them in a controlled way. This will be described
in Section 7.

5. Trace estimates in congruence subgroups

Let A be a central simple algebra over Q of dimension n2 ≥ 4, O be a
maximal order of A and Γ be the lattice in SLn(R) associated to the elements
of O1. Given a natural number N ≥ 1 we have an ideal NO of O whose
quotient O/NO is a finite ring. We define the level N principal congruence
subgroup of O1 to be the kernel of the homomorphism O1 → (O/NO)×

obtained from the natural projection O → O/NO. We will denote this group
by O1(N); that is, O1(N) = ker

(
O1 → (O/NO)×

)
. The image in SLn(R)

of O1(N) will be denoted Γ(N).
We now apply Theorem 3.1 to examine the growth of traces of elements

of Γ in congruence subgroups.

Theorem 5.1. Let Γ ⊂ SLn(R) be the lattice defined above and let p be
a prime which does not ramify in A and satisfies p > 2n. For every m ≥ 1
and semisimple x ∈ Γ(pm), x ̸= 1, there is an integer q, |q| ≤ n

2 , such that
|tr(xq)| > pm − n.

Proof. Choose a basis of A⊗Q Qp so that A⊗Q Qp
∼= Mn(Qp) and

O ⊗Z Zp
∼= Mn(Zp). Denote by φp the natural projection φp : Mn(Zp) →

Mn(Zp/p
mZp) ∼= Mn(Z/p

mZ). Suppose that x ∈ Γ(pm). Identifying x with
its image in Mn(Zp), we have that φp(x) = Idn, hence tr(φp(x)) = n. Be-
cause O is a Z-order of A and x ∈ O we have that tr(x) ∈ Z, an observation
which allows us to conclude that tr(x) ≡ n (mod pm). This shows that if
x ∈ Γ(pm) then tr(x) = pmk + n for some k ∈ Z.

Now suppose x ∈ Γ(pm) is semisimple and tr(xq) = n for each integer q,
|q| ≤ n

2 . Let px(X) be the characteristic polynomial of x as in (21). Then by
Newton’s identities (22), and the fact that for x ∈ SLn(R) si(x) = sn−i(x

−1),
our assumptions on the traces of powers of x uniquely determines each sj(x),
and a computation shows that px(X) = (X − 1)n. Since x is semisimple, we
deduce that x = 1. □

Corollary 5.2. Let Γ be as above. For each semisimple x ∈ Γ(pm), x ̸= 1,

2
√
2

n
arccosh

(
pm − n

n

)
≤ ℓ(x).(24)
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Proof. Observe that ℓ(x) = ℓ(x−1), si(x) = sn−i(x
−1), and ℓ(xq) = qℓ(x).

This together with the Trace-Length Bounds Theorem 3.1 gives the re-
sult. □

Remark 5.3. As only finitely many primes ramify in a central simple al-
gebra, Theorem 5.1 hold for all but finitely many primes p.

6. Proof of Theorem A

We now prove Theorem A. Let A be a central simple algebra over Q of
dimension n2 ≥ 4, O be a maximal order of A and Γ be the image in SLn(R)
of the multiplicative group of elements of O of reduced norm one. Let M =
Γ\ SLn(R)/ SO(n). Given a prime p and positive integer m we denote by
Mpm the congruence cover of M of level pm, and by |Mpm : M | the degree
of Mpm over M .

An immediate application of Corollary 5.2 is that

sys(Mpm) ≥ 2
√
2

n
arccosh

(
pm − n

n

)
,

which implies that

(25) sys(Mpm) ≥ 2
√
2

n
log

(
pm − n

n

)

because arccosh z = log(z +
√
z2 − 1).

Let S be the set of rational primes which either ramify in A or else satisfy
p < 2n. Observe that S is a finite set. By construction, for each p /∈ S, we
have

|Mpm : M | = |Γ : Γ(pm)| ≤ |SLn(Z/p
mZ)| ≤ (pm)n

2−1.

Substituting this into (25) and simplifying yields, for all p /∈ S,

sys(Mpm) ≥ 2
√
2

n

(
log
(
|Mpm : M |1/(n2−1)

)
− log(2n)

)

=
2
√
2

n

(
1

n2 − 1
log(Vol(Mpm)/Vol(M))− log(2n)

)

=
2
√
2

n(n2 − 1)
log(Vol(Mpm))− c,

where c is a positive constant depending on M . This proves Theorem A in
the case that our special linear manifold M is of the form Γ\ SLn(R)/ SO(n)
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with Γ arising from the units of norm one in a maximal order of a central
simple algebra of dimension n2 over Q. By Proposition 2.2, the general case
follows from this special case however, since by definition every standard spe-
cial linear manifold is commensurable with one of the manifolds considered
above.

7. Simple locally symmetric orbifolds:

immersions and towers

In the remainder of the paper, we assume familiarity with algebraic and
arithmetic groups. For detailed references on these topics, we refer the reader
to [4, 27]. Let k denote a totally real number field, Ok its ring of integers,
and let G be a connected, simple, semisimple, adjoint algebraic k-group that
is anisotropic at all but one real place of k. Fix once and for all the infinite
embedding k ⊂ R for which G is isotropic. Then G(R) is a simple Lie group
(in the sense that the complexification of its Lie algebra is simple) and let
K ⊂ G(R) be a maximal compact subgroup.

Let g be the Lie algebra of G, d1 = dim g, and fix a k-basis for g. Via the
k-rational adjoint embedding Ad : G → GL(g) we get Ad(G(k)) ⊂ GLd1

(k)
and we then define G(Ok) := Ad−1(Ad(G(k)) ∩GLd1

(Ok)). (While different
choices of bases will result in different groups, they are all commensurable
[5, Cor. 6.3], which is sufficient for our purposes.)

A simple locally symmetric orbifold is a Riemannian orbifold of the form
Γ\G/K where G is a connected simple Lie group, K is a maximal compact,
and Γ is a lattice. Examples of simple locally symmetric orbifolds include
finite volume real, complex, and quaternionic hyperbolic manifolds, as well
as special linear manifolds. Such orbifolds are arithmetic when there exists a
G as above such that G(R)◦ = G and Γ is commensurable to G(Ok). By the
work of Margulis [25] and Gromov–Schoen [16], all simple locally symmetric
orbifolds other than real and complex hyperbolic are arithmetic.

Theorem 7.1. Let N = Λ\G(R)/K be an arithmetic simple locally sym-
metric orbifold and k be its field of definition. Then there exists an orbifold
commensurable to N that can be immersed as a totally geodesic suborbifold
of a standard special linear orbifold of degree [k : Q] · dimG.

Theorem 7.1 is a consequence of the following algebraic result.

Proposition 7.2. Let d1 = dimG and d2 = [k : Q]. Then there exists a Lie
group embedding ρ : G(R) → SLd1d2

(R) such that ρ−1(ρ(G(R)) ∩ SLd1d2
(Z))

is commensurable with Λ.
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Proof. Let g denote the Lie algebra of G. The adjoint representation Ad :
G → SL(g) ∼= SLd1

is k-rational [4, 3.13] and since G is adjoint, it is injective.
Via restriction of scalars and the regular representation [31, 2.1.2], we get a
sequence of Q-rational injections:

Rk/Q(G) → Rk/Q(SLd1
) → SLd1d2

Since G(R) is naturally identified as the unique noncompact factor of
Rk/Q(G)(R), we obtain a sequence of Lie group injections:

G(R) → (Rk/Q(G))(R) → SLd1d2
(R)

whose composition we denote ρ. Choosing an Ok-lattice L ⊂ g determines a
Z-structure on SLd1d2

for which ρ−1(ρ(G(R)) ∩ SLd1d2
(Z)) is commensurable

with Λ [5, Prop. 6.2]. □

We record d1 = dimG as a function of absolute rank r for each Killing–
Cartan type below.

(26)
Ar Br Cr Dr E6 E7 E8 F4 G2

d1 r2 + 2r 2r2 + r 2r2 + r 2r2 − r 78 133 248 52 14

For each prime p, the p-congruence tower {Mpm} of

M = SLd1d2
(Z)\ SLd1d2

(R)/ SO(d1d2)

induces a p-congruence tower {Npm} of N .

Remark 7.3. In Proposition 7.2, the Q-structure on SLd1d2
is canon-

ical, but the Z-structure requires a choice of an Ok-lattice. A different
choice of L would result in a commensurable cover [5, Cor. 6.3]. The two
resulting induced towers over N towers are commensurable of bounded
distance, and hence by Proposition 2.2 the growth up an associated p-
congruence tower is independent of the choice of Ok-lattice. Furthermore,
since (Rk/Q(G))(Z) ∼= G(Ok) [31, 2.1.2], a p-congruence tower is of bounded
distance from the tower associated to the principal congruence subgroups
ker(G(Ok) → G(Ok/p

mOk)). In this sense, up to bounded distance, {Npm}
is a natural tower only depending on G and p.

Remark 7.4. Endowing N and its covers with the subspace metric, g,
enables us to use Theorem A to obtain coarse estimates for the growth of
the systoles up the {Npm}. Observe that by the definition of the canonical
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embedding in Proposition 7.2, the subspace metric is 2d2 times the Killing
metric on N .

Corollary 7.5. Let N be an arithmetic simple locally symmetric orbifold,
k its field of definition and G its associated group. Let d1 = dimG and d2 =
[k : Q]. There exists a constant c2 := c2(N, g) such that for all primes p >
2d1d2 and all positive integers m,

sys(Npm , g) ≥ 2
√
2

d1d2(d21d
2
2 − 1)

log(Vol(Npm , g))− c2.(27)

In light of Proposition 2.2, for every N , and sufficiently large p, systole
growth is at least logarithmic in volume up every congruence p-tower, and
this fact is independent of the choice of metric.

8. Arithmetic hyperbolic orbifolds

In this section, we specialize our results to real, complex, and quaternionic
hyperbolic orbifolds and then prove Theorem B. Our strategy will be to pro-
duce a cover which immerses in a standard special linear orbifold of bounded
degree. In the case of general real arithmetic hyperbolic orbifolds, we rely
on Theorem 7.1 to produce this immersion. In the case of noncompact stan-
dard real, complex, and quaternionic orbifolds, we take advantage of certain
natural immersions coming from their constructions, which we outline in the
second half of this section.

Real hyperbolic n-orbifolds arise from lattices in SO0(n, 1), which is a
real form of the algebraic group SO(n+ 1). Relative to the canonical em-
bedding, so(n, 1) is a Lie subalgebra of sln+1(R), and the tangent space of
hyperbolic n-space SO0(n, 1)/ SO(n) can be identified with








0

x1
x2
...
xn

x1 x2 . . . xn 0




∣∣∣∣∣ x1, . . . , xn ∈ R





.(28)

The Killing form on so(n, 1) is (n− 1) tr(XY ) and a direct computation [17,
V.3.1] shows that the Killing metric has sectional curvature − 1

2(n−1) . Since

dimSO(n+ 1) = 1
2n(n+ 1), the following is then a consequence of Theorem

7.1 and Remark 7.4.
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Corollary 8.1. Let N be an arithmetic real hyperbolic n-orbifold with field
of definition k of degree d. Then N is commensurable to an immersed to-
tally geodesic subspace of a degree 1

2dn(n+ 1) special linear orbifold. With
respect to the subspace metric, this subspace has constant sectional curvature
− 1

4(n−1)d .

Before stating the following corollary, we recall that real hyperbolic orb-
ifolds will be given the hyperbolic metric hR in which they have constant
sectional curvature −1 unless an alternative Riemannian metric g is explic-
itly given.

Corollary 8.2. Let N be an arithmetic real hyperbolic n-orbifold, n ≥ 4,
with field of definition k of degree d. There exists a constant c2 := c2(N)
such that for all primes p > dn(n+ 1) and all positive integers m,

sys(Npm) ≥
√

128

3d7n13
log(Vol(Npm))− c2.(29)

Proof. Let g denote the subspace metric on N and its covers. By scaling
conversions (9) and Theorem A,

sys(Npm) =

√
1

4(n− 1)d
sys(Npm , g)

≥
√

1

4(n− 1)d

(
2
√
2

(12n(n+ 1)d)((12n(n+ 1)d)2 − 1)

)

× log(Vol(Npm), g)− c′2

≥
√

8(26)

4d7(n− 1)n6(n+ 1)6
(log(Vol(Npm)) + c3)− c′2

≥
√

128

3d7n13
log(Vol(Npm))− c2,

where to get the last line we use the fact that 3n13 ≥ (n− 1)n6(n+ 1)6 for all
n ≥ 4 and we let c2 absorb the constants c′2 and the additive term associated
to scaling from the subspace metric to the metric sectional curvature -1. □

Complex and quaternionic hyperbolic space (which we denote H
n
C and

H
n
H, respectively) arise as the globally symmetric spaces associated to the

Lie groups SU(n, 1) and Sp(n, 1), respectively. The metric is often chosen
so that the sectional curvature is pinched between −1 and −1

4 . We do so
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here and refer to this as their hyperbolic metrics, hC and hH, respectively.
In both of these cases, SO(n, 1) naturally embeds as a Lie subgroup and,
relative to their hyperbolic metrics, the associated totally geodesic, real hy-
perbolic space H

n
R has constant sectional curvature −1

4 (see, for example,
[11] and [20]). We use this fact to renormalize from the subspace metric to
the hyperbolic metric in Lemma 8.3 below.

Noncompact standard arithmetic lattices in each of these groups are
constructed as follows.

Case 1: Real Hyperbolic. Let (V, q) be a quadratic space over Q with sig-
nature (n, 1). LetG = SO(V, q). The canonicalQ-embedding G → SLn+1(Q)
is Q-rational.

Case 2: Complex Hyperbolic. Let Q(
√
d)/Q be an imaginary quadratic

extension with involution x+ y
√
d = x− y

√
d. Let (V, h) be a Hermitian

space overQ(
√
d)/Q with signature (n, 1). Let G = SU(V, h). Corresponding

to the embedding

Q(
√
d) → Mat2(Q), x+ y

√
d 7→

(
x dy
y x

)
,(30)

the canonicalQ-embeddingG → SLn+1(Q(
√
d)) → SL2n+2(Q) isQ-rational.

Case 3: Quaternionic Hyperbolic. Let D/Q be a quaternion division

algebra that splits over R, with Hilbert symbol
(
d,e
Q

)
and j ∈ D such that

j2 = e. Let (V, h) be a Hermitian space over D/Q with signature (n, 1). Let
G = SU(V, h). Corresponding to (30) and the embedding

D → Mat2(Q(
√
d)), w + zj 7→

(
w ez
z w

)
,(31)

the canonical Q-embedding G → SLn+1(D) → SL4n+4(Q) is Q-rational.
In each of these cases, use the Q-rational embedding to define Λ, the

Z-points of G, and let K be the maximal compact subgroup of G(R). A
space commensurable with N = Λ\G(R)/K is a noncompact standard real
(resp. complex, quaternionic) hyperbolic orbifold.

LetXm := SLm(R)/ SO(m) denote the degreem special linear space and
let g denote its geometric metric (9). Relative to the above constructions, Hn

R

(resp. Hn
C, H

n
H) embeds as a totally geodesic subspace of Xn+1 (resp. X2n+2,

X4n+4) and let gR (resp. gC, gH) denote the induced subspace metric.
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Lemma 8.3. With the above notation,

hR =
1

4
gR, hC =

1

2
gC, hH =

1

4
gH.(32)

Proof. A direct computation shows that the sectional curvature [17, V.3.1]
(Hn

R, gR) is −1
4 , and hence the metric of constant sectional curvature −1 is

1
4g. It follows from (10), (30), and (31) that the subspace metric on so(n, 1)
in sl2n+2(R) (resp. sl4n+r(R)) is twice (resp. four times) the subspace metric
coming from sln+1(R), which has constant sectional curvature −1

4 . Hence
(Hn

R, gC) (resp. (H
n
R, gH)) has constant sectional curvature −1

8 (resp. − 1
16).

Renormalizing the metric so that H
n
R has constant sectional curvature −1

4
yields the desired results. □

Proof of Theorem B. Begin by supposing that N = Λ\G(R)/K as above. It
follows that Npm = Λ(pm)\G(R)/K where Λ(pm) := Γ(pm) ∩G(R). With-
out loss of generality, we may assume the form is given by ⟨a1, . . . an,−an+1⟩
where each ai is a positive integer. Let S be the set of odd primes that ex-
cludes the finitely many which divide the ai. For each p ∈ S,

|Npm : N | = |Λ : Λ(pm)| ≤ |G(Z/pmZ)| ≤ (pm)dimG.

With respect to the subspace metric g (10), (Npm , g) is an isometrically
immersed totally geodesic subspace ofMpm . Thus sys(Npm , g) ≥ sys(Mpm , g).
Let b = 1, 2, or 4, depending upon whether N is real, complex, or quater-
nionic. Using the systole bound (25):

sys(Npm , g) ≥ 2
√
2

b(n+ 1)

(
log
(
|Npm : N |1/ dimG

)
− log(2b(n+ 1))

)

=
2
√
2

b(n+ 1)

(
1

dimG
log(Vol(Npm)/Vol(N))− log(2b(n+ 1))

)

=
2
√
2

b(n+ 1) dimG
log(Vol(Npm))− c.

Note that dimSO(n+ 1) = n(n+1)
2 , dimSU(n+ 1) = n(n+ 2), and

dimSp2n+2 = (n+ 1)(2n+ 3).
By Lemma 8.3 and (9), sys(Npm) = 1√

κ
sys(Npm , g), where κ = 4, 2, or 4,

depending upon whether N is real, complex, or quaternionic, which proves
the growth bounds for principle standard arithmetic hyperbolic orbifolds.
The general case follows from Proposition 2.2. □
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9. Arithmetic measure and the proofs of Theorem C

and Theorem D

In the previous sections we established that for all but finitely many primes
p, the systole growth up p-congruence covers is at least logarithmic in metric
volume, and furthermore, we explicitly computed the multiplicative constant
c1 in terms of the algebraic data dimG and [k : Q]. In this section, we show
how this algebraic data can be replaced with the geometric data of dimension
and volume of N . It is a direct computation for each G(R) to write dimG
as a function of dimN , see for example [17, Ch. X. §6. Table V]. Further-
more, the propositions of this section bound [k : Q] by an explicit function
volume. Theorems C and D then follow from Propositions 9.2 and 9.3, re-
spectively. The propositions are highly technical and we assume familiarity
with Prasad’s volume formula [32].

Let N , Λ, G, K, k, and r be as in the previous sections, let G̃ denote the
simply connected cover of G, and let K̃ denote the maximal compact sub-
group of G̃(R). If ι : G̃ → G is the central isogeny, then we may pull back the
lattice Λ ⊂ G(R) to a lattice Λ̃ := (G̃(R) ∩ ι−1(Λ)) ⊂ G̃(R). It follows that
ι(Λ̃) is finite index in Λ, and hence Ñ := Λ̃\G̃(R)/K̃ ∼= ι(Λ̃)\ι(G̃(R))/ι(K̃)
is commensurable to N = Λ\G(R)/K. Since the induced congruence tow-
ers {Npm} and {Ñpm} will be of bounded distance, it suffices to prove our

results for Ñ . For simplicity of notation, we now let N = Λ̃\G̃(R)/K̃ and
write ΛN = Λ̃.

By the arithmetic measure µa onN we mean the pushforward of Prasad’s
normalized Haar measure µ∞ on ΛN\G̃(R) [32, 3.11]. In particular, µa(N) :=
µ∞(ΛN\G̃(R)).

Remark 9.1. As Vol(Npm ,g)
Vol(N,g) = µa(Npm )

µa(N) , it follows that log(Vol(Npm , g)) =

log(µa(Npm)) + C where C = C(N). As such, Theorems A and B and Corol-
laries 7.5 and 8.2 hold equally well when metric volume is replaced with
arithmetic measure.

Let m1 ≤ m2 ≤ · · · ≤ mr be the exponents of the simple, simply con-
nected, compact real-analytic Lie group of the same type as G. These ex-
ponents can be found in [6]. Given these exponents, we define a function
f(m1, . . . ,mr) by

f(m1, . . . ,mr) =

r∏

i=1

mi!

(2π)mi+1
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and note that for a fixed set of exponents the value of f(m1, . . . ,mr) may
be easily computed using a computer algebra system such as SAGE. Lower
bounds for f(m1, . . . ,mr) as the exponents vary over those of the various
Killing-Cartan types can therefore be explicitly computed since m!

(2π)m+1 > 1
for all integers m > 17. These lower bounds appear in the table below.

(33)

Killing-Cartan Type Exponents Lower bound for f(m1, . . . ,mr)

Ar 1, 2, . . . , r 10−32

Br 1, 3, 5, . . . , 2r − 1 10−16

Cr 1, 3, 5, . . . , 2r − 1 10−16

Dr 1, 3, 5, . . . , 2r − 3, r − 1 10−19

E6 1, 4, 5, 7, 8, 11 10−15

E7 1, 5, 7, 9, 11, 13, 17 10−13

E8 1, 7, 11, 13, 17, 19, 23, 29 8434.1205 · · ·
F4 1, 5, 7, 11 10−9

G2 1, 5 10−5

Proposition 9.2. Let N be an arithmetic simple locally symmetric space
of dimension n, arithmetic measure v ≥ 1, and such that ΛN is contained in
a principal arithmetic subgroup of G̃(R). Let k denote the field of definition
of N . Then the degree of k is less than 15 log(v) + 6.

Proof. We may assume without loss of generality that ΛN is a principal
arithmetic subgroup of G̃(R). Prasad’s formula [32, Theorem 3.7] for the
covolume of a principal S-arithmetic subgroup implies that

(34) v ≥ D
1

2
dimG

k

(
Dℓ/D

[ℓ:k]
k

) 1

2
s(G )

f(m1, . . . ,mr)
[k:Q]

E ,

where all notation is as in Section 3 of [32]. In particular we note that Dk is
the absolute value of the discriminant of k and Dℓ is the absolute value of the
discriminant of a certain finite degree extension ℓ of k. We have omitted the
Tamagawa number τk(G̃) in the above formula (which appears in the formula
of Prasad) as the work of Kottwitz [21] shows that τk(G̃) = 1 whenever k is
a number field.

We now obtain a lower bound for (34). First, observe that Dℓ/D
[ℓ:k]
k is

the norm from k to Q of the relative discriminant of the extension ℓ/k. Thus(
Dℓ/D

[ℓ:k]
k

)
≥ 1. Also, E ≥ 1 by [32, Remark 3.10]. It follows that

v ≥ D
1

2
dimG

k f(m1, . . . ,mr)
[k:Q].
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We now obtain a convenient lower bound for Dk. By Proposition 2.3 of
[7] (taking, in the notation of [7], y = 1) we see that Dk ≥ e−9e4[k:Q], hence

v ≥ e−
9

2
dimGe2[k:Q] dimGf(m1, . . . ,mr)

[k:Q]

= e−
9

2
dimGe

3

4
[k:Q] dimG

(
e

5

4
dimGf(m1, . . . ,mr)

)[k:Q]

If [k : Q] < 6 then the proposition is trivially true, hence we may assume
that [k : Q] ≥ 6. As a consequence we have

v ≥
(
e

5

4
dimGf(m1, . . . ,mr)

)[k:Q]
.

A direct calculation (for which we used SAGE) using the formula for
f(m1, . . . ,mr) and the expression for dimG as a function of absolute rank
r for each Killing–Cartan type (26) shows that the inequality

(
e

5

4
dimGf(m1, . . . ,mr)

)
≥ 1.07

always holds. Therefore

v ≥ 1.07[k:Q]

and the result follows. □

The following proposition shows that whenN is an arithmetic hyperbolic
orbifold we can obtain the same bound as in Proposition 9.2 without the
assumption that ΛN is contained in a principal arithmetic group.

Proposition 9.3. Let N be an arithmetic hyperbolic orbifold of dimension
n ≥ 4 and hyperbolic volume v ≥ 1. Let k denote the field of definition of N .
Then the degree of k is less than c1 log(v) + c2 where c1, c2 > 0 are absolute,
effectively computable constants.

Proof. We may assume without loss of generality that ΛN is a maximal
arithmetic group.

We begin by considering the case in which n = 2r is even. In Section 3
of [2] Belolipetsky used Prasad’s volume formula to prove that

(35) v ≥ 1

25
· (2π)r

1 · 3 · · · (2r − 1)
· D

1

2
dimG−1

k(
π2

6

)[k:Q]
· f(m1, . . . ,mr)

[k:Q].

Because G is of type Br in this case the exponents m1, . . . ,mr are equal to
1, 3, 5, . . . , 2r − 1.
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As we saw in the proof of Proposition 9.2, Proposition 2.3 of [7] implies
that Dk ≥ e−9e4[k:Q]. Combining this with (35) and simplifying we obtain

v ≥
(
e9

25
· (2π)r

1 · 3 · · · (2r − 1)
· e− 9

2
dimG

)

· e 1

2
dimG[k:Q] ·

(
6e

3

2
dimGf(m1, . . . ,mr)

e4π2

)[k:Q]

.

If [k : Q] < 10 then the proposition is trivially true (i.e., by letting c2 >
10), hence we may assume that [k : Q] ≥ 10. Since dimG = 2r2 + r, an easy
computation shows that

e9

25
· (2π)r

1 · 3 · · · (2r − 1)
· e 11

2
dimG > 1

for all r > 1 (when r > 4 this inequality follows immediately from the well-
known inequality n! <

(
n
2

)n
, which holds for all n > 6), and consequently

v ≥
(
6e

3

2
dimGf(m1, . . . ,mr)

e4π2

)[k:Q]

.

A computation in SAGE shows that we always have 6e
3
2

dimGf(m1,...,mr)
e4π2 >

3, hence

v ≥ 3[k:Q]

and the n = 2r case of the proposition follows.
The case in which n = 2r − 1 is odd can be handled exactly as above by

employing the volume inequalities of Belolipetsky and Emery appearing in
Sections 7 and 8 of [3] in place of (35). □
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