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We develop the celebrated semigroup approach à la Bakry et al
on Finsler manifolds, where natural Laplacian and heat semigroup
are nonlinear, based on the Bochner–Weitzenböck formula estab-
lished by Sturm and the author. We show the L1-gradient estimate
on Finsler manifolds (under some additional assumptions in the
noncompact case), which is equivalent to a lower weighted Ricci
curvature bound and the improved Bochner inequality. As a ge-
ometric application, we prove Bakry–Ledoux’s Gaussian isoperi-
metric inequality, again under some additional assumptions in the
noncompact case. This extends Cavalletti–Mondino’s inequality on
reversible Finsler manifolds to non-reversible metrics, and improves
the author’s previous estimate, both based on the localization (also
called needle decomposition) method.
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1. Introduction

The aim of this article is to put forward the semigroup approach in ge-
ometric analysis on Finsler manifolds, based on the Bochner–Weitzenböck
formula established in [47]. There are already a number of applications of the
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Bochner–Weitzenböck formula (including [42, 60, 62, 63]), and the machin-
ery in this article would contribute to a further development. In addition,
our treatment of a nonlinear generator and the associated nonlinear semi-
group (Laplacian and heat semigroup) could be of independent interest from
the analytic viewpoint.

The celebrated theory developed by Bakry, Émery, Ledoux et al (called
the Γ-calculus) studies symmetric generators and the associated linear, sym-
metric diffusion semigroups under a kind of Bochner inequality (called the
(analytic) curvature-dimension condition). Attributed to Bakry–Émery’s
original work [6], this condition will be denoted by BE(K,N) in this in-
troduction, where K ∈ R and N ∈ (1,∞] are parameters corresponding to
‘curvature’ and ‘dimension’, respectively. This technique is extremely pow-
erful in studying various inequalities (log-Sobolev and Poincaré inequalities,
gradient estimates, etc.) in a unified way, we refer to [6] and the recent book
[7] for more on this theory.

On a Riemannian manifold equipped with the Laplacian ∆, BE(K,N)
means the following Bochner-type inequality:

∆

[∥∇u∥2
2

]
− ⟨∇(∆u),∇u⟩ ≥ K∥∇u∥2 + (∆u)2

N
.

Thereby a Riemannian manifold with Ricci curvature not less than K and
dimension not greater than N (more generally, a weighted Riemannian man-
ifold of weighted Ricci curvature RicN ≥ K) is a fundamental example sat-
isfying BE(K,N).

Later, inspired by [15, 48], Sturm [51, 55, 56] and Lott–Villani [31]
introduced the (geometric) curvature-dimension condition CD(K,N) for
metric measure spaces in terms of optimal transport theory. The con-
dition CD(K,N) characterizes Ric ≥ K and dim ≤ N (or RicN ≥ K) for
(weighted) Riemannian manifolds, and its formulation requires a lower reg-
ularity of spaces than BE(K,N). We refer to Villani’s book [59] for more
on this rapidly developing theory. It was shown in [37] that CD(K,N) also
holds and characterizes RicN ≥ K for Finsler manifolds, where the natural
Laplacian and the associated heat semigroup are nonlinear. For this reason,
Ambrosio, Gigli and Savaré [1] introduced a reinforced version RCD(K,∞)
called the Riemannian curvature-dimension condition as the combination
of CD(K,∞) and the linearity of heat semigroup, followed by the finite-
dimensional analogue RCD∗(K,N) investigated by Erbar, Kuwada and
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Sturm [16] (see also [19, 20]). It then turned out that RCD∗(K,N) is equiv-
alent to BE(K,N) ([2, 16]), this equivalence justifies the term ‘curvature-
dimension condition’ which actually came from the similarity to Bakry’s
theory.

In this article, we develop the theory of Bakry et al on Finsler man-
ifolds. We consider a Finsler manifold M equipped with a Finsler metric
F : TM −→ [0,∞) and a positive C∞-measure m on M . We will not assume
that F is reversible, thereby F (−v) ̸= F (v) is allowed. The key ingredient,
the Bochner inequality under RicN ≥ K, was established in [47] as follows:

(1.1) ∆∇u

[
F 2(∇u)

2

]
− d(∆u)(∇u) ≥ KF 2(∇u) +

(∆u)2

N
.

This Bochner inequality has the same form as the Riemannian case by means
of the mixture of the nonlinear Laplacian ∆ and its linearization ∆∇u. De-
spite of this mixture, we could derive Bakry–Émery’s L2-gradient estimate as
well as Li–Yau’s estimates on compact manifolds (see [47, §4]). We proceed
further in this direction and show the improved Bochner inequality under
Ric∞ ≥ K (Proposition 3.5):
(1.2)

∆∇u

[
F 2(∇u)

2

]
− d(∆u)(∇u)−KF 2(∇u) ≥ d[F (∇u)]

(
∇∇u[F (∇u)]

)
.

The first application of (1.2) is the L1-gradient estimate (Theorem 3.7),
where we include also the noncompact case but with some additional (likely
redundant) assumptions, see the theorem below where we assume the same
conditions. We also see that the Bochner inequalities (1.1) (with N =∞),
(1.2) and the L2- and L1-gradient estimates are all equivalent to Ric∞ ≥ K
(Theorem 3.9).

The second, geometric application of (1.2) is a generalization of Bakry–
Ledoux’s Gaussian isoperimetric inequality (Theorem 4.1):

Theorem (Bakry–Ledoux’s isoperimetric inequality). Let (M,F,m)
be complete and satisfy Ric∞ ≥ K > 0, m(M) = 1, CF <∞ and SF <∞.

We also assume that

d[F (∇ut)]
(
∇∇ut [F (∇ut)]

)
∈ L1(M)

holds for any global solution (ut)t≥0 to the heat equation with u0 ∈ C∞c (M)
and any t > 0. Then we have

(1.3) I(M,F,m)(θ) ≥ IK(θ)
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for all θ ∈ [0, 1], where

IK(θ) :=

√
K

2π
e−Kc2(θ)/2 with θ =

∫ c(θ)

−∞

√
K

2π
e−Ka2/2 da.

Here I(M,F,m) : [0, 1] −→ [0,∞) is the isoperimetric profile defined as the
least boundary area of sets A ⊂M with m(A) = θ (see the beginning of
Section 4), and CF (resp. SF ) is the (2-)uniform convexity (resp. smoothness)
constant which bounds the reversibility,

(1.4) ΛF := sup
v∈TM\0

F (v)

F (−v) ∈ [1,∞],

as ΛF ≤ min{
√
CF ,
√
SF } (see Lemma 2.4). (In particular, the forward com-

pleteness is equivalent to the backward completeness, and we denoted it by
the plain completeness in the theorem.) All the conditions CF <∞, SF <∞,
and d[F (∇ut)](∇∇ut [F (∇ut)]) ∈ L1(M) hold true in the compact case. In
the noncompact case, however, there are technical difficulties and it is un-
clear how to remove them in this semigroup approach (see §3.4 for a discus-
sion). We remark that, in [43] based on the needle decomposition, we did
not need those conditions.

The inequality (1.3) has the same form as the Riemannian case in [8],
and it is sharp and the model space is the real line R equipped with the
normal (Gaussian) distribution dm =

√
K/2π e−Kx2/2 dx. See [8] for the

original work of Bakry and Ledoux on linear diffusion semigroups (influ-
enced by Bobkov’s works [10, 11]), and [12, 58] for the classical Euclidean or
Hilbert cases. We also refer to [3] for the Gaussian isoperimetric inequality
on RCD(K,∞)-spaces by a refinement of the Γ-calculus.

The above theorem extends Cavalletti–Mondino’s isoperimetric inequal-
ity in [13] to non-reversible Finsler manifolds. Precisely, in [13] they con-
sidered essentially non-branching metric measure spaces (X, d,m) satisfying
CD(K,N) for K ∈ R and N ∈ (1,∞), and showed the sharp Lévy–Gromov

type isoperimetric inequality of the form

I(X,d,m)(θ) ≥ IK,N,D(θ)

with diamX ≤ D (≤ ∞). The case of N =∞ is not included in [13] for tech-
nical reasons on the structure of CD(K,∞)-spaces, but the same argument
gives (1.3) (corresponding to N = D =∞) for reversible Finsler manifolds.
The proof in [13] is based on the needle decomposition (also called localiza-

tion) inspired by Klartag’s work [23] on Riemannian manifolds, extending
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the successful technique in convex geometry. Along the lines of [13], in [43]
we have generalized the needle decomposition to non-reversible Finsler man-
ifolds, however, then we obtain only a weaker isoperimetric inequality,

(1.5) I(M,F,m)(θ) ≥ Λ−1
F · IK,N,D(θ),

with ΛF in (1.4). The inequality (1.3) improves (1.5) in the case where
N = D =∞ and K > 0, and supports a conjecture that the sharp isoperi-
metric inequality in the non-reversible case is the same as the reversible case,
namely Λ−1

F in (1.5) would be removed.
The organization of this article is as follows: In Section 2 we review the

basics of Finsler geometry, including the weighted Ricci curvature and the
Bochner–Weitzenböck formula. Section 3 is devoted to a detailed study of
the nonlinear heat semigroup and its linearizations, we improve the Bochner
inequality under Ric∞ ≥ K and show the L1-gradient estimate. We prove
the isoperimetric inequality in Section 4.

2. Geometry and analysis on Finsler manifolds

We review the basics of Finsler geometry (we refer to [9, 54] for further read-
ing), and introduce the weighted Ricci curvature and the nonlinear Laplacian
studied in [37, 45] (see also [18] for the latter).

Throughout the article, let M be a connected C∞-manifold without
boundary of dimension n ≥ 2. We also fix an arbitrary positive C∞-measure
m on M .

2.1. Finsler manifolds

Given local coordinates (xi)ni=1 on an open set U ⊂M , we will always use
the fiber-wise linear coordinates (xi, vj)ni,j=1 of TU such that

v =

n∑

j=1

vj
∂

∂xj

∣∣∣
x
∈ TxM, x ∈ U.

Definition 2.1 (Finsler structures). We say that a nonnegative function
F : TM −→ [0,∞) is a C∞-Finsler structure of M if the following three
conditions hold:

(1) (Regularity) F is C∞ on TM \ 0, where 0 stands for the zero section;
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(2) (Positive 1-homogeneity) It holds F (cv) = cF (v) for all v ∈ TM and
c ≥ 0;

(3) (Strong convexity) The n× n matrix

(2.1)
(
gij(v)

)n
i,j=1

:=

(
1

2

∂2(F 2)

∂vi∂vj
(v)

)n

i,j=1

is positive-definite for all v ∈ TM \ 0.

We call such a pair (M,F ) a C∞-Finsler manifold.

In other words, F provides a Minkowski norm on each tangent space
which varies smoothly in horizontal directions. If F (−v) = F (v) holds for
all v ∈ TM , then we say that F is reversible or absolutely homogeneous.
The strong convexity means that the unit sphere TxM ∩ F−1(1) (called the
indicatrix ) is ‘positively curved’ and implies the strict convexity: F (v + w) ≤
F (v) + F (w) for all v, w ∈ TxM and equality holds only when v = aw or
w = av for some a ≥ 0.

In the coordinates (xi, αj)
n
i,j=1 of T

∗U given by α =
∑n

j=1 αj dx
j , we will

also consider

g∗ij(α) :=
1

2

∂2[(F ∗)2]

∂αi∂αj
(α), i, j = 1, 2, . . . , n,

for α ∈ T ∗U \ 0. Here F ∗ : T ∗M −→ [0,∞) is the dual Minkowski norm to
F , namely

F ∗(α) := sup
v∈TxM,F (v)≤1

α(v) = sup
v∈TxM,F (v)=1

α(v)

for α ∈ T ∗
xM . It is clear by definition that α(v) ≤ F ∗(α)F (v), and hence

α(v) ≥ −F ∗(α)F (−v), α(v) ≥ −F ∗(−α)F (v).

We remark that, however, α(v) ≥ −F ∗(α)F (v) does not hold in general.
Let us denote by L∗ : T ∗M −→ TM the Legendre transform. Precisely,

L∗ is sending α ∈ T ∗
xM to the unique element v ∈ TxM such that F (v) =

F ∗(α) and α(v) = F ∗(α)2. In coordinates we can write down

L∗(α) =
n∑

i,j=1

g∗ij(α)αi
∂

∂xj

∣∣∣
x
=

n∑

j=1

1

2

∂[(F ∗)2]

∂αj
(α)

∂

∂xj

∣∣∣
x
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for α ∈ T ∗
xM \ 0 (the latter expression makes sense also at 0). Note that

g∗ij(α) = gij(L∗(α)) for α ∈ T ∗
xM \ 0, where (gij(v)) is the inverse matrix of

(gij(v)). The map L∗|T ∗

xM is being a linear operator only when F |TxM comes
from an inner product. We also define L := (L∗)−1 : TM −→ T ∗M .

For x, y ∈M , we define the (asymmetric) distance from x to y by

d(x, y) := inf
η

∫ 1

0
F
(
η̇(t)

)
dt,

where η : [0, 1] −→M runs over all C1-curves such that η(0) = x and η(1) =
y. Note that d(y, x) ̸= d(x, y) can happen since F is only positively homoge-
neous. A C∞-curve η onM is called a geodesic if it is locally minimizing and
has a constant speed with respect to d, similarly to Riemannian or metric
geometry. See (2.7) below for the precise geodesic equation. For v ∈ TxM , if
there is a geodesic η : [0, 1] −→M with η̇(0) = v, then we define the expo-

nential map by expx(v) := η(1). We say that (M,F ) is forward complete if
the exponential map is defined on whole TM . Then the Hopf–Rinow theo-
rem ensures that any pair of points is connected by a minimal geodesic (see
[9, Theorem 6.6.1]).

Given each v ∈ TxM \ 0, the positive-definite matrix (gij(v))
n
i,j=1 in (2.1)

induces the Riemannian structure gv of TxM by

(2.2) gv

( n∑

i=1

ai
∂

∂xi

∣∣∣
x
,

n∑

j=1

bj
∂

∂xj

∣∣∣
x

)
:=

n∑

i,j=1

gij(v)aibj .

Notice that this definition is coordinate-free and gv(v, v) = F 2(v) holds. One
can regard gv as the best Riemannian approximation of F |TxM in the direc-
tion v. The Cartan tensor

Aijk(v) :=
F (v)

2

∂gij
∂vk

(v), v ∈ TM \ 0,

measures the variation of gv in vertical directions, and vanishes everywhere
on TM \ 0 if and only if F comes from a Riemannian metric.

The following fact on homogeneous functions (see [9, Theorem 1.2.1])
plays a fundamental role in our calculus.

Theorem 2.2 (Euler’s theorem). Suppose that a differentiable function

H : Rn \ 0 −→ R satisfies H(cv) = crH(v) for some r ∈ R and all c > 0 and

v ∈ R
n \ 0 (that is, positively r-homogeneous). Then we have, for all v ∈
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R
n \ 0,

n∑

i=1

∂H

∂vi
(v)vi = rH(v).

Observe that gij is positively 0-homogeneous on each TxM , and hence

(2.3)

n∑

i=1

Aijk(v)v
i =

n∑

j=1

Aijk(v)v
j =

n∑

k=1

Aijk(v)v
k = 0

for all v ∈ TM \ 0 and i, j, k = 1, 2, . . . , n. Define the formal Christoffel sym-

bol

(2.4) γijk(v) :=
1

2

n∑

l=1

gil(v)

{
∂glk
∂xj

(v) +
∂gjl
∂xk

(v)− ∂gjk
∂xl

(v)

}

for v ∈ TM \ 0, and the geodesic spray coefficients and the nonlinear con-

nection

Gi(v) :=

n∑

j,k=1

γijk(v)v
jvk, N i

j(v) :=
1

2

∂Gi

∂vj
(v)

for v ∈ TM \ 0 (Gi(0) = N i
j(0) := 0 by convention). Note that Gi is posi-

tively 2-homogeneous, hence Theorem 2.2 implies
∑n

j=1N
i
j(v)v

j = Gi(v).

By using N i
j , the coefficients of the Chern connection are given by

(2.5) Γi
jk(v) := γijk(v)−

n∑

l,m=1

gil

F
(AlkmN

m
j +AjlmN

m
k −AjkmN

m
l )(v)

on TM \ 0. The corresponding covariant derivative of a vector field X by
v ∈ TxM with reference vector w ∈ TxM \ 0 is defined as

(2.6) Dw
v X(x) :=

n∑

i,j=1

{
vj
∂Xi

∂xj
(x) +

n∑

k=1

Γi
jk(w)v

jXk(x)

}
∂

∂xi

∣∣∣
x
∈ TxM.

Then the geodesic equation is written as, with the help of (2.3),

(2.7) Dη̇
η̇ η̇(t) =

n∑

i=1

{
η̈i(t) +Gi

(
η̇(t)

)} ∂

∂xi

∣∣∣
η(t)

= 0.
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2.2. Uniform convexity and smoothness

We will need the following quantity associated with (M,F ):

SF := sup
x∈M

sup
v,w∈TxM\0

gv(w,w)

F 2(w)
∈ [1,∞].

Since gv(w,w) ≤ SFF
2(w) and gv is the Hessian of F 2/2 at v, the constant

SF measures the (fiber-wise) concavity of F 2 and is called the (2-)uniform
smoothness constant (see [36]). We remark that SF = 1 holds if and only if
(M,F ) is Riemannian. The following lemma is a standard fact, we give a
proof for thoroughness.

Lemma 2.3. For any x ∈M , v ∈ TxM \ 0 and α := L(v), we have

sup
w∈TxM\0

gv(w,w)

F 2(w)
= sup

β∈T ∗

xM\0

F ∗(β)2

g∗α(β, β)
,

where g∗α is the inner product of T ∗
xM defined by

g∗α(β, β) :=

n∑

i,j=1

g∗ij(α)βiβj , β =

n∑

i=1

βi dx
i.

Proof. Choose local coordinates (xi)ni=1 around x such that gij(v) = δij and
set

Sx :=

{
w =

n∑

i=1

wi ∂

∂xi
∈ TxM

∣∣∣∣
n∑

i=1

(wi)2 = 1

}
,

S
∗
x :=

{
β =

n∑

i=1

βi dx
i ∈ T ∗

xM

∣∣∣∣
n∑

i=1

(βi)
2 = 1

}
.

First, given w ∈ Sx, we take β ∈ S
∗
x such that β(w) = 1. Then we have 1 =

β(w) ≤ F ∗(β)F (w) and hence

gv(w,w)

F 2(w)
=

1

F 2(w)
≤ F ∗(β)2 =

F ∗(β)2

g∗α(β, β)
.

Next, for β′ ∈ S
∗
x, take w

′ ∈ Sx with β′(w′) = F ∗(β′)F (w′). Then we find
F ∗(β′)F (w′) = β′(w′) ≤ 1 and hence 1/F 2(w′) ≥ F ∗(β′)2. This completes
the proof. □
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One can in a similar manner introduce the (2-)uniform convexity con-

stant :

(2.8) CF := sup
x∈M

sup
v,w∈TxM\0

F 2(w)

gv(w,w)
= sup

x∈M
sup

α,β∈T ∗

xM\0

g∗α(β, β)

F ∗(β)2
∈ [1,∞].

Again, CF = 1 holds if and only if (M,F ) is Riemannian. We remark that
SF and CF control the reversibility constant ΛF defined in (1.4) as follows.

Lemma 2.4. We have

ΛF ≤ min{
√

SF ,
√

CF }.

Proof. For any v ∈ TM \ 0, we observe

F 2(v)

F 2(−v) =
gv(v, v)

F 2(−v) =
gv(−v,−v)
F 2(−v) ≤ SF ,

and similarly

F 2(v)

F 2(−v) =
F 2(v)

g−v(v, v)
≤ CF .

□

2.3. Weighted Ricci curvature

The Ricci curvature (as the trace of the flag curvature) on a Finsler manifold
is defined by using some connection. Instead of giving a precise definition in
coordinates (for which we refer to [9]), here we explain a useful interpretation
in [54, §6.2] going back to (at least) [4]. Given a unit vector v ∈ TxM ∩
F−1(1), we extend it to a C∞-vector field V on a neighborhood U of x
in such a way that every integral curve of V is geodesic, and consider the
Riemannian structure gV of U induced from (2.2). Then the Finsler Ricci
curvature Ric(v) of v with respect to F coincides with the Riemannian

Ricci curvature of v with respect to gV (in particular, it is independent of
the choice of V ).

Inspired by the above interpretation of the Ricci curvature as well as the
theory of weighted Ricci curvature (also called the Bakry–Émery–Ricci cur-

vature) of Riemannian manifolds, the weighted Ricci curvature for (M,F,m)
was introduced in [37] as follows. Recall that m is a positive C∞-measure on
M , from here on it comes into play.
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Definition 2.5 (Weighted Ricci curvature). Given a unit vector v ∈
TxM , let V be a C∞-vector field on a neighborhood U of x as above. We
decompose m as m = e−Ψ volgV on U , where Ψ ∈ C∞(U) and volgV is the
volume form of gV . Denote by η : (−ε, ε) −→M the geodesic such that
η̇(0) = v. Then, for N ∈ (−∞, 0) ∪ (n,∞), define

RicN (v) := Ric(v) + (Ψ ◦ η)′′(0)− (Ψ ◦ η)′(0)2
N − n .

We also define as the limits:

Ric∞(v) := Ric(v) + (Ψ ◦ η)′′(0), Ricn(v) := lim
N↓n

RicN (v).

For c ≥ 0, we set RicN (cv) := c2RicN (v).

We will denote by RicN ≥ K, K ∈ R, the condition RicN (v) ≥ KF 2(v)
for all v ∈ TM . In the Riemannian case, the study of Ric∞ goes back to
Lichnerowicz [29], he showed a Cheeger–Gromoll type splitting theorem
(see [40] for a Finsler counterpart). The range N ∈ (n,∞) has been well
studied by Bakry [5, §6], Qian [49] and many others. The study of the
range N ∈ (−∞, 0) is more recent; see [35] for isoperimetric inequalities,
[41] for the curvature-dimension condition, and [61] for splitting theorems
(for N ∈ (−∞, 1]).

It was established in [37] (and [41] for N < 0, [43] for N = 0) that,
for K ∈ R, the bound RicN ≥ K is equivalent to Lott, Sturm and Villani’s
curvature-dimension condition CD(K,N). This extends the corresponding
result on weighted Riemannian manifolds and has many geometric and an-
alytic applications (see [37, 45] among others).

Remark 2.6 (S-curvature). For a Riemannian manifold (M, g, volg) with
the Riemannian volume measure, clearly we have Ψ ≡ 0 and hence RicN =
Ric for all N . It is also known that, for Finsler manifolds of Berwald type

(i.e., Γk
ij is constant on each TxM \ 0), the Busemann–Hausdorff measure

satisfies (Ψ ◦ η)′ ≡ 0 (in other words, Shen’s S-curvature vanishes, see [54,
§7.3]). For a general Finsler manifold, however, there may not exist any
measure with vanishing S-curvature (see [38] for such an example). This is
a reason why we chose to begin with an arbitrary measure m.

For later convenience, we introduce the following notations.

Definition 2.7 (Reverse Finsler structures). We define the reverse

Finsler structure
←−
F of F by

←−
F (v) := F (−v).
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We will put an arrow← on those quantities associated with
←−
F , we have

for example
←−
d(x, y) = d(y, x),

←−
RicN (v) = RicN (−v) and←−∇u = −∇(−u). We

say that (M,F ) is backward complete if (M,
←−
F ) is forward complete. If ΛF <

∞, then these completenesses are mutually equivalent, and we may call it
simply completeness.

2.4. Nonlinear Laplacian and heat flow

For a differentiable function u :M −→ R, the gradient vector at x is defined
as the Legendre transform of the derivative of u: ∇u(x) := L∗(du(x)) ∈
TxM . If du(x) ̸= 0, then we can write down in coordinates as

∇u =

n∑

i,j=1

g∗ij(du)
∂u

∂xj
∂

∂xi
.

We need to be careful when du(x) = 0, because g∗ij(du(x)) is not defined as
well as the Legendre transform L∗ is only continuous at the zero section.
Therefore we set

Mu := {x ∈M | du(x) ̸= 0}.
For a twice differentiable function u :M −→ R and x ∈Mu, we define a kind
of Hessian ∇

2u(x) ∈ T ∗
xM ⊗ TxM by using the covariant derivative (2.6) as

∇
2u(v) := D∇u

v (∇u)(x) ∈ TxM, v ∈ TxM.

The operator ∇2u(x) is symmetric in the sense that

g∇u

(
∇

2u(v), w
)
= g∇u

(
v,∇2u(w)

)

for all v, w ∈ TxM with x ∈Mu (see, for example, [47, Lemma 2.3]).
Define the divergence of a differentiable vector field V onM with respect

to the measure m by

divm V :=

n∑

i=1

(
∂V i

∂xi
+ V i ∂Φ

∂xi

)
, V =

n∑

i=1

V i ∂

∂xi
,

where we decomposed m as dm = eΦ dx1dx2 · · · dxn. One can rewrite in the
weak form as

∫

M
φ divm V dm = −

∫

M
dφ(V ) dm for all φ ∈ C∞c (M),
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that makes sense for measurable vector fields V with F (V ) ∈ L1
loc(M). Then

we define the distributional Laplacian of u ∈ H1
loc(M) by ∆u := divm(∇u)

in the weak sense that

∫

M
φ∆u dm := −

∫

M
dφ(∇u) dm for all φ ∈ C∞c (M).

Notice that the space H1
loc(M) is defined solely in terms of the differentiable

structure of M . Since taking the gradient vector (more precisely, the Leg-
endre transform) is a nonlinear operation, our Laplacian ∆ is a nonlinear
operator unless F is Riemannian.

In [45, 47], we have studied the associated nonlinear heat equation ∂tu =
∆u. In order to recall some results in [45], we define the Dirichlet energy of
u ∈ H1

loc(M) by

E(u) := 1

2

∫

M
F 2(∇u) dm =

1

2

∫

M
F ∗(du)2 dm.

We remark that E(u) <∞ does not necessarily imply E(−u) <∞. Define
H1

0 (M) as the closure of C∞c (M) with respect to the (absolutely homoge-
neous) norm

∥u∥H1 := ∥u∥L2 + {E(u) + E(−u)}1/2.

Note that (H1
0 (M), ∥ · ∥H1) is a Banach space.

Definition 2.8 (Global solutions). We say that a function u on [0, T ]×
M , T > 0, is a global solution to the heat equation ∂tu = ∆u if it satisfies
the following:

(1) u ∈ L2
(
[0, T ], H1

0 (M)
)
∩H1

(
[0, T ], H−1(M)

)
;

(2) For every φ ∈ C∞c (M), we have

∫

M
φ · ∂tut dm = −

∫

M
dφ(∇ut) dm

for almost all t ∈ [0, T ], where we set ut := u(t, ·).

We refer to [17] for the notations as in (1). Denoted by H−1(M) is the
dual Banach space of H1

0 (M) (so that H1
0 (M) ⊂ L2(M) ⊂ H−1(M)). By
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noticing

∫

M
|(dφ− dφ̄)(∇ut)| dm

≤
∫

M
max

{
F ∗

(
d(φ− φ̄)

)
, F ∗

(
d(φ̄− φ)

)}
F (∇ut) dm

≤ {2E(φ− φ̄) + 2E(φ̄− φ)}1/2 · {2E(ut)}1/2,

the test function φ can be taken from H1
0 (M). Global solutions can be

constructed as gradient curves of the energy functional E in the Hilbert space
L2(M). We summarize the existence and regularity properties established
in [45, §§3, 4] in the next theorem.

Theorem 2.9. Assume ΛF <∞.

(i) For each initial datum u0 ∈ H1
0 (M) and T > 0, there exists a unique

global solution u to the heat equation on [0, T ]×M , and the distribu-

tional Laplacian ∆ut is absolutely continuous with respect to m for all

t ∈ (0, T ).

(ii) One can take the continuous version of a global solution u, and it enjoys

the H2
loc-regularity in x as well as the C1,α-regularity for some α in both

t and x. Moreover, ∂tu lies in H1
loc(M) ∩ C(M), and further in H1

0 (M)
if SF <∞.

We remark that the usual elliptic regularity yields that u is C∞ on⋃
t>0({t} ×Mut

). The proof of ∂tu ∈ H1
0 (M) under SF <∞ can be found

in [45, Appendix A]. The uniqueness in (i) is a consequence of the convexity
of F ∗ (see [45, Proposition 3.5]).

We finally remark that, by the construction of heat flow as the gradient
flow of E , it is readily seen that:
(2.9)
If u0 ≥ 0 almost everywhere, then ut ≥ 0 almost everywhere for all t > 0.

Indeed, if ut < 0 on a non-null set, then the curve ūt := max{ut, 0} will give
a less energy with a less L2-length, a contradiction.

2.5. Bochner–Weitzenböck formula

Given f ∈ H1
loc(M) and a measurable vector field V such that V ̸= 0 almost

everywhere on Mf = {x ∈M | df(x) ̸= 0}, we can define the gradient vector
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field and the Laplacian on the weighted Riemannian manifold (M, gV ,m) by

∇V f :=





n∑

i,j=1

gij(V )
∂f

∂xj
∂

∂xi
on Mf ,

0 on M \Mf ,

∆V f := divm(∇V f),

where the latter is in the sense of distribution. We have ∇∇uu = ∇u and
∆∇uu = ∆u for u ∈ H1

loc(M) ([45, Lemma 2.4]). We also observe that, for
f1, f2 ∈ H1

loc(M) and V such that V ̸= 0 almost everywhere,

(2.10) df2(∇V f1) = gV (∇V f1,∇V f2) = df1(∇V f2).

We established in [47, Theorem 3.3] the following key ingredient of the
Γ-calculus.

Theorem 2.10 (Bochner–Weitzenböck formula). Given u ∈ C∞(M),
we have

(2.11) ∆∇u

[
F 2(∇u)

2

]
− d(∆u)(∇u) = Ric∞(∇u) + ∥∇2u∥2HS(∇u)

as well as

∆∇u

[
F 2(∇u)

2

]
− d(∆u)(∇u) ≥ RicN (∇u) +

(∆u)2

N

for N ∈ (−∞, 0) ∪ [n,∞] point-wise on Mu, where ∥ · ∥HS(∇u) denotes the

Hilbert–Schmidt norm with respect to g∇u.

In particular, if RicN ≥ K, then we have

(2.12) ∆∇u

[
F 2(∇u)

2

]
− d(∆u)(∇u) ≥ KF 2(∇u) +

(∆u)2

N

on Mu, that we will call the Bochner inequality. One can further generalize
the Bochner–Weitzenböck formula to a more general class of Hamiltonian
systems (by dropping the positive 1-homogeneity; see [25, 39]).

Remark 2.11 (F versus g∇u). In contrast to ∆∇uu = ∆u, RicN (∇u)
may not coincide with the weighted Ricci curvature Ric∇u

N (∇u) of the
weighted Riemannian manifold (M, g∇u,m). It is compensated in (2.11) by
the fact that ∇2u does not necessarily coincide with the Hessian of u with
respect to g∇u.
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The integrated form was shown in [47, Theorem 3.6], with the help of
the following fact to overcome the ill-posedness of ∇u on M \Mu (see [26,
Exercise 10.37(iv)], [32, Lemma 1.7.1] for example).

Lemma 2.12. For each f ∈ H1
loc(M), we have df = 0 almost everywhere

on f−1(0). If f ∈ H1
loc(M) ∩ L∞

loc(M), then d(f2/2) = f df = 0 also holds

almost everywhere on f−1(0).

Theorem 2.13 (Integrated form). Assume RicN ≥ K for some K ∈
R and N ∈ (−∞, 0) ∪ [n,∞]. Given u ∈ H2

loc(M) ∩ C1(M) such that ∆u ∈
H1

loc(M), we have

−
∫

M
dφ

(
∇∇u

[
F 2(∇u)

2

])
dm

≥
∫

M
φ

{
d(∆u)(∇u) +KF 2(∇u) +

(∆u)2

N

}
dm

for all bounded nonnegative functions φ ∈ H1
c (M) ∩ L∞(M).

Recall from Theorem 2.9(ii) that global solutions to the heat equation
always enjoy u ∈ H1

0 (M) ∩H2
loc(M) ∩ C1(M) and ∆u ∈ H1

loc(M).

3. Linearized semigroups and gradient estimates

In the Bochner–Weitzenböck formula (Theorem 2.10) in the previous section,
we used the linearized Laplacian ∆∇u induced from the Riemannian struc-
ture g∇u. In the same spirit, we can consider the linearized heat equation
associated with a global solution to the heat equation. This technique turned
out useful and we have obtained gradient estimates à la Bakry–Émery and
Li–Yau in [47, §4]. In this section we discuss such a linearization in detail
and improve the L2-gradient estimate to an L1-bound (Theorem 3.7).

3.1. Linearized heat semigroups and their adjoints

Let (ut)t≥0 be a global solution to the heat equation. We will fix a measurable
one-parameter family of non-vanishing vector fields (Vt)t≥0 such that Vt =
∇ut on Mut

for each t ≥ 0. Given f ∈ H1
0 (M) and s ≥ 0, let (P∇u

s,t (f))t≥s



✐

✐

“6-Ohta” — 2023/9/12 — 18:03 — page 2363 — #17
✐

✐

✐

✐

✐

✐

A semigroup approach to Finsler geometry 2363

be the weak solution to the linearized heat equation:

(3.1) ∂t[P
∇u
s,t (f)] = ∆Vt [P∇u

s,t (f)], P∇u
s,s (f) = f.

The existence and other properties of the linearized semigroup P∇u
s,t are

summarized in the following proposition.

Proposition 3.1 (Properties of linearized semigroups). Assume that

(M,F,m) is complete and satisfies CF <∞ and SF <∞, and let (ut)t≥0

and (Vt)t≥0 be as above.

(i) For each s ≥ 0, T > 0 and f ∈ H1
0 (M), there exists a unique weak

solution ft = P∇u
s,t (f), t ∈ [s, s+ T ], to (3.1). Moreover, (ft)t∈[s,s+T ]

lies in L2([s, s+ T ], H1
0 (M)) ∩H1([s, s+ T ], H−1(M)) as well as in

C([s, s+ T ], L2(M)).

(ii) The solution (ft)t∈[s,s+T ] in (i) is Hölder continuous on (s, s+ T )×M .

(iii) Assume that either m(M) <∞ or Ric∞ ≥ K for some K ∈ R holds.

If c ≤ f ≤ C for some −∞ < c < C <∞, then we have c ≤ ft ≤ C
almost everywhere for all t ∈ (s, s+ T ].

Proof. (i) Let s = 0 without loss of generality. This unique existence fol-
lows from Theorem 4.1 and Remark 4.3 in [30, Chapter III] (see also [50,
Theorem 11.3], where A(t) is assumed to be continuous in t but it is in
fact unnecessary). Precisely, in the notations in [30], we take H = L2(M),
V = H1

0 (M), and put At := −∆Vt : H1
0 (M) −→ H−1(M). We deduce with

the help of (2.8) that, for any h, h̄ ∈ H1
0 (M),

∣∣∣∣
∫

M
h̄∆Vth dm

∣∣∣∣ =
∣∣∣∣
∫

M
g∗L(Vt)

(dh, dh̄) dm

∣∣∣∣ ≤ 2
√
EVt(h)

√
EVt(h̄)

≤ 2CF

√
E(h)

√
E(h̄)

and

−
∫

M
h∆Vth dm = 2EVt(h) ≥ 2

SF
E(h),

where EVt(h) := (1/2)
∫
M g∗L(Vt)

(dh, dh) dm denotes the energy functional on

(M, gVt
,m). Since ΛF <∞ by CF <∞ (or SF <∞), ∥h∥L2 +

√
E(h) is com-

parable with ∥h∥H1 . Therefore we have a unique solution (ft)t∈[0,T ] to (3.1)
with f0 = f lying in L2([0, T ], H1

0 (M)) ∩H1([0, T ], H−1(M)), and also in
C([0, T ], L2(M)) (see [17, §5.9.2], [50, Lemma 11.4]).
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(ii) The Hölder continuity is a consequence of the local uniform ellipticity
of ∆Vt (see [45, Proposition 4.4]).

(iii) This is seen for example by using the fundamental solution
q(t, x; s, y) to the equation ∂t[P

∇u
s,t (f)] = ∆Vt [P∇u

s,t (f)] (see [52, §6]). We have

ft(x) =

∫

M
q(t, x; s, y)f(y)m(dy),

and
∫
M q(t, x; s, y)m(dy) = 1 (by 1 ∈ H1

0 (M) when m(M) <∞, or by [52,
§7] since Ric∞ ≥ K implies the squared exponential volume bound as in [55,
Theorem 4.24]). This completes the proof. □

The uniqueness in (i) above ensures that ut = P∇u
s,t (us). It follows from

the non-expansion property,

d

dt

[
∥ft∥2L2

]
= −4EVt(ft) ≤ 0,

that P∇u
s,t uniquely extends to a linear contraction semigroup acting on

L2(M). Notice also that f is C∞ on
⋃

s<t<s+T ({t} ×Mut
).

The operator P∇u
s,t is linear but not symmetric (with respect to the L2-

inner product). Let us denote by P̂∇u
s,t the adjoint operator of P∇u

s,t . That is

to say, given φ ∈ H1
0 (M) and t > 0, we define (P̂∇u

s,t (φ))s∈[0,t] as the solution
to the equation

(3.2) ∂s[P̂
∇u
s,t (φ)] = −∆Vs [P̂∇u

s,t (φ)], P̂∇u
t,t (φ) = φ.

Note that

(3.3)

∫

M
φ · P∇u

s,t (f) dm =

∫

M
P̂∇u
s,t (φ) · f dm

indeed holds, since for r ∈ (0, t− s)

∂r

[ ∫

M
P̂∇u
s+r,t(φ) · P∇u

s,s+r(f) dm

]

= −
∫

M
∆Vs+r [P̂∇u

s+r,t(φ)] · P∇u
s,s+r(f) dm+

∫

M
P̂∇u
s+r,t(φ) ·∆Vs+r [P∇u

s,s+r(f)] dm

= 0.

One may rewrite (3.2) as

∂σ[P̂
∇u
t−σ,t(φ)] = ∆Vt−σ [P̂∇u

t−σ,t(φ)], σ ∈ [0, t],
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to see that the adjoint heat semigroup solves the linearized heat equation
backward in time. (This evolution is sometimes called the conjugate heat

semigroup, especially in the Ricci flow theory; see for instance [14, Chap-
ter 5].) Therefore we see in the same way as P∇u

s,t that ∥P̂∇u
t−σ,t(φ)∥L2 is non-

increasing in σ and that P̂∇u
t−σ,t extends to a linear contraction semigroup

acting on L2(M).

Remark 3.2. In general, the semigroups P∇u
s,t and P̂∇u

s,t depend on the
choice of an auxiliary vector field (Vt)t≥0. We will not discuss this issue,
but carefully replace Vt with ∇ut as far as it is possible (with the help of
Lemma 2.12).

By a well known technique based on the Bochner inequality (2.12) with
N =∞, we obtained in [47, Theorem 4.1] the L2-gradient estimate of the
following form.

Theorem 3.3 (L2-gradient estimate, compact case). Assume that

(M,F,m) is compact and satisfies Ric∞ ≥ K for some K ∈ R. Then, given

any global solution (ut)t≥0 to the heat equation, we have

F 2
(
∇ut(x)

)
≤ e−2K(t−s)P∇u

s,t

(
F 2(∇us)

)
(x)

for all 0 < s < t <∞ and x ∈M .

We remark that, by Theorem 2.9, F 2(∇us) ∈ H1(M) and both sides in
Theorem 3.3 are Hölder continuous. Let us stress that we use the nonlinear
semigroup (us → ut) in the LHS, while in the RHS the linearized semigroup
P∇u
s,t is employed.

Remark 3.4. In the proof of [47, Theorem 4.1], we did not distinguish P∇u
s,t

and P̂∇u
s,t and treated P∇u

s,t as a symmetric operator. However, the proof

is valid by replacing P∇u
s,t (h) with P̂∇u

s,t (h). See the proof of Theorem 3.7
below which is based on a similar calculation (with the sharper inequality
in Proposition 3.5).

3.2. Improved Bochner inequality

We shall give an inequality improving the Bochner inequality (2.12) with
N =∞, that will be used to show the L1-gradient estimate as well as the
isoperimetric inequality. In the context of linear diffusion operators, such an
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inequality can be derived from (2.12) by a self-improvement argument (see
[7, §C.6], and also [53] for an extension to RCD(K,∞)-spaces). Here we give
a direct proof by calculations in coordinates.

Proposition 3.5 (Improved Bochner inequality). Assume Ric∞ ≥ K
for some K ∈ R. Then we have, for any u ∈ C∞(M),

∆∇u

[
F 2(∇u)

2

]
− d(∆u)(∇u)−KF 2(∇u)(3.4)

≥ d[F (∇u)]
(
∇∇u[F (∇u)]

)

point-wise on Mu.

Proof. By comparing (2.12) with N =∞ and (3.4), it suffices to show

(3.5) 4F 2(∇u)∥∇2u∥2HS(∇u) ≥ d[F 2(∇u)]
(
∇∇u[F 2(∇u)]

)
.

Fix x ∈Mu and choose local coordinates such that gij(∇u(x)) = δij . We
first calculate the RHS of (3.5) at x as

d[F 2(∇u)]
(
∇∇u[F 2(∇u)]

)
=

n∑

i=1

(
∂[F 2(∇u)]

∂xi

)2

=

n∑

i=1

(
∂

∂xi

[ n∑

j,k=1

g∗jk(du)
∂u

∂xj
∂u

∂xk

])2

=

n∑

i=1

(
2

n∑

j=1

∂u

∂xj
∂2u

∂xi∂xj
+

n∑

j,k=1

∂g∗jk
∂xi

(du)
∂u

∂xj
∂u

∂xk

+

n∑

j,k,l=1

∂g∗jk
∂αl

(du)
∂2u

∂xi∂xl
∂u

∂xj
∂u

∂xk

)2

=

n∑

i=1

(
2

n∑

j=1

∂u

∂xj
∂2u

∂xi∂xj
+

n∑

j,k=1

∂g∗jk
∂xi

(du)
∂u

∂xj
∂u

∂xk

)2

,

where we used Euler’s theorem (Theorem 2.2, similarly to (2.3)) in the last
equality. Next we observe from (2.6) and (2.5) that, again at x,
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∇
2u

(
∂

∂xj

)
= D∇u

∂/∂xj (∇u)

=

n∑

i=1

{
∂

∂xj

[ n∑

k=1

g∗ik(du)
∂u

∂xk

]
+

n∑

k=1

Γi
jk(∇u)

∂u

∂xk

}
∂

∂xi

=

n∑

i=1

{
∂2u

∂xj∂xi
+

n∑

k=1

∂g∗ik
∂xj

(du)
∂u

∂xk
+

n∑

k=1

γijk(∇u)
∂u

∂xk

−
n∑

l=1

Aijl(∇u)

F (∇u)
Gl(∇u)

}
∂

∂xi

=

n∑

i=1

{
∂2u

∂xi∂xj
+

n∑

k=1

(
γijk −

∂gik
∂xj

)
(∇u)

∂u

∂xk
−

n∑

k=1

AijkG
k

F
(∇u)

}
∂

∂xi
.

In the last line we used

∂g∗ik
∂xj

(
du(x)

)
= −∂gik

∂xj
(
∇u(x)

)
.

Hence we deduce from the Cauchy–Schwarz inequality, (2.3) and (2.4) that

F 2(∇u)∥∇2u∥2HS(∇u)

=

n∑

j=1

(
∂u

∂xj

)2

×
n∑

i,j=1

(
∂2u

∂xi∂xj
+

n∑

k=1

(
γijk −

∂gik
∂xj

)
(∇u)

∂u

∂xk
−

n∑

k=1

AijkG
k

F
(∇u)

)2

≥
n∑

i=1

( n∑

j=1

∂u

∂xj

{
∂2u

∂xi∂xj
+

n∑

k=1

(
γijk −

∂gik
∂xj

)
(∇u)

∂u

∂xk

−
n∑

k=1

AijkG
k

F
(∇u)

})2

=

n∑

i=1

( n∑

j=1

∂u

∂xj
∂2u

∂xi∂xj
+

n∑

j,k=1

(
γijk −

∂gik
∂xj

)
(∇u)

∂u

∂xj
∂u

∂xk

)2

=

n∑

i=1

( n∑

j=1

∂u

∂xj
∂u2

∂xi∂xj
− 1

2

n∑

j,k=1

∂gjk
∂xi

(∇u)
∂u

∂xj
∂u

∂xk

)2

.

This completes the proof of (3.5) as well as (3.4). □
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The following integrated form can be shown in the same way as Theo-
rem 2.13, we refer to [47, Theorem 3.6] for details.

Corollary 3.6 (Integrated form). Assume Ric∞ ≥ K for some K ∈ R.

Given u ∈ H2
loc(M) ∩ C1(M) such that ∆u ∈ H1

loc(M), we have

−
∫

M
dφ

(
∇∇u

[
F 2(∇u)

2

])
dm

≥
∫

M
φ
{
d(∆u)(∇u) +KF 2(∇u) + d[F (∇u)]

(
∇∇u[F (∇u)]

)}
dm

for all bounded nonnegative functions φ ∈ H1
c (M) ∩ L∞(M).

3.3. L
1-gradient estimate

The improved Bochner inequality (3.4) yields the L1-gradient es-

timate, under a technical (likely redundant) assumption that
d[F (∇ut)](∇∇ut [F (∇ut)]) ∈ L1(M) for all t > 0, which holds in the
compact case thanks to the H2

loc-regularity (recall Theorem 2.9).

Theorem 3.7 (L1-gradient estimate). Let (M,F,m) be complete and

satisfy Ric∞ ≥ K, CF <∞ and SF <∞, and (ut)t≥0 be a global solution to

the heat equation with u0 ∈ C∞c (M). We further assume that

(3.6) d[F (∇ut)]
(
∇∇ut [F (∇ut)]

)
∈ L1(M)

for all t > 0. Then we have

F
(
∇ut(x)

)
≤ e−K(t−s)P∇u

s,t

(
F (∇us)

)
(x)

for all 0 ≤ s < t <∞ and x ∈M .

Proof. Notice first that F (∇u0) ∈ H1
0 (M) ∩ L∞(M) since u0 ∈ C∞c (M). Fix

arbitrary ε > 0 and let us consider the function

ξσ :=
√

e−2KσF 2(∇ut−σ) + ε, 0 ≤ σ ≤ t− s.

Note from the proof of [47, Theorem 4.1] that

(3.7)
∂

∂σ

[
F 2(∇ut−σ)

2

]
= − ∂

∂t

[
F 2(∇ut−σ)

2

]
= −d(∆ut−σ)(∇ut−σ).
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Hence we have, on one hand,

∂σξσ = −e−2Kσ

ξσ

{
KF 2(∇ut−σ) + d(∆ut−σ)(∇ut−σ)

}
.

On the other hand, for any nonnegative function φ ∈ C∞c (M), we observe

∫

M
dφ(∇∇ut−σξσ) dm =

∫

M

e−2Kσ

ξσ
dφ

(
∇∇ut−σ

[
F 2(∇ut−σ)

2

])
dm

=

∫

M

(
d

(
φ
e−2Kσ

ξσ

)
+ φ

e−2Kσ

ξ2σ
dξσ

)(
∇∇ut−σ

[
F 2(∇ut−σ)

2

])
dm

=

∫

M
d

(
φ
e−2Kσ

ξσ

)(
∇∇ut−σ

[
F 2(∇ut−σ)

2

])
dm

+

∫

M
φ
e−4Kσ

ξ3σ
d

[
F 2(∇ut−σ)

2

](
∇∇ut−σ

[
F 2(∇ut−σ)

2

])
dm

≤
∫

M
d

(
φ
e−2Kσ

ξσ

)(
∇∇ut−σ

[
F 2(∇ut−σ)

2

])
dm

+

∫

M
φ
e−2Kσ

ξσ
d[F (∇ut−σ)]

(
∇∇ut−σ [F (∇ut−σ)]

)
dm,

where we used F 2(∇ut−σ) ≤ e2Kσξ2σ in the last inequality. Therefore the
improved Bochner inequality (Corollary 3.6) shows that

(3.8) ∆∇ut−σξσ + ∂σξσ ≥ 0

in the weak sense. Notice that the test function φ can be in fact taken from
H1

0 (M) ∩ L∞(M) thanks to the hypothesis (3.6) and ξσ ≥
√
ε.

For a nonnegative function ϕ ∈ C∞c (M) and σ ∈ (0, t− s), set

Φ(σ) :=

∫

M
ϕ · P∇u

t−σ,t(ξσ) dm =

∫

M
P̂∇u
t−σ,t(ϕ) · ξσ dm.

We deduce from (3.2) and (2.10) that

Φ′(σ) =

∫

M
P̂∇u
t−σ,t(ϕ) · ∂σξσ dm−

∫

M
dξσ

(
∇∇ut−σ

[
P̂∇u
t−σ,t(ϕ)

])
dm

=

∫

M
P̂∇u
t−σ,t(ϕ) · ∂σξσ dm−

∫

M
d[P̂∇u

t−σ,t(ϕ)](∇∇ut−σξσ) dm.
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Therefore we can apply (3.8) with the test function P̂∇u
t−σ,t(ϕ) (thanks to

Proposition 3.1) to obtain Φ′(σ) ≥ 0. This implies
∫

M
ϕ · ξ0 dm ≤

∫

M
ϕ · P∇u

s,t (ξt−s) dm.

By the arbitrariness of ϕ and ε, we have

F (∇ut) ≤ e−K(t−s)P∇u
s,t

(
F (∇us)

)

almost everywhere. Since both sides are Hölder continuous (recall Proposi-
tion 3.1(ii)), this completes the proof. □

It is a standard fact that the L1-gradient estimate implies the L2-bound.

Corollary 3.8 (L2-gradient estimate, noncompact case). Let

(M,F,m) be complete and satisfy Ric∞ ≥ K, CF <∞ and SF <∞, and

(ut)t≥0 be a global solution to the heat equation with u0 ∈ C∞c (M) and sat-

isfying (3.6) for all t > 0. Then we have

F 2
(
∇ut(x)

)
≤ e−2K(t−s)P∇u

s,t

(
F 2(∇us)

)
(x)

for all 0 ≤ s < t <∞ and x ∈M .

Proof. This is a consequence of a kind of Jensen’s inequality:

P∇u
s,t (f)2 ≤ P∇u

s,t (f2)

for f ∈ L2(M) ∩ L∞(M). For ψ ∈ C∞c (M) with 0 ≤ ψ ≤ 1 and r ∈ R, we
have

0 ≤ P∇u
s,t

(
(rf + ψ)2

)
= r2P∇u

s,t (f2) + 2rP∇u
s,t (fψ) + P∇u

s,t (ψ2)

≤ r2P∇u
s,t (f2) + 2rP∇u

s,t (fψ) + 1.

Letting fψ → f in L2(M), we find r2P∇u
s,t (f2) + 2rP∇u

s,t (f) + 1 ≥ 0 for all

r ∈ R. Hence P∇u
s,t (f)2 − P∇u

s,t (f2) ≤ 0 as desired. □

3.4. On the hypothesis (3.6)

The hypothesis (3.6) seems redundant and indeed unnecessary for weighted
Riemannian manifolds and RCD-spaces. Especially, when K > 0, the Gaus-
sian decay of the measure ([55, Theorem 4.26]) could imply (3.6). Let us
give some more comments on (3.6).
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3.4.1. Weighted Riemannian case. We essentially followed the proof
of [7, Theorem 3.2.4] in Theorem 3.7. Then we have

dξσ(∇∇ut−σξσ) ≤ e−2Kσd[F (∇ut−σ)]
(
∇∇ut−σ [F (∇ut−σ)]

)
,

and the improved Bochner inequality (Proposition 3.5) implies

∫

M
d[F (∇u)]

(
∇∇u[F (∇u)]

)
dm ≤ ∥∆u∥2L2 + |K| · ∥u∥L2∥∆u∥L2

for u ∈ C∞c (M). Now in [7], for a linear operator L, we make use of the
density of A0 = C∞c (M) in the domain D(L) with respect to the norm

∥f∥D(L) :=
(
∥f∥2L2 + ∥Lf∥2L2

)1/2

to extend the above estimate to D(L). This density is a consequence of the
hypo-ellipticity (see [7, Proposition 3.2.1]), which is defined by the prop-
erty that any solution to L∗f = λf is smooth (see also [7, Definition 3.3.8],
typically A = C∞(M)). This is not the case for operators with nonsmooth
coefficients, thereby it is unclear if we can apply this method in the Finsler
case (to the linearized Laplacian ∆∇u).

3.4.2. RCD-case. In RCD(K,∞)-spaces, we obtain the Wasserstein

contraction estimate of heat flow by the convexity of the relative entropy,
and then the gradient estimates follow by the duality argument. Moreover,
we can obtain the Bochner inequality by differentiating the gradient estimate
(see [1, 2, 21, 53] for details).

This method could avoid the use of the functional analytic argument
involving A0 and A, and what is important and interesting here is that the
Bochner inequality derived from the gradient estimate is of the form:

∫
∆φ · |∇u|

2

2
dm ≥

∫
φ
{
d(∆u)(∇u) +K|∇u|2

}
dm

for u ∈ D(∆) with ∆u ∈ H1 and φ ∈ D(∆) ∩ L∞ with ∆φ ∈ L∞. In the
LHS, what we have directly from the point-wise Bochner inequality is

∫
φ ·∆

[ |∇u|2
2

]
dm,

and modifying this into the above LHS requires an approximation of φ by
functions φk in C∞c such that ∆φk → ∆φ, namely the density of C∞c in the
D(∆)-norm as in the approach of [7].
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In the Finsler case, we know that the Wasserstein contraction fails (see
Remark 3.10 below). Nonetheless, if one can show the Bochner inequality
in the above form as well as F (∇u) ∈ L∞(M), then it follows from the
argument along [53, Lemma 3.2] that d[F (∇u)](∇∇uF (∇u)) ∈ L1(M) and
we obtain the gradient estimates.

3.5. Characterizations of lower Ricci curvature bounds

We close the section with several characterizations of the lower Ricci curva-
ture bound Ric∞ ≥ K.

Theorem 3.9 (Characterizations of Ric∞ ≥ K). Let (M,F,m) be com-

plete and satisfy CF <∞ and SF <∞. We assume that (3.6) holds for

all solutions (ut)t≥0 to the heat equation with u0 ∈ C∞c (M). Then, for each

K ∈ R, the following are equivalent:

(I) Ric∞ ≥ K.

(II) The Bochner inequality

∆∇u

[
F 2(∇u)

2

]
− d(∆u)(∇u) ≥ KF 2(∇u)

holds on Mu for all u ∈ C∞(M).

(III) The improved Bochner inequality

∆∇u

[
F 2(∇u)

2

]
− d(∆u)(∇u)−KF 2(∇u) ≥ d[F (∇u)]

(
∇∇u[F (∇u)]

)

holds on Mu for all u ∈ C∞(M).

(IV) The L2-gradient estimate

F 2(∇ut) ≤ e−2K(t−s)P∇u
s,t

(
F 2(∇us)

)
, 0 ≤ s < t <∞,

holds for all global solutions (ut)t≥0 to the heat equation with u0 ∈
C∞c (M).

(V) The L1-gradient estimate

F (∇ut) ≤ e−K(t−s)P∇u
s,t

(
F (∇us)

)
, 0 ≤ s < t <∞,

holds for all global solutions (ut)t≥0 to the heat equation with u0 ∈
C∞c (M).
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Proof. We have shown (I) ⇒ (III) in Proposition 3.5, (III) ⇒ (V) in Theo-
rem 3.7, and (V)⇒ (IV) in Corollary 3.8. One can deduce (IV)⇒ (II) from
the proof of [47, Theorem 4.1], or by differentiating the gradient estimate
F 2(∇ut) ≤ e−2KtP∇u

0,t (F 2(∇u0)) at t = 0 (recall (3.7), see also [21]). Let us

finally prove (II) ⇒ (I). Given v0 ∈ Tx0
M \ 0, fix local coordinates (xi)ni=1

around x0 with gij(v0) = δij and xi(x0) = 0 for all i. Consider the function

u :=

n∑

i=1

vi0x
i +

1

2

n∑

i,j,k=1

Γk
ij(v0)v

k
0x

ixj

on a neighborhood of x0, and observe that ∇u(x0) = v0 and (∇2u)|Tx0
M = 0

(see [47, Lemma 2.3] for the precise expression in coordinates of ∇2u). Then
the Bochner–Weitzenböck formula (2.11) and (II) imply

Ric∞(v0) = ∆∇u

[
F 2(∇u)

2

]
(x0)− d(∆u)(∇u)(x0) ≥ KF 2(v0).

This completes the proof. □

Remark 3.10 (The lack of contraction). In the Riemannian context,
lower Ricci curvature bounds are also equivalent to contraction estimates of
heat flow with respect to the Wasserstein distance (we refer to [51] for the
Riemannian case, and [16] for the case of RCD-spaces). More generally, for
linear semigroups, gradient estimates are directly equivalent to the corre-
sponding contraction properties (see [24]). In our Finsler setting, however,
the lack of the commutativity (see [44]) prevents such a contraction estimate,
at least in the same form (see [46] for details).

Remark 3.11 (Similarities to (super) Ricci flow theory). The meth-
ods in this section have connections with the Ricci flow theory. Ricci flow pro-
vides time-dependent Riemannian metrics obeying a kind of heat equation
on the space of Riemannian metrics, while we considered the time-dependent
(singular) Riemannian structures g∇u for u solving the heat equation. More
precisely, what corresponds to our lower Ricci curvature bound is super

Ricci flow (super-solutions to the Ricci flow equation). We refer to [33] for
an inspiring work on a characterization of super Ricci flow in terms of the
contraction of heat flow, and to [57] for a recent investigation of super Ricci
flow on time-dependent metric measure spaces including various characteri-
zations related to Theorem 3.9. Then, again, what is missing in our Finsler
setting is the contraction property, for which the Riemannian nature of the
space is necessary.
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4. Bakry–Ledoux’s isoperimetric inequality

This section is devoted to the isoperimetric inequality, as a geometric appli-
cation of the improved Bochner inequality (Proposition 3.5). We will assume
Ric∞ ≥ K > 0, then m(M) <∞ holds (see [55, Theorem 4.26]) and hence
we can normalize m as m(M) = 1 without changing Ric∞ (cm with c > 0
gives the same weighted Ricci curvature as m).

For a Borel set A ⊂M , define the Minkowski exterior boundary measure

as

m
+(A) := lim inf

ε↓0

m(B+(A, ε))−m(A)

ε
,

where

B+(A, ε) :=
{
y ∈M

∣∣∣ inf
x∈A

d(x, y) < ε
}

is the forward ε-neighborhood of A. Then the (forward) isoperimetric profile

I(M,F,m) : [0, 1] −→ [0,∞) of (M,F,m) is defined by

I(M,F,m)(θ) := inf{m+(A) |A ⊂M : Borel set with m(A) = θ}.

Clearly I(M,F,m)(0) = I(M,F,m)(1) = 0 holds. The following is our main result
(stated as Theorem in the introduction).

Theorem 4.1 (Bakry–Ledoux’s isoperimetric inequality). Let

(M,F ) be complete and satisfy Ric∞ ≥ K > 0, m(M) = 1, CF <∞ and

SF <∞. We assume that (3.6) holds for all solutions (ut)t≥0 to the heat

equation with u0 ∈ C∞c (M). Then we have

(4.1) I(M,F,m)(θ) ≥ IK(θ)

for all θ ∈ [0, 1], where

IK(θ) :=

√
K

2π
e−Kc2(θ)/2 with θ =

∫ c(θ)

−∞

√
K

2π
e−Ka2/2 da.

Recall that, under CF <∞ or SF <∞, the forward completeness is
equivalent to the backward completeness by Lemma 2.4. In the Rieman-
nian case, the inequality (4.1) is due to Bakry and Ledoux [8] (see also [7,
§8.5.2]) and can be regarded as the dimension-free version of Lévy–Gromov’s

isoperimetric inequality (see [22, 27, 28]). Lévy–Gromov’s classical isoperi-
metric inequality asserts that the isoperimetric profile of an n-dimensional



✐

✐

“6-Ohta” — 2023/9/12 — 18:03 — page 2375 — #29
✐

✐

✐

✐

✐

✐

A semigroup approach to Finsler geometry 2375

Riemannian manifold (M, g) with Ric ≥ n− 1 is bounded below by the pro-
file of the unit sphere S

n (both spaces are equipped with the normalized
volume measures). In (4.1), the role of the unit sphere is played by the real
line R equipped with the Gaussian measure

√
K/2π e−Kx2/2 dx, thereby

(4.1) is also called the Gaussian isoperimetric inequality.
In [43], generalizing Cavalletti and Mondino’s localization technique in

[13], we showed the slightly weaker inequality (recall the introduction)

I(M,F,m)(θ) ≥ Λ−1
F · IK(θ)

under the finite reversibility ΛF <∞ (but without CF <∞ nor SF <∞).
In fact we have treated in [43] the general curvature-dimension-diameter
bound RicN ≥ K and diamM ≤ D (in accordance with [34]). Theorem 4.1
sharpens the estimate in [43] in the special case of N = D =∞ and K > 0.

4.1. Ergodicity

We begin with some properties induced from our hypothesis Ric∞ ≥ K > 0.

Lemma 4.2 (Global Poincaré inequality). Suppose that (M,F,m) is

forward or backward complete, Ric∞ ≥ K > 0 and m(M) = 1. Then we have,

for any locally Lipschitz function f ∈ H1
0 (M),

(4.2)

∫

M
f2 dm−

(∫

M
f dm

)2

≤ 1

K

∫

M
F ∗(df)2 dm.

Proof. It is well known that the curvature bound Ric∞ ≥ K (or CD(K,∞))
implies the log-Sobolev inequality,

(4.3)

∫

M
ρ log ρ dm ≤ 1

2K

∫

M

F ∗(dρ)2

ρ
dm

for nonnegative locally Lipschitz functions ρ with
∫
M ρ dm = 1, and that

(4.2) follows from (4.3) (see [31, 37, 48, 59]). Here we explain the latter step
for thoroughness.

By truncation, let us assume that f is bounded. Since

∫

M
f2 dm−

(∫

M
f dm

)2

=

∫

M

(
f −

∫

M
f dm

)2

dm,

we can further assume that
∫
M f dm = 0. There is nothing to prove if f ≡ 0,

thereby assume ∥f∥L∞ > 0. For ε ∈ R with |ε| < ∥f∥−1
L∞ , we consider the
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probability measure (1 + εf)m. Then the log-Sobolev inequality for ρε :=
1 + εf under Ric∞ ≥ K implies

∫

M
(1 + εf) log(1 + εf) dm ≤ 1

2K

∫

M

ε2F ∗(df)2

1 + εf
dm.

Expanding the LHS at ε = 0 yields

∫

M

{
εf +

1

2
(εf)2 +O(ε3)

}
dm =

ε2

2

∫

M
f2 dm+O(ε3),

where O(ε3) in the LHS is uniform in M thanks to the boundedness of f .
Hence we have

ε2

2

∫

M
f2 dm ≤ 1

1− ε∥f∥L∞

ε2

2K

∫

M
F ∗(df)2 dm+O(ε3).

Dividing both sides by ε2 and letting ε→ 0 implies (4.2). □

The LHS of (4.2) is the variance of f :

Varm(f) :=

∫

M
f2 dm−

(∫

M
f dm

)2

.

We next show that the Poincaré inequality (4.2) yields the exponential decay
of the variance and a kind of ergodicity along heat flow (similarly to [7, §4.2]),
which is one of the key ingredients in the proof of Theorem 4.1 (see the proof
of Corollary 4.5). Given a global solution (ut)t≥0 to the heat equation, since
the finiteness of the total mass together with ΛF <∞ and the completeness
implies 1 ∈ H1

0 (M), we observe the mass conservation:

(4.4)

∫

M
P∇u
s,t (f) dm =

∫

M
f dm

for any f ∈ H1
0 (M) and 0 ≤ s < t <∞.

Proposition 4.3 (Variance decay and ergodicity). Let (M,F,m) be

complete and satisfy CF <∞, SF <∞, Ric∞ ≥ K > 0 and m(M) = 1.
Then we have, given any global solution (ut)t≥0 to the heat equation and

f ∈ H1
0 (M),

Varm
(
P∇u
s,t (f)

)
≤ e−2K(t−s)/SF Varm(f)

for all 0 ≤ s < t <∞. In particular, P∇u
s,t (f) converges to the constant func-

tion
∫
M f dm in L2(M) as t→∞.
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Proof. Put ft := P∇u
s,t (f), then

∫
M ft dm =

∫
M f dm holds by (4.4). It follows

from Lemmas 2.3, 4.2 that

d

dt

[
Varm(ft)

]
= −2

∫

M
dft(∇Vtft) dm = −2

∫

M
g∗L(Vt)

(dft, dft) dm

≤ − 2

SF

∫

M
F ∗(dft)

2 dm ≤ −2K

SF
Varm(ft).

Hence e2Kt/SF Varm(ft) is non-increasing in t, this completes the proof of
the first assertion. Then the second assertion is straightforward since

Varm(ft) =

∫

M

(
ft −

∫

M
f dm

)2

dm→ 0 (t→∞).

□

4.2. Key estimate

We next prove a key estimate which would have further applications (see
[8]). Define

ϕ(c) :=
1√
2π

∫ c

−∞
e−b2/2 db, c ∈ R,

N (θ) := ϕ′
(
ϕ−1(θ)

)
=

e−ϕ−1(θ)2/2

√
2π

, θ ∈ (0, 1).

We set also N (0) = N (1) := 0. Observe that N ′ = −ϕ−1 and N ′′ =
−1/N on (0, 1).

Theorem 4.4. Assume that (M,F,m) is complete and satisfies Ric∞ ≥ K
for some K ∈ R, CF <∞, SF <∞ and m(M) <∞. Then, given a global

solution (ut)t≥0 to the heat equation with u0 ∈ C∞c (M), 0 ≤ u0 ≤ 1 and sat-

isfying (3.6), we have

(4.5)
√

N 2(ut) + αF 2(∇ut) ≤ P∇u
0,t

(√
N 2(u0) + cα(t)F 2(∇u0)

)

on M for all α ≥ 0 and t > 0, where

cα(t) :=
1− e−2Kt

K
+ αe−2Kt > 0

and cα(t) := 2t+ α when K = 0.
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For simplicity, we suppressed the dependence of cα on K.

Proof. By replacing u0 with (1− 2ε)u0 + ε, we can assume ε ≤ u0 ≤ 1− ε
for some ε > 0, and then we have ε ≤ ut ≤ 1− ε for all t > 0 (recall (2.9)).
Fix t > 0 and put

ζs :=
√

N 2(us) + cα(t− s)F 2(∇us), 0 ≤ s ≤ t

(compare this function with ξσ in the proof of Theorem 3.7). Then (4.5)
is written as ζt ≤ P∇u

0,t (ζ0) and it suffices to show ∂s[P
∇u
s,t (ζs)] ≤ 0 in the

weak sense. Observe from (3.3) and (3.2) that, for any nonnegative φ ∈
C∞c ((0, t)×M),

∫ t

0

∫

M
∂sφs · P∇u

s,t (ζs) dm ds(4.6)

=

∫ t

0

∫

M
P̂∇u
s,t (∂sφs) · ζs dm ds

=

∫ t

0

∫

M

{
∂s[P̂

∇u
s,t (φs)] + ∆Vs [P̂∇u

s,t (φs)]
}
· ζs dm ds

=

∫ t

0

∫

M
P̂∇u
s,t (φs) · (∆∇usζs − ∂sζs) dm ds,

where in the second equality we deduce from the linearity of P̂∇u
s,t that

∫

M
∂s[P̂

∇u
s,t (φs)] · ζs dm

= lim
ε→0

1

ε

∫

M

{
P̂∇u
s+ε,t(φs+ε)− P̂∇u

s,t (φs+ε)
}
· ζs dm+

∫

M
P̂∇u
s,t (∂sφs) · ζs dm

= lim
ε→0

1

ε

∫ s+ε

s

∫

M
dζs

(
∇∇us+r [P̂∇u

s+r,t(φs+ε)]
)
dm dr +

∫

M
P̂∇u
s,t (∂sφs) · ζs dm

=

∫

M
dζs

(
∇∇us [P̂∇u

s,t (φs)]
)
dm dr +

∫

M
P̂∇u
s,t (∂sφs) · ζs dm

for almost every s. We shall show that the RHS of (4.6) is nonnegative.
We first calculate by using (3.7) and c′α = 2(1−Kcα) as

∂sζs =
1

ζs

{
N (us)N

′(us)∆us +
(
Kcα(t− s)− 1

)
F 2(∇us)

+ cα(t− s)d(∆us)(∇us)
}
.
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Next, we have

∇∇usζs =
1

ζs

{
N (us)N

′(us)∇us +
cα(t− s)

2
∇∇us [F 2(∇us)]

}
.

Hence

∆∇usζs =
N (us)N

′(us)

ζs
∆us +

N ′(us)
2 − 1

ζs
F 2(∇us)

− N (us)N
′(us)

ζ2s
dζs(∇us) +

cα(t− s)
2ζs

∆∇us [F 2(∇us)]

− cα(t− s)
2ζ2s

dζs
(
∇∇us [F 2(∇us)]

)
,

where we used N ′′ = −1/N and ∆∇us [F 2(∇us)] is understood in the weak
sense.

Now we apply the improved Bochner inequality (Corollary 3.6) to obtain

∆∇usζs − ∂sζs

=
N ′(us)

2 −Kcα(t− s)
ζs

F 2(∇us)

+
cα(t− s)

ζs

{
∆∇us

[
F 2(∇us)

2

]
− d(∆us)(∇us)

}

− N (us)N
′(us)

ζ2s
dζs(∇us)−

cα(t− s)
2ζ2s

dζs
(
∇∇us [F 2(∇us)]

)

≥ N ′(us)
2

ζs
F 2(∇us) +

cα(t− s)
ζsF 2(∇us)

d

[
F 2(∇us)

2

](
∇∇us

[
F 2(∇us)

2

])

− N (us)N
′(us)

ζ2s
dζs(∇us)−

cα(t− s)
2ζ2s

dζs
(
∇∇us [F 2(∇us)]

)

in the weak sense. Substituting

dζs =
1

ζs

{
N (us)N

′(us)dus +
cα(t− s)

2
d[F 2(∇us)]

}
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and recalling (2.10), we obtain

∆∇usζs − ∂sζs

≥ ζ2sN
′(us)

2 −N 2(us)N
′(us)

2

ζ3s
F 2(∇us)

− cα(t− s)N (us)N
′(us)

ζ3s
dus

(
∇∇us [F 2(∇us)]

)

+
cα(t− s)

ζ3s

{
ζ2s

F 2(∇us)
− cα(t− s)

}
d

[
F 2(∇us)

2

](
∇∇us

[
F 2(∇us)

2

])

=
cα(t− s)N ′(us)

2

ζ3s
F 4(∇us)

− cα(t− s)N (us)N
′(us)

ζ3s
dus

(
∇∇us [F 2(∇us)]

)

+
cα(t− s)

ζ3s

N 2(us)

F 2(∇us)
d

[
F 2(∇us)

2

](
∇∇us

[
F 2(∇us)

2

])
.

Since the Cauchy–Schwarz inequality for g∇us
yields

∣∣dus
(
∇∇us [F 2(∇us)]

)∣∣ ≤ F (∇us)
√
d[F 2(∇us)]

(
∇∇us [F 2(∇us)]

)
,

we conclude that

∆∇usζs − ∂sζs

≥ cα(t− s)N ′(us)
2

ζ3s
F 4(∇us)

− cα(t− s)N (us)|N ′(us)|
ζ3s

F (∇us)
√
d[F 2(∇us)]

(
∇∇us [F 2(∇us)]

)

+
cα(t− s)

ζ3s

N 2(us)

F 2(∇us)
d

[
F 2(∇us)

2

](
∇∇us

[
F 2(∇us)

2

])

=
cα(t− s)

ζ3s

(
|N ′(us)|F 2(∇us)

− N (us)

2F (∇us)

√
d[F 2(∇us)]

(
∇∇us [F 2(∇us)]

))2

≥ 0

in the weak sense. Notice that, similarly to the proof of Theorem 3.7, we
can take test functions from H1

0 (M) ∩ L∞(M) by virtue of (3.6). Therefore
the RHS of (4.6) is nonnegative and this completes the proof. □
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When K > 0, choosing α = K−1 and letting t→∞ in (4.5) yields the
following.

Corollary 4.5. Assume that (M,F,m) is complete and satisfies Ric∞ ≥
K > 0, CF <∞, SF <∞ and m(M) = 1. Then, for any u ∈ C∞c (M) with

0 ≤ u ≤ 1 and satisfying (3.6), we have

(4.7)
√
KN

(∫

M
u dm

)
≤

∫

M

√
KN 2(u) + F 2(∇u) dm.

Proof. Let (ut)t≥0 be the global solution to the heat equation with u0 = u.
Taking α = K−1, we find cα ≡ K−1 and hence by (4.5)

√
KN 2(ut) ≤

√
KN 2(ut) + F 2(∇ut) ≤ P∇u

0,t

(√
KN 2(u) + F 2(∇u)

)
.

Letting t→∞, we deduce from the ergodicity (Proposition 4.3) that

ut →
∫

M
u dm,

P∇u
0,t

(√
KN 2(u) + F 2(∇u)

)
→

∫

M

√
KN 2(u) + F 2(∇u) dm

in L2(M). Thereby we obtain (4.7). □

4.3. Proof of Theorem 4.1

Proof. Let θ ∈ (0, 1). Fix a closed set A ⊂M with m(A) = θ and consider

uε(x) := max{1− ε−1d(x,A), 0}, ε > 0.

Note that F (∇uε) = ε−1 on B−(A, ε) \A, where

B−(A, ε) :=
{
x ∈M

∣∣∣ inf
y∈A

d(x, y) < ε
}

is the backward ε-neighborhood of A. Applying (4.7) to (smooth approxi-
mations of) uε and letting ε ↓ 0 implies, with the help of N (0) = N (1) = 0,

√
KN (θ) ≤ lim inf

ε↓0

m(B−(A, ε))−m(A)

ε
.
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This is the desired isoperimetric inequality for the reverse Finsler structure←−
F (recall Definition 2.7) since, with c := ϕ−1(θ)/

√
K,

√
KN (θ) =

√
K

2π
e−Kc2/2, θ = ϕ(

√
Kc) =

√
K

2π

∫ c

−∞
e−Ka2/2 da.

Because the curvature bound Ric∞ ≥ K is common to F and
←−
F , we also

obtain (4.1). □
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dimension condition and Riemannian Ricci curvature bounds. Ann.
Probab. 43 (2015), 339–404.

[3] L. Ambrosio and A. Mondino, Gaussian-type isoperimetric inequalities
in RCD(K,∞) probability spaces for positive K. Atti Accad. Naz. Lin-
cei Rend. Lincei Mat. Appl. 27 (2016), 497–514.

[4] L. Auslander, On curvature in Finsler geometry. Trans. Amer. Math.
Soc. 79 (1955), 378–388.
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