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We show that Cayley graphs of virtually Abelian groups satisfy a
Li-Yau type gradient estimate despite the fact that they do not
satisfy any known variant of the curvature-dimension inequality
with non-negative curvature.

1. Introduction

Li and Yau [6] proved an upper bound on the gradient of positive solutions
of the heat equation on manifolds with Ricci curvature bounded from below.
The simplest variant of their result is

(1.1) |∇ log u|2 − ∂t(log u) =
|∇u|2
u2

− ∂tu

u
≤ n

2t
, ,

where u is a positive solution of the heat equation (∆− ∂t)u = 0 on an n-
dimensional compact manifold with non-negative Ricci curvature. The proof
is based on a specific property of such manifolds, the curvature-dimension

inequality (CD-inequality)

(1.2)
1

2
∆|∇f |2 ≥ ⟨∇f,∇∆f⟩+ 1

n
(∆f)2.

It was an important insight by Bakry and Emery [1] that one can use it
as a substitute for the lower Ricci curvature bound on spaces where a direct
generalization of Ricci curvature is not available. The direct discrete version
of the CD-inequality was introduced in [7]. It is a local notion in the sense
that it only depends on 2-step neighborhoods of the nodes of the graph. Its
properties were subsequently studied in [3], where the authors showed that
the discrete CD-inequality implies a weak Harnack-type inequality, but fell
short of proving the Li-Yau gradient estimate.

In the break-through paper [2] a variant of the CD-inequality was intro-
duced: the so called the exponential curvature-dimension (CDE) inequality.

1833
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1834 S. Liu and G. Lippner

This is still a local notion, its validity depends only on 2-step neighborhoods
in the graph. However, for the first time, it was shown that this inequality
implies a version of the Li-Yau gradient estimate.

Theorem 1.3 ([2]). Let G be a finite graph satisfying CDE(n, 0), and let

u be a positive solution to the heat equation on G. Then for all t > 0

(1.4)
|∇(

√
u)|2

u
− ∂t(

√
u)√
u

≤ n

2t
.

1.1. Main result

It was shown in [2] that the curvature notion based on CDE-inequality be-
haves ”as expected”: complete graphs have positive curvature, lattices have
0 curvature, trees have negative curvature. However, the fact that the CDE-
inequality only depends on 2-step neighborhoods leads to an unexpected
and undesirable side-effect. The hexagonal lattice, and in more general Cay-
ley graphs of virtually-Abelian groups (these include periodic planar tilings,
among others), will not satisfy a CDE type inequality with non-negative
curvature. In fact, their 2-step neighborhoods are the same as that of trees,
whose curvature is known to be negative. This is completely counter-intuitive
to the observation that these graphs are essentially flat and hence should
ideally have 0 curvature. Our intuition is hence that they should satisfy a
Li-Yau type gradient estimate. That is exactly what we show in this paper.

Theorem 1.5. Let Φ be a virtually Abelian group and Φ̃ ≤ Φ a normal

Abelian subgroup of index k < ∞. Let S ⊂ Φ be a finite, symmetric gener-

ating set and denote G = Cay(Φ, S) the associated Cayley graph. Similarly,

let S̃ ⊂ Φ̃ be a finite, symmetric, conjugation-invariant generating set of Φ̃.
There exist constants K,C > 0 such that for any solution w : G× [0,∞) →
[0, 1] of the heat equation on G, the shifted solution u = w +

√
k satisfies

Γ̃(
√
u)

Ku
− ∂t(

√
u)√
u

≤ C

t
.

Here Γ̃ stands for the usual “gradient squared” operator Γ of G̃ =
Cay(Φ, S̃), the graph on the full group obtained by generators of the Abelian
subgroup. For the exact definitions and notation see Section 1.2.

Remark 1. A big drawback of this theorem is the need to shift the so-
lutions of the heat equation by

√
k. Even though the size of the shift is
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independent of the solution, it is still bigger than the infinity norm of it.
This means that the theorem cannot be used to prove Harnack-type in-
equalities (a typical application of the gradient estimate), since the shifted
solutions automatically satisfy such an inequality.

On the other hand, we believe that shifting is only a technical artifact of
the proof, and that the theorem ought to be true without it. The main issue
is that the family of weight functions fχ,j constructed in Section 3 aren’t
non-negative. One possibility of avoiding the shift could be to construct a
better family of such functions.

The idea of the proof is the following. From [2] we know that any positive
solution of the heat equation on G̃ satisfies (1.4) for n = 2|S̃|. We will express
solutions of the heat equation on G as a linear combination of solutions of the
heat equation on G̃. Then we show that positive linear combinations preserve
the validity of (1.4). Finally we show that shifting the original solution by
a positive constant allows us to turn the original linear combination into a
positive linear combination.

In general, (1.1) is a stronger conclusion than (1.4), and it is an easy
computation to show that the direct discrete analogue of (1.1) does not hold
on graphs. However, on a manifold, the inequality (1.1) is equivalent to

(1.6) −∆ log u(x, t) ≤ n/2t,

and Münch [8] found a new variant of the CD-inequality that implies (1.6) for
finite graphs. In particular, he shows that for finite, locally Abelian graphs
there exists a constant n depending only on the degree such that (1.6) holds.
We shall use this result to prove the following analogue of Theorem 1.5.

Theorem 1.7. Under the conditions of Theorem 1.5, we have

−∆̃ log u ≤ C

t
,

where ∆̃ denotes the Laplace operator on G̃.

1.2. Notation

For a given locally finite graph G we define the Laplace operator ∆ = ∆G

acting on a function f : G → R as

∆f(x) =
∑

y∼x

(f(y)− f(x)).
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We will often consider a graph G̃ on the same vertex set at the same time.
For convenience we will often abbreviate ∆G̃ as ∆̃.

For a given function g : G → [0,∞) the heat equation for u : G×
[0,∞) → [0,∞) with initial condition g is the system

∆u(x, t) = ∂tu(x, t), u(x, 0) = g(x),

where ∆ acts on the first variable of u.
The gradient operator Γ = ΓG is defined as

Γ(f)(x) =
∑

y∼x

(f(y)− f(x))2.

We will also use the notation Γ̃ = ΓG̃.
Throughout the paper we consider a fixed virtually Abelian group Φ

with a finite, symmetric generating set S. The unit element will always
be denoted by 1. The Cayley graph associated to this generating set will
be denoted by G. (Edges are given by multiplication by generators on the
right.) Since Φ is virtually Abelian, it has a finite index free Abelian normal
subgroup Φ̃ ≤ Φ. We fix a generating set S̃ for Φ̃, and denote by G̃ the
graph whose vertex set is the same as that of G, but the edges are given by
multiplication by elements of S̃. Thus, G̃ is a disjoint union of finitely many
copies of Cay(Φ̃, S̃).

Every element x ∈ Φ defines an automorphism φx : Φ̃ → Φ̃ by the map
y 7→ x−1 ∗ y ∗ x. The map x 7→ φx defines a representation Φ → Aut(Φ̃) that
factors through the quotient Φ/Φ̃, hence there are at most k different auto-
morphisms obtainable this way and they form a group.

We will assume that the set S̃ is invariant under the automorphisms
φx. By the previous remarks such a finite generating set always exists. For
example, if Φ̃ is in the center of Φ, any finite generating set can be chosen.

Remark 2. A simple consequence of the invariance of S̃ is that for any
z ∈ Φ the following two sets are the same:

(1.8) {z ∗ s : s ∈ S̃} = {s ∗ z : s ∈ S̃}.

Let f : G → C be any function, and let fz(x) = f(x ∗ z). Then (1.8) imme-
diately implies the following identities:

∆̃fz(x) = (∆̃f)(x ∗ z),
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and

Γ̃(fz)(x) = Γ̃(f)(x ∗ z).

2. Relating the heat equation on G and G̃

In this section we explain how to obtain a solution to the heat equation on G
as a (possibly infinite) linear combination of solutions to the heat equation
on G̃.

Let w(x, t) : G̃× [0,∞) be the solution of ∆̃w = ∂tw with the initial
condition w(x, 0) = δx=1. As a first attempt, let us fix a β > 0 and try to
construct a solution to ∆u = ∂tu in the form

(2.1) u(x, t) =
∑

z∈Φ

f(z)w(x ∗ z−1, βt).

Uniform convergence of this sum will be ensured by choosing a nonnegative
bounded weight function f : Φ → R≥0. That is sufficient, since w decays
super-exponentially in space according to the continuous time version of the
Carne-Varopoulos bound [5].

Now we can compare ∆u and ∂tu, and find a sufficient condition on f
that ensures u is a solution of the heat equation.

∆u(x, t) =
∑

s∈S

(u(x ∗ s)− u(x))(2.2)

=
∑

z∈Φ

∑

s∈S

f(z)(w(x ∗ s ∗ z−1, βt)− w(x ∗ z−1, βt))

=
∑

z∈Φ

f(z)
∑

s∈S

(w(x ∗ (z ∗ s−1)−1, βt)− w(x ∗ z−1, βt))

=
∑

z∈Φ

w(x ∗ z−1, βt)
∑

s∈S

(f(z ∗ s)− f(z))

=
∑

z∈Φ

(∆f)(z) · w(x ∗ z−1, βt).

In order to compute the time derivative, we will exploit that w satisfies
∆̃w = ∂tw, as well as Remark 2. Let us temporarily denote wz(x, t) = w(x ∗
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z−1, t).

∂tu(x, t) =
∑

z∈Φ

f(z)β · (∂tw)(x ∗ z−1, βt)(2.3)

=
∑

z∈Φ

f(z)β · (∆̃w)(x ∗ z−1, βt)

= β
∑

z∈Φ

f(z)∆̃wz(x, βt)

= β
∑

z∈Φ

(∆̃f)(z)wz(x, βt)

= β
∑

z∈Φ

(∆̃f)(z)w(x ∗ z−1, βt).

Thus combining (2.2) and (2.3) leads to the following observation.

Lemma 2.4. If β∆̃f = ∆f then the function u defined in (2.1) satisfies

∆u = ∂tu.

The next step is to find a family of functions f that satisfy the conditions
of Lemma 2.4. This will be facilitated by the observation that ∆ and ∆̃
commute. Thus we will be able to find functions f that satisfy the condition
of Lemma 2.4 by constructing joint eigenfunctions of ∆ and ∆̃.

Claim 2.5. ∆∆̃f = ∆̃∆f for any function f .

Proof. Writing out the definitions, what we need to check is that

∑

s∈S

∑

s̃∈S̃

f(x ∗ s̃ ∗ s) =
∑

s∈S

∑

s̃∈S̃

f(x ∗ s ∗ s̃),

but this follows immediately from Remark 2. □

3. Constructing periodic solutions

In this section we will build solutions to the heat equation on G that have
almost arbitrary “periodic” initial conditions. Fix n > 1. Denote by Φn the
finite quotient Φn = Φ/⟨sn : s ∈ S̃⟩ and by Φ̃n the finite Abelian quotient
Φ̃n = Φ̃/⟨sn : s ∈ S̃⟩). The associated graphs will be denoted by Gn and G̃n

respectively. Let us introduce the quotient map by πn : Φ → Φn.
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Definition 3.1. We say that a function g : Φ → C is (n−)periodic if g(x) =
g(x ∗ sn) for any s ∈ S̃. Since Φ̃ is normal in Φ, this is equivalent to saying
that g(sn ∗ x) = g(x) for all s ∈ S̃. It is also equivalent to the existence of a
function h : Φn → C such that g = h ◦ πn.

It is easy to check that the operators ∆ and ∆̃ descend toGn and that, for
either of these operators, a periodic function g : Φ → C is an eigenfunction
if and only if it is a lift of an eigenfunction h : Φn → C.

Let

Ch(Φ̃n) = {χ : Φ̃n → C : χ(x ∗ y) = χ(x)χ(y)}
denote the set of multiplicative characters on Φ̃n. Fix a multiplicative char-
acter χ :∈ Ch(Φ̃n). Next we consider the possible extensions χ to each coset
of Φ̃ as follows. Define the complex vector space

(3.2) Vχ = {g : Φn → C : ∀x ∈ Φn, ∀s ∈ S̃, g(s ∗ x) = χ(s)g(x)}.

Clearly for any g ∈ Vχ we have, by (1.8),

∆̃g(x) =
∑

s∈S̃

(g(x ∗ s)− g(x)) =
∑

s∈S̃

(g(s ∗ x)− g(x)) = λχg,

where λχ =
∑

s∈S̃(χ(s)− 1). It is also clear from the symmetry of S̃ that
λχ ∈ R≤0, and λχ = 1 if and only if χ ≡ 1. Let ✶ denote the constant 1
character.

We have dimVχ = |Φn : Φ̃n| = k, and the formula

(3.3) ⟨g, h⟩ =
∑

x∈Φn

g(x)h(x)

defines a scalar product on Vχ.

Claim 3.4. Vχ is an invariant subspace for ∆.

Proof. For any s ∈ S̃ we have

∆g(s ∗ x) =
∑

t∈S

(g(s ∗ x ∗ t)− g(s ∗ x))

=
∑

t∈S

(χ(s)g(x ∗ t)− χ(s)g(x)) = χ(s)∆g(x).

□
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Thus ∆ is a negative definite, self-adjoint operator on Vχ so there
are k eigenfunctions fχ,1, . . . , fχ,k ∈ Vχ of ∆ with respective eigenvalues
λχ,1, . . . , λχ,k that form an orthonormal basis with respect to the scalar
product (3.3).

Since different characters are orthogonal on Φ̃n, and there are exactly
|Φ̃n| of them, we get that the system

{fχ,j : χ ∈ Ch(Φ̃n), 1 ≤ j ≤ k}

forms an orthonormal basis of ∆-eigenfunctions on Gn. One virtue of this
particular eigenbasis is that we can bound the supremum norm of its ele-
ments.

Lemma 3.5. ∥fχ,j∥∞ ≤
√

k/|Φn|

Proof. Write f = fχ,j for short. We know by construction that |f | is constant
along each coset of Φ̃n. Let these constants be c1, . . . , ck ≥ 0. Then we can
write

1 =
∑

x∈Φn

|f(x)|2 =
k∑

i=1

c2i |Φ̃n| ≥ max
i

(c2i )|Φ̃n|.

Thus

∥f∥∞ = max
i

(ci) ≤
√

1

|Φ̃n|
=

√
k

|Φn|
.

□

For each fχ,j we define

0 < βχ,j = λχ,j/λχ.

This can be done unless χ = ✶. The positivity follows from the fact that
both λχ and λχ,j are negative. The subspace V✶ is special, it contains all the
functions that are constant along the cosets of Φ̃n. We may assume that f✶,1
is the constant function and define β✶,1 = 1. Thus the following statement
holds.

Claim 3.6.

βχ,j∆̃fχ,j = ∆fχ,j ,

unless χ = ✶ and j ≥ 2. Hence the same also holds for c+ fχ,j ◦ πn : G → C

where c is an arbitrary constant, so these functions satisfy the condition

Lemma 2.4.
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Now let g : Gn → C be a function that is orthogonal to f✶,j : j ≥ 2. Then
we can express it as a linear combination of all the other eigenfunctions:

g =
∑

χ∈Ch(Φ̃n),j=1,...,k

cχ,jfχ,j ,

where c✶,j = 0 if j ≥ 2.
Let us further choose constants aχ,j ∈ C whose value will be determined

later. Let us set

(3.7) B =
∑

χ∈Ch(Φ̃n)

k∑

j=1

cχ,jaχ,j .

Finally, define u : G → C with the formula

(3.8)

u(x, t) =
∑

χ∈Ch(Φ̃n)

k∑

j=1

∑

z∈Φ

cχ,j ·
(
fχ,j ◦ πn(z) + aχj

)
· w(x ∗ z−1, βχ,jt)−B.

Theorem 3.9. The function u defined in (3.8) satisfies the heat equation

on G with initial condition u(x, 0) = g ◦ πn(x).

Proof. That ∆u = ∂tu holds follows from Lemma 2.4 combined with
Claim 3.6. The only thing we have to show is that u satisfies the initial
condition. This is a simple calculation based on the choice of w(x, 0) = δx=1.

u(x, 0) =
∑

χ∈Ch(Φ̃n)

k∑

j=1

∑

z∈Φ

cχ,j ·
(
fχ,j ◦ πn(z) + aχj

)
· w(x ∗ z−1, 0)−B

=
∑

χ∈Ch(Φ̃n)

k∑

j=1

∑

z∈Φ

cχ,j ·
(
fχ,j ◦ πn(z) + aχj

)
· δx∗z−1=1 −B

=
∑

χ∈Ch(Φ̃n)

k∑

j=1

cχ,j ·
(
fχ,j ◦ πn(x) + aχj

)
−B

=
∑

χ∈Ch(Φ̃n)

k∑

j=1

cχ,j · fχ,j ◦ πn(x) = g(x)

□
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We are interested in non-negative real initial conditions g(x) for which
the solution u(x, t) will also be real and non-negative. Then we can take the
real part of both sides of (3.8) to obtain

u(x, t) =
∑

χ∈Ch(Φ̃n)

k∑

j=1

∑

z∈Φ

ℜ
(
cχ,j ·

(
fχ,j ◦ πn(z) + aχj

))
· w(x ∗ z−1, βχ,jt)

(3.10)

−ℜ(B).

The main idea of the proof of Theorem 1.5 is to express the solution u(x, t)
as a non-negative linear combination of solutions on G̃ for which the gradient
estimate is already known.

Our goal with introducing the constants aχ,j is to force all coefficients
appearing in (3.10) to be non-negative. This can be done by setting

(3.11) aχ,j =

{
|cχ,j |
cχ,j

∥fχ,j∥∞ : cχ,j ̸= 0

0 : cχ,j = 0
.

Unfortunately the use of the constants aχ,j come at the cost of having to
deal with the constant B. Next we show that B can be bounded in terms of
g but independently of n.

Lemma 3.12. If the aχ,j’s are chosen according to (3.11) then B =∑
aχ,jcχ,j ≤

√
k∥g∥2.

Proof. First, it is clear that B ≤
∑

|cχ,j | · ∥fχ,j∥∞. Let us recall that cχ,j =
⟨g, fχ,j⟩ Then, by Cauchy-Schwarz and Lemma 3.5 we get

B ≤
√∑

|⟨g, fχ,j⟩|2
√∑

∥fχ,j∥2∞ ≤ ∥g∥2
√

|Φn|
k

Φn
=

√
k∥g∥2.

□

We can summarize the results of this section as follows.

Corollary 3.13. Let g : Gn → [0,∞) be orthogonal to the span of {f✶,j :
2 ≤ j ≤ k}. Let u(x, t) denote solution of the heat equation on G with ini-
tial conditions u(x, 0) = g ◦ πn(x). Then there exist a non-negative bounded
weight function q(χ, j, z) such that

(3.14) u(x, t) +
√
k∥g∥2 =

∑

χ,j,z

q(χ, j, z)w(x ∗ z−1, βχ,jt).
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Remark 3. The condition that g be orthogonal to the eigenfunctions f✶,j :
2 ≤ j ≤ k is equivalent to requiring that the sum of g along any coset of
Φ̃n is the same. This is clear, since the orthogonal projection of g onto
V✶ is obtained by averaging g along each coset, and thus g is orthogonal
to f✶,j : 2 ≤ j ≤ k if and only if this projection coincides with f✶,1 – the
constant function.

4. Gradient estimate

Let us recall from [2] that since w(x, t) is a solution of the heat equation on
the Abelian Cayley graph G̃, it satisfies the Li-Yau estimate

Γ̃(
√
w)

w
− ∂tw

2w
≤ C

t

with a constant C depending only on |S̃|. Then, by Remark 2, the function
wβ,z(x, t) = w(x ∗ z−1, βt) satisfies

Γ̃(
√
wβ,z)

wβ,z
− ∂twβ,z

2βwβ,z
≤ C

βt
,

or equivalently

(4.1) βΓ̃(
√
wβ,z)− ∂twβ,z/2 ≤ C

t
wβ,z.

The β values appearing are the βχ,j introduced in the previous section;
to make (4.1) effective we now derive a global lower bound on these βs.

Lemma 4.2. There is a constant K depending only on Φ, S, S̃ such that

for any fixed n we have βχ,j ≥ 1/K for all ✶ ̸= χ ∈ Ch(Φ̃n) and 1 ≤ j ≤ k.

Proof. Let’s fix χ and j, and let’s write β = βχ,j and f = fχ,j for short. By
Claim 3.6 we have β∆̃f = ∆f . Since fχ,j is defined on the finite graph Gn,
we can take scalar product of both sides with fχ,j and use “integration by
parts” to get

(4.3) βχ,j
∑

x∈Gn

∑

t∈S̃

(f(x ∗ t)− f(x))2 =
∑

x∈Gn

∑

s∈S

(f(x ∗ s)− f(x))2.

Each t ∈ S̃ can be written as a word in S. Suppose t = st,1st,2 . . . st,r
where st,1, st,2, . . . , st,r ∈ S. (Of course r = r(t) may depend on t.) Then we
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can use Cauchy-Schwarz to obtain

(f(x ∗ t)− f(x))2

=

(
r∑

i=1

(f(x ∗ st,1 ∗ st,2 ∗ · · · ∗ st,i)− f(x ∗ st,1 ∗ st,2 ∗ · · · ∗ st,i−1))

)2

≤ r

r∑

i=1

(f(x ∗ st,1 ∗ st,2 ∗ · · · ∗ st,i)− f(x ∗ st,1 ∗ st,2 ∗ · · · ∗ st,i−1))
2 .

Summing this for all x ∈ Gn, for any i the expression x ∗ st,1 ∗ · · · ∗ st,i−1

also runs exactly over each element of Gn. Thus we get

∑

x∈Gn

(f(x ∗ t)− f(x))2 ≤ r

r(t)∑

i=1

(f(x ∗ st,i)− f(x))2.

Now we sum this last expression for all t ∈ S̃ to get

∑

x∈Gn

∑

t∈S̃

(f(x ∗ t)− f(x))2 ≤ r
∑

x∈Gn

∑

t∈S̃

r(t)∑

i=1

(f(x ∗ st,i)− f(x))2

≤ rM
∑

x∈Gn

∑

s∈S

(f(x ∗ s)− f(x))2,

where M is the largest of the multiplicities of the elements of the multi-
set {st,i : t ∈ S̃, 1 ≤ i ≤ r(t)}. Combining the last estimate with (4.3) we get
β ≥ 1/(rM), so K = rM is a valid choice. □

Lemma 4.4. Γ̃
(√·
)
is a convex operator, that is for non-negative weights

ci and non-negative functions fi we have

Γ̃



√∑

i

cifi


 ≤

∑

i

ciΓ̃
(√

fi

)
.

Proof. By the definition of Γ̃ all we have to check is that, assuming all sums
are convergent and all numbers are non-negative,



√∑

i

ciai −
√∑

i

cibi




2

≤
∑

i

ci

(√
ai −

√
bi

)2
.
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This is a simple Cauchy-Schwarz inequality after opening the brackets and
canceling as much as possible. □

Corollary 4.5. For any nonnegative bounded weight function q(χ, j, z), we
have

Γ̃



√∑

χ,j,z

q(χ, j, z)wβχ,j ,z


 ≤

∑

χ,j,z

q(χ, j, z)Γ̃(
√
wβχ,j ,z).

We are ready to prove Theorem 1.5. We will actually show the following
slightly stronger statement.

Theorem 4.6. Let g ∈ L2(G) a non-negative function. Let u(x, t) denote

the solution of the heat equation on G with initial condition u(x, 0) = g(x) +
k∥g∥2. Then

Γ̃(
√
u)

Ku
− ∂t(

√
u)√
u

≤ C

t
.

Proof. For each n > 1, choose a subset Hn ⊂ G that contains exactly one
element from each set π−1

n (x) : x ∈ Φn in such a way that 1 ∈ Hn but that
this element 1 is as far from the boundary of Hn as possible with respect
to the graph distance. (The set Hn will look like a (skew) ball around the
element 1 in G.) In particular we have H1 ⊂ H2 ⊂ H3 . . . , and the distance
between 1 and the boundary of Hn clearly goes to infinity as n goes to
infinity.

Now we describe a simple way to modify g and turn it into a function
that satisfies the conditions of Corollary 3.13. Let hn denote the “restriction”
of g to Φn through Hn. That is, let hn : Φn → R be the function defined by
hn(x) = g(π−1

n (x) ∩Hn). Note that hn ◦ πn coincides with g on Hn and is
periodic.

However hn still might not be orthogonal to the subspace spanned by
f✶,j : 2 ≤ j ≤ k. We can ensure this orthogonality, according to Remark 3,
by modifying g on Hn \Hn/2 in such a way that for any coset D of Φ̃n in
Φn, the expression

∑
x∈D g(π−1

n (x) ∩Hn) is independent ofD. This increases

∥g|Hn|∥2 at most
√
k-fold. (The worst case is when g was 0 on all but one

of the cosets.) Let g′n denote the modified function, and let h′n denote its
restriction to Φn as explained in the previous paragraph.

We get that ∥h′n∥2 ≤
√
k∥g∥2, and that h′n is orthogonal to the eigenfunc-

tions f✶,j : 2 ≤ j ≤ k. Finally h′n ◦ πn is a periodic function that coincides
with g on Hn/2. Let us denote by un(x, t) the solution of the heat equation
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with initial conditions u(x, 0) = h′n ◦ πn(x). Then by Corollary 3.13 there is
a bounded non-negative weight function q(χ, j, z) such that

un +
√
k∥h′n∥2 =

∑

χ,j,z

q(χ, j, z)wβχ,j ,z.

By Lemma 4.2 there is a constant K independent of n such that each βχ,j ≥
1/K, hence by (4.1), for every χ, j pair

1

K
Γ̃(

√
wβχ,j ,z)− ∂twβχ,j ,z/2 ≤ C

t
wβχ,j ,z.

Thus by Corollary 4.5 the same holds for un +
√
k∥h′n∥2, and thus also for

vn = un + k∥g∥2. So we get that for any point x ∈ G and any t ≥ 0

(4.7)
Γ̃(

√
vn)(x, t)

Kvn(x, t)
− ∂tvn(x, t)

2vn(x, t)
≤ C

t
.

Finally, we let n → ∞. The theorem then follows from Claim 4.8 below.
□

Claim 4.8. For any x ∈ G and t ≥ 0 we have limn→∞ un(x, t) = u(x, t)
and limn→∞ ∂tun(x, t) = ∂tu(x, t).

Proof. Let pn(x) = g(x)− h′n ◦ πn(x), and denote Un(x, t) the solution of the
heat equation with initial conditions Un(x, 0) = pn(x). Then clearly u(x, t) =
Un(x, t) + un(x, t). Note that ∂tu, ∂tun, and ∂tUn are also solutions of the
heat equation with initial conditions ∆g,∆g − pn,∆pn respectively.

Let us denote the heat kernel on G by k. That is, k(·, y, t) is the prob-
ability density, at time t, of a continuous time random walk started at y.
Then

Un(x, t) =
∑

y

pn(y)k(x, y, t).

The continuous time version of the Carne-Varopoulos bound [5] implies that
if d(x, y)/t is large enough, then

(4.9) k(x, y, t) ≤ exp

(
−cd(x, y) ln

d(x, y)

ct

)

For a fixed x, if n is large enough, the initial condition function pn vanishes
on a ball of radius Rn around x. Since pn is bounded on the whole G, and t
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is fixed, by (4.9) we get

Un(x, t) ≤ c∥pn∥∞
∑

y:d(x,y)>Rn

e−cd(x,y) ln d(x,y)

ct .

Since the volume of the balls of radius Rn grow polynomially, this sum clearly
decays exponentially to 0 as Rn → ∞. The same holds for ∂tUn, since ∆pn
also vanishes on a ball of radius growing to infinity around any particular
point x as n → ∞. □

Finally let briefly indicate what modifications are necessary to obtain
Theorem 1.7.

Proof of Theorem 1.7. From [8] we get that there is a constant C > 0 such
that for any solution w : G̃ → [0,∞) of the equation ∆̃w = ∂tw that is pe-
riodic with respect to ⟨sn : s ∈ S̃⟩ satisfies

(4.10) −∆̃ logw ≤ C

t
.

The reason w is a priori required to be periodic is because [8] only proves
(4.10) for finite graphs. However, by the same method as used in the proof
of Theorem 1.5, and in particular by Claim 4.8 this implies that (4.10)
holds for arbitrary w. Then, just as in (4.1), we find that −β logwβ,z ≤ C

t .
Thus the statement follows, as long as we provide the analog of Lemma 4.4
for −∆̃ log. However ∆̃ is linear, and log is concave, so −∆̃ log is convex, so
− log

∑
cifi ≤ −

∑
ci log fi for real numbers ci ≥ 0 and functions fi ≥ 0. □
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