Stability and area growth of λ -hypersurfaces

QING-MING CHENG AND GUOXIN WEI

In this paper, We define a \mathcal{F} -functional and study \mathcal{F} -stability of λ -hypersurfaces, which extend a result of Colding-Minicozzi [6]. Lower bound growth and upper bound growth of area for complete and non-compact λ -hypersurfaces are studied.

1	Introduction	1059
2	The first variation of \mathcal{F} -functional	1061
3	The second variation of \mathcal{F} -functional	1065
4	The weak stability of the weighted area functional for weighted volume-preserving variations	1073
5	Properness and polynomial area growth for λ -hypersurfaces	1077
6	A lower bound growth of the area for λ -hypersurfaces	1079
References		1090

1. Introduction

Let $X: M \to \mathbb{R}^{n+1}$ be a smooth *n*-dimensional immersed hypersurface in the (n+1)-dimensional Euclidean space \mathbb{R}^{n+1} . A family $X(\cdot,t)$ of smooth

The first author was partially supported by JSPS Grant-in-Aid for Scientific Research (B): No.16H03937. The second author was partly supported by NSFC Grant No.11771154, Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme (2018), Guangdong Natural Science Foundation Grant No.2019A1515011451.

immersions:

$$X(\cdot,t):M\to\mathbb{R}^{n+1}$$

with $X(\cdot,0) = X(\cdot)$ is called a mean curvature flow if they satisfy

$$\frac{\partial X(p,t)}{\partial t} = \mathbf{H}(p,t),$$

where $\mathbf{H}(t) = \mathbf{H}(p,t)$ denotes the mean curvature vector of hypersurface $M_t = X(M^n,t)$ at point X(p,t). Huisken [9] proved that the mean curvature flow M_t remains smooth and convex until it becomes extinct at a point in the finite time. If we rescale the flow about the point, the rescaling converges to the round sphere. An immersed hypersurface $X: M \to \mathbb{R}^{n+1}$ is called a self-shrinker if

$$H + \langle X, N \rangle = 0,$$

where H and N denote the mean curvature and the unit normal vector of $X: M \to \mathbb{R}^{n+1}$, respectively. $\langle \cdot, \cdot \rangle$ denotes the standard inner product in \mathbb{R}^{n+1} . It is known that self-shrinkers play an important role in the study of the mean curvature flow because they describe all possible blow ups at a given singularity of the mean curvature flow.

Colding and Minicozzi [6] have introduced a notation of \mathcal{F} -functional and computed the first and the second variation formulas of the \mathcal{F} -functional. They have proved that an immersed hypersurface $X: M \to \mathbb{R}^{n+1}$ is a self-shrinker if and only if it is a critical point of the \mathcal{F} -functional. Furthermore, they have given a complete classification of the \mathcal{F} -stable complete self-shrinkers with polynomial area growth.

In [3], we consider a new type of mean curvature flow:

(1.1)
$$\frac{\partial X(t)}{\partial t} = -\alpha(t)N(t) + \mathbf{H}(t),$$

with

$$\alpha(t) = \frac{\int_M H(t) \langle N(t), N \rangle e^{-\frac{|X|^2}{2}} d\mu}{\int_M \langle N(t), N \rangle e^{-\frac{|X|^2}{2}} d\mu},$$

where N is the unit normal vector of $X: M \to \mathbb{R}^{n+1}$. We define a weighted volume of M_t by

$$V(t) = \int_{M} \langle X(t), N \rangle e^{-\frac{|X|^2}{2}} d\mu.$$

We can prove that the flow (1.1) preserves the weighted volume V(t). Hence, we call the flow (1.1) a weighted volume-preserving mean curvature flow.

From a view of variations, self-shrinkers of mean curvature flow can be characterized as critical points of the weighted area functional. In [3], the authors give a definition of weighted volume and study the weighted area functional for variations preserving this volume. Critical points for the weighted area functional for variations preserving this volume are called λ -hypersurfaces by the authors in [3]. Precisely, an n-dimensional hypersurface $X: M \to \mathbb{R}^{n+1}$ in Euclidean space \mathbb{R}^{n+1} is called a λ -hypersurface if

$$\langle X, N \rangle + H = \lambda,$$

where λ is a constant, H and N denote the mean curvature and unit normal vector of $X: M \to \mathbb{R}^{n+1}$, respectively.

Remark 1.1. If $\lambda = 0$, $\langle X, N \rangle + H = \lambda = 0$, then $X : M \to \mathbb{R}^{n+1}$ is a self-shrinkers. Hence, the notation of λ -hypersurfaces is a natural generalization of the self-shrinkers of the mean curvature flow. The equation (1.2) also arises in the Gaussian isoperimetric problem.

In this paper, we define \mathcal{F} -functional. The first and second variation formulas of \mathcal{F} -functional are given. Notation of \mathcal{F} -stability and \mathcal{F} -unstability of λ -hypersurfaces are introduced. We prove that spheres $S^n(r)$ with $r \leq \sqrt{n}$ or $r > \sqrt{n+1}$ are \mathcal{F} -stable and spheres $S^n(r)$ with $\sqrt{n} < r \leq \sqrt{n+1}$ are \mathcal{F} -unstable. In section 4, we study the weak stability of the weighted area functional for the weighted volume-preserving variations. In sections 5 and 6, the area growth of complete and non-compact λ -hypersurfaces are studied.

We should remark that this paper is the second part of our paper arXiv:1403.3177, which is divided into two parts. The first part has been published [4].

2. The first variation of \mathcal{F} -functional

In this section, we will give another variational characterization of λ -hypersurfaces.

The following lemmas can be found in [3].

Lemma 2.1. If $X: M \to \mathbb{R}^{n+1}$ is a λ -hypersurface, then we have

(2.1)
$$\mathcal{L}\langle X, a \rangle = \lambda \langle N, a \rangle - \langle X, a \rangle,$$

(2.2)
$$\mathcal{L}\langle N, a \rangle = -S\langle N, a \rangle,$$

(2.3)
$$\frac{1}{2}\mathcal{L}(|X|^2) = n - |X|^2 + \lambda \langle X, N \rangle,$$

where \mathcal{L} is an elliptic operator given by $\mathcal{L}f = \Delta f - \langle X, \nabla f \rangle$, Δ and ∇ denote the Laplacian and the gradient operator of the λ -hypersurface, respectively, $a \in \mathbb{R}^{n+1}$ is constant vector, S is the squared norm of the second fundamental form.

Lemma 2.2. If $X: M \to \mathbb{R}^{n+1}$ is a hypersurface, u is a C^1 -function with compact support and v is a C^2 -function, then

(2.4)
$$\int_{M} u(\mathcal{L}v)e^{-\frac{|X|^{2}}{2}}d\mu = -\int_{M} \langle \nabla u, \nabla v \rangle e^{-\frac{|X|^{2}}{2}}d\mu.$$

Corollary 2.1. Let $X: M \to \mathbb{R}^{n+1}$ be a complete hypersurface. If u, v are C^2 functions satisfying

(2.5)
$$\int_{M} (|u\nabla v| + |\nabla u||\nabla v| + |u\mathcal{L}v|)e^{-\frac{|X|^2}{2}}d\mu < +\infty,$$

then we have

(2.6)
$$\int_{M} u(\mathcal{L}v)e^{-\frac{|X|^{2}}{2}}d\mu = -\int_{M} \langle \nabla u, \nabla v \rangle e^{-\frac{|X|^{2}}{2}}d\mu.$$

Lemma 2.3. Let $X: M \to \mathbb{R}^{n+1}$ be an n-dimensional complete λ -hypersurface with polynomial area growth, then

(2.7)
$$\int_{M} (\langle X, a \rangle - \lambda \langle N, a \rangle) e^{-\frac{|X|^2}{2}} d\mu = 0,$$

(2.8)
$$\int_{M} (n - |X|^{2} + \lambda \langle X, N \rangle) e^{-\frac{|X|^{2}}{2}} d\mu = 0,$$

$$(2.9) \int_{M} \langle X, a \rangle |X|^{2} e^{-\frac{|X|^{2}}{2}} d\mu$$

$$= \int_{M} \left(2n\lambda \langle N,a \rangle + 2\lambda \langle X,a \rangle (\lambda - H) - \lambda \langle N,a \rangle |X|^{2} \right) e^{-\frac{|X|^{2}}{2}} d\mu,$$

$$(2.10) \int_{M} \langle X, a \rangle^{2} e^{-\frac{|X|^{2}}{2}} d\mu = \int_{M} \left(|a^{T}|^{2} + \lambda \langle N, a \rangle \langle X, a \rangle \right) e^{-\frac{|X|^{2}}{2}} d\mu,$$

where $a^T = \sum_i \langle a, e_i \rangle e_i$.

(2.11)
$$\int_{M} \left(|X|^{2} - n - \frac{\lambda(\lambda - H)}{2} \right)^{2} e^{-\frac{|X|^{2}}{2}} d\mu$$
$$= \int_{M} \left\{ \left(\frac{\lambda^{2}}{4} - 1 \right) (\lambda - H)^{2} + 2n - H^{2} + \lambda^{2} \right\} e^{-\frac{|X|^{2}}{2}} d\mu.$$

Let $X(s): M \to \mathbb{R}^{n+1}$ a variation of X with X(0) = X and $\frac{\partial}{\partial s}X(s)|_{s=0} = fN$. For $X_0 \in \mathbb{R}^{n+1}$ and a real number t_0 , \mathcal{F} -functional is defined by

$$\begin{split} \mathcal{F}_{X_s,t_s}(s) &= \mathcal{F}_{X_s,t_s}(X(s)) \\ &= (4\pi t_s)^{-\frac{n}{2}} \int_M e^{-\frac{|X(s)-X_s|^2}{2t_s}} d\mu_s \\ &+ \lambda (4\pi t_0)^{-\frac{n}{2}} (\frac{t_0}{t_s})^{\frac{1}{2}} \int_M \langle X(s)-X_s,N \rangle e^{-\frac{|X-X_0|^2}{2t_0}} d\mu, \end{split}$$

where X_s and t_s denote variations of X_0 and t_0 . Let

$$\frac{\partial t_s}{\partial s} = h(s), \quad \frac{\partial X_s}{\partial s} = y(s), \quad \frac{\partial X(s)}{\partial s} = f(s)N(s),$$

one calls that $X: M \to \mathbb{R}^{n+1}$ is a critical point of $\mathcal{F}_{X_s,t_s}(s)$ if it is critical with respect to all normal variations and all variations in X_0 and t_0 .

Lemma 2.4. Let X(s) be a variation of X with normal variation vector field $\frac{\partial X(s)}{\partial s}|_{s=0} = fN$. If X_s and t_s are variations of X_0 and t_0 with $\frac{\partial X_s}{\partial s}|_{s=0} = y$ and $\frac{\partial t_s}{\partial s}|_{s=0} = h$, then the first variation formula of $\mathcal{F}_{X_s,t_s}(s)$ is given by

$$(2.12) \quad \mathcal{F}'_{X_0,t_0}(0) = (4\pi t_0)^{-\frac{n}{2}} \int_M \left(\lambda - (H + \langle \frac{X - X_0}{t_0}, N \rangle)\right) f e^{-\frac{|X - X_0|^2}{2}} d\mu$$

$$+ (4\pi t_0)^{-\frac{n}{2}} \int_M \left(\langle \frac{X - X_0}{t_0}, y \rangle - \lambda \langle N, y \rangle\right) e^{-\frac{|X - X_0|^2}{2}} d\mu$$

$$+ (4\pi t_0)^{-\frac{n}{2}} \int_M \left(\frac{|X - X_0|^2}{t_0} - n - \lambda \langle X - X_0, N \rangle\right) \frac{h}{2t_0} e^{-\frac{|X - X_0|^2}{2}} d\mu.$$

Proof. Defining

$$(2.13) \ \mathbb{A}(s) = \int_{M} e^{-\frac{|X(s) - X_{s}|^{2}}{2t_{s}}} d\mu_{s}, \ \mathbb{V}(s) = \int_{M} \langle X(s) - X_{s}, N \rangle e^{-\frac{|X - X_{0}|^{2}}{2t_{0}}} d\mu,$$

then

$$\begin{split} \mathcal{F}_{X_s,t_s}^{'}(s) &= (4\pi t_s)^{-\frac{n}{2}}\mathbb{A}^{'}(s) + \lambda (4\pi t_0)^{-\frac{n}{2}}(\frac{t_0}{t_s})^{\frac{1}{2}}\mathbb{V}^{'}(s) \\ &- (4\pi t_s)^{-\frac{n}{2}}\frac{n}{2t_s}h\mathbb{A}(s) - \lambda (4\pi t_0)^{-\frac{n}{2}}(\frac{t_0}{t_s})^{\frac{1}{2}}\frac{h}{2t_s}\mathbb{V}(s). \end{split}$$

Since

$$\begin{split} \mathbb{A}^{'}(s) &= \int_{M} \left\{ -\langle \frac{X(s) - X_{s}}{t_{s}}, \frac{\partial X(s)}{\partial s} - \frac{\partial X_{s}}{\partial s} \rangle + \frac{|X(s) - X_{s}|^{2}}{2t_{s}^{2}} h \right. \\ &\left. - H_{s} \langle \frac{\partial X(s)}{\partial s}, N(s) \rangle \right\} e^{-\frac{|X(s) - X_{s}|^{2}}{2t_{s}}} d\mu_{s}, \\ \mathbb{V}^{'}(s) &= \int_{M} \langle \frac{\partial X(s)}{\partial s} - \frac{\partial X_{s}}{\partial s}, N \rangle e^{-\frac{|X - X_{0}|^{2}}{2t_{0}}} d\mu, \end{split}$$

we have

$$(2.14) \quad \mathcal{F}'_{X_{s},t_{s}}(s) = (4\pi t_{s})^{-\frac{n}{2}} \int_{M} -(H_{s} + \langle \frac{X(s) - X_{s}}{t_{s}}, N(s) \rangle) f e^{-\frac{|X(s) - X_{s}|^{2}}{2t_{s}}} d\mu_{s}$$

$$+ (4\pi t_{0})^{-\frac{n}{2}} \sqrt{\frac{t_{0}}{t_{s}}} \int_{M} \lambda f \langle N(s), N \rangle e^{-\frac{|X - X_{0}|^{2}}{2t_{0}}} d\mu$$

$$+ (4\pi t_{s})^{-\frac{n}{2}} \int_{M} \langle \frac{X(s) - X_{s}}{t_{s}}, y \rangle e^{-\frac{|X(s) - X_{s}|^{2}}{2t_{s}}} d\mu_{s}$$

$$+ (4\pi t_{0})^{-\frac{n}{2}} \sqrt{\frac{t_{0}}{t_{s}}} \int_{M} \lambda \langle -y, N \rangle e^{-\frac{|X - X_{0}|^{2}}{2t_{0}}} d\mu$$

$$+ (4\pi t_{s})^{-\frac{n}{2}} \int_{M} (-\frac{n}{2t_{s}} + \frac{|X(s) - X_{s}|^{2}}{2t_{s}^{2}}) h e^{-\frac{|X(s) - X_{s}|^{2}}{2t_{s}}} d\mu_{s}$$

$$+ (4\pi t_{0})^{-\frac{n}{2}} \sqrt{\frac{t_{0}}{t_{s}}} \int_{M} -\frac{h\lambda}{2t_{s}} \langle X(s) - X_{s}, N \rangle e^{-\frac{|X - X_{0}|^{2}}{2t_{0}}} d\mu.$$

If s = 0, then X(0) = X, $X_s = X_0$, $t_s = t_0$ and

$$\begin{split} \mathcal{F}_{X_0,t_0}'(0) &= (4\pi t_0)^{-\frac{n}{2}} \int_M \biggl(\lambda - (H + \langle \frac{X - X_0}{t_0}, N \rangle) \biggr) f e^{-\frac{|X - X_0|^2}{2}} d\mu \\ &+ (4\pi t_0)^{-\frac{n}{2}} \int_M \biggl(\langle \frac{X - X_0}{t_0}, y \rangle - \lambda \langle N, y \rangle \biggr) e^{-\frac{|X - X_0|^2}{2}} d\mu \\ &+ (4\pi t_0)^{-\frac{n}{2}} \int_M \biggl(\frac{|X - X_0|^2}{t_0} - n - \lambda \langle X - X_0, N \rangle \biggr) \frac{h}{2t_0} e^{-\frac{|X - X_0|^2}{2}} d\mu. \end{split}$$

From Lemma 2.4, we know that if $X: M \to \mathbb{R}^{n+1}$ is a critical point of \mathcal{F} -functional $\mathcal{F}_{X_s,t_s}(s)$, then

$$H + \langle \frac{X - X_0}{t_0}, N \rangle = \lambda.$$

We next prove that if $H + \langle \frac{X - X_0}{t_0}, N \rangle = \lambda$, then $X : M \to \mathbb{R}^{n+1}$ must be a critical point of \mathcal{F} -functional $\mathcal{F}_{X_s,t_s}(s)$. For simplicity, we only consider the case of $X_0 = 0$ and $t_0 = 1$. In this case, $H + \langle \frac{X - X_0}{t_0}, N \rangle = \lambda$ becomes

$$(2.15) H + \langle X, N \rangle = \lambda.$$

Furthermore, we know that $X: M \to \mathbb{R}^{n+1}$ is a critical point of the \mathcal{F} -functional $\mathcal{F}_{X_s,t_s}(s)$ if and only if $X: M \to \mathbb{R}^{n+1}$ is a critical point of \mathcal{F} -functional $\mathcal{F}_{X_0,t_0}(s)$ with respect to fixed X_0 and t_0 .

Theorem 2.1. $X: M \to \mathbb{R}^{n+1}$ is a critical point of $\mathcal{F}_{X_s,t_s}(s)$ if and only if

$$H + \langle \frac{X - X_0}{t_0}, N \rangle = \lambda.$$

Proof. We only prove the result for $X_0 = 0$ and $t_0 = 1$. In this case, the first variation formula (2.12) becomes

(2.16)
$$\mathcal{F}_{0,1}^{'}(0) = (4\pi)^{-\frac{n}{2}} \int_{M} \left(\lambda - (H + \langle X, N \rangle)\right) f e^{-\frac{|X|^{2}}{2}} d\mu + (4\pi)^{-\frac{n}{2}} \int_{M} \left(\langle X, y \rangle - \lambda \langle N, y \rangle\right) e^{-\frac{|X|^{2}}{2}} d\mu + (4\pi)^{-\frac{n}{2}} \int_{M} \left(|X|^{2} - n - \lambda \langle X, N \rangle\right) \frac{h}{2} e^{-\frac{|X|^{2}}{2}} d\mu.$$

If $X: M \to \mathbb{R}^{n+1}$ is a critical point of $\mathcal{F}_{0,1}$, then $X: M \to \mathbb{R}^{n+1}$ should satisfy $H + \langle X, N \rangle = \lambda$. Conversely, if $H + \langle X, N \rangle = \lambda$ is satisfied, then we know that $X: M \to \mathbb{R}^{n+1}$ is a λ -hypersurface. Therefore, the last two terms in (2.16) vanish for any h and any y from (2.7) and (2.8) of Lemma 2.3. Therefore $X: M \to \mathbb{R}^{n+1}$ is a critical point of $\mathcal{F}_{0,1}$.

Corollary 2.2. $X: M \to \mathbb{R}^{n+1}$ is a critical point of $\mathcal{F}_{X_s,t_s}(s)$ if and only if M is the critical point of \mathcal{F} -functional with respect to fixed X_0 and t_0 .

3. The second variation of \mathcal{F} -functional

In this section, we shall give the second variation formula of \mathcal{F} -functional.

Theorem 3.1. Let $X: M \to \mathbb{R}^{n+1}$ be a critical point of the functional $\mathcal{F}(s) = \mathcal{F}_{X_s,t_s}(s)$. The second variation formula of $\mathcal{F}(s)$ for $X_0 = 0$ and $t_0 = 1$ is given by

$$\begin{split} (4\pi)^{\frac{n}{2}}\mathcal{F}^{''}(0) &= -\int_{M} fLfe^{-\frac{|X|^{2}}{2}}d\mu + \int_{M} \left(-|y|^{2} + \langle X,y\rangle^{2}\right)e^{-\frac{|X|^{2}}{2}}d\mu \\ &+ \int_{M} \left\{2\langle N,y\rangle + (n+1-|X|^{2})\lambda h - 2hH - 2\lambda\langle X,y\rangle\right\}fe^{-\frac{|X|^{2}}{2}}d\mu \\ &+ \int_{M} \left\{(|X|^{2} - n - 1)\langle X,y\rangle\right\}he^{-\frac{|X|^{2}}{2}}d\mu \\ &+ \int_{M} \left\{\frac{n^{2} + 2n}{4} - \frac{n + 2}{2}|X|^{2} + \frac{|X|^{4}}{4} + \frac{3\lambda}{4}(\lambda - H)\right\}h^{2}e^{-\frac{|X|^{2}}{2}}d\mu, \end{split}$$

where the operator L is defined by

$$L = \mathcal{L} + S + 1 - \lambda^2.$$

Proof. Let

$$\begin{split} I(s) &= (4\pi t_s)^{-\frac{n}{2}} \int_{M} -(H_s + \langle \frac{X(s) - X_s}{t_s}, N(s) \rangle) f e^{-\frac{|X(s) - X_s|^2}{2t_s}} d\mu_s \\ &+ (4\pi t_0)^{-\frac{n}{2}} \sqrt{\frac{t_0}{t_s}} \int_{M} \lambda f \langle N(s), N \rangle e^{-\frac{|X - X_0|^2}{2t_0}} d\mu, \\ II(s) &= (4\pi t_s)^{-\frac{n}{2}} \int_{M} \langle \frac{X(s) - X_s}{t_s}, y \rangle e^{-\frac{|X(s) - X_s|^2}{2t_s}} d\mu_s \\ &+ (4\pi t_0)^{-\frac{n}{2}} \sqrt{\frac{t_0}{t_s}} \int_{M} \lambda \langle -y, N \rangle e^{-\frac{|X - X_0|^2}{2t_0}} d\mu, \\ III(s) &= (4\pi t_s)^{-\frac{n}{2}} \int_{M} (-\frac{n}{2t_s} + \frac{|X(s) - X_s|^2}{2t_s^2}) h e^{-\frac{|X(s) - X_s|^2}{2t_s}} d\mu_s \\ &+ (4\pi t_0)^{-\frac{n}{2}} \sqrt{\frac{t_0}{t_s}} \int_{M} -\frac{h\lambda}{2t_s} \langle X(s) - X_s, N \rangle e^{-\frac{|X - X_0|^2}{2t_0}} d\mu, \end{split}$$

we have

$$\begin{split} \mathcal{F}'(s) &= I(s) + II(s) + III(s), \quad \mathcal{F}''(s) = I'(s) + II'(s) + III'(s), \\ I'(s) &= (4\pi t_s)^{-\frac{n}{2}} \int_{M} \frac{nh}{2t_s} (H_s + \langle \frac{X(s) - X_s}{t_s}, N(s) \rangle) f e^{-\frac{|X(s) - X_s|^2}{2t_s}} d\mu_s \\ &+ (4\pi t_s)^{-\frac{n}{2}} \int_{M} - \left(\frac{dH_s}{ds} + \langle \frac{\frac{\partial X(s)}{\partial s} - \frac{\partial X_s}{\partial s}}{t_s}, N(s) \rangle - \langle \frac{X(s) - X_s}{t_s^2}, N(s) \rangle h \\ &+ \langle \frac{X(s) - X_s}{t_s}, \frac{dN(s)}{ds} \rangle \right) f e^{-\frac{|X(s) - X_s|^2}{2t_s}} d\mu_s \end{split}$$

$$\begin{split} &+ (4\pi t_s)^{-\frac{n}{2}} \int_{M} - \langle H_s + \langle \frac{X(s) - X_s}{t_s}, N(s) \rangle) f' e^{-\frac{|X(s) - X_s|^2}{2t_s}} d\mu_s \\ &+ (4\pi t_s)^{-\frac{n}{2}} \int_{M} (H_s + \langle \frac{X(s) - X_s}{t_s}, N(s) \rangle) \\ &\qquad \qquad \times (\langle \frac{X(s) - X_s}{t_s}, \frac{\partial X(s)}{\partial s} - \frac{\partial X_s}{\partial s} \rangle + H_s f) f e^{-\frac{|X(s) - X_s|^2}{2t_s}} d\mu_s \\ &+ (4\pi t_s)^{-\frac{n}{2}} \int_{M} -(H_s + \langle \frac{X(s) - X_s}{t_s}, N(s) \rangle) f \frac{|X(s) - X_s|^2}{2t_s^2} h \\ &\qquad \qquad \times e^{-\frac{|X(s) - X_s|^2}{2t_s}} d\mu_s \\ &+ (4\pi t_0)^{-\frac{n}{2}} \sqrt{\frac{t_0}{t_s}} \int_{M} \lambda f \langle N(s), N \rangle f e^{-\frac{|X - X_0|^2}{2t_0}} d\mu \\ &+ (4\pi t_0)^{-\frac{n}{2}} \sqrt{\frac{t_0}{t_s}} \int_{M} \lambda f \langle N(s), N \rangle e^{-\frac{|X - X_0|^2}{2t_0}} d\mu, \\ II'(s) &= (4\pi t_s)^{-\frac{n}{2}} \left(-\frac{nh}{2t_s} \right) \int_{M} \langle \frac{X(s) - X_s}{t_s}, y \rangle e^{-\frac{|X(s) - X_s|^2}{2t_s}} d\mu_s \\ &+ (4\pi t_s)^{-\frac{n}{2}} \int_{M} \langle \frac{\langle X(s) - X_s}{t_s}, y \rangle e^{-\frac{|X(s) - X_s|^2}{2t_s}} d\mu_s \\ &+ (4\pi t_s)^{-\frac{n}{2}} \int_{M} \langle \frac{X(s) - X_s}{t_s}, y \rangle e^{-\frac{|X(s) - X_s|^2}{2t_s}} d\mu_s \\ &+ (4\pi t_s)^{-\frac{n}{2}} \int_{M} \langle \frac{X(s) - X_s}{t_s}, y \rangle \left(-\langle \frac{X(s) - X_s}{t_s}, \frac{\partial X(s)}{\partial s} - \frac{\partial X_s}{\partial s} \rangle - H_s f \right) e^{-\frac{|X(s) - X_s|^2}{2t_s}} d\mu_s \\ &+ (4\pi t_s)^{-\frac{n}{2}} \int_{M} \langle \frac{X(s) - X_s}{t_s}, y \rangle \frac{|X(s) - X_s|^2}{2t_s^2} d\mu_s \\ &+ (4\pi t_s)^{-\frac{n}{2}} \int_{M} \langle \frac{X(s) - X_s}{t_s}, y \rangle \frac{|X(s) - X_s|^2}{2t_s^2} d\mu_s \\ &+ (4\pi t_0)^{-\frac{n}{2}} \sqrt{\frac{t_0}{t_s}} \left(-\frac{h}{2t_s} \right) \int_{M} -\lambda \langle N, y \rangle e^{-\frac{|X(s) - X_s|^2}{2t_0}} d\mu \\ &+ (4\pi t_0)^{-\frac{n}{2}} \sqrt{\frac{t_0}{t_s}} \int_{M} -\lambda \langle N, y \rangle e^{-\frac{|X(s) - X_s|^2}{2t_0}} d\mu, \\ III'(s) &= (4\pi t_s)^{-\frac{n}{2}} \left(-\frac{nh}{2t_s} \right) \int_{M} -\lambda \langle N, y \rangle e^{-\frac{|X(s) - X_s|^2}{2t_0}} d\mu, \\ &+ (4\pi t_0)^{-\frac{n}{2}} \left(-\frac{nh}{2t_s} \right) \int_{M} (-\frac{n}{2t_s} + \frac{|X(s) - X_s|^2}{2t_s^2}) h e^{-\frac{|X(s) - X_s|^2}{2t_s}} d\mu_s \\ &+ (4\pi t_0)^{-\frac{n}{2}} \left(-\frac{nh}{2t_s} \right) \int_{M} (-\frac{n}{2t_s} + \frac{|X(s) - X_s|^2}{2t_s^2}) h e^{-\frac{|X(s) - X_s|^2}{2t_s}} d\mu_s \\ &+ (\frac{nh}{2t_s})^{-\frac{nh}{2}} \left(-\frac{nh}{2t_s} \right) \int_{M} (-\frac{nh}{2t_s})^{-\frac{nh}{2}} d\mu_s \\ &+ (\frac{nh}{2t_s})^{-\frac{nh}{2}} \left(-\frac{nh}{2t_s} \right) \int_{M} (-\frac{nh}{2t_s})^{-\frac{nh}{2}} d\mu_s \\ &+ (\frac{nh}{2t_s})^{-\frac{nh}{2}} \left(-\frac{nh}{2t_s} \right) \int_{M} (-\frac$$

$$+ (4\pi t_{s})^{-\frac{n}{2}} \int_{M} \left(-\frac{n}{2t_{s}} + \frac{|X(s) - X_{s}|^{2}}{2t_{s}^{2}}\right) h' e^{-\frac{|X(s) - X_{s}|^{2}}{2t_{s}}} d\mu_{s}$$

$$+ (4\pi t_{s})^{-\frac{n}{2}} \int_{M} \left(-\frac{n}{2t_{s}} + \frac{|X(s) - X_{s}|^{2}}{2t_{s}^{2}}\right) h(-H_{s}f$$

$$- \left\langle \frac{X(s) - X_{s}}{t_{s}}, \frac{\partial X(s)}{\partial s} - \frac{\partial X_{s}}{\partial s}\right\rangle) e^{-\frac{|X(s) - X_{s}|^{2}}{2t_{s}}} d\mu_{s}$$

$$+ (4\pi t_{s})^{-\frac{n}{2}} \int_{M} \left(-\frac{n}{2t_{s}} + \frac{|X(s) - X_{s}|^{2}}{2t_{s}^{2}}\right) h \frac{|X(s) - X_{s}|^{2}}{2t_{s}^{2}} h e^{-\frac{|X(s) - X_{s}|^{2}}{2t_{s}}} d\mu_{s}$$

$$+ (4\pi t_{0})^{-\frac{n}{2}} \sqrt{\frac{t_{0}}{t_{s}}} \left(-\frac{h}{2t_{s}}\right) \int_{M} -\frac{h}{2t_{s}} \lambda \langle X(s) - X_{s}, N \rangle e^{-\frac{|X - X_{0}|^{2}}{2t_{0}}} d\mu$$

$$+ (4\pi t_{0})^{-\frac{n}{2}} \sqrt{\frac{t_{0}}{t_{s}}} \int_{M} -\frac{h' \lambda}{2t_{s}} \langle X(s) - X_{s}, N \rangle e^{-\frac{|X - X_{0}|^{2}}{2t_{0}}} d\mu$$

$$+ (4\pi t_{0})^{-\frac{n}{2}} \sqrt{\frac{t_{0}}{t_{s}}} \int_{M} \left(\frac{h}{2t_{s}^{2}} \langle X(s) - X_{s}, N \rangle \lambda h \right)$$

$$- \frac{1}{2t_{s}} \langle \frac{\partial X(s)}{\partial s} - \frac{\partial X_{s}}{\partial s}, N \rangle \lambda h) e^{-\frac{|X - X_{0}|^{2}}{2t_{0}}} d\mu.$$

Since $X: M \to \mathbb{R}^{n+1}$ is a critical point, we get

$$H + \langle \frac{X - X_0}{t_0}, N \rangle = \lambda,$$

$$\int_M (n + \lambda \langle X - X_0, N \rangle - \frac{|X - X_0|^2}{t_0}) e^{-\frac{|X - X_0|^2}{2t_0}} d\mu = 0,$$

$$\int_M (\lambda \langle N, a \rangle - \langle \frac{X - X_0}{t_0}, a \rangle) e^{-\frac{|X - X_0|^2}{2t_0}} d\mu = 0.$$

On the other hand,

$$H^{'}=\Delta f+Sf,\ N^{'}=-\nabla f.$$

Using of the above equations and letting s = 0, we obtain

$$(4\pi t_0)^{\frac{n}{2}} \mathcal{F}''(0) = \int_M -fL f e^{-\frac{|X-X_0|^2}{2t_0}} d\mu$$

$$+ \int_M \left(\frac{2}{t_0} \langle N, y \rangle + \frac{2h}{t_0} \langle \frac{X-X_0}{t_0}, N \rangle + \frac{n-1}{t_0} \lambda h - \frac{|X-X_0|^2}{t_0^2} \lambda h - 2\lambda \langle \frac{X-X_0}{t_0}, y \rangle \right) f e^{-\frac{|X-X_0|^2}{2t_0}} d\mu$$

$$\begin{split} &+ \int_{M} \biggl(-\frac{n+2}{t_{0}} \langle \frac{X-X_{0}}{t_{0}}, y \rangle + \frac{\lambda}{t_{0}} \langle N, y \rangle \\ &+ \langle \frac{X-X_{0}}{t_{0}}, y \rangle \frac{|X-X_{0}|^{2}}{t_{0}^{2}} \biggr) h e^{-\frac{|X-X_{0}|^{2}}{2t_{0}}} d\mu \\ &+ \int_{M} \biggl(\frac{n^{2}}{4t_{0}^{2}} + \frac{n}{2t_{0}^{2}} - \frac{n+2}{2t_{0}^{3}} |X-X_{0}|^{2} + \frac{|X-X_{0}|^{4}}{4t_{0}^{4}} \\ &+ \frac{3\lambda}{4t_{0}} \langle \frac{X-X_{0}}{t_{0}}, N \rangle \biggr) h^{2} e^{-\frac{|X-X_{0}|^{2}}{2t_{0}}} d\mu \\ &+ \int_{M} \biggl(-\frac{1}{t_{0}} \langle y, y \rangle + \langle \frac{X-X_{0}}{t_{0}}, y \rangle^{2} \biggr) e^{-\frac{|X-X_{0}|^{2}}{2t_{0}}} d\mu, \end{split}$$

where the operator L is defined by $L = \Delta + S + \frac{1}{t_0} - \langle \frac{X - X_0}{t_0}, \nabla \rangle - \lambda^2$. When $t_0 = 1$, $X_0 = 0$, then $L = \mathcal{L} + S + 1 - \lambda^2$.

$$\begin{split} (4\pi)^{\frac{n}{2}}\mathcal{F}''(0) &= \int_{M} -fLfe^{-\frac{|X^{-}|^{2}}{2}}d\mu \\ &+ \int_{M} \left(2\langle N,y \rangle + 2\lambda h + (n-1)\lambda h - 2hH \right. \\ &- |X|^{2}\lambda h - 2\lambda\langle X,y \rangle \right) fe^{-\frac{|X|^{2}}{2}}d\mu \\ &+ \int_{M} \left(\lambda\langle N,y \rangle - (n+2)\langle X,y \rangle + \langle X,y \rangle |X|^{2} \right) he^{-\frac{|X|^{2}}{2}}d\mu \\ &+ \int_{M} \left(\frac{n^{2} + 2n}{4} - \frac{n+2}{2}|X|^{2} + \frac{|X|^{4}}{4} + \frac{3\lambda}{4}\langle X,N \rangle \right) h^{2}e^{-\frac{|X|^{2}}{2}}d\mu \\ &+ \int_{M} -(|y|^{2} - \langle X,y \rangle^{2})e^{-\frac{|X|^{2}}{2}}d\mu \\ &= \int_{M} -fLfe^{-\frac{|X|^{2}}{2}}d\mu \\ &+ \int_{M} \left[2\langle N,y \rangle + (n+1-|X|^{2})\lambda h - 2hH - 2\lambda\langle X,y \rangle \right] fe^{-\frac{|X-|^{2}}{2}}d\mu \\ &+ \int_{M} \left((|X|^{2} - n - 1)\langle X,y \rangle \right) he^{-\frac{|X|^{2}}{2}}d\mu \\ &+ \int_{M} \left(\frac{n^{2} + 2n}{4} - \frac{n+2}{2}|X|^{2} + \frac{|X|^{4}}{4} + \frac{3\lambda}{4}(\lambda - H) \right) h^{2}e^{-\frac{|X|^{2}}{2}}d\mu \\ &+ \int_{M} \left(-|y|^{2} + \langle X,y \rangle^{2})e^{-\frac{|X|^{2}}{2}}d\mu. \end{split}$$

Definition 3.1. One calls that a critical point $X: M \to \mathbb{R}^{n+1}$ of the \mathcal{F} -functional $\mathcal{F}_{X_s,t_s}(s)$ is \mathcal{F} -stable if, for every normal variation fN, there exist variations of X_0 and t_0 such that $\mathcal{F}''_{X_0,t_0}(0) \geq 0$;

One calls that a critical point $X: M \to \mathbb{R}^{n+1}$ of the \mathcal{F} -functional $\mathcal{F}_{X_s,t_s}(s)$ is \mathcal{F} -unstable if there exist a normal variation fN such that for all variations of X_0 and t_0 , $\mathcal{F}''_{X_0,t_0}(0) < 0$.

Theorem 3.2. If $r \leq \sqrt{n}$ or $r > \sqrt{n+1}$, the n-dimensional round sphere $X: S^n(r) \to \mathbb{R}^{n+1}$ is \mathcal{F} -stable; If $\sqrt{n} < r \leq \sqrt{n+1}$, the n-dimensional round sphere $X: S^n(r) \to \mathbb{R}^{n+1}$ is \mathcal{F} -unstable.

Proof. For the sphere $S^n(r)$, we have

$$X = -rN, \ H = \frac{n}{r}, \ S = \frac{H^2}{n} = \frac{n}{r^2}, \ \lambda = H - r = \frac{n}{r} - r$$

and

(3.1)
$$Lf = \mathcal{L}f + (S+1-\lambda^2)f = \Delta f + (\frac{n}{r^2} + 1 - \lambda^2)f.$$

Since we know that eigenvalues μ_k of Δ on the sphere $S^n(r)$ are given by

(3.2)
$$\mu_k = \frac{k^2 + (n-1)k}{r^2},$$

and constant functions are eigenfunctions corresponding to eigenvalue $\mu_0 = 0$. For any constant vector $z \in \mathbb{R}^{n+1}$, we get

(3.3)
$$-\Delta \langle z, N \rangle = \Delta \langle z, \frac{X}{r} \rangle = \langle z, \frac{1}{r} H N \rangle = \frac{n}{r^2} \langle z, N \rangle,$$

that is, $\langle z, N \rangle$ is an eigenfunction of Δ corresponding to the first eigenvalue $\mu_1 = \frac{n}{r^2}$. Hence, for any normal variation with the variation vector field fN, we can choose a real number $a \in \mathbb{R}$ and a constant vector $z \in \mathbb{R}^{n+1}$ such that

$$(3.4) f = f_0 + a + \langle z, N \rangle,$$

and f_0 is in the space spanned by all eigenfunctions corresponding to eigenvalues μ_k $(k \ge 2)$ of Δ on $S^n(r)$. Using Lemma 2.3, we get (3.5)

$$\begin{split} &\left(4\pi\right)^{\frac{n}{2}}e^{\frac{r^{2}}{2}}\mathcal{F}''(0) \\ &= \int_{S^{n}(r)} -(f_{0}+a+\langle z,N\rangle)L(f_{0}+a+\langle z,N\rangle)d\mu \\ &+ \int_{S^{n}(r)} \left[2\langle N,y\rangle + (n+1-r^{2})\lambda h - 2\frac{n}{r}h + 2\lambda\langle rN,y\rangle\right](f_{0}+a+\langle z,N\rangle)d\mu \\ &+ \int_{S^{n}(r)} \lambda\langle N,y\rangle(r^{2}-n-1)hd\mu \\ &+ \int_{S^{n}(r)} (\frac{n^{2}+2n}{4} - \frac{n+2}{2}r^{2} + \frac{r^{4}}{4} + \frac{3}{4}r^{2} - \frac{3}{4}n)h^{2}d\mu \\ &+ \int_{S^{n}(r)} \left(-|y|^{2} + \langle X,y\rangle^{2}\right)d\mu \\ &\geq \int_{S^{n}(r)} \left\{ (\frac{n+2}{r^{2}} - 1 + \lambda^{2})f_{0}^{2} - (\frac{n}{r^{2}} + 1 - \lambda^{2})a^{2} + (\lambda^{2} - 1)\langle z,N\rangle^{2} \right\}d\mu \\ &+ \int_{S^{n}(r)} \left\{ 2(1+\lambda r)\langle N,y\rangle\langle N,z\rangle + [(n+1-r^{2})\lambda - 2\frac{n}{r}]ah \right\}d\mu \\ &+ \int_{S^{n}(r)} \frac{1}{4}[r^{4} - (2n+1)r^{2} + n(n-1)]h^{2}d\mu \\ &+ \int_{S^{n}(r)} (-|y|^{2} + \langle X,y\rangle^{2})d\mu. \end{split}$$

From Lemma 2.3, we have

(3.6)
$$\int_{S^n(r)} (-|y|^2 + \langle X, y \rangle^2) d\mu = -\int_{S^n(r)} (1 + \lambda r) \langle N, y \rangle^2 d\mu.$$

Putting (3.6) and $\lambda = \frac{n}{r} - r$ into (3.5), we obtain

$$(3.7) \quad (4\pi)^{\frac{n}{2}} e^{\frac{r^2}{2}} \mathcal{F}''(0) \ge \int_{S^n(r)} \frac{1}{r^2} \left\{ (r^2 - n - \frac{1}{2})^2 + \frac{7}{4} \right\} f_0^2 d\mu$$

$$+ \int_{S^n(r)} [r^4 - (2n+1)r^2 + n(n-1)] (\frac{a}{r} + \frac{h}{2})^2 d\mu$$

$$+ \int_{S^n(r)} \frac{1}{r^2} [r^4 - (2n+1)r^2 + n^2] \langle z, N \rangle^2 d\mu$$

$$+ \int_{S^{n}(r)} 2(1+n-r^{2})\langle N, y \rangle \langle N, z \rangle d\mu$$
$$+ \int_{S^{n}(r)} -(1+n-r^{2})\langle N, y \rangle^{2} d\mu.$$

If we choose $h = -\frac{2a}{r}$ and y = kz, then we have

$$(3.8)$$

$$(4\pi)^{\frac{n}{2}}e^{\frac{r^2}{2}}\mathcal{F}''(0) \ge \int_{S^n(r)} \frac{1}{r^2} \left\{ (r^2 - n - \frac{1}{2})^2 + \frac{7}{4} \right\} f_0^2 d\mu$$

$$+ \int_{S^n(r)} \left\{ \lambda^2 - 1 + 2(1 + \lambda r)k - (1 + \lambda r)k^2 \right\} \langle z, N \rangle^2 d\mu$$

$$= \int_{S^n(r)} \frac{1}{r^2} \left\{ (r^2 - n - \frac{1}{2})^2 + \frac{7}{4} \right\} f_0^2 d\mu$$

$$+ \int_{S^n(r)} \left\{ \lambda^2 + \lambda r - (1 + \lambda r)(1 - k)^2 \right\} \langle z, N \rangle^2 d\mu.$$

We next consider three cases:

Case 1: $r \leq \sqrt{n}$

In this case, $\lambda \geq 0$. Taking k = 1, then we get

$$\mathcal{F}^{"}(0) \ge 0.$$

Case 2: $r \ge \frac{1 + \sqrt{1 + 4n}}{2}$.

In this case, $\lambda \leq -1$. Taking k = 2, we can get

$$\mathcal{F}^{"}(0) \ge 0.$$

Case 3: $\sqrt{n+1} < r < \frac{1+\sqrt{1+4n}}{2}$.

In this case, $-1 < \lambda < 0$, $1 + \lambda r < 0$, we can take k such that $(1 - k)^2 \ge \frac{\lambda(\lambda + r)}{1 + \lambda r}$, then we have

$$\mathcal{F}^{''}(0) \ge 0.$$

Thus, if $r \leq \sqrt{n}$ or $r > \sqrt{n+1}$, the *n*-dimensional round sphere $X: S^n(r) \to \mathbb{R}^{n+1}$ is \mathcal{F} -stable;

If $\sqrt{n} < r \le \sqrt{n+1}$, the *n*-dimensional round sphere $X : S^n(r) \to \mathbb{R}^{n+1}$ is \mathcal{F} -unstable. In fact, in this case, $-1 < \lambda < 0$, $1 + \lambda r \ge 0$. We can choose f such that $f_0 = 0$, then we have

$$(3.9) (4\pi)^{\frac{n}{2}} e^{\frac{r^2}{2}} \mathcal{F}''(0) \leq \int_{S^n(r)} (\lambda^2 - 1) \langle z, N \rangle^2 d\mu$$

$$+ \int_{S^n(r)} 2(1 + \lambda r) \langle N, y \rangle \langle N, z \rangle d\mu$$

$$+ \int_{S^n(r)} -(1 + \lambda r) \langle N, y \rangle^2 d\mu$$

$$= (\lambda^2 + \lambda r) \int_{S^n(r)} \langle z, N \rangle^2 d\mu$$

$$- (1 + \lambda r) \int_{S^n(r)} (\langle z, N \rangle - \langle y, N \rangle)^2 d\mu$$

$$< 0.$$

This completes the proof of Theorem 3.2.

According to Theorem 3.2, we would like to propose the following:

Problem 3.1. Is it possible to prove that spheres $S^n(r)$ with $r \leq \sqrt{n}$ or $r > \sqrt{n+1}$ are the only \mathcal{F} -stable compact λ -hypersurfaces?

Remark 3.1. Colding and Minicozzi [5] have proved that the sphere $S^n(\sqrt{n})$ is the only \mathcal{F} -stable compact self-shrinkers. In order to prove this result, the property that the mean curvature H is an eigenfunction of L-operator plays a very important role. But for λ -hypersurfaces, the mean curvature H is not an eigenfunction of L-operator in general.

4. The weak stability of the weighted area functional for weighted volume-preserving variations

Define

(4.1)
$$\mathcal{T}(s) = (4\pi t_s)^{-\frac{n}{2}} \int_M e^{-\frac{|X(s)-X_s|^2}{2t_s}} d\mu_s.$$

We compute the first and the second variation formulas of the general \mathcal{T} functional for weighted volume-preserving variations with fixed X_0 and t_0 .

By a direct calculation, we have

$$\begin{split} \mathcal{T}^{'}(s) &= (4\pi t_{s})^{-\frac{n}{2}} \int_{M} -(H_{s} + \langle \frac{X(s) - X_{s}}{t_{s}}, N(s) \rangle) f e^{-\frac{|X(s) - X_{s}|^{2}}{2t_{s}}} d\mu_{s}, \\ \mathcal{T}^{''}(s) &= (4\pi t_{s})^{-\frac{n}{2}} \int_{M} -(H_{s} + \langle \frac{X(s) - X_{s}}{t_{s}}, N(s) \rangle) f^{'} e^{-\frac{|X(s) - X_{s}|^{2}}{2t_{s}}} d\mu_{s} \\ &+ (4\pi t_{s})^{-\frac{n}{2}} \int_{M} (H_{s} + \langle \frac{X(s) - X_{s}}{t_{s}}, N(s) \rangle) \\ &\times (\langle \frac{X(s) - X_{s}}{t_{s}}, \frac{\partial X(s)}{\partial s} \rangle + H_{s} f) f e^{-\frac{|X(s) - X_{s}|^{2}}{2t_{s}}} d\mu_{s} \\ &+ (4\pi t_{s})^{-\frac{n}{2}} \int_{M} -\left(\frac{dH_{s}}{ds} + \langle \frac{\partial X(s)}{\partial s}, N(s) \rangle \right. \\ &+ \langle \frac{X(s) - X_{s}}{t_{s}}, \frac{dN(s)}{ds} \rangle \Big) f e^{-\frac{|X(s) - X_{s}|^{2}}{2t_{s}}} d\mu_{s}. \end{split}$$

Lemma 4.1.

$$\int_{M} f'(0)e^{-\frac{|X-X_{0}|^{2}}{2t_{0}}}d\mu = 0.$$

Proof. Since $V(t)=\int_M \langle X(t)-X_0,N\rangle e^{-\frac{|X-X_0|^2}{2t_0}}d\mu=V(0)$ for any t, we have $\int_M f(t)\langle N(t),N\rangle e^{-\frac{|X-X_0|^2}{2t_0}}d\mu=0.$

Hence, we get

$$0 = \frac{d}{dt}|_{t=0} \int_{M} f(t)\langle N(t), N \rangle e^{-\frac{|X-X_{0}|^{2}}{2t_{0}}} d\mu$$
$$= \int_{M} f'(0)e^{-\frac{|X-X_{0}|^{2}}{2t_{0}}} d\mu.$$

Since M is a critical point of $\mathcal{T}(s)$, we have

$$H + \langle \frac{X - X_0}{t_0}, N \rangle = \lambda.$$

On the other hand, we have

$$(4.2) H^{'} = \Delta f + Sf, \quad N^{'} = -\nabla f.$$

Then for $t_0 = 1$ and $X_0 = 0$, the second variation formula becomes

$$(4\pi)^{\frac{n}{2}}\mathcal{T}''(0) = \int_{M} -f(\mathcal{L}f + (S+1-\lambda^{2})f)e^{-\frac{|X|^{2}}{2}}d\mu.$$

Theorem 4.1. Let $X: M \to \mathbb{R}^{n+1}$ be a critical point of the functional $\mathcal{T}(s)$ for the weighted volume-preserving variations with fixed $X_0 = 0$ and $t_0 = 1$. The second variation formula of $\mathcal{T}(s)$ is given by

(4.3)
$$(4\pi)^{\frac{n}{2}} \mathcal{T}''(0) = \int_{M} -f \left(\mathcal{L}f + (S+1-\lambda^{2})f\right) e^{-\frac{|X|^{2}}{2}} d\mu.$$

Definition 4.1. A critical point $X: M \to \mathbb{R}^{n+1}$ of the functional $\mathcal{T}(s)$ is called weakly stable if, for any weighted volume-preserving normal variation, $\mathcal{T}''(0) \geq 0$;

A critical point $X: M \to \mathbb{R}^{n+1}$ of the functional $\mathcal{T}(s)$ is called weakly unstable if there exists a weighted volume-preserving normal variation, such that $\mathcal{T}''(0) < 0$.

Theorem 4.2. If $r \leq \frac{-1+\sqrt{1+4n}}{2}$ or $r \geq \frac{1+\sqrt{1+4n}}{2}$, the n-dimensional round sphere $X: S^n(r) \to \mathbb{R}^{n+1}$ is weakly stable; If $\frac{-1+\sqrt{1+4n}}{2} < r < \frac{1+\sqrt{1+4n}}{2}$, the n-dimensional round sphere $X: S^n(r) \to \mathbb{R}^{n+1}$ is weakly unstable.

Proof. For the sphere $S^n(r)$, we have

$$X=-rN, \quad H=rac{n}{r}, \quad S=rac{n}{r^2}, \quad \lambda=H-r=rac{n}{r}-r$$

and

(4.4)
$$Lf = \mathcal{L}f + (S+1-\lambda^2)f = \Delta f + (\frac{n}{r^2} + 1 - \lambda^2)f.$$

Since we know that eigenvalues μ_k of Δ on the sphere $S^n(r)$ are given by

(4.5)
$$\mu_k = \frac{k^2 + (n-1)k}{r^2},$$

and constant functions are eigenfunctions corresponding to eigenvalue $\mu_0 = 0$. For any constant vector $z \in \mathbb{R}^{n+1}$, we get

$$-\Delta \langle z, N \rangle = \frac{n}{r^2} \langle z, N \rangle,$$

that is, $\langle z, N \rangle$ is an eigenfunction of Δ corresponding to the first eigenvalue $\mu_1 = \frac{n}{r^2}$. Hence, for any weighted volume-preserving normal variation with

the variation vector field fN satisfying

$$\int_{S^n(r)} f e^{-\frac{r^2}{2}} d\mu = 0,$$

we can choose a constant vector $z \in \mathbb{R}^{n+1}$ such that

$$(4.7) f = f_0 + \langle z, N \rangle,$$

and f_0 is in the space spanned by all eigenfunctions corresponding to eigenvalues μ_k $(k \ge 2)$ of Δ on $S^n(r)$. By making use of Theorem 4.1, we have

$$(4.8) \quad (4\pi)^{\frac{n}{2}} e^{\frac{r^2}{2}} \mathcal{T}''(0) = \int_{S^n(r)} -(f_0 + \langle z, N \rangle) L(f_0 + \langle z, N \rangle) d\mu$$

$$\geq \int_{S^n(r)} \left\{ (\frac{n+2}{r^2} - 1 + \lambda^2) f_0^2 + (\lambda^2 - 1) \langle z, N \rangle^2 \right\} d\mu.$$

According to $\lambda = \frac{n}{r} - r$, we obtain

$$(4\pi)^{\frac{n}{2}}e^{\frac{r^2}{2}}\mathcal{T}^{''}(0) \ge \int_{S^n(r)} \frac{1}{r^2} \left\{ (r^2 - n - \frac{1}{2})^2 + \frac{7}{4} \right\} f_0^2 d\mu \\ + \int_{S^n(r)} (\frac{n}{r} - r - 1)(\frac{n}{r} - r + 1) \langle z, N \rangle^2 d\mu \ge 0$$

if

$$r \le \frac{-1 + \sqrt{4n+1}}{2}$$
 or $r \ge \frac{1 + \sqrt{4n+1}}{2}$.

Thus, the *n*-dimensional round sphere $X: S^n(r) \to \mathbb{R}^{n+1}$ is weakly stable.

If

$$\frac{-1+\sqrt{4n+1}}{2} < r < \frac{1+\sqrt{4n+1}}{2},$$

choosing $f = \langle z, N \rangle$, we have

$$\int_{S^n(r)} f e^{-\frac{r^2}{2}} d\mu = 0.$$

Hence, there exists a weighted volume-preserving normal variation with the variation vector filed fN such that

$$(4\pi)^{\frac{n}{2}}e^{\frac{r^2}{2}}\mathcal{T}''(0) = \int_{S^n(r)} (\frac{n}{r} - r - 1)(\frac{n}{r} - r + 1)\langle z, N \rangle^2 d\mu < 0.$$

Thus, the *n*-dimensional round sphere $X: S^n(r) \to \mathbb{R}^{n+1}$ is weakly unstable. It finishes the proof.

Remark 4.1. From Theorem 3.2 and Theorem 4.2, we know the \mathcal{F} -stability and the weak stability are different. The \mathcal{F} -stability is a weaker notation than the weak stability.

Remark 4.2. Is it possible to prove that spheres $S^n(r)$ with $r \leq \frac{-1+\sqrt{1+4n}}{2}$ or $r \geq \frac{1+\sqrt{1+4n}}{2}$ are the only weak stable compact λ -hypersurfaces?

5. Properness and polynomial area growth for λ -hypersurfaces

For *n*-dimensional complete and non-compact Riemannian manifolds with nonnegative Ricci curvature, the well-known theorem of Bishop and Gromov says that geodesic balls have at most polynomial area growth:

$$Area(B_r(x_0)) \leq Cr^n$$
.

For n-dimensional complete and non-compact gradient shrinking Ricci soliton, Cao and Zhou [1] have proved geodesic balls have at most polynomial area growth. For self-shrinkers, Ding and Xin [7] proved that any complete non-compact properly immersed self-shrinker in the Euclidean space has polynomial area growth. X. Cheng and Zhou [5] showed that any complete immersed self-shrinker with polynomial area growth in the Euclidean space is proper. Hence any complete immersed self-shrinker is proper if and only if it has polynomial area growth.

It is our purposes in this section to study the area growth for λ -hypersurfaces. First of all, we study the equivalence of properness and polynomial area growth for λ -hypersurfaces. If $X: M \to \mathbb{R}^{n+1}$ is an n-dimensional hypersurface in \mathbb{R}^{n+1} , we say M has polynomial area growth if there exist constant C and d such that for all $r \geq 1$,

(5.1)
$$\operatorname{Area}(B_r(0) \cap X(M)) = \int_{B_r(0) \cap X(M)} d\mu \le Cr^d,$$

where $B_r(0)$ is a round ball in \mathbb{R}^{n+1} with radius r and centered at the origin.

Theorem 5.1. Let $X: M \to \mathbb{R}^{n+1}$ be a complete and non-compact properly immersed λ -hypersurface in the Euclidean space \mathbb{R}^{n+1} . Then, there is a

positive constant C such that for $r \geq 1$,

(5.2)
$$\operatorname{Area}(B_r(0) \cap X(M)) = \int_{B_r(0) \cap X(M)} d\mu \le C r^{n + \frac{\lambda^2}{2} - 2\beta - \frac{\inf H^2}{2}},$$

where $\beta = \frac{1}{4}\inf(\lambda - H)^2$.

Proof. Since $X: M \to \mathbb{R}^{n+1}$ is a complete and non-compact properly immersed λ -hypersurface in the Euclidean space \mathbb{R}^{n+1} , we have

$$\langle X, N \rangle + H = \lambda.$$

Defining $f = \frac{|X|^2}{4}$, we have

$$(5.3) f - |\nabla f|^2 = \frac{|X|^2}{4} - \frac{|X^T|^2}{4} = \frac{|X^\perp|^2}{4} = \frac{1}{4}(\lambda - H)^2,$$

(5.4)
$$\Delta f = \frac{1}{2}(n + H\langle N, X \rangle)$$
$$= \frac{1}{2}(n + \lambda\langle N, X \rangle - \langle N, X \rangle^{2})$$
$$= \frac{1}{2}n + \frac{\lambda^{2}}{4} - \frac{H^{2}}{4} - f + |\nabla f|^{2}.$$

Hence, we obtain

$$(5.5) |\nabla(f-\beta)|^2 \le (f-\beta),$$

(5.6)
$$\Delta(f - \beta) - |\nabla(f - \beta)|^2 + (f - \beta) \le (\frac{n}{2} + \frac{\lambda^2}{4} - \beta - \frac{\inf H^2}{4}).$$

Since the immersion X is proper, we know that $\overline{f} = f - \beta$ is proper. Applying Theorem 2.1 of X. Cheng and Zhou [5] to $\overline{f} = f - \beta$ with $k = (\frac{n}{2} + \frac{\lambda^2}{4} - \beta - \frac{\inf H^2}{4})$, we obtain

(5.7)
$$\operatorname{Area}(B_r(0) \cap X(M)) = \int_{B_r(0) \cap X(M)} d\mu \le C r^{n + \frac{\lambda^2}{2} - 2\beta - \frac{\inf H^2}{2}},$$

where $\beta = \frac{1}{4}\inf(\lambda - H)^2$ and C is a constant.

Remark 5.1. The estimate in Theorem 5.1 is the best possible because the cylinders $S^k(r_0) \times \mathbb{R}^{n-k}$ satisfy the equality.

Remark 5.2. By making use of the same assertions as in X. Cheng and Zhou [5] for self-shrinkers, we can prove the weighted area of a complete and non-compact properly immersed λ -hypersurface in the Euclidean space \mathbb{R}^{n+1} is bounded.

By making use of to the same assertions as in X. Cheng and Zhou [5] for self-shrinkers, we can prove the following theorem. We will leave it for readers.

Theorem 5.2. If $X: M \to \mathbb{R}^{n+1}$ is an n-dimensional complete immersed λ -hypersurface with polynomial area growth, then $X: M \to \mathbb{R}^{n+1}$ is proper.

6. A lower bound growth of the area for λ -hypersurfaces

For *n*-dimensional complete and non-compact Riemannian manifolds with nonnegative Ricci curvature, the well-known theorem of Calabi and Yau says that geodesic balls have at least linear area growth:

$$Area(B_r(x_0)) \ge Cr$$
.

Cao and Zhu [2] have proved that n-dimensional complete and non-compact gradient shrinking Ricci soliton must have infinite volume. Furthermore, Munteanu and Wang [12] have proved that areas of geodesic balls for n-dimensional complete and non-compact gradient shrinking Ricci soliton has at least linear growth. For self-shrinkers, Li and Wei [11] proved that any complete and non-compact proper self-shrinker has at least linear area growth.

In this section, we study the lower bound growth of the area for λ -hypersurfaces. The following lemmas play a very important role in order to prove our results.

Lemma 6.1. Let $X: M \to \mathbb{R}^{n+1}$ be an n-dimensional complete noncompact proper λ -hypersurface, then there exist constants $C_1(n,\lambda)$ and $c(n,\lambda)$ such that for all $t \geq C_1(n,\lambda)$,

(6.1)
$$\operatorname{Area}(B_{t+1}(0) \cap X(M)) - \operatorname{Area}(B_{t}(0) \cap X(M))$$

$$\leq c(n,\lambda) \frac{\operatorname{Area}(B_{t}(0) \cap X(M))}{t}$$

and

(6.2)
$$\operatorname{Area}(B_{t+1}(0) \cap X(M)) \le 2\operatorname{Area}(B_t(0) \cap X(M)).$$

Proof. Since $X: M \to \mathbb{R}^{n+1}$ is a complete λ -hypersurface, one has

(6.3)
$$\frac{1}{2}\Delta|X|^2 = n + H\langle N, X\rangle = n + H\lambda - H^2.$$

Integrating (6.3) over $B_r(0) \cap X(M)$, we obtain

$$(6.4) \quad n\operatorname{Area}(B_{r}(0) \cap X(M)) + \int_{B_{r}(0) \cap X(M)} H\lambda d\mu - \int_{B_{r}(0) \cap X(M)} H^{2} d\mu$$

$$= \frac{1}{2} \int_{B_{r}(0) \cap X(M)} \Delta |X|^{2} d\mu$$

$$= \frac{1}{2} \int_{\partial(B_{r}(0) \cap X(M))} \nabla |X|^{2} \cdot \frac{\nabla \rho}{|\nabla \rho|} d\sigma$$

$$= \int_{\partial(B_{r}(0) \cap X(M))} |X^{T}| d\sigma$$

$$= \int_{\partial(B_{r}(0) \cap X(M))} \frac{|X|^{2} - (\lambda - H)^{2}}{|X^{T}|} d\sigma$$

$$= r(\operatorname{Area}(B_{r}(0) \cap X(M)))' - \int_{\partial(B_{r}(0) \cap X(M))} \frac{(\lambda - H)^{2}}{|X^{T}|} d\sigma,$$

where $\rho(x) := |X(x)|, \, \nabla \rho = \frac{X^T}{|X|}$. Here we used, from the co-area formula,

(6.5)
$$\left(\operatorname{Area}(B_r(0)\cap X(M))\right)' = r \int_{\partial(B_r(0)\cap X(M))} \frac{1}{|X^T|} d\sigma.$$

Hence, we obtain

(6.6)
$$(n + \frac{\lambda^2}{4}) \operatorname{Area}(B_r(0) \cap X(M)) - r(\operatorname{Area}(B_r(0) \cap X(M)))'$$

$$= \int_{B_r(0) \cap X(M)} (H - \frac{\lambda}{2})^2 d\mu - \int_{\partial(B_r(0) \cap X(M))} \frac{(\lambda - H)^2}{|X^T|} d\sigma,$$

From (6.5), $(H - \lambda)^2 = \langle N, X \rangle^2 \le |X|^2 = r^2$ on $\partial(B_r(0) \cap X(M))$ and (6.6), we conclude

(6.7)
$$\int_{B_r(0)\cap X(M)} (H - \frac{\lambda}{2})^2 d\mu \le (n + \frac{\lambda^2}{4}) \operatorname{Area}(B_r(0) \cap X(M)).$$

Furthermore, we have

(6.8)
$$\int_{B_r(0)\cap X(M)} (H-\lambda)^2 d\mu \le \int_{B_r(0)\cap X(M)} 2\left[(H-\frac{\lambda}{2})^2 + \frac{\lambda^2}{4} \right] d\mu$$
$$\le (2n+\lambda^2) \operatorname{Area}(B_r(0)\cap X(M)),$$

(6.9)
$$\int_{B_r(0)\cap X(M)} H^2 d\mu \le \int_{B_r(0)\cap X(M)} 2\left[(H - \frac{\lambda}{2})^2 + \frac{\lambda^2}{4} \right] d\mu$$
$$\le (2n + \lambda^2) \operatorname{Area}(B_r(0) \cap X(M)).$$

(6.6) implies that

$$(6.10) \qquad \left(r^{-n-\frac{\lambda^2}{4}}\operatorname{Area}(B_r(0)\cap X(M))\right)'$$

$$= r^{-n-1-\frac{\lambda^2}{4}}\left(r\left(\operatorname{Area}(B_r(0)\cap X(M))\right)'\right)$$

$$-\left(n+\frac{\lambda^2}{4}\right)\operatorname{Area}(B_r(0)\cap X(M))\right)$$

$$= r^{-n-1-\frac{\lambda^2}{4}}\int_{\partial(B_r(0)\cap X(M))}\frac{(H-\lambda)^2}{|X^T|}d\sigma$$

$$-r^{-n-1-\frac{\lambda^2}{4}}\int_{B_r(0)\cap X(M)}(H-\frac{\lambda}{2})^2d\mu.$$

Integrating (6.10) from r_2 to r_1 ($r_1 > r_2$), one has

$$(6.11) r_1^{-n-\frac{\lambda^2}{4}} \operatorname{Area}(B_{r_1}(0) \cap X(M)) - r_2^{-n-\frac{\lambda^2}{4}} \operatorname{Area}(B_{r_2}(0) \cap X(M))$$

$$= r_1^{-n-2-\frac{\lambda^2}{4}} \int_{B_{r_1}(0)\cap X(M)} (H-\lambda)^2 d\mu$$

$$- r_2^{-n-2-\frac{\lambda^2}{4}} \int_{B_{r_2}(0)\cap X(M)} (H-\lambda)^2 d\mu$$

$$+ (n+2+\frac{\lambda^2}{4}) \int_{r_2}^{r_1} s^{-n-3-\frac{\lambda^2}{4}} (\int_{B_s(0)\cap X(M)} (H-\lambda)^2 d\mu) ds$$

$$- \int_{r_2}^{r_1} s^{-n-1-\frac{\lambda^2}{4}} (\int_{B_s(0)\cap X(M)} (H-\frac{\lambda}{2})^2 d\mu) ds$$

$$\leq (r_1^{-n-2-\frac{\lambda^2}{4}} + r_2^{-n-2-\frac{\lambda^2}{4}}) \int_{B_{r_1}(0)\cap X(M)} (H-\lambda)^2 d\mu.$$

Here we used

$$\left(\int_{B_r(0)\cap X(M)} (H-\lambda)^2 d\mu\right)' = r \int_{\partial (B_r(0)\cap X(M))} \frac{(H-\lambda)^2}{|X^T|} d\sigma$$

and Area $(B_r(0) \cap X(M))$ is non-decreasing in r from (6.5). Combining (6.11) with (6.8), we have

(6.12)
$$\frac{\operatorname{Area}(B_{r_1}(0) \cap X(M))}{r_1^{n+\frac{\lambda^2}{4}}} - \frac{\operatorname{Area}(B_{r_2}(0) \cap X(M))}{r_2^{n+\frac{\lambda^2}{4}}} \\ \leq (2n+\lambda^2) \left(\frac{1}{r_1^{n+2+\frac{\lambda^2}{4}}} + \frac{1}{r_2^{n+2+\frac{\lambda^2}{4}}}\right) \operatorname{Area}(B_{r_1}(0) \cap X(M)).$$

Putting $r_1 = t + 1$, $r_2 = t > 0$, we get

(6.13)
$$\left(1 - \frac{2(2n + \lambda^2)(t+1)^{n+\frac{\lambda^2}{4}}}{t^{n+2+\frac{\lambda^2}{4}}}\right) \operatorname{Area}(B_{t+1}(0) \cap X(M))$$

$$\leq \operatorname{Area}(B_t(0) \cap X(M))(\frac{t+1}{t})^{n+\frac{\lambda^2}{4}}.$$

For t sufficiently large, one has, from (6.13),

(6.14)
$$\operatorname{Area}(B_{t+1}(0) \cap X(M)) - \operatorname{Area}(B_{t}(0) \cap X(M)) \\ \leq \operatorname{Area}(B_{t}(0) \cap X(M)) \left((1 + \frac{1}{t})^{n} - 1 + \frac{C(t+1)^{2n+\lambda^{2}}4}{t^{2n+2+\lambda^{2}}} \right),$$

where C is constant only depended on n, λ . Therefore, there exists some constant $C_1(n,\lambda)$ such that for all $t \geq C_1(n,\lambda)$,

(6.15)
$$\operatorname{Area}(B_{t+1}(0) \cap X(M)) - \operatorname{Area}(B_t(0) \cap X(M))$$

$$\leq c(n,\lambda) \frac{\operatorname{Area}(B_t(0) \cap X(M))}{t},$$

(6.16)
$$\operatorname{Area}(B_{t+1}(0) \cap X(M)) \le 2\operatorname{Area}(B_t(0) \cap X(M)),$$

where $c(n, \lambda)$ depends only on n and λ . This completes the proof of Lemma 6.1.

The following Logarithmic Sobolev inequality for hypersurfaces in Euclidean space is due to Ecker [8],

Lemma 6.2. Let $X: M \to \mathbb{R}^{n+1}$ be an n-dimensional hypersurface with measure $d\mu$. Then the following inequality

(6.17)
$$\int_{M} f^{2}(\ln f^{2})e^{-\frac{|X|^{2}}{2}}d\mu - \int_{M} f^{2}e^{-\frac{|X|^{2}}{2}}d\mu \ln(\int_{M} f^{2}e^{-\frac{|X|^{2}}{2}}d\mu)$$

$$\leq 2\int_{M} |\nabla f|^{2}e^{-\frac{|X|^{2}}{2}}d\mu + \frac{1}{2}\int_{M} |H + \langle X, N \rangle|^{2}f^{2}e^{-\frac{|X|^{2}}{2}}d\mu$$

$$+ C_{1}(n)\int_{M} f^{2}e^{-\frac{|X|^{2}}{2}}d\mu,$$

(6.18)
$$\int_{M} f^{2}(\ln f^{2}) d\mu - \int_{M} f^{2} d\mu \ln(\int_{M} f^{2} d\mu)$$
$$\leq 2 \int_{M} |\nabla f|^{2} d\mu + \frac{1}{2} \int_{M} |H|^{2} f^{2} d\mu + C_{2}(n) \int_{M} f^{2} d\mu$$

hold for any nonnegative function f for which all integrals are well-defined and finite, where $C_1(n)$ and $C_2(n)$ are positive constants depending on n.

Corollary 6.1. For an n-dimensional λ -hypersurface $X: M \to \mathbb{R}^{n+1}$, we have the following inequality

(6.19)
$$\int_{M} f^{2}(\ln f)e^{-\frac{|X|^{2}}{2}}d\mu \leq \int_{M} |\nabla f|^{2}e^{-\frac{|X|^{2}}{2}}d\mu + \frac{1}{2}C_{1}(n) + \frac{1}{4}\lambda^{2}$$

for any nonnegative function f which satisfies

(6.20)
$$\int_{M} f^{2} e^{-\frac{|X|^{2}}{2}} d\mu = 1.$$

Lemma 6.3. ([11]) Let $X: M \to \mathbb{R}^{n+1}$ be a complete properly immersed hypersurface. For any $x_0 \in M$, $r \leq 1$, if $|H| \leq \frac{C}{r}$ in $B_r(X(x_0)) \cap X(M)$ for some constant C > 0. Then

(6.21)
$$Area(B_r(X(x_0)) \cap X(M)) \ge \kappa r^n,$$

where $\kappa = \omega_n e^{-C}$.

Lemma 6.4. If $X: M \to \mathbb{R}^{n+1}$ is an n-dimensional complete and non-compact proper λ -hypersurface, then it has infinite area.

Proof. Let

$$\Omega(k_1, k_2) = \{ x \in M : 2^{k_1 - \frac{1}{2}} \le \rho(x) \le 2^{k_2 - \frac{1}{2}} \},$$
$$A(k_1, k_2) = \text{Area}(X(\Omega(k_1, k_2))),$$

where $\rho(x) = |X(x)|$. Since $X: M \to \mathbb{R}^{n+1}$ is a complete and non-compact proper immersion, X(M) can not be contained in a compact Euclidean ball. Then, for k large enough, $\Omega(k, k+1)$ contains at least 2^{2k-1} disjoint balls

$$B_r(x_i) = \{x \in M : \rho_{x_i}(x) < 2^{-\frac{1}{2}}r\}, \ x_i \in M, \ r = 2^{-k}\}$$

where $\rho_{x_i}(x) = |X(x) - X(x_i)|$. Since, in $\Omega(k, k+1)$,

(6.22)
$$|H| \le |H - \lambda| + |\lambda| = |\langle X, N \rangle| + |\lambda|$$
$$\le |X| + |\lambda| \le 2^k \sqrt{2} + |\lambda| \le \frac{\sqrt{2} + |\lambda|}{r},$$

by using of Lemma 6.3, we get

$$(6.23) A(k, k+1) \ge \kappa_1 2^{2k-1-kn}.$$

with $\kappa_1 = \omega_n e^{-(\sqrt{2}+|\lambda|)2^{-\frac{1}{2}}} 2^{-\frac{n}{2}}$.

Claim: If $Area(X(M)) < \infty$, then, for every $\varepsilon > 0$, there exists a large constant $k_0 > 0$ such that,

(6.24)
$$A(k_1, k_2) \le \varepsilon$$
 and $A(k_1, k_2) \le 2^{4n} A(k_1 + 2, k_2 - 2)$, if $k_2 > k_1 > k_0$.

In fact, we may choose K > 0 sufficiently large such that $k_1 \approx \frac{K}{2}$, $k_2 \approx \frac{3K}{2}$. Assume (6.24) does not hold, that is,

$$A(k_1, k_2) \ge 2^{4n} A(k_1 + 2, k_2 - 2).$$

If

$$A(k_1 + 2, k_2 - 2) \le 2^{4n} A(k_1 + 4, k_2 - 4),$$

then we complete the proof of the claim. Otherwise, we can repeat the procedure for j times, we have

$$A(k_1, k_2) \ge 2^{4nj} A(k_1 + 2j, k_2 - 2j).$$

When $j \approx \frac{K}{4}$, we have from (6.23)

$$Area(X(M)) \ge A(k_1, k_2) \ge 2^{nK} A(K, K+1) \ge \kappa_1 2^{2K-1}.$$

Thus, (6.24) must hold for some $k_2 > k_1$ because Area $(M) < \infty$. Hence for any $\varepsilon > 0$, we can choose k_1 and $k_2 \approx 3k_1$ such that (6.24) holds.

We define a smooth cut-off function $\psi(t)$ by

$$(6.25) \quad \psi(t) = \begin{cases} 1, & 2^{k_1 + \frac{3}{2}} \le t \le 2^{k_2 - \frac{5}{2}}, \\ 0, & \text{outside } [2^{k_1 - \frac{1}{2}}, 2^{k_2 - \frac{1}{2}}]. \end{cases} \quad 0 \le \psi(t) \le 1, \quad |\psi'(t)| \le 1.$$

Moreover, $\psi(t)$ can be defined in such a way that

(6.26)
$$0 \le \psi'(t) \le \frac{c_1}{2^{k_1 - \frac{1}{2}}}, \quad t \in [2^{k_1 - \frac{1}{2}}, 2^{k_1 + \frac{3}{2}}],$$

(6.27)
$$-\frac{c_2}{2^{k_2-\frac{1}{2}}} \le \psi'(t) \le 0, \quad t \in [2^{k_2-\frac{5}{2}}, 2^{k_2-\frac{1}{2}}],$$

for some positive constants c_1 and c_2 . Letting

(6.28)
$$f(x) = e^{L + \frac{|X|^2}{4}} \psi(\rho(x)),$$

we choose the constant L satisfying

(6.29)
$$1 = \int_{M} f^{2} e^{-\frac{|X|^{2}}{2}} d\mu = e^{2L} \int_{\Omega(k_{1}, k_{2})} \psi^{2}(\rho(x)) d\mu.$$

We obtain from Corollary 6.1, $t \ln t \ge -\frac{1}{e}$ for $0 \le t \le 1$, $|\nabla \rho| \le 1$ and $\psi'(\rho(x)) \le 0$ in $\Omega(k_1 + 2, k_2)$ that

(6.30)
$$\frac{1}{2}C_1(n) + \frac{1}{4}\lambda^2 \ge \int_{\Omega(k_1, k_2)} e^{2L} \psi^2(L + \frac{|X|^2}{4} + \ln \psi) d\mu$$
$$- \int_{\Omega(k_1, k_2)} e^{2L} |\psi' \nabla \rho + \psi \frac{X^T}{2}|^2 d\mu$$

$$\geq \int_{\Omega(k_{1},k_{2})} e^{2L} \psi^{2} (L + \frac{|X|^{2}}{4} + \ln \psi) d\mu$$

$$- \int_{\Omega(k_{1},k_{2})} e^{2L} |\psi'|^{2} d\mu - \frac{1}{4} \int_{\Omega(k_{1},k_{2})} e^{2L} \psi^{2} |X|^{2} d\mu$$

$$- \frac{1}{2} \int_{\Omega(k_{1},k_{2})} e^{2L} \psi' \psi \frac{|X^{T}|^{2}}{|X|} d\mu$$

$$\geq L + \int_{\Omega(k_{1},k_{2})} e^{2L} \psi^{2} \ln \psi d\mu - \int_{\Omega(k_{1},k_{2})} e^{2L} |\psi'|^{2} d\mu$$

$$- \frac{1}{2} \int_{\Omega(k_{1},k_{1}+2)} e^{2L} \psi' \psi |X| d\mu$$

$$\geq L - (\frac{1}{2e} + 1) e^{2L} A(k_{1},k_{2}) - 2c_{1} e^{2L} A(k_{1},k_{1}+2).$$

Therefore, it follows from (6.24) that

$$(6.31) \quad \frac{1}{2}C_{1}(n) + \frac{1}{4}\lambda^{2} \ge L - (\frac{1}{2e} + 1 + 2c_{1})e^{2L}2^{4n}A(k_{1} + 2, k_{2} - 2)$$

$$\ge L - (\frac{1}{2e} + 1 + 2c_{1})e^{2L}2^{4n}\int_{\Omega(k_{1}, k_{2})} \psi^{2}(\rho(x))d\mu$$

$$= L - (\frac{1}{2e} + 1 + 2c_{1})2^{4n}.$$

On the other hand, we have, from (6.24) and definition of f(x),

$$(6.32) 1 \le e^{2L} \varepsilon.$$

Letting $\varepsilon > 0$ sufficiently small, then L can be arbitrary large, which contradicts (6.31). Hence, M has infinite area.

Theorem 6.1. Let $X: M \to \mathbb{R}^{n+1}$ be an n-dimensional complete proper λ -hypersurface. Then, for any $p \in M$, there exists a constant C > 0 such that

$$Area(B_r(X(x_0)) \cap X(M)) \ge Cr,$$

for all r > 1.

Proof. We can choose $r_0 > 0$ such that $Area(B_r(0) \cap X(M)) > 0$ for $r \ge r_0$. It is sufficient to prove there exists a constant C > 0 such that

(6.33)
$$\operatorname{Area}(B_r(0) \cap X(M)) \ge Cr$$

holds for all $r \ge r_0$. In fact, if (6.33) holds, then for any $x_0 \in M$ and $r > |X(x_0)|$,

(6.34)
$$B_r(X(x_0)) \supset B_{r-|X(x_0)|}(0),$$

and

(6.35)
$$\operatorname{Area}(B_r(X(x_0)) \cap X(M)) \ge \operatorname{Area}(B_{r-|X(x_0)|}(0) \cap X(M)) \ge \frac{C}{2}r,$$

for $r \ge 2|X(x_0)|$.

We next prove (6.33) by contradiction. Assume for any $\varepsilon > 0$, there exists $r \geq r_0$ such that

(6.36)
$$\operatorname{Area}(B_r(0) \cap X(M)) \leq \varepsilon r.$$

Without loss of generality, we assume $r \in \mathbb{N}$ and consider a set:

$$D := \{ k \in \mathbb{N} : \text{Area}(B_t(0) \cap X(M)) \le 2\varepsilon t$$
 for any integer t satisfying $r \le t \le k \}.$

Next, we will show that $k \in D$ for any integer k satisfying $k \ge r$. For $t \ge r_0$, we define a function u by (6.37)

$$u(x) = \begin{cases} t + 2 - \rho(x), & \text{in } B_{t+2}(0) \cap X(M) \setminus B_{t+1}(0) \cap X(M), \\ 1, & \text{in } B_{t+1}(0) \cap X(M) \setminus B_{t}(0) \cap X(M), \\ \rho(x) - (t-1), & \text{in } B_{t}(0) \cap X(M) \setminus B_{t-1}(0) \cap X(M), \\ 0, & \text{otherwise.} \end{cases}$$

Using Lemma 6.2, $|\nabla \rho| \le 1$ and $t \ln t \ge -\frac{1}{e}$ for $0 \le t \le 1$, we have

$$(6.38) - \frac{1}{2} \int_{M} u^{2} d\mu \ln \left\{ \left(\operatorname{Area}(B_{t+2}(0) \cap X(M)) - \operatorname{Area}(B_{t-1}(0) \cap X(M)) \right) \right\}$$

$$\leq C_{0} \left(\operatorname{Area}(B_{t+2}(0) \cap X(M)) - \operatorname{Area}(B_{t-1}(0) \cap X(M)) \right)$$

$$+ \frac{1}{4} \left(\int_{B_{t+2}(0) \cap X(M)} H^{2} d\mu - \int_{B_{t-1}(0) \cap X(M)} H^{2} d\mu \right),$$

where $C_0 = 1 + \frac{1}{2e} + \frac{1}{2}C_2(n)$, $C_2(n)$ is the constant of Lemma 6.2.

For all $t \geq C_1(n,\lambda) + 1$, we have from Lemma 6.1

(6.39)
$$\operatorname{Area}(B_{t+2}(0) \cap X(M)) - \operatorname{Area}(B_{t-1}(0) \cap X(M))$$

$$\leq c(n,\lambda) \left(\frac{\operatorname{Area}(B_{t+1}(0) \cap X(M))}{t+1} + \frac{\operatorname{Area}(B_{t}(0) \cap X(M))}{t} + \frac{\operatorname{Area}(B_{t-1}(0) \cap X(M))}{t-1} \right)$$

$$\leq c(n,\lambda) \left(\frac{2}{t+1} + \frac{1}{t} + \frac{1}{t} (1 + \frac{1}{C_{1}(n,\lambda)}) \right) \operatorname{Area}(B_{t}(0) \cap X(M))$$

$$\leq C_{2}(n,\lambda) \frac{\operatorname{Area}(B_{t}(0) \cap X(M))}{t},$$

where $C_2(n,\lambda)$ is constant depended only on n and λ . Note that we can assume $r \geq C_1(n,\lambda) + 1$ for the r satisfying (6.36). In fact, if for any given $\varepsilon > 0$, all the r which satisfies (6.36) is bounded above by $C_1(n,\lambda) + 1$, then $\operatorname{Area}(B_r(0) \cap X(M)) \geq Cr$ holds for any $r > C_1(n,\lambda) + 1$. Thus, we know that M has at least linear area growth. Hence, for any $k \in D$ and any t satisfying $r \leq t \leq k$, we have

(6.40)
$$\operatorname{Area}(B_{t+2}(0) \cap X(M)) - \operatorname{Area}(B_{t-1}(0) \cap X(M)) \le 2C_2(n, \lambda)\varepsilon.$$

Since

(6.41)
$$\int_{M} u^{2} d\mu \geq \operatorname{Area}(B_{t+1}(0) \cap X(M)) - \operatorname{Area}(B_{t}(0) \cap X(M)),$$

holds, if we choose ε such that $2C_2(n,\lambda)\varepsilon < 1$, from (6.38), we obtain

$$(6.42) \quad (\operatorname{Area}(B_{t+1}(0) \cap X(M)) - \operatorname{Area}(B_{t}(0) \cap X(M))) \ln(2C_{2}(n,\lambda)\varepsilon)^{-1}$$

$$\leq 2C_{0} \left(\operatorname{Area}(B_{t+2}(0) \cap X(M)) - \operatorname{Area}(B_{t-1}(0) \cap X(M)) \right)$$

$$+ \frac{1}{2} \left(\int_{B_{t+2}(0) \cap X(M)} H^{2} d\mu - \int_{B_{t-1}(0) \cap X(M)} H^{2} d\mu \right).$$

Iterating from t = r to t = k and taking summation on t, we infer, from Lemma 6.1 and the equation (6.9) that

$$(6.43) \quad (\operatorname{Area}(B_{k+1}(0) \cap X(M)) - \operatorname{Area}(B_{r}(0) \cap X(M))) \ln(2C_{2}(n,\lambda)\varepsilon)^{-1} \\ \leq 6C_{0}\operatorname{Area}(B_{k+2}(0) \cap X(M)) + \frac{3}{2} \int_{B_{k+2}(0) \cap X(M)} H^{2} d\mu \\ \leq \left[6C_{0} + \frac{3}{2}(2n+\lambda^{2}) \right] \operatorname{Area}(B_{k+2}(0) \cap X(M)) \\ \leq 2\left[6C_{0} + \frac{3}{2}(2n+\lambda^{2}) \right] \operatorname{Area}(B_{k+1}(0) \cap X(M)).$$

Hence, we get

$$(6.44) \quad \operatorname{Area}(B_{k+1}(0) \cap X(M))$$

$$\leq \frac{\ln(2C_2(n,\lambda)\varepsilon)^{-1}}{\ln(2C_2(n,\lambda)\varepsilon)^{-1} - 12C_0 - 3(2n+\lambda^2)} \operatorname{Area}(B_r(0) \cap X(M))$$

$$\leq \frac{\ln(2C_2(n,\lambda)\varepsilon)^{-1}}{\ln(2C_2(n,\lambda)\varepsilon)^{-1} - 12C_0 - 3(2n+\lambda^2)} \varepsilon r.$$

We can choose ε small enough such that

(6.45)
$$\frac{\ln(2C_2(n,\lambda)\varepsilon)^{-1}}{\ln(2C_2(n,\lambda)\varepsilon)^{-1} - 12C_0 - 3(2n+\lambda^2)} \le 2.$$

Therefore, it follows from (6.44) that

(6.46)
$$\operatorname{Area}(B_{k+1}(0) \cap X(M)) \le 2\varepsilon r,$$

for any $k \in D$. Since $k + 1 \ge r$, we have, from (6.46) and the definition of D, that $k + 1 \in D$. Thus, by induction, we know that D contains all of integers $k \ge r$ and

(6.47)
$$\operatorname{Area}(B_k(0) \cap X(M)) \le 2\varepsilon r,$$

for any integer $k \geq r$. This implies that M has finite volume, which contradicts with Lemma 6.4. Hence, there exist constants C and r_0 such that $\operatorname{Area}(B_r(0) \cap X(M)) \geq Cr$ for $r > r_0$. It completes the proof of Theorem 6.1.

Remark 6.1. The estimate in our theorem is the best possible because the cylinders $S^{n-1}(r_0) \times \mathbb{R}$ satisfy the equality.

Acknowledgement. The authors would like to thank the referees for careful reading of the paper and for the valuable suggestions and comments which make this paper better and more readable.

References

- [1] H.-D. Cao and D. Zhou, On complete gradient shrinking Ricci solitons, J. Diff. Geom., **85** (2010), 175–185.
- [2] H. -D. Cao and X.-P. Zhu, A complete proof of the Poincare and geometrization conjectures, application of the Hamilton-Perelman theory of the Ricci flow, Asian J. Math., 10 (2006), 165–492.
- [3] Q. -M. Cheng and G. Wei, Complete λ -hypersurfaces of weighted volume-preserving mean curvature flow, arXiv:1403.3177.
- [4] Q. -M. Cheng and G. Wei, Complete λ -hypersurfaces of weighted volume-preserving mean curvature flow, Calc. Var. Partial Differential Equations, 57 (2018), no. 2, Art. 32, 21 pp.
- [5] X. Cheng and D. Zhou, *Volume estimate about shrinkers*, Proc. Amer. Math. Soc., **141** (2013), 687–696.
- [6] T. H. Colding and W. P. Minicozzi II, Generic mean curvature flow I; Generic singularities, Ann. of Math., 175 (2012), 755–833.
- [7] Q. Ding and Y. L. Xin, Volume growth, eigenvalue and compactness for self-shrinkers, Asia J. Math., 17 (2013), 443–456.
- [8] K. Ecker, Logarithmic Sobolev inequalities on submanifolds of Euclidean space, J. Reine Angew. Math., **522** (2000), 105–118.
- [9] G. Huisken, Flow by mean curvature of convex surfaces into spheres, J. Diff. Geom., 22 (1984), 237–266.
- [10] G. Huisken, The volume preserving mean curvature flow, J. reine angew. Math., 382 (1987), 35–48.
- [11] H. Li and Y. Wei, Lower volume growth estimates for self-shrinkers of mean curvature flow, Proc. Amer. Math. Soc., 142 (2014), 3237–3248.
- [12] O. Munteanu and J. Wang, Analysis of the weighted Laplacian and applications to Ricci solitons, Comm. Anal. Geom., 20 (2012), 55–94.
- [13] Y. Wei, On lower volume growth estimates for f-minimal submanifolds in gradient shrinking soliton, Int. Math. Res. Not. IMRN, 9 (2017), 2662–2685.

DEPARTMENT OF APPLIED MATHEMATICS, FACULTY OF SCIENCES FUKUOKA UNIVERSITY, 814-0180, FUKUOKA, JAPAN *E-mail address*: cheng@fukuoka-u.ac.jp

School of Mathematical Sciences, South China Normal University 510631, Guangzhou, China

E-mail address: weiguoxin@tsinghua.org.cn

RECEIVED DECEMBER 26, 2015 ACCEPTED OCTOBER 30, 2019