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1. Introduction

Let X :M → Rn+1 be a smooth n-dimensional immersed hypersurface in
the (n+ 1)-dimensional Euclidean space Rn+1. A family X(·, t) of smooth

The first author was partially supported by JSPS Grant-in-Aid for Scientific
Research (B): No.16H03937. The second author was partly supported by NSFC
Grant No.11771154, Guangdong Province Universities and Colleges Pearl River
Scholar Funded Scheme (2018), Guangdong Natural Science Foundation Grant
No.2019A1515011451.

1059



✐

✐

“4-Wei” — 2023/2/23 — 15:13 — page 1060 — #2
✐

✐

✐

✐

✐

✐

1060 Qing-Ming Cheng and Guoxin Wei

immersions:

X(·, t) :M → R
n+1

with X(·, 0) = X(·) is called a mean curvature flow if they satisfy

∂X(p, t)

∂t
= H(p, t),

where H(t) = H(p, t) denotes the mean curvature vector of hypersurface
Mt = X(Mn, t) at point X(p, t). Huisken [9] proved that the mean curvature
flow Mt remains smooth and convex until it becomes extinct at a point in
the finite time. If we rescale the flow about the point, the rescaling converges
to the round sphere. An immersed hypersurface X :M → Rn+1 is called a
self-shrinker if

H + ⟨X,N⟩ = 0,

where H and N denote the mean curvature and the unit normal vector
of X :M → Rn+1, respectively. ⟨·, ·⟩ denotes the standard inner product in
Rn+1. It is known that self-shrinkers play an important role in the study of
the mean curvature flow because they describe all possible blow ups at a
given singularity of the mean curvature flow.

Colding and Minicozzi [6] have introduced a notation of F-functional and
computed the first and the second variation formulas of the F-functional.
They have proved that an immersed hypersurface X :M → Rn+1 is a self-
shrinker if and only if it is a critical point of the F-functional. Further-
more, they have given a complete classification of the F-stable complete
self-shrinkers with polynomial area growth.

In [3], we consider a new type of mean curvature flow:

(1.1)
∂X(t)

∂t
= −α(t)N(t) +H(t),

with

α(t) =

∫

M
H(t)⟨N(t), N⟩e− |X|2

2 dµ
∫

M
⟨N(t), N⟩e− |X|2

2 dµ
,

where N is the unit normal vector of X :M → Rn+1. We define a weighted
volume of Mt by

V (t) =

∫

M

⟨X(t), N⟩e−
|X|2

2 dµ.

We can prove that the flow (1.1) preserves the weighted volume V (t). Hence,
we call the flow (1.1) a weighted volume-preserving mean curvature flow.
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From a view of variations, self-shrinkers of mean curvature flow can
be characterized as critical points of the weighted area functional. In [3],
the authors give a definition of weighted volume and study the weighted
area functional for variations preserving this volume. Critical points for the
weighted area functional for variations preserving this volume are called λ-
hypersurfaces by the authors in [3]. Precisely, an n-dimensional hypersurface
X :M → Rn+1 in Euclidean space Rn+1 is called a λ-hypersurface if

(1.2) ⟨X,N⟩+H = λ,

where λ is a constant, H and N denote the mean curvature and unit normal
vector of X :M → Rn+1, respectively.

Remark 1.1. If λ = 0, ⟨X,N⟩+H = λ = 0, then X :M → Rn+1 is a self-
shrinkers. Hence, the notation of λ-hypersurfaces is a natural generalization
of the self-shrinkers of the mean curvature flow. The equation (1.2) also
arises in the Gaussian isoperimetric problem.

In this paper, we define F-functional. The first and second variation
formulas of F-functional are given. Notation of F-stability and F-unstability
of λ-hypersurfaces are introduced. We prove that spheres Sn(r) with r ≤ √

n

or r >
√
n+ 1 are F-stable and spheres Sn(r) with

√
n < r ≤

√
n+ 1 are

F-unstable. In section 4, we study the weak stability of the weighted area
functional for the weighted volume-preserving variations. In sections 5 and 6,
the area growth of complete and non-compact λ-hypersurfaces are studied.

We should remark that this paper is the second part of our paper
arXiv:1403.3177, which is divided into two parts. The first part has been
published [4].

2. The first variation of F-functional

In this section, we will give another variational characterization of λ-
hypersurfaces.

The following lemmas can be found in [3].

Lemma 2.1. If X :M → Rn+1 is a λ-hypersurface, then we have

L⟨X, a⟩ = λ⟨N, a⟩ − ⟨X, a⟩,(2.1)

L⟨N, a⟩ = −S⟨N, a⟩,(2.2)

1

2
L(|X|2) = n− |X|2 + λ⟨X,N⟩,(2.3)
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where L is an elliptic operator given by Lf = ∆f − ⟨X,∇f⟩, ∆ and ∇ de-
note the Laplacian and the gradient operator of the λ-hypersurface, respec-
tively, a ∈ Rn+1 is constant vector, S is the squared norm of the second
fundamental form.

Lemma 2.2. If X :M → Rn+1 is a hypersurface, u is a C1-function with
compact support and v is a C2-function, then

(2.4)

∫

M

u(Lv)e−
|X|2

2 dµ = −
∫

M

⟨∇u,∇v⟩e−
|X|2

2 dµ.

Corollary 2.1. Let X :M → Rn+1 be a complete hypersurface. If u, v are
C2 functions satisfying

(2.5)

∫

M

(|u∇v|+ |∇u||∇v|+ |uLv|)e−
|X|2

2 dµ < +∞,

then we have

(2.6)

∫

M

u(Lv)e−
|X|2

2 dµ = −
∫

M

⟨∇u,∇v⟩e−
|X|2

2 dµ.

Lemma 2.3. Let X :M → Rn+1 be an n-dimensional complete λ-
hypersurface with polynomial area growth, then

∫

M

(⟨X, a⟩ − λ⟨N, a⟩)e−
|X|2

2 dµ = 0,(2.7)
∫

M

(

n− |X|2 + λ⟨X,N⟩
)

e−
|X|2

2 dµ = 0,(2.8)
∫

M

⟨X, a⟩|X|2e−
|X|2

2 dµ(2.9)

=

∫

M

(

2nλ⟨N, a⟩+ 2λ⟨X, a⟩(λ−H)− λ⟨N, a⟩|X|2
)

e−
|X|2

2 dµ,

∫

M

⟨X, a⟩2e−
|X|2

2 dµ =

∫

M

(

|aT |2 + λ⟨N, a⟩⟨X, a⟩
)

e−
|X|2

2 dµ,

(2.10)

where aT =
∑

i < a, ei > ei.

∫

M

(

|X|2 − n− λ(λ−H)

2

)2

e−
|X|2

2 dµ(2.11)

=

∫

M

{

(
λ2

4
− 1)(λ−H)2 + 2n−H2 + λ2

}

e−
|X|2

2 dµ.
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LetX(s) :M → Rn+1 a variation ofX withX(0) = X and ∂
∂s
X(s)|s=0 =

fN . For X0 ∈ Rn+1 and a real number t0, F-functional is defined by

FXs,ts(s) = FXs,ts(X(s))

= (4πts)
−n

2

∫

M

e
− |X(s)−Xs|2

2ts dµs

+ λ(4πt0)
−n

2 (
t0

ts
)

1

2

∫

M

⟨X(s)−Xs, N⟩e−
|X−X0|2

2t0 dµ,

where Xs and ts denote variations of X0 and t0. Let

∂ts

∂s
= h(s),

∂Xs

∂s
= y(s),

∂X(s)

∂s
= f(s)N(s),

one calls that X :M → Rn+1 is a critical point of FXs,ts(s) if it is critical
with respect to all normal variations and all variations in X0 and t0.

Lemma 2.4. Let X(s) be a variation of X with normal variation vec-

tor field ∂X(s)
∂s

|s=0 = fN . If Xs and ts are variations of X0 and t0 with
∂Xs

∂s
|s=0 = y and ∂ts

∂s
|s=0 = h, then the first variation formula of FXs,ts(s) is

given by

(2.12) F ′

X0,t0
(0) = (4πt0)

−n

2

∫

M

(

λ− (H + ⟨X −X0

t0
, N⟩)

)

fe−
|X−X0|2

2 dµ

+ (4πt0)
−n

2

∫

M

(

⟨X −X0

t0
, y⟩ − λ⟨N, y⟩

)

e−
|X−X0|2

2 dµ

+ (4πt0)
−n

2

∫

M

( |X −X0|2
t0

− n− λ⟨X −X0, N⟩
)

h

2t0
e−

|X−X0|2

2 dµ.

Proof. Defining

(2.13) A(s) =

∫

M

e
− |X(s)−Xs|2

2ts dµs, V(s) =

∫

M

⟨X(s)−Xs, N⟩e−
|X−X0|2

2t0 dµ,

then

F ′

Xs,ts
(s) = (4πts)

−n

2 A
′

(s) + λ(4πt0)
−n

2 (
t0

ts
)

1

2V
′

(s)

− (4πts)
−n

2
n

2ts
hA(s)− λ(4πt0)

−n

2 (
t0

ts
)

1

2
h

2ts
V(s).
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Since

A
′

(s) =

∫

M

{

−⟨X(s)−Xs

ts
,
∂X(s)

∂s
− ∂Xs

∂s
⟩+ |X(s)−Xs|2

2t2s
h

−Hs⟨
∂X(s)

∂s
,N(s)⟩

}

e
− |X(s)−Xs|2

2ts dµs,

V
′

(s) =

∫

M

⟨∂X(s)

∂s
− ∂Xs

∂s
,N⟩e−

|X−X0|2

2t0 dµ,

we have

F ′

Xs,ts
(s) = (4πts)

−n

2

∫

M

−(Hs + ⟨X(s)−Xs

ts
, N(s)⟩)fe−

|X(s)−Xs|2

2ts dµs(2.14)

+ (4πt0)
−n

2

√

t0

ts

∫

M

λf⟨N(s), N⟩e−
|X−X0|2

2t0 dµ

+ (4πts)
−n

2

∫

M

⟨X(s)−Xs

ts
, y⟩e−

|X(s)−Xs|2

2ts dµs

+ (4πt0)
−n

2

√

t0

ts

∫

M

λ⟨−y,N⟩e−
|X−X0|2

2t0 dµ

+ (4πts)
−n

2

∫

M

(− n

2ts
+

|X(s)−Xs|2
2t2s

)he−
|X(s)−Xs|2

2ts dµs

+ (4πt0)
−n

2

√

t0

ts

∫

M

−hλ

2ts
⟨X(s)−Xs, N⟩e−

|X−X0|2

2t0 dµ.

If s = 0, then X(0) = X, Xs = X0, ts = t0 and

F ′

X0,t0
(0) = (4πt0)

−n

2

∫

M

(

λ− (H + ⟨X −X0

t0
, N⟩)

)

fe−
|X−X0|2

2 dµ

+ (4πt0)
−n

2

∫

M

(

⟨X −X0

t0
, y⟩ − λ⟨N, y⟩

)

e−
|X−X0|2

2 dµ

+ (4πt0)
−n

2

∫

M

( |X −X0|2
t0

− n− λ⟨X −X0, N⟩
)

h

2t0
e−

|X−X0|2

2 dµ.

□

From Lemma 2.4, we know that if X :M → Rn+1 is a critical point of
F-functional FXs,ts(s), then

H + ⟨X −X0

t0
, N⟩ = λ.
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We next prove that if H + ⟨X−X0

t0
, N⟩ = λ, then X :M → Rn+1 must be a

critical point of F-functional FXs,ts(s). For simplicity, we only consider the
case of X0 = 0 and t0 = 1. In this case, H + ⟨X−X0

t0
, N⟩ = λ becomes

(2.15) H + ⟨X,N⟩ = λ.

Furthermore, we know that X :M → Rn+1 is a critical point of the
F-functional FXs,ts(s) if and only if X :M → Rn+1 is a critical point of
F-functional FX0,t0(s) with respect to fixed X0 and t0.

Theorem 2.1. X :M → Rn+1 is a critical point of FXs,ts(s) if and only if

H + ⟨X −X0

t0
, N⟩ = λ.

Proof. We only prove the result for X0 = 0 and t0 = 1. In this case, the first
variation formula (2.12) becomes

F ′

0,1(0) = (4π)−
n

2

∫

M

(

λ− (H + ⟨X,N⟩)
)

fe−
|X|2

2 dµ(2.16)

+ (4π)−
n

2

∫

M

(

⟨X, y⟩ − λ⟨N, y⟩
)

e−
|X|2

2 dµ

+ (4π)−
n

2

∫

M

(

|X|2 − n− λ⟨X,N⟩
)

h

2
e−

|X|2

2 dµ.

If X :M → Rn+1 is a critical point of F0,1, then X :M → Rn+1 should
satisfy H + ⟨X,N⟩ = λ. Conversely, if H + ⟨X,N⟩ = λ is satisfied, then we
know that X :M → Rn+1 is a λ-hypersurface. Therefore, the last two terms
in (2.16) vanish for any h and any y from (2.7) and (2.8) of Lemma 2.3.
Therefore X :M → Rn+1 is a critical point of F0,1. □

Corollary 2.2. X :M → Rn+1 is a critical point of FXs,ts(s) if and only
if M is the critical point of F-functional with respect to fixed X0 and t0.

3. The second variation of F-functional

In this section, we shall give the second variation formula of F-functional.

Theorem 3.1. Let X :M → Rn+1 be a critical point of the functional
F(s) = FXs,ts(s). The second variation formula of F(s) for X0 = 0 and
t0 = 1 is given by
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(4π)
n

2 F ′′

(0) = −
∫

M

fLfe−
|X|2

2 dµ+

∫

M

(

−|y|2 + ⟨X, y⟩2
)

e−
|X|2

2 dµ

+

∫

M

{

2⟨N, y⟩+ (n+ 1− |X|2)λh− 2hH − 2λ⟨X, y⟩
}

fe−
|X|2

2 dµ

+

∫

M

{

(|X|2 − n− 1)⟨X, y⟩
}

he−
|X|2

2 dµ

+

∫

M

{

n2 + 2n

4
− n+ 2

2
|X|2 + |X|4

4
+

3λ

4
(λ−H)

}

h2e−
|X|2

2 dµ,

where the operator L is defined by

L = L+ S + 1− λ2.

Proof. Let

I(s) = (4πts)
−n

2

∫

M

−(Hs + ⟨X(s)−Xs

ts
, N(s)⟩)fe−

|X(s)−Xs|2

2ts dµs

+ (4πt0)
−n

2

√

t0

ts

∫

M

λf⟨N(s), N⟩e−
|X−X0|2

2t0 dµ,

II(s) = (4πts)
−n

2

∫

M

⟨X(s)−Xs

ts
, y⟩e−

|X(s)−Xs|2

2ts dµs

+ (4πt0)
−n

2

√

t0

ts

∫

M

λ⟨−y,N⟩e−
|X−X0|2

2t0 dµ,

III(s) = (4πts)
−n

2

∫

M

(− n

2ts
+

|X(s)−Xs|2
2t2s

)he−
|X(s)−Xs|2

2ts dµs

+ (4πt0)
−n

2

√

t0

ts

∫

M

−hλ

2ts
⟨X(s)−Xs, N⟩e−

|X−X0|2

2t0 dµ,

we have

F ′

(s) = I(s) + II(s) + III(s), F ′′

(s) = I
′

(s) + II
′

(s) + III
′

(s),

I
′

(s) = (4πts)
−n

2

∫

M

nh

2ts
(Hs + ⟨X(s)−Xs

ts
, N(s)⟩)fe−

|X(s)−Xs|2

2ts dµs

+ (4πts)
−n

2

∫

M

−
(

dHs

ds
+ ⟨

∂X(s)
∂s

− ∂Xs

∂s

ts
, N(s)⟩ − ⟨X(s)−Xs

t2s
, N(s)⟩h

+ ⟨X(s)−Xs

ts
,
dN(s)

ds
⟩
)

fe
− |X(s)−Xs|2

2ts dµs
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+ (4πts)
−n

2

∫

M

−(Hs + ⟨X(s)−Xs

ts
, N(s)⟩)f ′

e
− |X(s)−Xs|2

2ts dµs

+ (4πts)
−n

2

∫

M

(Hs + ⟨X(s)−Xs

ts
, N(s)⟩)

× (⟨X(s)−Xs

ts
,
∂X(s)

∂s
− ∂Xs

∂s
⟩+Hsf)fe

− |X(s)−Xs|2

2ts dµs

+ (4πts)
−n

2

∫

M

−(Hs + ⟨X(s)−Xs

ts
, N(s)⟩)f |X(s)−Xs|2

2t2s
h

× e
− |X(s)−Xs|2

2ts dµs

+ (4πt0)
−n

2

√

t0

ts

∫

M

− h

2ts
λ⟨N(s), N⟩fe−

|X−X0|2

2t0 dµ

+ (4πt0)
−n

2

√

t0

ts

∫

M

λf
′⟨N(s), N⟩e−

|X−X0|2

2t0 dµ

+ (4πt0)
−n

2

√

t0

ts

∫

M

λf⟨dN(s)

ds
,N⟩e−

|X−X0|2

2t0 dµ,

II
′

(s) = (4πts)
−n

2 (−nh
2ts

)

∫

M

⟨X(s)−Xs

ts
, y⟩e−

|X(s)−Xs|2

2ts dµs

+ (4πts)
−n

2

∫

M

(⟨
∂X(s)
∂s

− ∂Xs

∂s

ts
, y⟩ − ⟨X(s)−Xs

t2s
, y⟩h)e−

|X(s)−Xs|2

2ts dµs

+ (4πts)
−n

2

∫

M

⟨X(s)−Xs

ts
, y

′⟩e−
|X(s)−Xs|2

2ts dµs

+ (4πts)
−n

2

∫

M

⟨X(s)−Xs

ts
, y⟩

(

−⟨X(s)−Xs

ts
,
∂X(s)

∂s
− ∂Xs

∂s
⟩

−Hsf

)

e
− |X(s)−Xs|2

2ts dµs

+ (4πts)
−n

2

∫

M

⟨X(s)−Xs

ts
, y⟩ |X(s)−Xs|2

2t2s
he

− |X(s)−Xs|2

2ts dµs

+ (4πt0)
−n

2

√

t0

ts
(− h

2ts
)

∫

M

−λ⟨N, y⟩e−
|X−X0|2

2t0 dµ

+ (4πt0)
−n

2

√

t0

ts

∫

M

−λ⟨N, y′⟩e−
|X−X0|2

2t0 dµ,

III
′

(s) = (4πts)
−n

2 (−nh
2ts

)

∫

M

(− n

2ts
+

|X(s)−Xs|2
2t2s

)he−
|X(s)−Xs|2

2ts dµs

+ (4πts)
−n

2

∫

M

(
nh

2t2s
− |X(s)−Xs|2

t3s
h+

⟨X(s)−Xs,
∂X(s)
∂s

− ∂Xs

∂s
⟩

t2s
)

× he
− |X(s)−Xs|2

2ts dµs
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+ (4πts)
−n

2

∫

M

(− n

2ts
+

|X(s)−Xs|2
2t2s

)h
′

e
− |X(s)−Xs|2

2ts dµs

+ (4πts)
−n

2

∫

M

(− n

2ts
+

|X(s)−Xs|2
2t2s

)h(−Hsf

− ⟨X(s)−Xs

ts
,
∂X(s)

∂s
− ∂Xs

∂s
⟩)e−

|X(s)−Xs|2

2ts dµs

+ (4πts)
−n

2

∫

M

(− n

2ts
+

|X(s)−Xs|2
2t2s

)h
|X(s)−Xs|2

2t2s
he

− |X(s)−Xs|2

2ts dµs

+ (4πt0)
−n

2

√

t0

ts
(− h

2ts
)

∫

M

− h

2ts
λ⟨X(s)−Xs, N⟩e−

|X−X0|2

2t0 dµ

+ (4πt0)
−n

2

√

t0

ts

∫

M

−h
′

λ

2ts
⟨X(s)−Xs, N⟩e−

|X−X0|2

2t0 dµ

+ (4πt0)
−n

2

√

t0

ts

∫

M

(
h

2t2s
⟨X(s)−Xs, N⟩λh

− 1

2ts
⟨∂X(s)

∂s
− ∂Xs

∂s
,N⟩λh)e−

|X−X0|2

2t0 dµ.

Since X :M → Rn+1 is a critical point, we get

H + ⟨X −X0

t0
, N⟩ = λ,

∫

M

(n+ λ⟨X −X0, N⟩ − |X −X0|2
t0

)e
− |X−X0|2

2t0 dµ = 0,
∫

M

(λ⟨N, a⟩ − ⟨X −X0

t0
, a⟩)e−

|X−X0|2

2t0 dµ = 0.

On the other hand,

H
′

= ∆f + Sf, N
′

= −∇f.

Using of the above equations and letting s = 0, we obtain

(4πt0)
n

2 F ′′

(0) =

∫

M

−fLfe−
|X−X0|2

2t0 dµ

+

∫

M

(

2

t0
⟨N, y⟩+ 2h

t0
⟨X −X0

t0
, N⟩+ n− 1

t0
λh

− |X −X0|2
t20

λh− 2λ⟨X −X0

t0
, y⟩

)

fe
− |X−X0|2

2t0 dµ
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+

∫

M

(

−n+ 2

t0
⟨X −X0

t0
, y⟩+ λ

t0
⟨N, y⟩

+ ⟨X −X0

t0
, y⟩ |X −X0|2

t20

)

he
− |X−X0|2

2t0 dµ

+

∫

M

(

n2

4t20
+

n

2t20
− n+ 2

2t30
|X −X0|2 +

|X −X0|4
4t40

+
3λ

4t0
⟨X −X0

t0
, N⟩

)

h2e
− |X−X0|2

2t0 dµ

+

∫

M

(

− 1

t0
⟨y, y⟩+ ⟨X −X0

t0
, y⟩2

)

e
− |X−X0|2

2t0 dµ,

where the operator L is defined by L = ∆+ S + 1
t0
− ⟨X−X0

t0
,∇⟩ − λ2. When

t0 = 1, X0 = 0, then L = L+ S + 1− λ2.

(4π)
n

2 F ′′

(0) =

∫

M

−fLfe−
|X−|2

2 dµ

+

∫

M

(

2⟨N, y⟩+ 2λh+ (n− 1)λh− 2hH

− |X|2λh− 2λ⟨X, y⟩
)

fe−
|X|2

2 dµ

+

∫

M

(

λ⟨N, y⟩ − (n+ 2)⟨X, y⟩+ ⟨X, y⟩|X|2
)

he−
|X|2

2 dµ

+

∫

M

(

n2 + 2n

4
− n+ 2

2
|X|2 + |X|4

4
+

3λ

4
⟨X,N⟩

)

h2e−
|X|2

2 dµ

+

∫

M

−(|y|2 − ⟨X, y⟩2)e−
|X|2

2 dµ

=

∫

M

−fLfe−
|X|2

2 dµ

+

∫

M

[

2⟨N, y⟩+ (n+ 1− |X|2)λh− 2hH − 2λ⟨X, y⟩
]

fe−
|X−|2

2 dµ

+

∫

M

{

(|X|2 − n− 1)⟨X, y⟩
}

he−
|X|2

2 dµ

+

∫

M

(

n2 + 2n

4
− n+ 2

2
|X|2 + |X|4

4
+

3λ

4
(λ−H)

)

h2e−
|X|2

2 dµ

+

∫

M

(−|y|2 + ⟨X, y⟩2)e−
|X|2

2 dµ.

□
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Definition 3.1. One calls that a critical point X :M→Rn+1 of the F-
functional FXs,ts(s) is F-stable if, for every normal variation fN , there
exist variations of X0 and t0 such that F ′′

X0,t0(0) ≥ 0;
One calls that a critical point X :M→Rn+1 of the F-functional FXs,ts(s)

is F-unstable if there exist a normal variation fN such that for all variations
of X0 and t0, F ′′

X0,t0(0) < 0.

Theorem 3.2. If r ≤ √
n or r >

√
n+ 1, the n-dimensional round sphere

X : Sn(r)→Rn+1 is F-stable; If
√
n < r ≤

√
n+ 1, the n-dimensional round

sphere X : Sn(r) → Rn+1 is F-unstable.

Proof. For the sphere Sn(r), we have

X = −rN, H =
n

r
, S =

H2

n
=

n

r2
, λ = H − r =

n

r
− r

and

(3.1) Lf = Lf + (S + 1− λ2)f = ∆f + (
n

r2
+ 1− λ2)f.

Since we know that eigenvalues µk of ∆ on the sphere Sn(r) are given by

(3.2) µk =
k2 + (n− 1)k

r2
,

and constant functions are eigenfunctions corresponding to eigenvalue
µ0 = 0. For any constant vector z ∈ Rn+1, we get

(3.3) −∆⟨z,N⟩ = ∆⟨z, X
r
⟩ = ⟨z, 1

r
HN⟩ = n

r2
⟨z,N⟩,

that is, ⟨z,N⟩ is an eigenfunction of ∆ corresponding to the first eigenvalue
µ1 =

n
r2
. Hence, for any normal variation with the variation vector field fN ,

we can choose a real number a ∈ R and a constant vector z ∈ Rn+1 such
that

(3.4) f = f0 + a+ ⟨z,N⟩,
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and f0 is in the space spanned by all eigenfunctions corresponding to eigen-
values µk (k ≥ 2) of ∆ on Sn(r). Using Lemma 2.3, we get
(3.5)

(4π)
n

2 e
r
2

2 F ′′

(0)

=

∫

Sn(r)
−(f0 + a+ ⟨z,N⟩)L(f0 + a+ ⟨z,N⟩)dµ

+

∫

Sn(r)
[2⟨N, y⟩+ (n+ 1− r2)λh− 2

n

r
h+ 2λ⟨rN, y⟩](f0 + a+ ⟨z,N⟩)dµ

+

∫

Sn(r)
λ⟨N, y⟩(r2 − n− 1)hdµ

+

∫

Sn(r)
(
n2 + 2n

4
− n+ 2

2
r2 +

r4

4
+

3

4
r2 − 3

4
n)h2dµ

+

∫

Sn(r)
(−|y|2 + ⟨X, y⟩2)dµ

≥
∫

Sn(r)

{

(
n+ 2

r2
− 1 + λ2)f20 − (

n

r2
+ 1− λ2)a2 + (λ2 − 1)⟨z,N⟩2

}

dµ

+

∫

Sn(r)

{

2(1 + λr)⟨N, y⟩⟨N, z⟩+ [(n+ 1− r2)λ− 2
n

r
]ah

}

dµ

+

∫

Sn(r)

1

4
[r4 − (2n+ 1)r2 + n(n− 1)]h2dµ

+

∫

Sn(r)
(−|y|2 + ⟨X, y⟩2)dµ.

From Lemma 2.3, we have

(3.6)

∫

Sn(r)
(−|y|2 + ⟨X, y⟩2)dµ = −

∫

Sn(r)
(1 + λr)⟨N, y⟩2dµ.

Putting (3.6) and λ = n
r
− r into (3.5), we obtain

(4π)
n

2 e
r
2

2 F ′′

(0) ≥
∫

Sn(r)

1

r2

{

(r2 − n− 1

2
)2 +

7

4

}

f20dµ(3.7)

+

∫

Sn(r)
[r4 − (2n+ 1)r2 + n(n− 1)](

a

r
+
h

2
)2dµ

+

∫

Sn(r)

1

r2
[r4 − (2n+ 1)r2 + n2]⟨z,N⟩2dµ
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+

∫

Sn(r)
2(1 + n− r2)⟨N, y⟩⟨N, z⟩dµ

+

∫

Sn(r)
−(1 + n− r2)⟨N, y⟩2dµ.

If we choose h = −2a
r

and y = kz, then we have

(4π)
n

2 e
r
2

2 F ′′

(0) ≥
∫

Sn(r)

1

r2

{

(r2 − n− 1

2
)2 +

7

4

}

f20dµ

(3.8)

+

∫

Sn(r)

{

λ2 − 1 + 2(1 + λr)k − (1 + λr)k2
}

⟨z,N⟩2dµ

=

∫

Sn(r)

1

r2

{

(r2 − n− 1

2
)2 +

7

4

}

f20dµ

+

∫

Sn(r)

{

λ2 + λr − (1 + λr)(1− k)2
}

⟨z,N⟩2dµ.

We next consider three cases:

Case 1: r ≤ √
n

In this case, λ ≥ 0. Taking k = 1, then we get

F ′′

(0) ≥ 0.

Case 2: r ≥ 1+
√
1+4n
2 .

In this case, λ ≤ −1. Taking k = 2, we can get

F ′′

(0) ≥ 0.

Case 3:
√
n+ 1 < r < 1+

√
1+4n
2 .

In this case, −1 < λ < 0, 1 + λr < 0, we can take k such that (1− k)2 ≥
λ(λ+r)
1+λr

, then we have

F ′′

(0) ≥ 0.

Thus, if r ≤ √
n or r >

√
n+ 1, the n-dimensional round sphereX : Sn(r) →

Rn+1 is F-stable;
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If
√
n < r ≤

√
n+ 1, the n-dimensional round sphere X : Sn(r) → Rn+1

is F-unstable. In fact, in this case, −1 < λ < 0, 1 + λr ≥ 0. We can choose
f such that f0 = 0, then we have

(4π)
n

2 e
r
2

2 F ′′

(0) ≤
∫

Sn(r)
(λ2 − 1)⟨z,N⟩2dµ(3.9)

+

∫

Sn(r)
2(1 + λr)⟨N, y⟩⟨N, z⟩dµ

+

∫

Sn(r)
−(1 + λr)⟨N, y⟩2dµ

= (λ2 + λr)

∫

Sn(r)
⟨z,N⟩2dµ

− (1 + λr)

∫

Sn(r)
(⟨z,N⟩ − ⟨y,N⟩)2dµ

< 0.

This completes the proof of Theorem 3.2. □

According to Theorem 3.2, we would like to propose the following:

Problem 3.1. Is it possible to prove that spheres Sn(r) with r ≤ √
n or

r >
√
n+ 1 are the only F-stable compact λ-hypersurfaces?

Remark 3.1. Colding and Minicozzi [5] have proved that the sphere Sn(
√
n)

is the only F-stable compact self-shrinkers. In order to prove this result, the
property that the mean curvature H is an eigenfunction of L-operator plays
a very important role. But for λ-hypersurfaces, the mean curvature H is not
an eigenfunction of L-operator in general.

4. The weak stability of the weighted area functional for

weighted volume-preserving variations

Define

(4.1) T (s) = (4πts)
−n

2

∫

M

e
− |X(s)−Xs|2

2ts dµs.

We compute the first and the second variation formulas of the general T -
functional for weighted volume-preserving variations with fixed X0 and t0.



✐

✐

“4-Wei” — 2023/2/23 — 15:13 — page 1074 — #16
✐

✐

✐

✐

✐

✐

1074 Qing-Ming Cheng and Guoxin Wei

By a direct calculation, we have

T ′

(s) = (4πts)
−n

2

∫

M

−(Hs + ⟨X(s)−Xs

ts
, N(s)⟩)fe−

|X(s)−Xs|2

2ts dµs,

T ′′

(s) = (4πts)
−n

2

∫

M

−(Hs + ⟨X(s)−Xs

ts
, N(s)⟩)f ′

e
− |X(s)−Xs|2

2ts dµs

+ (4πts)
−n

2

∫

M

(Hs + ⟨X(s)−Xs

ts
, N(s)⟩)

× (⟨X(s)−Xs

ts
,
∂X(s)

∂s
⟩+Hsf)fe

− |X(s)−Xs|2

2ts dµs

+ (4πts)
−n

2

∫

M

−
(

dHs

ds
+ ⟨

∂X(s)
∂s

ts
, N(s)⟩

+ ⟨X(s)−Xs

ts
,
dN(s)

ds
⟩
)

fe
− |X(s)−Xs|2

2ts dµs.

Lemma 4.1.
∫

M

f
′

(0)e
− |X−X0|2

2t0 dµ = 0.

Proof. Since V (t) =
∫

M
⟨X(t)−X0, N⟩e−

|X−X0|2

2t0 dµ = V (0) for any t, we have

∫

M

f(t)⟨N(t), N⟩e−
|X−X0|2

2t0 dµ = 0.

Hence, we get

0 =
d

dt
|t=0

∫

M

f(t)⟨N(t), N⟩e−
|X−X0|2

2t0 dµ

=

∫

M

f
′

(0)e
− |X−X0|2

2t0 dµ.

□

Since M is a critical point of T (s), we have

H + ⟨X −X0

t0
, N⟩ = λ.

On the other hand, we have

(4.2) H
′

= ∆f + Sf, N
′

= −∇f.
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Then for t0 = 1 and X0 = 0, the second variation formula becomes

(4π)
n

2 T ′′

(0) =

∫

M

−f
(

Lf + (S + 1− λ2)f
)

e−
|X|2

2 dµ.

Theorem 4.1. Let X :M → Rn+1 be a critical point of the functional T (s)
for the weighted volume-preserving variations with fixed X0 = 0 and t0 = 1.
The second variation formula of T (s) is given by

(4.3) (4π)
n

2 T ′′

(0) =

∫

M

−f
(

Lf + (S + 1− λ2)f
)

e−
|X|2

2 dµ.

Definition 4.1. A critical point X :M → Rn+1 of the functional T (s) is
called weakly stable if, for any weighted volume-preserving normal variation,
T ′′(0) ≥ 0;

A critical point X :M → Rn+1 of the functional T (s) is called weakly
unstable if there exists a weighted volume-preserving normal variation, such
that T ′′(0) < 0.

Theorem 4.2. If r ≤ −1+
√
1+4n

2 or r ≥ 1+
√
1+4n
2 , the n-dimensional round

sphere X : Sn(r) → Rn+1 is weakly stable; If −1+
√
1+4n

2 < r < 1+
√
1+4n
2 , the

n-dimensional round sphere X : Sn(r) → Rn+1 is weakly unstable.

Proof. For the sphere Sn(r), we have

X = −rN, H =
n

r
, S =

n

r2
, λ = H − r =

n

r
− r

and

(4.4) Lf = Lf + (S + 1− λ2)f = ∆f + (
n

r2
+ 1− λ2)f.

Since we know that eigenvalues µk of ∆ on the sphere Sn(r) are given by

(4.5) µk =
k2 + (n− 1)k

r2
,

and constant functions are eigenfunctions corresponding to eigenvalue µ0 =
0. For any constant vector z ∈ Rn+1, we get

(4.6) −∆⟨z,N⟩ = n

r2
⟨z,N⟩,

that is, ⟨z,N⟩ is an eigenfunction of ∆ corresponding to the first eigenvalue
µ1 =

n
r2
. Hence, for any weighted volume-preserving normal variation with
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the variation vector field fN satisfying

∫

Sn(r)
fe−

r
2

2 dµ = 0,

we can choose a constant vector z ∈ Rn+1 such that

(4.7) f = f0 + ⟨z,N⟩,

and f0 is in the space spanned by all eigenfunctions corresponding to eigen-
values µk (k ≥ 2) of ∆ on Sn(r). By making use of Theorem 4.1, we have

(4π)
n

2 e
r
2

2 T ′′

(0) =

∫

Sn(r)
−(f0 + ⟨z,N⟩)L(f0 + ⟨z,N⟩)dµ(4.8)

≥
∫

Sn(r)

{

(
n+ 2

r2
− 1 + λ2)f20 + (λ2 − 1)⟨z,N⟩2

}

dµ.

According to λ = n
r
− r, we obtain

(4π)
n

2 e
r
2

2 T ′′

(0) ≥
∫

Sn(r)

1

r2

{

(r2 − n− 1

2
)2 +

7

4

}

f20dµ

+

∫

Sn(r)
(
n

r
− r − 1)(

n

r
− r + 1)⟨z,N⟩2dµ ≥ 0

if

r ≤ −1 +
√
4n+ 1

2
or r ≥ 1 +

√
4n+ 1

2
.

Thus, the n-dimensional round sphere X : Sn(r) → Rn+1 is weakly stable.
If

−1 +
√
4n+ 1

2
< r <

1 +
√
4n+ 1

2
,

choosing f =< z,N >, we have

∫

Sn(r)
fe−

r
2

2 dµ = 0.

Hence, there exists a weighted volume-preserving normal variation with the
variation vector filed fN such that

(4π)
n

2 e
r
2

2 T ′′

(0) =

∫

Sn(r)
(
n

r
− r − 1)(

n

r
− r + 1)⟨z,N⟩2dµ < 0.
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Thus, the n-dimensional round sphere X : Sn(r) → Rn+1 is weakly unstable.
It finishes the proof. □

Remark 4.1. From Theorem 3.2 and Theorem 4.2, we know the F-stability
and the weak stability are different. The F-stability is a weaker notation than
the weak stability.

Remark 4.2. Is it possible to prove that spheres Sn(r) with r ≤ −1+
√
1+4n

2

or r ≥ 1+
√
1+4n
2 are the only weak stable compact λ-hypersurfaces?

5. Properness and polynomial area growth for

λ-hypersurfaces

For n-dimensional complete and non-compact Riemannian manifolds with
nonnegative Ricci curvature, the well-known theorem of Bishop and Gromov
says that geodesic balls have at most polynomial area growth:

Area(Br(x0)) ≤ Crn.

For n-dimensional complete and non-compact gradient shrinking Ricci soli-
ton, Cao and Zhou [1] have proved geodesic balls have at most polynomial
area growth. For self-shrinkers, Ding and Xin [7] proved that any complete
non-compact properly immersed self-shrinker in the Euclidean space has
polynomial area growth. X. Cheng and Zhou [5] showed that any complete
immersed self-shrinker with polynomial area growth in the Euclidean space
is proper. Hence any complete immersed self-shrinker is proper if and only
if it has polynomial area growth.

It is our purposes in this section to study the area growth for λ-
hypersurfaces. First of all, we study the equivalence of properness and
polynomial area growth for λ-hypersurfaces. If X :M → Rn+1 is an n-
dimensional hypersurface in Rn+1, we say M has polynomial area growth if
there exist constant C and d such that for all r ≥ 1,

(5.1) Area(Br(0) ∩X(M)) =

∫

Br(0)∩X(M)
dµ ≤ Crd,

where Br(0) is a round ball in Rn+1 with radius r and centered at the origin.

Theorem 5.1. Let X :M → Rn+1 be a complete and non-compact prop-
erly immersed λ-hypersurface in the Euclidean space Rn+1. Then, there is a
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positive constant C such that for r ≥ 1,

(5.2) Area(Br(0) ∩X(M)) =

∫

Br(0)∩X(M)
dµ ≤ Crn+

λ
2

2
−2β− inf H

2

2 ,

where β = 1
4 inf(λ−H)2.

Proof. Since X :M → Rn+1 is a complete and non-compact properly im-
mersed λ-hypersurface in the Euclidean space Rn+1, we have

⟨X,N⟩+H = λ.

Defining f = |X|2
4 , we have

f − |∇f |2 = |X|2
4

− |XT |2
4

=
|X⊥|2

4
=

1

4
(λ−H)2,(5.3)

∆f =
1

2
(n+H⟨N,X⟩)(5.4)

=
1

2
(n+ λ⟨N,X⟩ − ⟨N,X⟩2)

=
1

2
n+

λ2

4
− H2

4
− f + |∇f |2.

Hence, we obtain

|∇(f − β)|2 ≤ (f − β),(5.5)

∆(f − β)− |∇(f − β)|2 + (f − β) ≤ (
n

2
+
λ2

4
− β − infH2

4
).(5.6)

Since the immersion X is proper, we know that f = f − β is proper. Ap-
plying Theorem 2.1 of X. Cheng and Zhou [5] to f = f − β with k = (n2 +
λ2

4 − β − inf H2

4 ), we obtain

(5.7) Area(Br(0) ∩X(M)) =

∫

Br(0)∩X(M)
dµ ≤ Crn+

λ
2

2
−2β− inf H

2

2 ,

where β = 1
4 inf(λ−H)2 and C is a constant. □

Remark 5.1. The estimate in Theorem 5.1 is the best possible because the
cylinders Sk(r0)× Rn−k satisfy the equality.



✐

✐

“4-Wei” — 2023/2/23 — 15:13 — page 1079 — #21
✐

✐

✐

✐

✐

✐

Stability and area growth of λ-hypersurfaces 1079

Remark 5.2. By making use of the same assertions as in X. Cheng and
Zhou [5] for self-shrinkers, we can prove the weighted area of a complete and
non-compact properly immersed λ-hypersurface in the Euclidean space Rn+1

is bounded.

By making use of to the same assertions as in X. Cheng and Zhou [5]
for self-shrinkers, we can prove the following theorem. We will leave it for
readers.

Theorem 5.2. If X :M → Rn+1 is an n-dimensional complete immersed
λ-hypersurface with polynomial area growth, then X :M → Rn+1 is proper.

6. A lower bound growth of the area for λ-hypersurfaces

For n-dimensional complete and non-compact Riemannian manifolds with
nonnegative Ricci curvature, the well-known theorem of Calabi and Yau says
that geodesic balls have at least linear area growth:

Area(Br(x0)) ≥ Cr.

Cao and Zhu [2] have proved that n-dimensional complete and non-compact
gradient shrinking Ricci soliton must have infinite volume. Furthermore,
Munteanu and Wang [12] have proved that areas of geodesic balls for n-
dimensional complete and non-compact gradient shrinking Ricci soliton has
at least linear growth. For self-shrinkers, Li and Wei [11] proved that any
complete and non-compact proper self-shrinker has at least linear area
growth.

In this section, we study the lower bound growth of the area for λ-
hypersurfaces. The following lemmas play a very important role in order to
prove our results.

Lemma 6.1. Let X :M → Rn+1 be an n-dimensional complete noncom-
pact proper λ-hypersurface, then there exist constants C1(n, λ) and c(n, λ)
such that for all t ≥ C1(n, λ),

Area(Bt+1(0) ∩X(M))−Area(Bt(0) ∩X(M))(6.1)

≤ c(n, λ)
Area(Bt(0) ∩X(M))

t

and

(6.2) Area(Bt+1(0) ∩X(M)) ≤ 2Area(Bt(0) ∩X(M)).
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Proof. Since X :M → Rn+1 is a complete λ-hypersurface, one has

(6.3)
1

2
∆|X|2 = n+H⟨N,X⟩ = n+Hλ−H2.

Integrating (6.3) over Br(0) ∩X(M), we obtain

nArea(Br(0) ∩X(M)) +

∫

Br(0)∩X(M)
Hλdµ−

∫

Br(0)∩X(M)
H2dµ(6.4)

=
1

2

∫

Br(0)∩X(M)
△|X|2dµ

=
1

2

∫

∂(Br(0)∩X(M))
∇|X|2 · ∇ρ

|∇ρ|dσ

=

∫

∂(Br(0)∩X(M))
|XT |dσ

=

∫

∂(Br(0)∩X(M))

|X|2 − (λ−H)2

|XT | dσ

= r(Area(Br(0) ∩X(M)))
′ −

∫

∂(Br(0)∩X(M))

(λ−H)2

|XT | dσ,

where ρ(x) := |X(x)|, ∇ρ = XT

|X| . Here we used, from the co-area formula,

(6.5)
(

Area(Br(0) ∩X(M))
)′

= r

∫

∂(Br(0)∩X(M))

1

|XT |dσ.

Hence, we obtain

(n+
λ2

4
)Area(Br(0) ∩X(M))− r(Area(Br(0) ∩X(M)))

′

(6.6)

=

∫

Br(0)∩X(M)
(H − λ

2
)2dµ−

∫

∂(Br(0)∩X(M))

(λ−H)2

|XT | dσ,

From (6.5), (H − λ)2 = ⟨N,X⟩2 ≤ |X|2 = r2 on ∂(Br(0) ∩X(M)) and (6.6),
we conclude

(6.7)

∫

Br(0)∩X(M)
(H − λ

2
)2dµ ≤ (n+

λ2

4
)Area(Br(0) ∩X(M)).
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Furthermore, we have

∫

Br(0)∩X(M)
(H − λ)2dµ ≤

∫

Br(0)∩X(M)
2
[

(H − λ

2
)2 +

λ2

4

]

dµ(6.8)

≤ (2n+ λ2)Area(Br(0) ∩X(M)),
∫

Br(0)∩X(M)
H2dµ ≤

∫

Br(0)∩X(M)
2
[

(H − λ

2
)2 +

λ2

4

]

dµ(6.9)

≤ (2n+ λ2)Area(Br(0) ∩X(M)).

(6.6) implies that

(

r−n−λ
2

4 Area(Br(0) ∩X(M))
)′

(6.10)

= r−n−1−λ
2

4

(

r
(

Area(Br(0) ∩X(M))
)′

− (n+
λ2

4
)Area(Br(0) ∩X(M))

)

= r−n−1−λ
2

4

∫

∂(Br(0)∩X(M))

(H − λ)2

|XT | dσ

− r−n−1−λ
2

4

∫

Br(0)∩X(M)
(H − λ

2
)2dµ.

Integrating (6.10) from r2 to r1 (r1 > r2), one has

r
−n−λ

2

4

1 Area(Br1(0) ∩X(M))− r
−n−λ

2

4

2 Area(Br2(0) ∩X(M))(6.11)

= r
−n−2−λ

2

4

1

∫

Br1
(0)∩X(M)

(H − λ)2dµ

− r
−n−2−λ

2

4

2

∫

Br2
(0)∩X(M)

(H − λ)2dµ

+ (n+ 2 +
λ2

4
)

∫ r1

r2

s−n−3−λ
2

4 (

∫

Bs(0)∩X(M)
(H − λ)2dµ)ds

−
∫ r1

r2

s−n−1−λ
2

4 (

∫

Bs(0)∩X(M)
(H − λ

2
)2dµ)ds

≤
(

r
−n−2−λ

2

4

1 + r
−n−2−λ

2

4

2

)

∫

Br1
(0)∩X(M)

(H − λ)2dµ.
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Here we used

(
∫

Br(0)∩X(M)
(H − λ)2dµ

)′

= r

∫

∂(Br(0)∩X(M))

(H − λ)2

|XT | dσ

and Area(Br(0) ∩X(M)) is non-decreasing in r from (6.5). Combining (6.11)
with (6.8), we have

Area(Br1(0) ∩X(M))

r
n+λ2

4

1

− Area(Br2(0) ∩X(M))

r
n+λ2

4

2

(6.12)

≤ (2n+ λ2)
( 1

r
n+2+λ2

4

1

+
1

r
n+2+λ2

4

2

)

Area(Br1(0) ∩X(M)).

Putting r1 = t+ 1, r2 = t > 0, we get

(

1− 2(2n+ λ2)(t+ 1)n+
λ
2

4

tn+2+λ2

4

)

Area(Bt+1(0) ∩X(M))(6.13)

≤ Area(Bt(0) ∩X(M))(
t+ 1

t
)n+

λ
2

4 .

For t sufficiently large, one has, from (6.13),

Area(Bt+1(0) ∩X(M))−Area(Bt(0) ∩X(M))(6.14)

≤ Area(Bt(0) ∩X(M))

(

(1 +
1

t
)n − 1 +

C(t+ 1)2n+λ2

4

t2n+2+λ2

)

,

where C is constant only depended on n, λ. Therefore, there exists some
constant C1(n, λ) such that for all t ≥ C1(n, λ),

Area(Bt+1(0) ∩X(M))−Area(Bt(0) ∩X(M))(6.15)

≤ c(n, λ)
Area(Bt(0) ∩X(M))

t
,

Area(Bt+1(0) ∩X(M)) ≤ 2Area(Bt(0) ∩X(M)),(6.16)

where c(n, λ) depends only on n and λ. This completes the proof of
Lemma 6.1. □

The following Logarithmic Sobolev inequality for hypersurfaces in Eu-
clidean space is due to Ecker [8],
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Lemma 6.2. Let X :M → Rn+1 be an n-dimensional hypersurface with
measure dµ. Then the following inequality

∫

M

f2(ln f2)e−
|X|2

2 dµ−
∫

M

f2e−
|X|2

2 dµ ln(

∫

M

f2e−
|X|2

2 dµ)(6.17)

≤ 2

∫

M

|∇f |2e−
|X|2

2 dµ+
1

2

∫

M

|H + ⟨X,N⟩|2f2e−
|X|2

2 dµ

+ C1(n)

∫

M

f2e−
|X|2

2 dµ,

∫

M

f2(ln f2)dµ−
∫

M

f2dµ ln(

∫

M

f2dµ)(6.18)

≤ 2

∫

M

|∇f |2dµ+
1

2

∫

M

|H|2f2dµ+ C2(n)

∫

M

f2dµ

hold for any nonnegative function f for which all integrals are well-defined
and finite, where C1(n) and C2(n) are positive constants depending on n.

Corollary 6.1. For an n-dimensional λ-hypersurface X :M → Rn+1, we
have the following inequality

(6.19)

∫

M

f2(ln f)e−
|X|2

2 dµ ≤
∫

M

|∇f |2e−
|X|2

2 dµ+
1

2
C1(n) +

1

4
λ2

for any nonnegative function f which satisfies

(6.20)

∫

M

f2e−
|X|2

2 dµ = 1.

Lemma 6.3. ([11]) Let X :M → Rn+1 be a complete properly immersed
hypersurface. For any x0 ∈M , r ≤ 1, if |H| ≤ C

r
in Br(X(x0)) ∩X(M) for

some constant C > 0. Then

(6.21) Area(Br(X(x0)) ∩X(M)) ≥ κrn,

where κ = ωne
−C .

Lemma 6.4. If X :M → Rn+1 is an n-dimensional complete and non-
compact proper λ-hypersurface, then it has infinite area.
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Proof. Let

Ω(k1, k2) = {x ∈M : 2k1− 1

2 ≤ ρ(x) ≤ 2k2− 1

2 },

A(k1, k2) = Area(X(Ω(k1, k2))),

where ρ(x) = |X(x)|. Since X :M → Rn+1 is a complete and non-
compact proper immersion, X(M) can not be contained in a compact Eu-
clidean ball. Then, for k large enough, Ω(k, k + 1) contains at least 22k−1

disjoint balls

Br(xi) = {x ∈M : ρxi
(x) < 2−

1

2 r}, xi ∈M, r = 2−k

where ρxi
(x) = |X(x)−X(xi)|. Since, in Ω(k, k + 1),

|H| ≤ |H − λ|+ |λ| = |⟨X,N⟩|+ |λ|(6.22)

≤ |X|+ |λ| ≤ 2k
√
2 + |λ| ≤

√
2 + |λ|
r

,

by using of Lemma 6.3, we get

(6.23) A(k, k + 1) ≥ κ12
2k−1−kn,

with κ1 = ωne
−(

√
2+|λ|)2− 1

2 2−
n

2 .
Claim: If Area(X(M)) <∞, then, for every ε > 0, there exists a large

constant k0 > 0 such that,

A(k1, k2) ≤ ε and A(k1, k2) ≤ 24nA(k1 + 2, k2 − 2),(6.24)

if k2 > k1 > k0.

In fact, we may choose K > 0 sufficiently large such that k1 ≈ K
2 , k2 ≈

3K
2 . Assume (6.24) does not hold, that is,

A(k1, k2) ≥ 24nA(k1 + 2, k2 − 2).

If

A(k1 + 2, k2 − 2) ≤ 24nA(k1 + 4, k2 − 4),

then we complete the proof of the claim. Otherwise, we can repeat the
procedure for j times, we have

A(k1, k2) ≥ 24njA(k1 + 2j, k2 − 2j).
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When j ≈ K
4 , we have from (6.23)

Area(X(M)) ≥ A(k1, k2) ≥ 2nKA(K,K + 1) ≥ κ12
2K−1.

Thus, (6.24) must hold for some k2 > k1 because Area(M) <∞. Hence for
any ε > 0, we can choose k1 and k2 ≈ 3k1 such that (6.24) holds.

We define a smooth cut-off function ψ(t) by

(6.25) ψ(t) =

{

1, 2k1+
3

2 ≤ t ≤ 2k2− 5

2 ,

0, outside [2k1− 1

2 , 2k2− 1

2 ].
0 ≤ ψ(t) ≤ 1, |ψ′

(t)| ≤ 1.

Moreover, ψ(t) can be defined in such a way that

0 ≤ ψ′(t) ≤ c1

2k1− 1

2

, t ∈ [2k1− 1

2 , 2k1+
3

2 ],(6.26)

− c2

2k2− 1

2

≤ ψ′(t) ≤ 0, t ∈ [2k2− 5

2 , 2k2− 1

2 ],(6.27)

for some positive constants c1 and c2.
Letting

(6.28) f(x) = eL+
|X|2

4 ψ(ρ(x)),

we choose the constant L satisfying

(6.29) 1 =

∫

M

f2e−
|X|2

2 dµ = e2L
∫

Ω(k1,k2)
ψ2(ρ(x))dµ.

We obtain from Corollary 6.1, t ln t ≥ −1
e

for 0 ≤ t ≤ 1, |∇ρ| ≤ 1 and
ψ

′

(ρ(x)) ≤ 0 in Ω(k1 + 2, k2) that

1

2
C1(n) +

1

4
λ2 ≥

∫

Ω(k1,k2)
e2Lψ2(L+

|X|2
4

+ lnψ)dµ(6.30)

−
∫

Ω(k1,k2)
e2L|ψ′∇ρ+ ψ

XT

2
|2dµ



✐

✐

“4-Wei” — 2023/2/23 — 15:13 — page 1086 — #28
✐

✐

✐

✐

✐

✐

1086 Qing-Ming Cheng and Guoxin Wei

≥
∫

Ω(k1,k2)
e2Lψ2(L+

|X|2
4

+ lnψ)dµ

−
∫

Ω(k1,k2)
e2L|ψ′ |2dµ− 1

4

∫

Ω(k1,k2)
e2Lψ2|X|2dµ

− 1

2

∫

Ω(k1,k2)
e2Lψ

′

ψ
|XT |2
|X| dµ

≥ L+

∫

Ω(k1,k2)
e2Lψ2 lnψdµ−

∫

Ω(k1,k2)
e2L|ψ′ |2dµ

− 1

2

∫

Ω(k1,k1+2)
e2Lψ

′

ψ|X|dµ

≥ L− (
1

2e
+ 1)e2LA(k1, k2)− 2c1e

2LA(k1, k1 + 2).

Therefore, it follows from (6.24) that

1

2
C1(n) +

1

4
λ2 ≥ L− (

1

2e
+ 1 + 2c1)e

2L24nA(k1 + 2, k2 − 2)(6.31)

≥ L− (
1

2e
+ 1 + 2c1)e

2L24n
∫

Ω(k1,k2)
ψ2(ρ(x))dµ

= L− (
1

2e
+ 1 + 2c1)2

4n.

On the other hand, we have, from (6.24) and definition of f(x),

(6.32) 1 ≤ e2Lε.

Letting ε > 0 sufficiently small, then L can be arbitrary large, which con-
tradicts (6.31). Hence, M has infinite area. □

Theorem 6.1. Let X :M → Rn+1 be an n-dimensional complete proper
λ-hypersurface. Then, for any p ∈M , there exists a constant C > 0 such
that

Area(Br(X(x0)) ∩X(M)) ≥ Cr,

for all r > 1.

Proof. We can choose r0 > 0 such that Area(Br(0) ∩X(M)) > 0 for r ≥ r0.
It is sufficient to prove there exists a constant C > 0 such that

(6.33) Area(Br(0) ∩X(M)) ≥ Cr
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holds for all r ≥ r0. In fact, if (6.33) holds, then for any x0 ∈M and r >

|X(x0)|,

(6.34) Br(X(x0)) ⊃ Br−|X(x0)|(0),

and

(6.35) Area(Br(X(x0)) ∩X(M)) ≥ Area(Br−|X(x0)|(0) ∩X(M)) ≥ C

2
r,

for r ≥ 2|X(x0)|.
We next prove (6.33) by contradiction. Assume for any ε > 0, there exists

r ≥ r0 such that

(6.36) Area(Br(0) ∩X(M)) ≤ εr.

Without loss of generality, we assume r ∈ N and consider a set:

D := {k ∈ N : Area(Bt(0) ∩X(M)) ≤ 2εt

for any integer t satisfying r ≤ t ≤ k}.

Next, we will show that k ∈ D for any integer k satisfying k ≥ r. For t ≥ r0,
we define a function u by
(6.37)

u(x) =























t+ 2− ρ(x), in Bt+2(0) ∩X(M) \Bt+1(0) ∩X(M),

1, in Bt+1(0) ∩X(M) \Bt(0) ∩X(M),

ρ(x)− (t− 1), in Bt(0) ∩X(M) \Bt−1(0) ∩X(M),

0, otherwise.

Using Lemma 6.2, |∇ρ| ≤ 1 and t ln t ≥ −1
e
for 0 ≤ t ≤ 1, we have

− 1

2

∫

M

u2dµ ln
{(

Area(Bt+2(0) ∩X(M))−Area(Bt−1(0) ∩X(M))
)}

(6.38)

≤ C0

(

Area(Bt+2(0) ∩X(M))−Area(Bt−1(0) ∩X(M))

)

+
1

4

(
∫

Bt+2(0)∩X(M)
H2dµ−

∫

Bt−1(0)∩X(M)
H2dµ

)

,

where C0 = 1 + 1
2e +

1
2C2(n), C2(n) is the constant of Lemma 6.2.
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For all t ≥ C1(n, λ) + 1, we have from Lemma 6.1

Area(Bt+2(0) ∩X(M))−Area(Bt−1(0) ∩X(M))(6.39)

≤ c(n, λ)

(

Area(Bt+1(0) ∩X(M))

t+ 1

+
Area(Bt(0) ∩X(M))

t
+

Area(Bt−1(0) ∩X(M))

t− 1

)

≤ c(n, λ)

(

2

t+ 1
+

1

t
+

1

t
(1 +

1

C1(n, λ)
)

)

Area(Bt(0) ∩X(M))

≤ C2(n, λ)
Area(Bt(0) ∩X(M))

t
,

where C2(n, λ) is constant depended only on n and λ. Note that we can
assume r ≥ C1(n, λ) + 1 for the r satisfying (6.36). In fact, if for any given
ε > 0, all the r which satisfies (6.36) is bounded above by C1(n, λ) + 1, then
Area(Br(0) ∩X(M)) ≥ Cr holds for any r > C1(n, λ) + 1. Thus, we know
that M has at least linear area growth. Hence, for any k ∈ D and any t

satisfying r ≤ t ≤ k, we have

(6.40) Area(Bt+2(0) ∩X(M))−Area(Bt−1(0) ∩X(M)) ≤ 2C2(n, λ)ε.

Since

(6.41)

∫

M

u2dµ ≥ Area(Bt+1(0) ∩X(M))−Area(Bt(0) ∩X(M)),

holds, if we choose ε such that 2C2(n, λ)ε < 1, from (6.38), we obtain

(Area(Bt+1(0) ∩X(M))−Area(Bt(0) ∩X(M))) ln(2C2(n, λ)ε)
−1(6.42)

≤ 2C0

(

Area(Bt+2(0) ∩X(M))−Area(Bt−1(0) ∩X(M))

)

+
1

2

(
∫

Bt+2(0)∩X(M)
H2dµ−

∫

Bt−1(0)∩X(M)
H2dµ

)

.
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Iterating from t = r to t = k and taking summation on t, we infer, from
Lemma 6.1 and the equation (6.9) that

(Area(Bk+1(0) ∩X(M))−Area(Br(0) ∩X(M))) ln(2C2(n, λ)ε)
−1(6.43)

≤ 6C0Area(Bk+2(0) ∩X(M)) +
3

2

∫

Bk+2(0)∩X(M)
H2dµ

≤
[

6C0 +
3

2
(2n+ λ2)

]

Area(Bk+2(0) ∩X(M))

≤ 2

[

6C0 +
3

2
(2n+ λ2)

]

Area(Bk+1(0) ∩X(M)).

Hence, we get

Area(Bk+1(0) ∩X(M))(6.44)

≤ ln(2C2(n, λ)ε)
−1

ln(2C2(n, λ)ε)−1 − 12C0 − 3(2n+ λ2)
Area(Br(0) ∩X(M))

≤ ln(2C2(n, λ)ε)
−1

ln(2C2(n, λ)ε)−1 − 12C0 − 3(2n+ λ2)
εr.

We can choose ε small enough such that

(6.45)
ln(2C2(n, λ)ε)

−1

ln(2C2(n, λ)ε)−1 − 12C0 − 3(2n+ λ2)
≤ 2.

Therefore, it follows from (6.44) that

(6.46) Area(Bk+1(0) ∩X(M)) ≤ 2εr,

for any k ∈ D. Since k + 1 ≥ r, we have, from (6.46) and the definition of D,
that k + 1 ∈ D. Thus, by induction, we know that D contains all of integers
k ≥ r and

(6.47) Area(Bk(0) ∩X(M)) ≤ 2εr,

for any integer k ≥ r. This implies that M has finite volume, which con-
tradicts with Lemma 6.4. Hence, there exist constants C and r0 such that
Area(Br(0) ∩X(M)) ≥ Cr for r > r0. It completes the proof of Theorem 6.1.

□

Remark 6.1. The estimate in our theorem is the best possible because the
cylinders Sn−1(r0)× R satisfy the equality.
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