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In this paper, we discuss uniqueness and backward uniqueness for
mean curvature flow of non-compact manifolds. We use an energy
argument to prove two uniqueness theorems for mean curvature
flow with possibly unbounded curvatures. These generalize the re-
sults in [5]. Using similar method, we also obtain a uniqueness re-
sult on Ricci flows. A backward uniqueness theorem is also proved
for mean curvature flow with bounded curvatures.
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1. Introduction

Given an immersion F0 : Σ → M , the mean curvature flow (MCF) starting
at F0 is a family of immersions which moves along the mean curvature vector.
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The MCF is the negative gradient flow of the area functional, and has been
studied extensively for the past 40 years.

When Σ is compact, the MCF starting at an immersion F0 always exists
and is unique up to a maximal time interval [0, T ). On the other hand, if
Σ is non-compact, the general existence and uniqueness problem is still not
solved.

The first existence result in the non-compact setting is by Ecker and
Huisken [8], where they prove the existence of MCF starting at a hypersur-
face M0 in R

n+1 with uniform Lipschitz bound. If M0 is an entire graph,
they also show the long time existence when M0 is merely locally Lipschitz.

We remark that the minimal Lipschitz cone constructed by Lawson and
Osserman [17] may serve as an obstruction to the apriori estimates in [8] in
higher codimension. Existence of non-compact MCF has only been obtained
for entire graph with assumptions on smallness of Lipschitz norms [3], [4],
[11], [24], [20].

Next we discuss the uniqueness of MCF. Koch and Lamm show unique-
ness of MCF [11] for entire graph with small Lipschitz bound in any codimen-
sion. Chen and Peng prove in [7] that any viscosity solution of the graphical
Lagrangian MCF with a continuous initial data is unique. For general im-
mersions, Chen and Yin show in [5] the uniqueness of MCF among flows
with uniformly bounded second fundamental forms. Together with a pseu-
dolocality theorem, they prove uniqueness of MCF starting from an proper
embedding with bounded second fundamental form and satisfying an uni-
form graphic condition.

The first goal of this paper is to prove the following uniqueness theorem
which generalizes Chen and Yin’s uniqueness result to the case of possibly
unbounded curvatures.

Theorem 1.1. Let (M,h) be a non-compact complete Riemannian mani-
fold with positive injectivity radius lower bound i0 such that

(1.1) |R̄| ≤ B0, |∇̄R̄| ≤ B1 and |∇̄2R̄|2 ≤ Lr2−ϵ for r ≫ 1,

where ∇̄, R̄ are respectively the Levi-Civita connection and the Riemann cur-
vature tensor of (M,h), r(y) = dM (y, y0) for some y0 ∈ M and B0, B1, L, ϵ >
0. Let F0 : Σ → M be a smooth proper immersion so that

(1.2) VolΣ(F
−1
0 BM (y0, r̄)) ≤ DeDr̄2

for some constant D > 0 and for all r̄ ≫ 1. Let F, F̃ be smooth solutions to
the MCF starting at F0, which satisfy the following conditions:
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1) F, F̃ are uniformly continuous with respect to t,

2) The induced metric g(t), g̃(t) on Σ are uniformly equivalent to g0, and

3) the second fundamental forms A, Ã satisfy

(1.3) |A|2(t, x) + |Ã|2(t, x) ≤ L

t
r2−ϵ(F0(x))

for some L > 0.

Then F = F̃ .

The precise definition in condition (1) and (2) is given in Section 2.
If we compare the above theorem to Theorems 1.1 and 1.3 in [5], we as-

sume weaker curvature bounds, while in the expense of assuming the volume
growth (1.2) of the initial immersions. We do not make any graphic/curvature
assumptions on the initial immersion. We remark that condition (1) and
(2) are both satisfied if |A|, |Ã| are uniformly bounded. Note that in The-
orem 1.1, we assume that F0 is smooth and the MCF F and F̃ are both
smooth up to time t = 0. In the next theorem, it is shown that under a
better bound on the second fundamental forms and R̄, one can relax these
assumptions and drop the volume growth condition.

Theorem 1.2. Let (M,h) be a non-compact complete Riemannian man-
ifold with positive injectivity radius lower bound and uniformly bound on
∇̄iR̄ for i = 0, 1, 2. Let F0 : Σ → M be a C3 proper immersion and let F, F̃ :
(0, T ]× Σ → M be solutions to the MCF so that F, F̃ converges to F0 locally
in C3 as t → 0. If the curvatures satisfy |A|+ |Ã| ≤ L/tα for some α < 1/2
and L > 0. Then F = F̃ .

The proof of the above theorems, like all other uniqueness results in
MCF, use the parabolicity of the MCF equation. The technical issue is that
the equation is not strictly parabolic - it’s invariant under diffeomorphisms.
In the previous approaches [5], [3], [4], [11], [24], [20], they use the well-known
De Turck trick to construct a family of diffeomorphisms so that the resulting
equation (Mean curvature De Turck flow) becomes strictly parabolic (note
that the use of De Turck tricks are implicit in the graphical case, see for
example p.548-549 in [8]).

Our proof of Theorem 1.1 and Theorem 1.2 use directly the parabolic
equation satisfied by the second fundamental form. We employ an energy
argument first performed by Kotschwar in [12], where he proves a uniqueness
result for non-compact Ricci flow. The energy argument was then used again
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for other geometric flows [13], [15], [19], [1], [2], [18], [23]. The main idea is
to consider the quantity

E(t) =

∫

Σ
Qdµt,

where Q is a quantity so that Q = 0 implies uniqueness. The goal is to show
E(t) = 0 given that E(0) = 0. For example, in the Ricci flow situation [12],
Q contains a term of the form t−β |g − g̃|2 for some β, where both g, g̃ are
solutions to the Ricci flow.

In our situation, we choose our Q to contain the zeroth order term

(1.4) dM (F (t, x), F̃ (t, x)).

As we will see later, first and second order terms should also be present in
Q in order to obtain a nice differential inequality for E(t). We do not need
higher order quantity though: the parabolic nature of MCF gives a nice
parabolic equation for the second fundamental form A, and an integration
by part give a strictly negative term containing the third order quantities
∇A, which cancels all other third order quantities. As we will see later,
cut-off functions are inserted in the energy E to deal with the non-compact
situation.

Let us point out one key technical difference between our works and
those in [12], [13], [19], [1], [2], [18]: In their energy arguments, the flows
they consider are intrinsic, as opposed to MCF which is extrinsic. Not only
that both the curvatures of Σ and M play a role, but also that the geometric
quantities of two a-priori different MCFs live in different vector bundles on
Σ. Thus one needs to use a bundle isomorphisms P to identity these bundles
before estimating the difference. In our situation, we construct P using a
parallel transport along the shortest paths between two MCFs. We remark
that the same construction is also carried out in [23], [21] in the context
of Schrödinger flow. We expect the same argument should work for other
extrinsic geometric flows.

As a by-product, we obtain the following uniqueness result for Ricci flow,
which generalizes results in [6], [12].

Theorem 1.3. Let (M, g0) be a smooth complete noncompact Riemannian
manifold. Let g(t), g̃(t), t ∈ [0, T ] be two smooth complete solutions to Ricci
flow with initial metric g0. Suppose that g(t), g̃(t) are uniformly equivalent
to g0 and

|Rm|+ |R̃m| ≤ L

t
for some constant L > 0. Then g(t) = g̃(t) for all t ∈ [0, T ].
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In contrast with the result in [18], we do not assume any growth rate
on |Rm(g0)|g0 and the size of L, while in the expense of assuming the uni-
form equivalence of metrics. The last main result is the following backward
uniqueness theorem for MCF.

Theorem 1.4. Let (M,h) be a complete non-compact Riemannian mani-
fold with positive lower bound on injectivity radius and uniform upper bound
on |∇̄iR̄| for i ≤ 4. Let F, F̃ : [0, T ]× Σ → M be smooth MCFs with uni-
formly bounded second fundamental forms. If F (T, ·) = F̃ (T, ·), then F = F̃
for all t.

The proof of Theorem 1.4 uses again that the second fundamental form
A and its derivatives ∇A both satisfy strictly parabolic equations. While
the lower order quantities do not, one can show that they satisfy an ordi-
nary differential inequality. These coupled inequalities are sufficient to show
Theorem 1.4 by a general backward uniqueness Theorem in [16]. The reader
may find more historical remarks in the introduction of [16].

One slight technical issue is that the distance (1.4) is non-differentiable
when it’s zero and thus we need another zeroth order quantity. We treat F̃ as
a graph of F and represent F̃ by a section on the pullback bundle F−1TM .
The assumptions on the fourth covariant derivatives of R̄ in Theorem 1.4 is
used in estimating the parabolic equation for ∇A, which we do not need in
the proof of Theorem 1.1.

When the ambient space M in Theorem 1.4 is Euclidean, the result is
proved in [10] in the co-dimension one case and recently in [25] for arbitrary
co-dimensions.

In Section 2, we fix the notations and prove some elementary results. The
parallel transport P will be studied in Sections 3 and 4. The main estimates
are performed in Section 5. Theorem 1.1, Theorem 1.2 and Theorem 1.3 are
proved in Section 6 and Theorem 1.4 is proved in Section 7.

Acknowledgement. The first author would like to thank Professor Luen-
Fai Tam for his constant support and encouragement. The second author
would like to thank Professor Jingyi Chen for the discussions and pointing
out the reference [23]. Part of the works was done when the second author
visited The Chinese University of Hong Kong and he would like to thank
Professor Martin Li for the hospitality.
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2. Prelminary and notations

In this section, we review some definitions and results in basic submanifold
theory and MCF. Let Σ be a smooth manifold and (M,h) be a smooth
Riemannian manifold. Let

F, F̃ : Σ× [0, T ] → M

be two families of smooth immersions.
Next we introduce several notations. We write only the notations for

F . A tilde will be added to the corresponding notations for F̃ . We use
(x1, . . . , xn) and (y1, . . . , yN ) respectively to denote the local coordinates
on Σ, M . We use i, j, . . . to denote the indices of Σ, α, β, . . ., and α′, β′, . . .
respectively to denote the indices on F−1TM , F̃−1TM . For each t, let g =
g(t) = F (t, ·)∗h and ∇ be the Levi-Civita connection with respect to g. We
use the same notation∇ to denote the induced connection on all (p, q)-tensor
bundle T p,qΣ.

We say that the family of immersions F is uniformly continuous with
respect to t, if for all δ > 0 and s ∈ [0, T ), there is sδ > 0 so that

dM (F (t, x), F (s, x)) ≤ δ, ∀(t, x) ∈ [s, s+ sδ]× Σ.(2.1)

We say that the induced metric g(t) is uniformly equivalent to g0 = F ∗
0 h,

if there is λ > 1 so that

(2.2) λ−1g0 ≤ g(t) ≤ λg0, ∀(t, x) ∈ [0, T ]× Σ.

On the pullback bundle N := F−1TM we have the connection induced
from h, F :

(2.3) ∇F
i Y

α = ∂iY
α + Γα

βγF
β
i Y

γ , Y ∈ Γ(M,N).

Here Γα
βγ denote the Christoffel symbols of the Levi-Civita connection ∇̄ on

(M,h). Note that Γα
βγ is indeed Γα

βγ ◦ F , but we suppress F for simplicity.
We also remark that

∇iY = ∇̄Fi
Ỹ ,

where Fi = ∂iF and Ỹ is any extension of Y in M . We use the same notation
∇F to denote the connection induced by ∇ and ∇F on any N -valued tensor
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bundle. Thus there could be six notations in total:

∇, ∇̃,∇F ,∇F̃ , ∇̃F , ∇̃F̃ .

However, for simplicity we use only ∇ and ∇̃. It will be clear from the
context which connection we are using.

Next we consider covariant derivatives with respect to time. Define the
covariant time derivative Dt on Γ(Σ, T 0,pΣ⊗N) by

DtY
α
i1···ip = ∂tY

α
i1···ip + Γα

βγY
β
i1···ip

F γ
t .

Note that when acts on vector fields along F , Dt is metric with respect to
h. That is,

∂th(Y, Z) = h(DtY, Z) + h(Y,DtZ), Y, Z ∈ Γ(Σ, N).

Next we introduce several standard geometric quantities from an im-
mersion. For each fixed t, the differential of F (t, ·) : Σ → M is denoted F∗,
thus

(F∗)
α
i = Fα

i =
∂Fα

∂xi
∈ Γ(Σ, T ∗Σ⊗N).

The second fundamental form A is the covariant derivative of F∗:

Aα
ij = (∇F∗)

α
ij

= Fα
ij − Γk

ijF
α
k + Γα

βδF
β
i F

δ
j ∈ Γ(Σ, T 0,2Σ⊗N)

The mean curvature vector H is the trace of A given by

Hα = gijAα
ij ∈ Γ(Σ, N).

We say that a family of immersions F : [0, T ]× Σ → M is a MCF start-
ing from F0 if

(2.4)
∂F

∂t
= H, F (0, ·) = F0(·).

Remark 1. In this paper we use the following convention: We use Bk (resp.
Bloc

k ) to denote the (resp. local) bound on |∇̄kR̄|. Unless otherwise specified,
we use C to denote constants that depend only on the dimensions of Σ and
M , constants λ in (2.2), L in the statement of Theorem 1.1 and the lower
bound on injectivity radius i0. Constants that depend also on B0, B1, . . . , Bk

(resp. Bloc
0 , Bloc

1 , . . . , Bloc
k ) are denoted Ck (resp. C loc

k ). The explicit values
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of the constants C,Ck, C
loc
k are not important and might change from line

to line unless otherwise specified.

The following simple lemma is used a lot in this paper.

Lemma 2.1. We have |F∗|, |F̃∗| ≤ C.

Proof. Note that |F∗|2 = hαβg
ijFα

i F
β
j = gijgij = n. Thus |F̃∗|2 ≤ C by (2.2).

□

Next we recall the differential equations of the following quantities along
the MCF, the proof can be found in [22].

Lemma 2.2. Under the MCF, we have

∂tgij = −2gpqh(Apq, Aij),(2.5)

∂tg
ij = 2gpqgikgjlh(Apq, Akl),(2.6)

∂tdµ = −|H|2dµ,(2.7)

∂tΓ
k
ij = −gkl (∇ih(H,Ajl) +∇jh(H,Ail)−∇lh(H,Aij)) .(2.8)

We also need the equation for the higher covariant derivatives of A.
Recall that in the notation of Chen and Yin [5], we have F∗ = ∇F,A =
∇2F,∇A = ∇3F and so on. Proposition 2.3 in [5] together with Gauss equa-
tion give

(2.9) (Dt −∆)∇kF =

k−1∑

l=0

∇l[h(A,A) ∗ g−2 + R̄ ∗ (∇F )a ∗ g−b] ∗ ∇k−lF,

where a = 2 or 4, b = 1 or 2, ∗ are any contraction of tensors and R̄ include
any contraction of the Riemann curvature tensor on M with h−1.

In [5], the authors derive an apriori estimates for |∇kF |2 assuming that
the second fundamental form ∇2F is uniformly bounded. When the second
fundamental form |A|2(t, x) is bounded by Lr2−ϵ(F0(x))/t, one can modify
the proof of Theorem 3.2 in [5] to obtain the following lemma.
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Lemma 2.3. Let L, ϵ > 0 and let (M,h) be a complete Riemannian mani-
fold with

|R̄| ≤ B0, |∇̄R̄| ≤ B1, |∇̄2R̄|2 ≤ Lr2−ϵ,

where r(y) = dM (y, y0). Let F be a MCF so that |A|2(t, x) ≤ Lr2−ϵ(F0(x))/t.
Then

(2.10) |∇A(t, x)| ≤ C1Lr
2−ϵ(F0(x))

t
.

Sketch of proof. From Proposition 3.1 in [5], we have

(∂t −∆)|∇2F |2 ≤ −|∇3F |2 + C1|∇2F |4 + C1,

(∂t −∆)|∇3F |2 ≤ −|∇4F |2 + C(C1 + |∇2F |2 + |∇̄2R̄|2)|∇3F |2

+ C|∇3F |3 + C0|∇2F |2 + C0,

Write G2 = Lr2−ϵ. Using the conditions on |∇̄2R̄| and |A|, we have

(∂t −∆)|∇2F |2 ≤ −|∇3F |2 + C1G
4t−2,

(∂t −∆)|∇3F |2 ≤ −|∇4F |2 + C1|∇3F |3 + C1G
6t−3.

Thus one can proceed as in the proof of Theorem 3.2 in [5] to conclude. □

3. Writing F̃ as a graph of F : Basic estimates

In this section, we represent F̃ as a graph of F and provide some basic
estimates. Let

F, F̃ : [0, T ]× Σ → M

be two families of immersions so that F (0, ·) = F̃ (0, ·). Let d : [0, T ]× Σ → R

be the pointwise distance between F and F̃ . That is,

d = d(t, x) := dM (F (t, x), F̃ (t, x)).

For each (t, x), write p = F (t, x) and p̃ = F̃ (t, x). We assume that

(3.1) d < min



i0, 1,

1√
2Bloc

0



 , ∀(t, x) ∈ [0, T ]× Σ.

Since d < i0, for all (t, x) there is a unique shortest geodesic joining p and p̃.
Write expp(sv), where s ∈ [0, 1], to denote this geodesic. Then p̃ = expp v,
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|v| = d and v is a smooth section on N . The collection of these geodesics
forms a smooth homotopy

γ : [0, T ]× Σ× [0, 1] → M, γ(t, x, s) = expp(sv)

connecting F and F̃ . We use γ̇, Jt and Ji to denote the derivative of γ with
respect to s, t, and the coordinate xi respectively (the notations are so chosen
since Jt, Ji are Jacobi fields). Note also that v, Ft and Fi are the restrictions
of γ̇, Jt, Ji to s = 0 respectively.

Let P : Tp̃M → TpM be the parallel transport along the geodesic −γ.
The inverse P−1 is the parallel transport along γ.

On the endomorphism bundle End(Ñ ,N) = Ñ∗ ⊗N over Σ, there is a

connection induced from ∇F and ∇F̃ . Together with the two connections ∇
and ∇̃ defined on T p,qΣ by g and g̃ respectively, there are two connections de-
fined on any endomorphism valued (p, q)-tensor bundle T p,qΣ⊗ End(Ñ ,N),
which again we denote by ∇ and ∇̃. Note that the connections satisfy the
Leibniz rule:

∇(PZ) = ∇P · Z + P (∇Z), Z ∈ Γ(Σ, T p,qΣ⊗ End(Ñ ,N)).

In the following, we will derive estimates for v and d. Since the calcula-
tions might be useful for other geometric situations, we do not assume that
F, F̃ satisfy the MCF equation except for Theorem 3.1 in this section. We
remark that all of the estimates follow from the Jacobi field equation (and
its higher order derivatives).

First we prove a useful lemma.

Lemma 3.1. Let p = p(τ), p̃ = p̃(τ) be two curves in M so that

0 < d = dM (p, p̃) < min{i0, 1/
√

2Bloc
0 }

for all τ . Let γτ (s) = expp(τ)(svτ ), where s ∈ [0, 1], be the unique geodesic
joining p(τ) to p̃(τ). Let J be the Jacobi field given by the variation of
geodesics γτ . Then

|J | ≤ |∂τp|+ C loc
0 |∂τp|d2 + 2|P∂τ p̃− ∂τp|,(3.2)

|∇̄γ̇J | ≤ C loc
0 |∂τp|d2 + 2|P∂τ p̃− ∂τp|.(3.3)
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Proof. The first inequality (3.2) follows from the second one using |J | ≤
|∂τp|+ sup |∇γ̇J |. To show (3.3), note that J satisfies the Jacobi field equa-
tion

(3.4) ∇̄γ̇∇̄γ̇J + R̄(γ̇, J)γ̇ = 0.

Let {e1, . . . , en} be a parallel orthonormal fields along γ. Write J(s) =∑
Ji(s)ei(s), then ∇̄γ̇J =

∑
J ′
i(s)ei(s). Also

(3.5) ∂τp =
∑

Ji(0)ei(0) and P−1∂τp =
∑

Ji(0)ei(1).

By the mean value theorem, there is ζ ∈ [0, 1] so that

|P∂τ p̃− ∂τp| = |∂τ p̃− P−1∂τp| = |∇̄γ̇J(ζ)|.

Thus by mean value theorem again, for any s ∈ [0, 1], there is ζs between ζ
and s so that

|∇̄γ̇J(s)| ≤
∣∣∣
∑

(J ′
i(s)− J ′

i(ζ))ei(s)
∣∣∣+ |∇̄γ̇J(ζ)|

≤
∣∣∣
∑

J
′′

i (ζs)ei(s)
∣∣∣+ |P∂τ p̃− ∂τp|

=
∣∣∣
∑

J
′′

i (ζs)ei(ζs)
∣∣∣+ |P∂τ p̃− ∂τp|

= |∇̄γ̇∇̄γ̇J(ζs)|+ |P∂τ p̃− ∂τp|
≤ Bloc

0 d2|J(ζs)|+ |P∂τ p̃− ∂τp|
≤ Bloc

0 d2(|∂τp|+ sup |∇̄γ̇J |) + |P∂τ p̃− ∂τp|,

(3.6)

where we have used (3.4) and |R̄| ≤ Bloc
0 . Since Bloc

0 d2 < 1/2 by assumption,
(3.3) is shown with C loc

0 = 2Bloc
0 . □

Remark 2. Note that in Lemma 3.1 we assume that d > 0. Indeed the
Jacobi field is not even defined at points where d = 0. Thus in the MCF
setting, the lemma cannot be applied directly when e.g. t = 0. To deal with
this, we first consider the case d > 0 and conclude by letting d → 0 (See the
proof of Proposition 3.1 for an example).

The first application of Lemma 3.1 is the following proposition.
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Proposition 3.1. Let F, F̃ be two families of immersions so that (3.1)
holds. Then we have

|Dtv| ≤ C loc
0 |Ft|d2 + 2|PF̃t − Ft|,(3.7)

|∇̄v| ≤ C loc
0 d2 + 2|PF̃∗ − F∗|.(3.8)

Proof. Note that when d > 0, we have

Dtv = ∇̄Ft
γ̇
∣∣
s=0

= ∇̄γ̇Jt
∣∣
s=0

,

∇̄iv = ∇̄Fi
γ̇
∣∣
s=0

= ∇̄γ̇Ji
∣∣
s=0

Thus (3.7), (3.8) follows from Lemma 3.1 when d > 0. Assume d = 0 at some
(t, x). Let (ti, xi) be a sequence so that (ti, xi) → (t, x) and d(ti, xi) > 0.
Since Dtv, ∇v are smooth, the two inequalities can be shown by taking
i → ∞. If such a sequence does not exists, then v is identically zero in a
space time neighbourhood and so Dtv = ∇v = 0. □

Since |v| = d, Proposition 3.1 gives an estimate for ∂td
2. We also use the

following lemma which can also be proved easily (See Lemma 2.2 in [23]).

Lemma 3.2. We have

∂td
2 = 2h(PF̃t − Ft, v),(3.9)

|∇d| ≤ |PF̃∗ − F∗|.(3.10)

Next we need the following generalization of Lemma 3.1. First we need
a definition.

Definition 3.1. We say that a polynomial Q of k-variables is universal if
it has non-negative coefficients, Q(0) = 0 and the coefficients depend only
on the dimensions of Σ and M .

Proposition 3.2. Assume the same notations as in Lemma 3.1. Then for
any k = 0, 1, 2, . . . ,

|∇̄γ̇∇̄k
JJ | ≤ C loc

k d2P 1
k

(
|∂τp|, |Dτ∂τp|, . . . , |Dk

τ∂τp|
)

(3.11)

+Q1
k

(
|P∂τ p̃− ∂τp|, |PDτ∂τ p̃−Dτ∂τp|, . . . , |PDk

τ∂τ p̃−Dk
τ∂τp|

)
,

where P 1
k , Q

1
k are universal polynomials in (k + 1)-variables.
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Proof. We argue by induction. The case k = 1 is shown using (3.3) with

P 1
1 (x0) = x0, Q1

1(x0) = 2x0.

Assume that (3.11) holds for all integers strictly smaller than k . First
we see that

∇̄γ̇∇̄γ̇∇k
JJ = −R̄(γ̇, ∇̄k

JJ)γ̇(3.12)

+
∑

(∇̄irR̄)i
′

r ∗ (γ̇)j ∗ (∇̄kp

J J)k
′

p ∗ (∇̄γ̇∇̄lq
J J)

l′q ,

with ir ≤ k for all r and

j +
∑

q

l′q = 2,
∑

p

(kp + 1)k′p +
∑

q

(lq + 1)l′q = k.

That is, each term has exactly two γ̇’s and k- J ’s. When k = 0, (3.12) re-
duces to the Jacobi field equation (3.4) and the conditions on indices are
satisfied trivially. In general, (3.12) can be proved by induction, using again
the following consequences of commuting covariant derivatives (note that
[J, γ̇] = 0):

∇̄J∇̄γ̇∇̄γ̇∇k
JJ = ∇̄γ̇∇̄γ̇∇̄k+1

J J + ∇̄γ̇(R̄(γ̇, J)∇̄k
JJ) + R̄(γ̇, J)∇̄γ̇∇̄k

JJ,

∇̄J∇̄γ̇∇̄lq
J J = ∇̄γ̇∇̄lq+1

J J + R̄(γ̇, J)∇̄lq
J J.

Using (3.12), |γ̇| = d and |∇̄kp

J J | ≤ |Dkp

τ ∂τp|+ sup |∇̄γ̇∇̄kp

J J |, we have

|∇̄γ̇∇̄γ̇∇̄k
JJ | ≤ C loc

k

∑
dj(|Dkp

τ ∂τp|+ sup |∇̄γ̇∇̄kp

J J |)k′

p |∇̄γ̇∇̄lq
J J |l

′

q

+B0d
2|∇̄k

JJ |,

Using the induction hypothesis (note kq, lq ≤ k − 1) and Cauchy Schwarz
inequality, one easily obtains

|∇̄γ̇∇̄γ̇∇̄k
JJ | ≤ C loc

k d2P̂k−1(|∂τp|, . . . , |Dk−1
τ ∂τp|)(3.13)

+ Q̂k−1(|P∂τ p̃− ∂τp|, . . . , |PDk−1
τ ∂τ p̃−Dk−1

τ ∂τp|)
+B0d

2|∇̄k
JJ |,

where P̂k−1, Q̂k−1 are universal polynomials in k-variables. Now, as in the
proof of Lemma 3.1, we use mean value theorem twice to obtain

|∇̄γ̇∇̄k
JJ | ≤ sup |∇̄γ̇∇̄γ̇∇̄k

JJ |+ |PDk
τ∂τ p̃−Dk

τ∂τp|
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Finally we use (3.13), |∇̄k
JJ | ≤ |Dk

τ∂τp|+ sup |∇̄γ̇∇̄k
JJ | and Bloc

0 d2 < 1/2 to
finish the induction step, with

P 1
k (x0, . . . , xk) = P̂k−1(x0, . . . , xk−1) + xk,

Q1
k(x0, . . . , xk) = Q̂k−1(x0, . . . , xk−1) + 2xk.

This finishes the proof of the proposition. □

Proposition 3.3. Assume the same notations as in Lemma 3.1. Then

|∇̄k
J γ̇| ≤ C loc

k−1dP
2
k−1(|∂τp|, |Dτ∂τp|, . . . , |Dk−1

τ ∂τp|)(3.14)

+Q2
k−1(|P∂τ p̃− ∂τp|, |PDτ∂τ p̃−Dτ∂τp|, . . . ,

|PDk−1
τ ∂τ p̃−Dk−1

τ ∂τp|),

where P 2
k−1, Q

2
k−1 are universal polynomials of k-variables.

Proof. By commuting covariant derivatives, we have

∇̄k
J γ̇ = ∇̄γ̇∇̄k−1

J J +

k−2∑

i=0

∇̄i
J(R̄(γ̇, J)∇̄k−2−i

J J)

= ∇̄γ̇∇̄k−1
J J +

∑
(∇̄irR̄)i

′

r ∗ (γ̇)j ∗ (∇̄kp

J J)k
′

p ∗
(
∇̄γ̇∇̄l

JJ
)l′
,

where l, kp ≤ k − 3, ir ≤ k − 2 for all r,

j + l′ = 1 and
∑

p

(kp + 1)k′p + (l + 1)l′ = k.

By Proposition 3.2 and |∇̄kp

J J | ≤ |Dkp

τ ∂τp|+ sup |∇̄γ̇∇̄kp

J J |, one obtains
(3.14). □

An immediate consequence is the following theorem, which says that if
F and F̃ are both MCF starting at F0, then they agree infinitesimally.

Theorem 3.1. Let F, F̃ be smooth MCFs starting at F0. Then Dk
t v|t=0 = 0

for all k = 0, 1, 2, . . . .

Proof. We use an approximation argument as in the proof of Proposition 3.1.
Let x ∈ Σ. If v is identically zero in a space time neighbourhood of (0, x),
then Dk

t v(x) = 0 is clear. If not, then there are (τi, xi) → (0, x) so that
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v(τi, xi) ̸= 0. For each (τi, xi), In general, whenever v ̸= 0 at some (t, x),
write p(τ) = F (τ, x) and p̃(τ) = F̃ (τ, x), then

Dk
t v = ∇̄k

J γ̇|s=0,

where J is the variational vector field of the family of geodesics joining p to
p̃. From Proposition 3.3, we have

|Dk
t v| ≤ C loc

k−1d
2P 2

k−1(|H|, |DtH|, . . . , |Dk
t H|)

+Q2
k−1(|PH̃ −H|, |PDtH̃ −DtH|, . . . , |PDk

t H̃ −Dk
t H|).

Thus it suffices to show that

(3.15) lim
i→∞

(PDm
t H̃ −Dm

t H)(τi, xi) → 0,

for m = 0, 1, 2, . . . . By using (2.6), H = gij∇2
ijF and inductively applying

(2.9), we see that for any m ∈ N,

Dm
t H = Q(g, h, F,m)(3.16)

where Q is a quantity involving only the spatial derivatives of F , g, h and
the derivatives of Rmh evaluating at (x, t) and F (x, t). Since F and F̃ are
smooth up to t = 0, for m = 0, we have

lim
i→∞

DtH(τi, xi) = lim
i→∞

DtH̃(τi, xi) = Q(g0, h, F0, 0)

where the right hand side is the value of Q evaluating at x and F0(x). Since
P is continuous and P = Id at t = 0, we obtain (3.15) for m = 0. We can
argue similarly for all m ∈ N. □

4. Estimates for the parallel transport P

Next we estimate the norm of the parallel transport P . We follow the same
notations as in the previous section. First we prove the following lemma.

Lemma 4.1. Let F, F̃ be two families of immersions which satisfy (2.2).
Then

|g − g̃| ≤ C|PF̃∗ − F∗|,(4.1)

|PH̃ −H| ≤ C(|PF̃∗ − F∗||Ã|+ |PÃ−A|).(4.2)
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Proof. Since g = h(F∗, F∗), together with Lemma 2.1,

|g − g̃| = |h(F∗, F∗)− h(F̃∗, F̃∗)|
= |h(F∗, F∗)− h(PF̃∗, P F̃∗)|
= |h(PF̃∗ − F∗, P F̃∗) + h(F∗, P F̃∗ − F∗)|
≤ C(|F∗|+ |PF̃∗|)|PF̃∗ − F∗|.

Using the same argument and H = gijAij ,

|PH̃ −H| ≤ C(|g−1 − g̃−1||Ã|+ |PÃ−A|).

Thus (4.2) follows from (4.1). □

Proposition 4.1. Let F, F̃ be two families of immersions so that (3.1)
holds. Then for any p, q, the parallel transport

P : Γ(Σ, T p,qΣ⊗ Ñ) → Γ(Σ, T p,qΣ⊗N)

satisfy

|P | = |P−1| = 1,(4.3)

|∇P |, |∇P−1| ≤ C loc
0 d(4.4)

and

|∆P | ≤ C loc
1

(
d · P̃ (|A|) + |PF̃∗ − F∗|+ |Γ− Γ̃|+ |PÃ−A|

)
(4.5)

for some polynomial P̃ . Here ∆P is the rough Laplacian of P with respect
to the connection ∇: ∆P = gij∇i∇jP .

Proof. Since P is given by P (X ⊗ Z) = X ⊗ PZ for all X ∈ Γ(Σ, T p,qΣ) and
Z ∈ Γ(Σ, Ñ), one can without loss of generality assume that p = q = 0.

Since parallel transport preserves length, |PZ| = |Z| for all Z ∈ Tp̃M
and thus |P | = |P−1| = 1. To show (4.4), note again it suffices to assume d ̸=
0. Let x = (x1, . . . , xn) ∈ Σ, i ∈ {1, . . . , n} and Z ∈ Tp̃M be fixed. Parallel

transport Z along the curve in M with tangent vector F̃i. Thus ∇iZ = 0
and by the Leibniz rule,

(∇iP )(Z) = ∇i(PZ)− P (∇iZ) = ∇i(PZ).

Let X be the parallel vector field along γ with X(1) = Z. Then X(0) =
PZ by definition of P . By the definition of the connection on N , we have
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∇i(PZ) = ∇Fi
X(0). Lastly, since Fi = Ji(0), we have ∇i(PZ) = (∇̄Ji

X)(0).
Differentiating the parallel transport equation gives

∇̄γ̇∇̄Ji
X = −R̄(γ̇, Ji)X, ∇Ji

X(1) = ∇iZ = 0.

By (3.2), we have

(4.6) |∇̄γ̇∇̄Ji
X| ≤ C loc

0 d(|Fi|+ |PF̃i − Fi|)|Z|.

Together with Lemma 2.1 this implies

|(∇iP )Z| = |∇i(PZ)| ≤ C loc
0 d|Z|.

Since this holds for all Z, we obtain (4.4). To show (4.5), we calculate under
the normal coordinate at x in (Σ, gt). Thus ∆P =

∑
i∇i∇iP . Now for each

fixed i and Z ∈ Tp̃M , we again parallel transport Z along the curve in M

with tangent vector F̃i. Thus

(∇i∇iP )(Z) = ∇i[(∇iP )(Z)]−∇P (∇eiei, Z)− (∇iP )(∇iZ)

= ∇i(∇i(PZ))−∇i(P (∇iZ))−∇P (∇eiei, Z)− (∇iP )(∇iZ)

= ∇i(∇i(PZ))

= ∇̄Ji
∇̄Ji

X(0),

where again X is the parallel vector field along γ with X(1) = Z. Since

∇̄γ̇∇̄Ji
∇̄Ji

X = −R̄(γ̇, Ji)∇̄Ji
X − ∇̄Ji

(R̄(γ̇, Ji)X),

using (4.6), ∇̄Ji
∇̄Ji

X(1) = 0, we obtain

|2R̄(γ̇, Ji)∇̄Ji
X| ≤ C loc

0 d2|Z|.

On the other hand, if we trace the induction proof of Proposition 3.2 and
use (4.2), we have

|∇̄Ji
Ji| ≤ |∇̄Fi

Fi|+ |∇̄γ̇∇̄Ji
Ji|

≤ |Aii|+ C loc
0 d2(P (|Fi|, |Aii|) + C(|PF̃∗ − F∗|+ |P ∇̄F̃i

F̃i − ∇̄Fi
Fi|)

≤ |A|+ C loc
0 d2P (1, |A|) + C(|PF̃∗ − F∗|+ |PÃii −Aii|+ |Γ̃k

iiF̃k|)
≤ C loc

0

(
P̃ (|A|) + |PF̃∗ − F∗|+ |Γ− Γ̃|+ |PÃ−A|

)
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for some polynomial P̃ . This implies

|R̄(γ̇, ∇̄Ji
Ji)X| ≤ C loc

0 d|Z|
(
P̃ (|A|) + |PF̃∗ − F∗|+ |Γ− Γ̃|+ |PÃ−A|

)
.

Thus we have

|(∇i∇iP )(Z)| ≤ C loc
1

(
dP̃ (|A|) + |PF̃∗ − F∗|+ |Γ− Γ̃|+ |PÃ−A|

)
|Z|

and this gives (4.5). □

The proof of the following proposition is similar to that of Proposition 4.1
and is skipped.

Proposition 4.2. We have the estimates

(4.7) |DtP | ≤ C loc
0 d(|Ft|+ |PF̃t − Ft|).

Next we derive an estimates for higher time covariant derivatives of P .

Proposition 4.3. The k-th time derivatives of P satisfies

|Dk
t P | ≤ C loc

k−1dP
3
k−1(|Ft|, |DtFt|, . . . , |Dk−1Ft|)+(4.8)

+Q3
k−1(|PF̃t − Ft|, . . . , |PDk−1

t F̃t −Dk−1
t Ft|),

where P 3
k−1, Q

3
k−1 are universal polynomials of k-variables.

In particular, we have

Theorem 4.1. Let F, F̃ be smooth MCFs starting at F0, then

(4.9) Dk
t P
∣∣
t=0

= 0

for k = 1, 2, . . . .

Now we prove Proposition 4.3.
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Proof. As in the proof of Proposition 4.1, let Z ∈ Tp̃M and extend it to a

parallel vector fields along the integral curve of F̃t. Then

(Dk
t P )(Z) = Dk

t (PZ).

Note that Dk
t (PZ) = ∇̄k

Jt
X(0), where X is the parallel transport of Z along

γ. We will prove by induction that

|∇̄k
Jt
X| ≤

(
(C loc

k−1dP
3
k−1(|Ft|, |DtFt|, . . . , |Dk−1

t Ft|)(4.10)

+Q3
k−1(|PF̃t − Ft|, . . . , |PDk−1

t F̃t −Dk−1
t Ft|)

)
|Z|,

where P 3
k−1, Q

3
k−1 are universal polynomials of k-variables.

When k = 1, one can show as in the proof of Proposition 4.1 the following
estimates:

(4.11) |∇̄Jt
X| ≤

(
C loc
0 d|Ft|+ C|PF̃t − Ft|

)
|Z|.

Next we assume that (4.10) holds for all integers strictly smaller then k. by
commuting covariant derivatives, we have

∇̄γ̇∇̄k
Jt
X =

k−1∑

i=0

∇̄i
Jt
(R̄(Jt, γ̇)∇̄k−1−i

Jt
X)

=
∑

j+i+l+m=k−1

(∇̄j
Jt
R̄) ∗ (∇̄i

Jt
Jt) ∗ (∇̄l

Jt
γ̇) ∗ (∇̄m

Jt
X).

Thus the induction step is proved using |∇̄k
Jt
Jt| ≤ |DtFt|+ sup |∇̄γ̇∇k

Jt
Jt|,

Proposition 3.2, Proposition 3.3, the induction hypothesis and Cauchy
Schwarz inequality. This finishes the proof of the proposition. □

Next, we prove the following lemma which estimates the difference of
the restriction of ambient tensors to F and F̃ . Let S be a (p, q)-tensor on
M . Then S|F is a section of the bundle N⊗p ⊗ (N∗)⊗q over Σ. Let P ∗(S|F̃ )
be given by

P ∗S|F̃ (a1, . . . , ap, b
1, . . . , bq) = S|F̃ (P

∗a1, . . . , P
∗ap, P

−1b1, . . . , P−1bq)

for all ai ∈ N∗, bj ∈ N .
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Lemma 4.2. With the above definition,

|P ∗(S|F̃ )− S|F | ≤ sup |∇̄S| · d.

Proof. Let ai, b
j be arbitrary and ai(s), b

j(s) be the respective parallel trans-
port along −γ. Then by the fundamental theorem of calculus,

(P ∗S|F̃ − S|F )(a1, . . . , ap, b1, . . . , bq)

=

∫ 1

0
∂s
(
S(a1(s), . . . , ap(s), b

1(s), . . . , bq(s)
)
ds

= −
∫ 1

0
(∇̄γ̇S)(a1(s), . . . , ap(s), b

1(s), . . . , bq(s))ds

since ai and bj ’s are parallel along −γ. Thus

|(P ∗S|F̃ − S|F )(a1, . . . , ap, b1, . . . , bq)| ≤ sup |∇̄S||a1| · · · |ap||b1| · · · |bq||γ̇|.

Since d = |γ̇|, the lemma is shown. □

5. Main estimates

In this section we provide the necessary estimates for the next two sections.
In this section, we assume that F, F̃ are both solutions to the MCF starting
at F0 which satisfies (2.2) and (2.1). In particular, by choosing a small T ,
we assume that d satisfies (3.1).

First we estimate the time derivative of the quantities PF̃∗ − F∗ and
Γ− Γ̃.

Lemma 5.1. We have

|Dt(PF̃∗ − F∗)| ≤ C0(|A|+ |Ã|)d(5.1)

+ C|∇̃Ã||PF̃∗ − F∗|+ C|P ∇̃Ã−∇A|.

Proof. Recall that

Dt(PF̃i − Fi) = (DtP )F̃i + PDtF̃i −DtFi

= (DtP )F̃i + P ∇̃iH̃ −∇iH

= (DtP )F̃i + (g̃kl − gkl)(P ∇̃iÃkl) + gkl(P ∇̃iÃkl −∇iAkl).

Using Proposition 4.2, Lemma 4.1 and (2.2), the result follows. □
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To estimate the time derivative of Γ− Γ̃. From (2.8) we have

∂tΓ = g−2 ∗ h(A,∇A),

Thus |∂t(Γ− Γ̃)| can be estimated as in the proof of Lemma 5.1 and (4.1).
We skip the proof of the following lemma:

Lemma 5.2.

|∂t(Γ− Γ̃)| ≤ C|A||∇A||PF̃∗ − F∗|(5.2)

+ C|∇A||PÃ−A|+ C|Ã||P ∇̃Ã−∇A|.

Next let us consider the second order quantity

(5.3) |PÃ−A|2 = gikgjlh(PÃij −Aij , P Ãkl −Akl).

Proposition 5.1. We have the estimate

∂t|PÃ−A|2 − 2h(P ∆̃Ã−∆A,PÃ−A)(5.4)

≤ 1

6
|P ∇̃Ã−∇A|2 + C((Bloc

2 )2 + C loc
1 + |A|2 + |Ã|2)d2

+ C(|Ã|4 + |∇̃Ã|2 + C loc
1 )|PF̃∗ − F∗|2

+ C(|A|2 + |Ã|2 + C loc
0 )|PÃ−A|2.

Proof. From (5.3) and (2.6) and Proposition 4.2,

∂t|PÃ−A|2 = ∂t
(
gikgjlh(PÃij −Aij , P Ãkl −Akl)

)

= 2(∂tg
ik)gjlh(PÃij −Aij , P Ãkl −Akl)

)

+ 2gikgjlh(Dt(PÃij −Aij), P Ãkl −Akl)

≤ C|A|2|PÃ−A|2 + C loc
0 d(|A|2 + |Ã|2)|PÃ−A|

+ 2gikgjlh(PDtÃij −DtAij , P Ãkl −Akl).

Now use (2.9) with k = 2 to write

PDtÃ−DtA = P ∆̃Ã−∆A+ (I) + (II) + (III) + (IV )
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where

(I) = P (g̃−2 ∗ h̃(Ã, Ã) ∗ Ã)− g−2 ∗ h(A,A) ∗A;

(II) = P (g̃−2 ∗ h̃(∇̃Ã, Ã) ∗ F̃∗)− g−2 ∗ h(∇A,A) ∗ F∗;

(III) = P (∇̄R̄|F̃ ∗ (F̃∗)
a+2 ∗ g̃−b)− ∇̄R̄|F ∗ (F∗)

a+2 ∗ g−b;

(IV ) = P (R̄|F̃ ∗ (F̃∗)
a ∗ Ã ∗ g̃−b)− R̄|F ∗ (F∗)

a ∗A ∗ g−b.

Using h̃(Ã, Ã) = h(PÃ, P Ã), one has

(I) = (g−1 − g̃−1) ∗ g̃−1 ∗ h(PÃ, P Ã) ∗ PÃ

+ g−1 ∗ (g−1 − g̃−1) ∗ h(PÃ, P Ã) ∗ PÃ

+ g−2 ∗
(
h(PÃ−A,PÃ) + h(A,PÃ−A)

)
∗ PÃ

+ g−2 ∗ h(A,A) ∗ (PÃ−A)

⇒ |(I)| ≤ C|Ã|3|PF̃∗ − F∗|+ C(|A|2 + |Ã|2)|PÃ−A|.

Similarly we have

|(II)| ≤ C|Ã||∇̃Ã||PF̃∗ − F∗|+ C|Ã||PÃ−A|+ C|A||P ∇̃Ã−∇A|.

For (III), note

P (∇̄R̄|F̃ ∗ (F̃∗)
a+2 ∗ g̃−b) = (P ∗∇̄R̄|F̃ ∗ (PF̃∗)

a+2 ∗ g̃−b).

Thus a similar calculation and Lemma 4.2 give

|(III)| ≤ CBloc
2 d+ C loc

1 |PF̃∗ − F∗|.

Similar for (IV ) we have

|(IV )| ≤ C loc
1 |Ã|d+ C loc

0 |Ã||PF̃∗ − F∗|+ C loc
0 |PÃ−A|.
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Therefore

∂t|PÃ−A|2 ≤ 2h((P ∆̃Ã−∆A), P Ã−A) + C loc
0 (|A|2 + |Ã|2)d2

+ C(|A|2 + |Ã|2)|PÃ−A|2

+ C

[
(|Ã||∇̃Ã|+ |Ã|3 + C loc

1 + C loc
0 |Ã|)|PF̃∗ − F∗|

+ (|A|2 + |Ã|2 + C loc
0 )|PÃ−A|+ |A||P ∇̃Ã−∇A|

+ (CBloc
2 + C loc

1 |Ã|)d
]
|PÃ−A|.

Now (5.4) is obtained using Cauchy Schwarz inequalities. □

6. Proof of Theorem 1.1, Theorem 1.2 and Theorem 1.3

In this section, we use the energy argument to prove the Theorem 1.1, The-
orem 1.2 and Theorem 1.3.

To prove Theorem 1.1 using the energy method, we introduce the fol-
lowing energy quantity. By [9], we can find ρ ∈ C∞(M) such that |∇̄ρ| ≤ 2
and

dM (·, y0) ≤ ρ(·) ≤ dM (·, y0) + 1.

Now define

Q = d2 + |Γ− Γ̃|2 + ρ2−ϵ(F0)

t
|PF̃∗ − F∗|2 + |PÃ−A|2, t > 0.

Lemma 6.1. Under the assumption of the Theorem 1.1, there exists C1

such that on F−1
0 (BM (p, r)), where r ≫ 1,

∂tQ ≤ C1r
2−ϵ

t
Q+ 2h(P ∆̃Ã−∆A,PÃ−A) +

1

2
|P ∇̃Ã−∇A|2.

Proof. Recall that from Lemma 3.2, (4.2) and (1.3), we have

∂td
2 ≤ Cd(|Ã||PF̃∗ − F∗|+ |PÃ−A|) ≤ Cr2−ϵ

t
Q,
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On the other hand, using (5.1), (5.2) and (1.3), (2.10) give

∂t|Γ̃− Γ|2 ≤ C|Γ̃− Γ|
[
|A||∇A||PF̃∗ − F∗|+ |∇A||PÃ−A|

+ |Ã||P ∇̃Ã−∇A|
]
+ C|A|2|Γ̃− Γ|2

≤ C1r
2−ϵ

t
Q+

1

6
|P ∇̃Ã−∇A|2

and

∂

∂t

(
ρ2−ϵ

t
|PF̃∗ − F∗|2

)
≤ C1r

2−ϵ

t
Q+

1

6
|P ∇̃Ã−∇A|2.

Lastly, using (Bloc
2 )2 ≤ C(1 + r2−ϵ) for r ≫ 1 and (5.4), we have

∂t|PÃ−A|2 ≤ 2h(P ∆̃Ã−∆A,PÃ−A) + C1
r2−ϵ

t
Q+

1

6
|P ∇̃Ã−∇A|2

and the lemma is proved. □

Proof of Theorem 1.1. For each r ≫ 1, let ϕ(x) = φp(ρ(F0)/r) where φ is
smooth, equals 1 on [0, 1/2], vanishes outside [0, 1] and satisfies 0 ≤ −φ′ ≤
10. Here p possibly depends on r. Let η(x, t) = [ρ(F0)]2

a−bt . For t ∈ (0, a/(2b)],

η(x, t) ≥ ρ2/a. Moreover,

∂tη =
b

(a− bt)2
ρ2 ≥ b

8nλ
|∇η|2.

Here a and b are some constants to be fixed later and λ is a constant such
that g(t) ≥ λ−1g0. Now for t ∈ (0, a/2b], define the energy Er(t) as

Er(t) =

∫

Σ
Qe−ηϕ dµ, for t > 0.

Note that the above is well defined, since ϕ is of compact support, while
(2.1) and the properness of F0 together imply that F (t, ·) is also proper.
From Lemma 6.1 and ∂tdµ ≤ 0 by (2.7),

d

dt
Er(t) ≤ −

∫

Σ
Qe−ηϕ∂tη dµ+

C1r
2−ϵ

t
Er(t) +

∫

Σ
|P ∇̃Ã−∇A|2e−ηϕdµ

+ 2

∫

Σ
h(P ∆̃Ã−∆A,PÃ−A)e−ηϕ dµ.
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We focus on the term containing the Laplacians. Using (4.4), Lemma 2.3
and Cauchy Schwarz inequality,

2

∫

Σ
h(P ∆̃Ã−∆A,PÃ−A)e−ηϕ dµ

= 2

∫

Σ
h
(
P g̃ij∇̃i∇̃jÃ− gij∇i∇jA,PÃ−A

)
e−ηϕ dµ

= 2

∫

Σ
h
(
−g̃ij(∇iP )∇̃jÃ+ ∇̃i(P g̃ij∇̃jÃ)− gij∇i∇jA,PÃ−A

)
e−ηϕ dµ

≤ C0

∫

Σ
d|∇̃Ã||PÃ−A|e−ηϕ dµ

+ 2

∫

Σ
h
(
∇i

(
P g̃ij∇̃jÃ− gij∇jA

)
, P Ã−A

)
e−ηϕ dµ

+ C

∫

Σ
|Γ− Γ̃||∇̃Ã||PÃ−A|e−ηϕ dµ

≤ C1r
2−ϵ

t
Er(t) + 2

∫

Σ
h
(
∇i

(
P g̃ij∇̃jÃ− gij∇jA

)
, P Ã−A

)
e−ηϕ dµ.

Now we use integration by part to the second term on the right hand side
to obtain

2

∫

Σ
h
(
∇i

(
P g̃ij∇̃jÃ− gij∇jA

)
, P Ã−A

)
e−ηϕ dµ

= −2

∫

Σ
h
(
P g̃ij∇̃jÃ− gij∇jA, (∇iP )Ã

)
e−ηϕ dµ

− 2

∫

Σ
h
(
P g̃ij∇̃jÃ− gij∇jA,P (∇iÃ)−∇iA

)
e−ηϕ dµ

− 2

∫

Σ
h
(
P g̃ij∇̃jÃ− gij∇jA,PÃ−A

)
∇i(e

−ηϕ) dµ

= (A) + (B) + (C).

For the first two terms, we use again

g̃−1 = g̃−1 − g−1 + g−1, ∇i = ∇i − ∇̃i + ∇̃i,

Proposition 4.1 and Cauchy Schwarz inequality to get

(A) + (B) ≤ C1r
2−ϵ

t
Er(t)−

∫

Σ
|P ∇̃Ã−∇A|2e−ηϕ dµ.
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For (C) we have similarly

(C) ≤ 1

2

∫

Σ
|P ∇̃Ã−∇A|2e−ηϕdµ+

C1r
2−ϵ

t
Er(t)

+ C

∫

Σ
|PÃ−A|2e−η

[ |∇ϕ|2
ϕ

+ ϕ|∇η|2
]
dµ.

Combine all these,

d

dt
Er(t) ≤

C1r
2−ϵ

t
Er(t) +

∫

Σ
Qe−ηϕ

[
− ∂

∂t
η + C̃|∇η|2

]
dµ(6.1)

+ C

∫

F−1

0
(Ay0

(r/2,r))
|PÃ−A|2e−η |∇ϕ|2

ϕ
dµ,

where Ay0
(r/2, r) ⊂ M is the annulus centred at y0 and C̃ is a fixed constants

depending only on the dimensions of Σ,M, λ and L. To estimate the last
term on the right hand side of (6.1), note

|∇ϕ|2
ϕ

≤ Cp2

r2
ϕ1−2/p.

By Young’s inequality, (1.3), ∂tdµ ≤ 0 and (1.2), we have

Cp2

r2

∫

F−1

0
(Ay0

(r/2,r))
|PÃ−A|2e−ηϕ1−2/pdµ

≤ Cp2

r2
E1−2/p

r

(∫

F−1

0
(Ay0

(r/2,r))
|PÃ−A|2e−ηdµ

)2/p

≤ r2−ϵ

t
Er +

Cp/2pptp/2−1

rp+(2−ϵ)(p/2−1)
·
(∫

F−1

0
(Ay0

(r/2,r))
(|A|2 + |Ã|2)e−ηdµ

)

≤ r2−ϵ

t
Er +

Cp/2pptp/2−2

rp+(2−ϵ)(p/2−2)
e−r2/a ·

∫

F−1

0
(Ay0

(r/2,r))
dµ

≤ r2−ϵ

t
Er +

Cp/2pptp/2−2

rp+(2−ϵ)(p/2−2)
e−r2/a ·

∫

F−1

0
(Ay0

(r/2,r))
dµ0

≤ r2−ϵ

t
Er +

DCp/2pptp/2−2

rp+(2−ϵ)(p/2−2)
e−r2/a+Dr2 .



✐

✐

“6-Lee” — 2022/1/11 — 19:49 — page 1501 — #27
✐

✐

✐

✐

✐

✐

Uniqueness theorems for non-compact mean curvature flow 1501

Now we require that a, b satisfy a−1 ≥ 2D and b/(8nλ) ≥ C̃. Therefore,
the differential inequality for the energy quantity reduces to

d

dt
Er(t) ≤

C1r
2−ϵ

t
Er(t) +D(

√
Cp)ptp/2−2e−r2/(2a).

For each r ≫ 1, from now on we consider C1, C as fixed constants and write
α = C1r

2−ϵ > 0. Solve the above ode on 0 < s < t < a/(2b):

Er(t)

tα
≤ Er(s)

sα
+D(

√
Cp)pe−r2/(2a)

∫ t

s
xp/2−2−α dx

At each r ≫ 1, choose p = 2(2 + α) = 2(2 + C1r
2−ϵ). For r large (de-

pending only on C,D, ϵ, a) we have er
2/(4a) > D(

√
Cp)p. Hence,

(6.2)
Er(t)

tα
≤ Er(s)

sα
+

a

2b
e−r2/(4a)

for large enough r. By Theorem 4.1 and the MCF equation, since the conver-
gence F (t, ·), F̃ (t, ·) → F0(·) are smooth, Q(m)(0) = 0 for any m ∈ N. Since
F0 is proper and M is complete, F−1

0 (BM (y0, 2r)) is a compact set and we
may apply the dominated convergent theorem to conclude that

lim
s→0

Er(s)

sα
= 0.

Followed by letting r → ∞ in (6.2), we have Q ≡ 0 for all t ∈ [0, a/(2b)], in
particular F = F̃ in [0, a/2b]. Extension to the whole interval [0, T ] follows
from an open-closed argument and this finishes the proof of Theorem 1.1. □

Next we prove Theorem 1.2.

Proof of Theorem 1.2. In this situation, we observe that conditions (1) and
(2) in Theorem 1.1 hold since t−2α is integrable in [0, T ]. Thus all the cal-
culations in the Sections 3, 4, and 5 can be applied. Let

Qα = d2 + |Γ− Γ̃|2 + t−2α|PF̃∗ − F∗|2 + |PÃ−A|2.

In this situation, one uses an intrinsic cutoff function: Let ρ = ρT ∈ C∞(Σ)
be an exhaustion of (Σ, gT ) so that for some x0 ∈ Σ,

dgT (x, x0) ≤ ρ(x) ≤ dgT (x, x0) + 1, |∇ρ| ≤ 2.
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Let ϕ, η be defined as in the proof of Theorem 1.1 with this new ρ and let

Eα
r (t) =

∫

Σ
Qαe−ηϕdµ.

The assumption |A|+ |Ã| ≤ C/tα implies the estimates |∇A|+ |∇̃Ã| ≤
C1/t

2α. Arguing as in the proof of Theorem 1.1, we have for r ≫ 1 and
b/(8nλ) ≥ C̃,

d

dt
Eα

r (t) ≤
C2

t2α
Eα

r (t) + C

∫

F−1

0
Ay0

(r/2,r)
|PÃ−A|2e−η |∇ϕ|2

ϕ
dµ.

Using the assumption on |A|, |Ã|, (2.2) and pick p = 2, we have

d

dt
Eα

r (t) ≤
C2

t2α

(
Eα

r (t) + e−ar2VolgT (Br(x0))

)
.

From the Gauss equation and the assumptions on A, (Σ, gT ) has bounded
curvature, thus the volume comparison theorem gives

VolgT (Br(x0)) ≤ DeDr

for some D = D(n,m, T,B0). Choosing a−1 ≥ 2D,

d

dt
Eα

r (t) ≤
C2

t2α

(
Eα

r (t) + e−r2/2a
)
.

Since the convergence F (t, ·), F̃ (t, ·) → F0(·) is C3, Er(t) is continuous at t =
0 and Er(0) = 0. Integrating the above inequality (note t−2α is integrable)
gives

Er(t) ≤
(
e

C2

1−2α
t1−2α − 1

)
e−r2/2a.

Let r → ∞ gives Qα = 0 for all t ∈ [0, a/2b]. Thus F = F̃ in [0, a/2b] and
the theorem follows from iterating the argument. □

Using the above cutoff technique and the argument in the proof of The-
orem 1.1, we sketch how one can prove Theorem 1.3.
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Sketch of proof of Theorem 1.3. We argue using similar argument in [12].
Define the energy to be

ER(t) =

∫

M

(
t−2|g − g̃|2 + t−1|Γ− Γ̃|2 + |Rm− R̃m|2

)
ϕe−η dµg(t).

Here we choose the cutoff function and exhaustion function as in the proof
of Theorem 1.1: ϕ(x) = ϕ(ρ(x)/R) and η(x, t) = ρ(x)2

a−bt where ρ is a smooth
function on M such that

d0(x, x0) ≤ ρ(x) ≤ d0(x, x0) + 1 and |∇g0ρ| ≤ 2

for some x0 ∈ M . By volume comparison and equivalence of metrics, we
know that

Vt(B0(p,R)) ≤ VT (BT (p, CR)) ≤ C ′eC
′R.

Using integration by part, we obtain a evolution inequality of ER which is
in the same form as before.

E′
R(t) ≤

L

t
ER(t) + Cn

∫

M

|∇ϕ|2
ϕ

|Rm− R̃m|2e−η dµ

for some L = L(n, λ). We can now employ the same trick in the proof of
Theorem 1.1 to conclude that g(t) = g̃(t) for all t ∈ [0, T ]. □

7. Backward uniqueness

In this section, we modify a general backward uniqueness result in [16] to
prove Theorem 1.4. When the ambient space is Euclidean, similar results
were obtained in [10] in co-dimension one case and [25] in arbitrary co-
dimension. However, the issue of parallel transport is not addressed in [10],
[25] when the ambient space is not Euclidean.

To start the proof, let F, F̃ : [0, T ]× Σ → M be two MCFs with uni-
formly bounded second fundamental forms |A|+ |Ã| ≤ C and F = F̃ at time
T . To show backward uniqueness, it suffices to show that F = F̃ on [1/l, T ]
for all l ∈ N. Now consider l as fixed number. By Theorem 3.2 in [5], we
have

|∇kA|+ |∇̃kÃ| ≤ Ck+1, k = 0, 1, 2, . . . and t ∈ [1/l, T ].

Consider two (time-dependent) vector bundles over Σ:

X = (T 0,2Σ⊗N)⊕ (T 0,3Σ⊗N), Y = N ⊕ (T 0,1Σ⊗N)⊕ T 1,2Σ⊕ T 1,3Σ.
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We use the metric induced from g and h and the direct sums are orthogonal.
Define the following time covariant derivatives on X and Y respectively:

DX
t = Dt ⊕Dt, DY

t = Dt ⊕Dt ⊕ ∂t ⊕ ∂t.

Consider the following two sections X,Y on X ,Y respectively:

X = (PÃ−A)⊕ (P ∇̃Ã−∇A),

Y = v ⊕ (PF̃∗ − F∗)⊕ (Γ− Γ̃)⊕∇(Γ− Γ̃),

where v is defined in Section 3. Theorem 1.4 follows from the following

Theorem 7.1. There are constants C4 so that

|(DX
t −∆)X| ≤ C4(|X|+ |∇X|+ |Y |),(7.1)

|DY
t Y | ≤ C4(|X|+ |∇X|+ |Y |).(7.2)

Proof. First we estimate ∂t(∇(Γ− Γ̃)). We remark that for any (p, q) tensors
S on Σ, we have

(∂t∇−∇∂t)S = (∂tΓ) ∗ S.
Then we have the estimates

|∂t∇(Γ− Γ̃)| = |∇(∂tΓ− ∂tΓ̃)|+ C2|Γ− Γ̃|
=
∣∣∣∇
[
g−2 ∗ h(A,∇A)− g̃−2 ∗ h̃(Ã, ∇̃Ã)

]∣∣∣+ C2|Γ− Γ̃|

≤ |g−2 ∗ (h(∇A,∇A) + h(A,∇2A))− g̃−2 ∗ (h(P ∇̃Ã, P ∇̃Ã)|
+ h(PÃ, P ∇̃2Ã)) + C2|Γ− Γ̃|

≤ C2(|Γ− Γ̃|+ |PF̃∗ − F∗|+ |PÃ−A|+ |P ∇̃Ã−∇A|
+ |P ∇̃2Ã−∇2A|)

≤ C2(|Γ− Γ̃|+ |PF̃∗ − F∗|+ |PÃ−A|+ |P ∇̃Ã−∇A|
+ |∇(P ∇̃Ã−∇A)|+ |v|)

≤ C2(|X|+ |∇X|+ |Y |).

The above inequality together with (3.7), (5.1) and (5.2) give us (7.2). To
derive (7.1), note that for any k,

(Dt −∆)(P ∇̃kÃ−∇kA) = ((Dt −∆)P )∇̃kÃ− 2gij(∇iP )(∇j∇̃kÃ)

+ P ((Dt −∆)∇̃kÃ)− (Dt −∆)∇kA.
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The first two terms on the right hand side is estimated using (4.7), (4.5)
and (4.4):

|((Dt −∆)P )∇̃kÃ| ≤ C1|∇̃kÃ|[(|A|+ |Ã|)|v|+ P̃ (|A|)|v|
+ |PF̃∗ − F∗|+ |Γ− Γ̃|+ |PÃ−A|]

≤ Ck+1(|X|+ |Y |),
|2gij(∇iP )(∇j∇̃kÃ)| ≤ Ck+2|Y |.

To estimate the third term we use

∆− ∆̃ = g−1 ∗ ∇(Γ− Γ̃) + g−1 ∗ (Γ− Γ̃) ∗ ∇̃+ (g−1 − g̃−1) ∗ ∇̃2

and get

|(Dt −∆)(P ∇̃kÃ−∇kA)|
≤ |P (Dt − ∆̃)∇̃kÃ− (Dt −∆)∇kA|
+ C

[
(|∇̃kÃ|+ |∇̃k+1Ã|)|v|+ |∇̃kÃ||∇(Γ− Γ̃)|

+ (|∇̃kÃ|+ |∇̃k+1Ã|)|Γ− Γ̃|+ |∇̃k+2Ã||PF̃∗ − F∗|
]

≤ |P (Dt − ∆̃)∇̃kÃ− (Dt −∆)∇kA|+ Ck+3(|X|+ |Y |).

From (2.9), one can check that

|P (Dt − ∆̃)∇̃kÃ− (Dt −∆)∇kA|

≤ Ck+2

(
|PÃ−A|+

k∑

i=0

|∇(P ∇̃iÃ−∇iA)|+ |Γ− Γ̃|+ |PF̃∗ − F∗|+ |v|
)
.

Using the above inequalities with the case k = 0, 1 give (7.1) and the theorem
is proved. □

Proof of Theorem 1.4. In [16], the author proves a general backward unique-
ness theorem for two sections X, Y in two fixed vector bundles X , Y on Σ
respectively. We remark that their proof goes through if one assume that X ,
Y are both time dependent vector bundle with ∂t replaced by DX

t , DY
t . In

particular, to apply Theorem 3 in [16] to our situation, let

τ = T − t, Λij = gij .

Note ∇Λ = 0 and b = ∂τg,∇b, ∂τΛ, RΣ are all uniformly bounded, so is
[Dt,∇] since

[Dt,∇] = ∂tΓ + R̄ ∗H ∗ F∗.
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Thus Theorem 7.1 and Theorem 3 in [16] imply that X = Y = 0 on [1/l, T ].
Thus F = F̃ on [1/l, T ]. □
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(1978), 47–84.

[10] H. Huang, Backwards uniqueness of the mean curvature flow, arXiv:
0907.0862.

[11] H. Koch and T. Lamm, Geometric flows with rough initial data, Asian
J. Math. 16 (2012), no. 2, 209–235.

[12] B. Kotschwar, An energy approach to the problem of uniqueness for the
Ricci flow, Commun. Anal. Geom. 22 (2014), no. 1, 149–176.

https://doi.org/10.1007/s12220-017-9839-7
https://doi.org/10.1007/s12220-017-9839-7


✐

✐

“6-Lee” — 2022/1/11 — 19:49 — page 1507 — #33
✐

✐

✐

✐

✐

✐

Uniqueness theorems for non-compact mean curvature flow 1507

[13] B. Kotschwar, An energy approach to uniqueness for higher-order geo-
metric flows, J. Geom. Anal. 26 (2016), no. 4, 3344–3368.

[14] B. Kotschwar, Backwards uniqueness for the Ricci flow, Int. Math. Res.
Not., No. 21 (2010), 4064–4097.

[15] B. Kotschwar, Short-time persistence of bounded curvature under the
Ricci flow, Math. Res. Lett. 24 (2017), no. 2, 427447.

[16] B. Kotschwar, A short proof of backward uniqueness for some geometric
evolution equations, Int. J. Math. 27 (2016), no. 12, Article ID 1650102,
17 p.

[17] H. B. Jr. Lawson and R. Osserman, Non-existence, non-uniqueness and
irregularity of solutions to the minimal surface system, Acta Math. 139
(1977), 1–17.

[18] M.-C. Lee, On the uniqueness of Ricci flow, J. Geom. Anal. (2018).
https://doi.org/10.1007/s12220-018-00105-y

[19] J. D. Lotay Y. Wei, Laplacian flow for closed G2 structures: Shi-type
estimates, uniqueness and compactness, Geom. Funct. Anal. 27 (2017),
no. 1, 165–233.

[20] F. Lubbe, Mean curvature flow of contractions between Euclidean
spaces, Calc. Var. Partial Differ. Equ. 55 (2016), no. 4, Paper No. 104,
28 p.

[21] H. McGahagan, An approximation scheme for Schrödinger maps, Com-
mun. Partial Differ. Equations 32 (2007), no. 3, 375–400.

[22] K. Smoczyk, Mean curvature flow in higher codimension: Introduction
and survey, Bär, Christian (ed.) et al., Global Differential Geometry,
Berlin: Springer, Springer Proceedings in Mathematics 17 (2012), 231–
274.

[23] C. Song and Y. Wang, Uniqueness of Schrodinger flow on manifolds,
Commun. Anal. Geom. 26 (2018), no. 1, 217–235.

[24] M. T. Wang, Long-time existence and convergence of graphic mean cur-
vature flow in arbitrary codimension, Invent. Math. 148 (2002), no. 3,
525–543.

[25] Z. Zhang, A note on the backwards uniqueness of the mean curva-
ture flow, Sci China Math, https://doi.org/10.1007/s11425-017-
9231-4

https://doi.org/10.1007/s12220- 018-00105-y
https://doi.org/10.1007/s11425-017-9231-4
https://doi.org/10.1007/s11425-017-9231-4


✐

✐

“6-Lee” — 2022/1/11 — 19:49 — page 1508 — #34
✐

✐

✐

✐

✐

✐

1508 M.-C. Lee and J. M. S. Ma

Department of Mathematics

The Chinese University of Hong Kong

Shatin, N.T., Hong Kong

E-mail address: mclee@math.cuhk.edu.hk

Department of Mathematical Sciences

University of Copenhagen

2100 Copenhagen, Denmark

E-mail address: jm@math.ku.dk

Received September 30, 2017

Accepted January 31, 2019


	Introduction
	Prelminary and notations
	Writing F"0365F as a graph of F: Basic estimates
	Estimates for the parallel transport P
	Main estimates
	Proof of Theorem 1.1, Theorem 1.2 and Theorem 1.3
	Backward uniqueness
	References

