
✐

✐

“3-Gigli” — 2022/1/11 — 5:41 — page 1391 — #1
✐

✐

✐

✐

✐

✐

Communications in

Analysis and Geometry

Volume 29, Number 6, 1391–1414, 2021

Behaviour of the reference measure on

RCD spaces under charts

Nicola Gigli and Enrico Pasqualetto

Mondino and Naber recently proved that finite dimensional RCD
spaces are rectifiable.

Here we show that the push-forward of the reference measure
under the charts built by them is absolutely continuous with re-
spect to the Lebesgue measure. This result, read in conjunction
with another recent work of us, has relevant implications on the
structure of tangent spaces to RCD spaces.

A key tool that we use is a recent paper by De Philippis-Rindler
about the structure of measures on the Euclidean space.

1. Introduction

This paper is about the structure of charts in finite dimensional spaces with
Ricci curvature bounded from below, RCD spaces in short. Our starting
point is a result by Mondino-Naber [15], which can be roughly stated as:

Let (X, d,m) be a RCD
∗(K,N) space and ε > 0. Then m-a.e. X

can be partitioned into a countable number of Borel subsets (Ui),
each (1 + ε)-biLipschitz to some subset of Rni , where ni ≤ N for
every i.

We shall provide the rigorous statement in Theorem 3.2.
In [15], the behaviour of the reference measure m under the coordinate

charts is not studied. However, both for theoretical purposes (RCD spaces are
metric measure spaces, after all) and for practical ones (see the discussion
below) it would be interesting to know the relation between m, the charts
and the Lebesgue measure. This is the scope of this note, our main result
being, again informally:

Let (X, d,m) be a RCD∗(K,N) space, ε > 0 sufficiently small and
(Ui, φi) the partition given by Mondino-Naber’s theorem and the
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associated coordinate charts. Then

(1.1) (φi)∗(m|Ui
) ≪ L

ni ∀i.

See Theorem 3.5 for the precise statement and notice that our result is
equivalent to the fact that the restriction of m to Ui is absolutely continuous
w.r.t. the ni-dimensional Hausdorff measure.

We remark that in the case of Ricci-limit spaces (=mGH limits of Rie-
mannian manifolds with uniform bound from below on the Ricci curvature
and from above on the dimension), the analogous of our result was already
known from the work of Cheeger-Colding [6]. However, the technique used in
[6] is not applicable to our setting, the problem being that in [6] the spaces
considered are limits of manifolds equipped with the volume measure, a fact
leading to some cancellations which are not present in the weighted case.
Specifically, the key Lemma 1.14 in [6] does not hold on weighted Rieman-
nian manifolds, and a fortiori does not hold on RCD spaces.

Our argument, instead, uses as key tool the following recent result by
De Philippis-Rindler [8]:

Theorem 1.1. Let T1 =
−→
T1∥T1∥, . . . , Td =

−→
Td∥Td∥ be one dimensional nor-

mal currents in R
d and µ a Radon measure on R

d. Assume that:

i) µ≪ ∥Ti∥ for i = 1, . . . , d,

ii) for µ-a.e. x the vectors
−→
T1(x), . . . ,

−→
Td(x) are linearly independent.

Then µ is absolutely continuous w.r.t. the Lebesgue measure on R
d.

We remark that such statement is only one of the several consequences
of the main, beautiful, result in [8].

Our proof combines Theorem 1.1, the construction by Mondino-Naber
and the Laplacian comparison estimates obtained by the first author in [9]
along the following lines:

i) The typical chart φ in Mondino-Naber paper has coordinates which
are distance functions from well chosen points, say x1, . . . , xn, and is
(1 + ε)-biLipschitz on a set which we shall call U

ii) Assuming ε sufficiently small, it is not hard to see that the vector fields
vi := ∇d(·, xi) are independent on U

iii) The fact that the distance function has measure-valued Laplacian,
grants that the vi’s have measure valued divergence
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iv) The differential of φ sends the vi’s to vector fields ui on R
n and with

some algebraic manipulations one can see that div(uiφ∗m) is still a
measure

v) The fact that φ|U is biLipschitz gives that the ui’s are independent on

φ(U) (stated as such, this is not really correct - the precise formulation
requires a cut off and an approximation procedure, see the proof of
Theorem 3.5)

vi) Since vector fields with measure valued divergence are particular cases
of 1-dimensional currents, the conclusion comes from Theorem 1.1 ap-
plied to the currents uiφ∗m and the measure φ∗(m|U ).

There are a few things that need to be explained/defined in this line of
thought: this work will be carried out in Section 2, while Section 3 contains
the statement and proof of our main result.

One feature of our argument, which is basically a consequence of The-
orem 1.1, is that we can prove (1.1) for the charts whose coordinates are
distance functions, whereas in [6] their harmonic approximation was used:
the only structural property we need is that the Laplacian of the coordinates
is a measure.

Let us briefly describe a main consequence of our result. In [10], follow-
ing some ideas of Weaver [18], it has been proposed an abstract definition
of tangent ‘bundle’ to a metric measure space based on the properties of
Sobolev functions. For smooth Riemannian manifolds, this general notion
can trivially be identified with the classical concept of tangent space and
thus also with the more geometric concept of pointed-measured-Gromov-
Hausdorff limit of rescaled spaces. On the other hand, for general ‘irregular’
spaces the approach in [10] has little to do with tangent spaces arising as
pmGH-limits.

One is therefore led to look for sufficient regularity conditions on the gen-
eral metric measure space that ensure the equivalence of these two notions.
This has been the scope of our companion paper [12]: there we proved that if
a space can be covered with (1 + ε)-biLipschitz charts satisfying (1.1), then
indeed such equivalence is in place. As discussed in [12], the main example of
application of our result is the one of RCD∗(K,N) spaces, where the (1 + ε)-
biLipschitz charts are given by Mondino-Naber and the absolute continuity
property (1.1) by this manuscript. This is relevant because it opens up the
possibility of studying the ‘concrete and geometric’ notion of tangent space
as pmGH-limit via the ‘abstract and analytic’ one proposed in [10].
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Finally we remark that other two independent recent papers ([7] and
[14]) cover results overlapping with ours; let us briefly describe those and
the relations with ours. In [8] it has been observed how combining the main
results of [8] and [1] it is possible to deduce a converse of Rademacher theo-
rem, namely that if µ is a measure on R

d such that every Lipschitz function
is differentiable µ-a.e., then necessarily µ≪ L

d. In [7], it has then been no-
ticed how this latter result together with the characterization of measures on
Lipschitz differentiability spaces obtained by Bate in [4], implies the valid-
ity of Cheeger’s conjecture on Lipschitz differentiability spaces, namely the
analogous of our main theorem with ‘Mondino-Naber charts on RCD spaces’
replaced by ‘charts in a Lipschitz differentiability space’. In [14], among
other things, this line of thought has been pushed to obtain our very same
theorem on RCD spaces: the added observation is that Cheeger’s results in
[5] ensure that RCD spaces equipped with the Mondino-Naber charts are
Lipschitz differentiability spaces.

Despite this overlapping, we believe that our approach has some inde-
pendent interest: as discussed above, working with the added regularity of
RCD spaces allows us to quickly conclude from Theorem 1.1, without the
need of using also the deep results in [5], [4] and [1].

Acknowledgment. This research has been supported by the MIUR SIR-
grant ‘Nonsmooth Differential Geometry’ (RBSI147UG4).

2. Technical tools

2.1. Some properties of the differential of a map between metric
measure spaces

To keep the presentation short, we assume the reader familiar with the
language of L∞-modules developed in [10]. We shall only recall, without
proof, those definitions and properties we need.

Let (X, dX ,mX), (Y, dY ,mY ) be two metric measure spaces and φ : X →
Y a map of bounded compression, i.e. so that φ∗mX ≤ CmY for some
C > 0.

Given an L2(Y )-normed module M , the pullback φ∗M , which is an
L2(X)-normed module, and the pullback map φ∗ :M → φ∗M , which is lin-
ear and continuous, are characterised up to unique isomorphism by the fact
that

|φ∗v| = |v| ◦ φ, mX − a.e. ∀v ∈M,

{φ∗v : v ∈M} generates the whole φ∗M.
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Notice that if M = L2(Y ), then φ∗M = L2(X) with φ∗f = f ◦ φ.
Given an L2(Y )-normed module M and its dual M∗, there is a unique

continuous L∞(X)-bilinear map from φ∗M × φ∗M∗ to L1(X) such that

(2.1) φ∗L(φ∗v) = L(v) ◦ φ ∀v ∈M, L ∈M∗.

Such duality pairing provides an isometric embedding of φ∗M∗ into the
dual of φ∗M , but in general such embedding is not surjective. A sufficient
condition for surjectivity is that M∗ is separable (this has to do with the
Radon-Nikodym property of M∗).

In the special case in which M = L2(T ∗Y ) is the cotangent module of
Y , we shall denote the pullback map by ω 7→ [φ∗ω], to distinguish it by the
pullback of 1-forms whose definition we recall in a moment.

Now we assume that not only φ : X → Y is of bounded compression,
but also that it is Lipschitz. Maps of this kind are called of bounded de-
formation.

Recall that given a map φ : X → Y of bounded deformation, the map
from W 1,2(Y ) to W 1,2(X) sending f to f ◦ φ is linear and continuous, and
that it holds

|d(f ◦ φ)| ≤ Lip(φ)|df | ◦ φ mX − a.e.

It can then be seen that there is a unique linear and continuous map φ∗ :
L2(T ∗Y ) → L2(T ∗X), called pullback of 1-forms, such that

φ∗df = d(f ◦ φ) ∀f ∈W 1,2(Y ),

φ∗(gω) = g ◦ φφ∗ω ∀ω ∈ L2(T ∗Y ), g ∈ L∞(Y ),
(2.2)

and that it also satisfies

(2.3) |φ∗ω| ≤ Lip(φ)|ω| ◦ φ mX − a.e.

Recall that in this setting the tangent module is defined as the dual of
the cotangent one; still, to keep consistency with the notation used in the
smooth case, the duality pairing between v ∈ L2(TX) and ω ∈ L2(T ∗X) is
denoted by ω(v).

The differential dφ of φ is then defined as follows.

Definition 2.1 (The differential of a map of bounded deformation).
Let φ : X → Y be of bounded deformation and assume that L2(TY ) is sep-
arable. The differential dφ : L2(TX) → φ∗(L2(TY )) is the only linear and
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continuous map such that

(2.4) [φ∗ω](dφ(v)) = φ∗ω(v) ∀ω ∈ L2(T ∗Y ), v ∈ L2(TX).

The separability assumption on L2(TY ) is needed because (2.4) only
defines an element of the dual of φ∗L2(T ∗Y ) which a priori might be larger
than φ∗L2(TY ) (recall the duality pairing (2.1)).

It turns out that dφ is also L∞(X)-linear and satisfies

(2.5) |dφ(v)| ≤ Lip(φ)|v| mX − a.e. ∀v ∈ L2(TX).

Much like in the classical smooth setting, part of the necessity of calling
into play the pullback module is due to the fact that φmight be not injective,
so that one cannot hope to define dφ(v)(y) ∈ TyY as dφϕ−1(y)(v(φ

−1(y))),
because φ−1(y) can contain more than one point.

A way to assign to each vector field on X a vector field on Y via the
differential of φ is to, roughly said, take the average of dφϕ−1(y)(v(φ

−1(y)))
among all the preimages of y. Rigorously, this is achieved by introducing
a left inverse Prϕ : φ∗M →M of the pullback map φ∗ :M → φ∗M , as we
discuss now.

We shall assume from now on that φ∗mX = mY . For f ∈ L1 + L∞(X)
we put

Prϕ(f) :=
dφ∗(f+mX)

dmY
− dφ∗(f−mX)

dmY
,

so that Prϕ : L1 + L∞(X) → L0(Y ) is a linear operator, where L0(Y ) de-
notes the space of (equivalence classes w.r.t. mY -a.e. equality of) Borel real-
valued functions on Y . Observe that

Prϕ(c) = c mY − a.e. for every c ∈ R,

Prϕ(f) ≤ Prϕ(g) mY − a.e. for every f, g ∈ L1 + L∞(X)

with f ≤ g mX − a.e.

(2.6)

We claim that for any convex function u : R → R it holds that

u ◦ Prϕ(f) ≤ Prϕ(u ◦ f) mY − a.e.(2.7)

for all f ∈ L1 + L∞(X) with u ◦ f ∈ L1 + L∞(X).

To prove it, note that for any affine map v : R → R the equality v ◦ Prϕ(f) =
Prϕ(v ◦ f) is satisfied mY -a.e., by linearity of Prϕ and by the first property
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in (2.6). This fact together with the convexity of u grants that u ◦ Prϕ(f) =
ess sup {Prϕ(v ◦ f) : v affine, v ≤ u}, which in turn gives u ◦ Prϕ(f) ≤
Prϕ(u ◦ f) mY -a.e. by the second property in (2.6), proving (2.7).

Given any p ∈ [1,∞), we thus deduce by choosing u := | · |p in (2.7) that

|Prϕ(f)|p ≤ Prϕ(|f |p) mY − a.e. for every f ∈ Lp + L∞(X).

In particular, Prϕ continuously maps Lp(X) to Lp(Y ) for any p ∈ [1,∞] (the
case p = ∞ being trivial from the definition).

In the case of general modules, the map Prϕ : φ∗M →M can be char-
acterized as the only linear and continuous map such that

(2.8) Prϕ(fφ
∗v) = Prϕ(f)v, ∀f ∈ L∞(X), v ∈M,

and it can be verified that the bound

|Prϕ(V )| ≤ Prϕ(|V |), mY − a.e. ∀V ∈ φ∗M

holds. Notice that, analogously to (2.8), it also holds

(2.9) gPrϕ(V ) = Prϕ(g ◦ φV ), ∀g ∈ L∞(Y ), V ∈ φ∗M.

Indeed, for given g both sides of this identity are linear and continuous in
V and agree on those V ’s of the form fφ∗v for f ∈ L∞(X), v ∈M .

Beside inequality (2.7), all these definitions and properties can be found
in [10]. Now we turn to the main result of this section: we are interested in
studying the map v 7→ Prϕ(dφ(v)) under the assumption that for some Borel
E ⊂ X the restriction of φ to E is invertible and with Lipschitz inverse.

We shall use the following notation: for a given L∞-moduleM and Borel
set E we shall denote byM |E the set of those v ∈M which are concentrated
on E, i.e. such that χEcv = 0.

We recall that v1, . . . , vn ∈M are said independent on E provided for
any f1, . . . , fn ∈ L∞ we have

χE

∑

i

fivi = 0 ⇒ χEfi = 0 ∀i.

In the course of the proof we shall use the identity

(2.10) ω(Prϕ(V )) = Prϕ([φ
∗ω](V )) ∀ω ∈ L2(T ∗Y ), V ∈ φ∗L2(TY ),
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which can be easily proved by noticing that for given ω ∈ L2(T ∗Y ) the two
sides define linear continuous maps from φ∗L2(TY ) to L1(Y ) which agree
on V ’s of the form fφ∗v for f ∈ L∞(X) and v ∈ L2(TY ).

Proposition 2.2. Let φ : X → Y be of bounded deformation, with φ∗mX =
mY and assume that for some Borel set E ⊂ X we have that φ|E is injective

with (φ|E)
−1 Lipschitz. Assume also that Lipschitz functions on X are dense

in W 1,2(X).
Then the map

L2(TX)|E ∋ v 7→ Prϕ(dφ(v)) ∈ L2(TY )

is injective.
In particular if v1, . . . , vn ∈ L2(TX) are independent on E, then the

vectors Prϕ(dφ(χEv1)), . . . ,Prϕ(dφ(χEvn)) ∈ L2(TY ) are independent on
{Prϕ(χE) > 0} ⊂ Y .

Proof. By inner regularity of mX we can, and will, assume that E is compact.
The assumption that Lipschitz functions on X are dense in W 1,2(X) grants
that {df : f ∈ LIP ∩W 1,2(X)} is dense in {df : f ∈W 1,2(X)} w.r.t. the
L2(T ∗X) topology. Recalling that L2(T ∗X) is generated by the differentials
of functions in W 1,2(X) we therefore deduce that

V :=

{

χE

n
∑

i=1

hidfi : n ∈ N, fi ∈ LIP ∩W 1,2(X), hi ∈ L∞(X)

}

(2.11)

is dense in L2(T ∗X)|E .

Now let f ∈ LIP ∩W 1,2(X), consider the Lipschitz function f ◦ (φ|E)
−1 de-

fined on φ(E) and extend it to a Lipschitz function g on Y with bounded
support. Then g ∈W 1,2(Y ) and g ◦ φ = f on E. This identity and the local-
ity of the differential (see [10]) imply that χEdf = χEd(g ◦ φ) so that taking
into account the first in (2.2) we have

χEdf = χEd(g ◦ φ) = χE φ
∗dg ∈ χE(Imφ∗).

Since the second in (2.2) and the assumption about the invertibility of φ|E
ensure that χE(Imφ∗) is closed under L∞(Y )-linear combinations, we de-
duce that V ⊂ χE(Imφ∗), which together with (2.11) implies

(2.12) χE(Imφ∗) is dense in L2(T ∗X)|E .
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Next, we claim that

(2.13) f ∈ L1(X)|E and Prϕ(f) = 0 ⇒ f = 0.

This can be seen by letting g ∈ L1(Y ) be defined as sign(f ◦ φ|E
−1) on φ(E)

and 0 outside. Then it holds

0 =

∫

gPrϕ(f) dmY =

∫

gdφ∗(fmX) =

∫

g ◦ φf dmX =

∫

|f | dmX .

The injectivity claim now follows noticing that for v ∈ L2(TX)|E we
have

Prϕ(dφ(v)) = 0 ⇔ ω
(

Prϕ(dφ(v))
)

= 0 ∀ω ∈ L2(T ∗Y )

(by (2.10)) ⇔ Prϕ

(

[φ∗ω](dφ(v))
)

= 0 ∀ω ∈ L2(T ∗Y )

(by (2.13) and v ∈ L2(TX)|E) ⇔ [φ∗ω](dφ(v)) = 0 ∀ω ∈ L2(T ∗Y )

(by (2.4)) ⇔ φ∗ω(v) = 0 ∀ω ∈ L2(T ∗Y )

(by (2.12) and v ∈ L2(TX)|E) ⇔ v = 0.

For the last claim simply observe that for fi ∈ L∞(Y ) we have

∑

i

fiPrϕ(dφ(χEvi))
(2.9)
=
∑

i

Prϕ(fi ◦ φ dφ(χEvi))

= Prϕ

(

dφ

(

χE

∑

i

fi ◦ φvi
))

and therefore
∑

i

fiPrϕ(dφ(χEvi)) = 0

⇔ χE

∑

i

fi ◦ φvi = 0 by the injectivity just proved

⇔ fi ◦ φ = 0 mX |E − a.e. ∀i by the independence of (vi) on E

⇔ fi = 0 φ∗(mX |E)− a.e. ∀i
⇔ fi = 0 mY − a.e. on {Prϕ(χE) > 0} ∀i,

which is the thesis. □

Remark 2.3. Given inequality (2.5) and taking into account the weighting
given by the operator Prϕ, one might expect that under the assumptions of
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the previous proposition, not only the stated injectivity holds, but actually
that the quantitative bound

|Prϕ(dφ(v))| ≤ Lip
(

(φ|E)
−1
)

Prϕ(χE) ◦ φ |v|

holds. Yet, this is not clear: the problem is that we don’t know whether
(φ|E)

−1 can be extended to a map of bounded deformation.

2.2. Measure valued divergence

Here we discuss the notion of measure valued divergence, mimicking the one
of measure valued Laplacian given in [9]. For an earlier approach to this sort
of definition see [11]. The definition and results presented are valid on arbi-
trary metric measure spaces (X, d,m) so that (X, d) is proper (although this
can in fact be relaxed) and m a non-negative Radon measure. In particular,
the measure valued divergence is always a linear operator (unlike the Lapla-
cian, whose linearity requires the infinitesimal Hilbertianity assumption).

Definition 2.4 (Measure valued divergence). Let Ω ⊂ X be open and
v ∈ L2(TX). We say that v has measure valued divergence in Ω, and write
v ∈ D(divm,Ω) if there exists a Radon measure µ on Ω such that

∫

df(v) dm = −
∫

f dµ

for every Lipschitz function f with support compact and contained in Ω. In
this case the measure µ, which is clearly unique, will be denoted divm|Ω(v).

In the case Ω = X we shall simply write D(divm) and divm(v).

We have the following two simple basic calculus rules for the divergence,
both being consequences of the Leibniz rule for the differential.

Proposition 2.5 (Leibniz rule). Let v ∈ D(divm,Ω) and g : X → R Lip-
schitz and bounded. Then gv ∈ D(divm,Ω) and

divm|Ω(gv) = gdivm|Ω(v) + dg(v)m|Ω.
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Proof. Observe that for f : X → R Lipschitz with support compact and con-
tained in Ω it holds

−
∫

f d
(

gdivm|Ω(v) + dg(v)m|Ω
)

=

∫

d(fg)(v)− fdg(v) dm

=

∫

df(gv) dm,

which is the thesis. □

Proposition 2.6 (Locality). Let Ω1,Ω2 ⊂ X open and v ∈ D(divm,Ω1) ∩
D(divm,Ω1). Then

(2.14)
(

divm|Ω1

(v)
)

|Ω1∩Ω2

=
(

divm|Ω2

(v)
)

|Ω1∩Ω2

,

v ∈ D(divm,Ω1 ∪ Ω2) and it holds

(2.15)
(

divm|Ω1∪Ω2

(v)
)

|Ωi
= divm|Ωi

(v) i = 1, 2.

Proof. To prove (2.14) it is sufficient to consider Lipschitz functions with
support in Ω1 ∩ Ω2, which are dense in Cc(Ω1 ∩ Ω2), in the definition of
divm|Ω1

(v),divm|Ω2

(v). For (2.15) let f : X → R be Lipschitz with support

compact and contained in Ω := Ω1 ∪ Ω2 and χ1, χ2 : X → [0, 1] a Lipschitz
partition of the unit of the space supp(f) subordinate to the cover {Ω1,Ω2}.
Then letting µ be the measure defined by (2.15) we have that

−
∫

f dµ = −
∫

fχ1 ddivm|Ω1

(v)−
∫

fχ2 ddivm|Ω2

(v)

=

∫

(

d(fχ1) + d(fχ2)
)

(v) dm =

∫

df(v) dm,

having used the fact that d(χ1 + χ2) = d1 = 0. □

Finally, we point out how the measure valued divergence is transformed
under maps of bounded deformation:

Proposition 2.7. Let φ : X → Y be proper (=preimage of compact is com-
pact) and of bounded deformation and such that mY = φ∗mX . Then for any
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v ∈ L2(TX) and f ∈W 1,2(Y ) we have

∫

df(Prϕ(dφ(v))) dmY =

∫

d(f ◦ φ)(v) dmX .

In particular, if v ∈ D(divmX
), then Prϕ(dφ(v)) ∈ D(divmY

) and

divmY

(

Prϕ(dφ(v))
)

= φ∗
(

divmX
(v)
)

.

Proof. Pick f : Y → R Lipschitz with compact support. Recalling (2.10) and
the definition of dφ(v) we have

df(Prϕ(dφ(v))) = Prϕ([φ
∗df ](dφ(v))) = Prϕ(d(f ◦ φ)(v)).

Integrating w.r.t. mY = φ∗mX and using the trivial identity
∫

Prϕ(g) dmY =
∫

g dmX valid for any g ∈ L1(X) we deduce

∫

df(Prϕ(dφ(v))) dφ∗mX =

∫

d(f ◦ φ)(v) dmX

= −
∫

f ◦ φ ddivmX
(v) = −

∫

f dφ∗divmX
(v),

which, by the arbitrariness of f , is the thesis. □

2.3. About (co)vector fields on weighted R
d

Let us consider the Euclidean space Rd equipped with a non-negative Radon
measure µ. Here we have at least two ways of speaking about, say, L2(µ)
vector fields: one is simply to consider the space L2(Rd,Rd;µ) of L2(µ)-maps
from R

d to itself, the other is via the abstract notion of tangent module,
which we shall denote as L2

µ(TR
d).

Such two spaces are in general different, as can be seen by considering
the case of µ being a Dirac delta: in this case L2(Rd,Rd;µ) has dimension
d while L2

µ(TR
d) reduces to the 0 space. Aim of this section is to show that

L2
µ(TR

d) always canonically and isometrically embeds in L2(Rd,Rd;µ). This
is useful because once we have such ‘concrete’ representations of vector fields
in L2

µ(TR
d), we will be able to canonically associate 1-currents to them. As

we shall see at the end of the section, the fact that this current is normal is
essentially equivalent to the fact that the original vector field had measure
valued divergence in the sense of Definition 2.4.

A word on notation: to distinguish between the classically defined dif-
ferential and the one coming from the theory of modules, we shall denote
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the former by df , while keeping df for the latter. More generally, elements
of L2(Rd,Rd;µ) or L2(Rd, (Rd)∗;µ) will typically be underlined, while those
of L2

µ(TR
d), L2

µ(T
∗
R
d) will be not.

Consider the set V ⊂ L2(Rd, (Rd)∗;µ) defined by

V :=

{

n
∑

i=1

χAi
dfi : n ∈ N, (Ai) disjoint Borel subsets of R

d, fi ∈ C1
c (R

d)

}

and define P : V → L2
µ(T

∗
R
d) by

P

(

n
∑

i=1

χAi
dfi

)

:=

n
∑

i=1

χAi
dfi.

We have the following simple result:

Proposition 2.8. The map P is well defined and uniquely extends to a lin-
ear continuous map, still denoted by P , from L2(Rd, (Rd)∗;µ) to L2

µ(T
∗
R
d).

Such extension is a L∞-module morphism and satisfies

(2.16) |P (ω)| ≤ |ω|, µ− a.e. ∀ω ∈ L2(Rd, (Rd)∗;µ).

Proof. The trivial inequality

|df | ≤ |df | = lip(f) µ− a.e.,

valid for every f ∈ C1
c (R

d) (see e.g. [2]) grants that P is well defined and that
the bound (2.16) for ω ∈ V holds. Such bound also ensures that P is continu-
ous and since, as is obvious, V is a dense vector subspace of L2(Rd, (Rd)∗;µ),
we get existence and uniqueness of the continuous extension, which is also
clearly linear. The fact that such extension is a L∞-modules morphism can
be checked by first noticing that by definition P behaves properly w.r.t.
multiplication by simple functions and then arguing by approximation. □

By duality we can then define a map ι : L2
µ(TR

d) → L2(Rd,Rd;µ) ∼
L2(Rd, (Rd)∗;µ)∗ by:

ω(ι(v)) := P (ω)(v), ∀v ∈ L2
µ(TR

d), ω ∈ L2(Rd, (Rd)∗;µ).

Then the bound (2.16) directly gives

(2.17) |ι(v)| ≤ |v|, µ− a.e. ∀v ∈ L2
µ(TR

d).



✐

✐

“3-Gigli” — 2022/1/11 — 5:41 — page 1404 — #14
✐

✐

✐

✐

✐

✐

1404 N. Gigli and E. Pasqualetto

We want to prove that equality holds here, i.e. that ι is actually an isometric
embedding. We shall obtain this by proving that P is a quotient map, more
specifically that it is surjective and such that

(2.18) |ω| = min
ω∈P−1(ω)

|ω|, µ− a.e. ∀ω ∈ L2
µ(T

∗
R
d).

We shall need the following lemma about the structure of Sobolev spaces
over weighted R

d:

Lemma 2.9. Let f ∈W 1,2(Rd, dEucl, µ). Then there exists a sequence
(fn) ⊂ C1

c (R
d) converging to f in L2(µ) such that |dfn| → |df | in L2(µ).

Proof. It is known from [2] that for any f ∈W 1,2(Rd, dEucl, µ) and every
sequence (fn) of Lipschitz and compactly supported functions on R

d con-
verging to f in L2(µ) we have

lim
n→∞

∫

|dfn|2 dµ ≥
∫

|df |2 dµ

and that there exists such a sequence (fn) such that lipa(fn) converge to
|df | in L2(µ). Here lipa(g) is the asymptotic Lipschitz constant defined as

lipa(g)(x) := lim
y,z→x

|g(y)− g(z)|
|y − z| = lim

r↓0
Lip(g|Br(x)

) = inf
r>0

Lip(g|Br(x)
).

Since clearly |df | ≤ lipa(f) µ-a.e. for every f Lipschitz with compact sup-
port, by a diagonalization argument to conclude it is sufficient to show that
given such f we can find (fn) ⊂ C1

c (R
d) uniformly Lipschitz, with uniformly

bounded supports, converging to f in L2(µ) and such that

(2.19) lim
n

|dfn|(x) ≤ lipaf(x), ∀x ∈ R
d.

To this aim we simply define fn := f ∗ ρn ∈ C1
c (R

d), where (ρn) is a standard
family of mollifiers such that supp(ρn) ⊂ B1/n(0). It is trivial that (fn) con-
verges to f in L2(µ), that the family is equiLipschitz (the global Lipschitz
constant being bounded by that of f) and that for 1

n < r it holds

|dfn|(x) ≤ Lip(f |Br(x)
), ∀x ∈ R

d.

Letting first n→ ∞ and then r ↓ 0 we get (2.19) and the conclusion. □

Thanks to this approximation result, we obtain the following:
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Proposition 2.10. The map P : L2(Rd, (Rd)∗;µ) → L2
µ(T

∗
R
d) is surjec-

tive and satisfies (2.18) and the map ι : L2
µ(TR

d) → L2(Rd,Rd;µ) is an L∞-
module morphism preserving the pointwise norm, i.e.

(2.20) |ι(v)| = |v|, µ− a.e. ∀v ∈ L2
µ(TR

d).

In particular, if v1, . . . , vn ∈ L2
µ(TR

d) are independent on E ⊂ R
d, then

ι(v1)(x), . . . , ι(vn)(x) ∈ R
d are independent for µ-a.e. x ∈ E.

Proof. We start showing that for f ∈W 1,2(Rd, dEucl, µ) we have that df
belongs to the range of P . To this aim, let (fn) ⊂ C1

c (R
d) be as in Lemma

2.9 and notice that such lemma grants that (dfn) is a bounded sequence in
L2(Rd, (Rd)∗;µ). Being such space reflexive, up to pass to a non-relabeled
subsequence we can assume that dfn ⇀ ω for some ω ∈ L2(Rd, (Rd)∗;µ).

Being P linear and continuous we know that dfn = P (dfn)⇀ P (ω) in
L2
µ(T

∗
R
d) and this fact together with the closure of the differential (see [10])

grants that df = P (ω), thus giving the claim.
Lemma 2.9 grants that |dfn| → |df | in L2(µ) and it is easy to check that

this grants |ω| ≤ |df | µ-a.e., so that we have

(2.21) |df | = |P (ω)| ≤ |ω| ≤ |df |, µ− a.e.,

which forces the equalities and thus shows that (2.18) holds for ω := df .
Since P is a L∞-module morphism, we deduce that any ω of the form

∑n
i=1

χAi
dfi is in the image of P and that for such ω’s the identity (2.18)

holds. To conclude for the first part of the statement, pick ω ∈ L2
µ(T

∗
R
d)

and a sequence (ωn) ⊂ L2
µ(T

∗
R
d) of finite L∞-linear combinations of dif-

ferentials that L2
µ(T

∗
R
d)-converges to ω. By what we just proved there

are ωn ∈ P−1(ωn) realizing the equality in (2.18). In particular, (ωn) is a
bounded sequence in L2(Rd, (Rd)∗;µ) and thus up to pass to a subsequence
it weakly converges to some ω. It is clear that P (ω) = ω and, arguing as
before, that |ω| = |ω| µ-a.e.

We turn to the second part of the statement. The fact that ι is a L∞-
module morphism is obvious by definition. Now pick v ∈ L2

µ(TR
d), ε > 0 and

find ω ∈ L2
µ(T

∗
R
d) with ∥|ω|∥L2(µ) = 1 and

∫

ω(v) dµ ≥ ∥v∥L2(µ) − ε. Then

use what previously proved to find ω ∈ L2(Rd, (Rd)∗;µ) with |ω| = |ω| µ-a.e.
(in particular, ∥|ω|∥L2(µ) = 1) and P (ω) = ω. We have

∥ι(v)∥L2(µ) ≥
∫

ω(ι(v)) dµ =

∫

P (ω)(v) dµ =

∫

ω(v) dµ ≥ ∥v∥L2(µ) − ε,
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which by the arbitrariness of ε and the inequality (2.17) is sufficient to
conclude.

The last claim is now obvious. □

Remark 2.11. In the proof of Theorem 2.10 we did not use the fact the dis-
tance on R

d was the Euclidean one: the same conclusion holds by endowing
it with the distance coming from any norm.

Now that we embedded L2
µ(TR

d) into L2(Rd,Rd;µ) we can further pro-

ceed by associating to each vector field v ∈ L2
µ(TR

d) the current I(v) whose
action on the smooth, compactly supported one form ω is

⟨I(v), ω⟩ :=
∫

ω(ι(v)) dµ =

∫

P (ω)(v) dµ.

It is clear that I(v) has locally finite mass and that, since ι preserves the
pointwise norm, the mass measure ∥I(v)∥ is given by |v|µ.

By definition, the boundary of I(v) acts on f ∈ C∞
c (Rd) as

⟨∂I(v), f⟩ := ⟨I(v), df⟩ =
∫

df(ι(v)) dµ =

∫

df(v) dµ.

By looking at the third expression in this chain of equalities we see that ∂I(v)
has locally finite mass (=is a Radon measure) if and only if the distribu-
tional divergence of ι(v)µ is a Radon measure and in this case such measure
coincides with −∂I(v). Looking at the fourth and last term, instead, and
comparing it with Definition 2.4 we see the following:

Corollary 2.12. Let v ∈ L2
µ(TR

d) be with compact support. Then I(v) is
a normal current if and only if v ∈ D(divµ) and in this case

∂I(v) = −divµ(v).

3. Statement and proof of the main result

Let us start collecting the known results we shall use. The first is a sim-
ple statement concerning the minimal weak upper gradient of the distance
function. Here and in the following, given x ∈ X we shall denote by dx the
function y 7→ d(x, y).
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Proposition 3.1. Let (X, d,m) be a RCD
∗(K,N) space, N <∞. Then for

every x ∈ X we have

(3.1) |d dx| = 1, m− a.e.

Proof. Recall that RCD
∗(K,N) is doubling and supporting a 1-2 weak

Poincaré inequality ([17],[16]), that the local Lipschitz constant of dx is iden-
tically 1 (because the space is geodesic) and conclude applying Cheeger’s
results in [5].

An alternative argument which does not use the results in [5] but relies
instead on the additional regularity of both the space and the function con-
sidered goes as follows. The function 1

2d
2
x is c-concave and thus a Kantorovich

potential from any chosen measure µ0 and some measure µ1 depending on
µ0. Picking µ0 ≤ Cm for some C > 0 and with bounded support, by the re-
sults in [13] we know that the only geodesic (µt) from µ0 to µ1 is such that
µt ≤ C ′

m for any t ∈ [0, 12 ]. Thus we can apply the metric Brenier theorem

(see Theorem 10.3 in [3]) to deduce that |dd
2

x

2 | coincides m-a.e. with the up-

per slope of d
2

x

2 . Since (X, d,m) is doubling, the upper slope coincides m-a.e.
with the lower one (see Proposition 2.7 in [3]) and being (X, d) geodesic,
the latter is easily seen to be identically dx by direct computation. Thus
we know that |dd

2

x

2 | = dx m-a.e. and the conclusion follows from the chain
rule. □

Next, we recall the main result of Mondino-Naber in the form we shall use,
in particular making explicit some of the ingredients that we will need:

Theorem 3.2. Let (X, d,m) be a RCD
∗(K,N) space. Then there are dis-

joint Borel sets Ai ⊂ X, i = 1, . . . , n with n ≤ N covering m-a.e. X such
that the following holds.

For every i = 1, . . . , n and ε > 0 there is a countable disjoint collection
(U ε

i,j)j∈N of Borel subsets of Ai covering m-a.e. Ai and, for every j ∈ N,
points xεi,j,k with k = 1, . . . , i, such that

(3.2) |⟨∇dxε
i,j,k

,∇dxε
i,j,k′

⟩| ≤ ε m− a.e. on U ε
i,j , ∀k ̸= k′

and so that the map φε
i,j : X→R

i given by φε
i,j(x) :=(dxε

i,j,1
(x), . . . , dxε

i,j,i
(x))

satisfies

(3.3) φε
i,j |Uε

i,j

: U ε
i,j → φε

i,j(U
ε
i,j) is (1 + ε)-biLipschitz.
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Proof. This statement has been proved in [15], however, since some of the
claims that we make only appear implicitly in the course of the various
proofs, for completeness we point out where such claims appear.

The fact that X can be covered by Borel charts (1 + ε)-biLipschitz to
subsets of the Euclidean space is the main result in [15]. The fact that the
coordinates of the charts are distance functions is part of the construction,
see [15, Theorem 6.5] (more precisely, in [15] the coordinates are distance
functions plus well chosen constants, so that 0 is always in the image, but
this has no effect for our discussion).

Thus we are left to prove (3.2). Looking at the construction of the sets
U ε
i,j in [15] we see that they are contained in the set of x’s such that

(3.4)

sup
r′∈(0,r)

1

m(Br′(x))

∫

Br′ (x)

∑

1≤k≤k′≤i

∣

∣

∣
d
(

dxε
i,j,k

+dxε
i,j,k′√

2
− dxε

i,j,k,k′

)∣

∣

∣

2
dm ≤ ε1,

where r, ε1 > 0 are bounded from above in terms of K,N, ε only and the
points xεi,j,k,k′ are built together with the xεi,j,k’s (in [15] xi,j,k, xi,j,k′ , xi,j,k,k′

are called pi, pj , pi + pj respectively). We remark that the choice of r, ε1
affects the construction of the sets U ε

i,j and the points xεi,j,k, and that in any

case ε1 can be chosen to be smaller than
∣

∣

ε√
2+1

∣

∣

2
.

Notice that in [15] the distance in (3.4) is scaled by a factor r, whose
only effect is that r′ varies in (0, 1) rather than in (0, r). The validity of
(3.4) comes from the definition of maximal function, called Mk, given in
[15, Equation/Definition (67)], the fact that the sets called Uk

ε1,δ1
introduced

in [15, Equation/Definition (70)] are contained, by definition, in {Mk ≤ ε1}
and the fact that the charts as given by [15, Theorem 6.5] are defined on the

sets Bd̃

δ1
∩ Uk

ε1,δ1
⊂ Uk

ε1,δ1
. Notice also that in [15] the notion of weak upper

gradient |Df | of a function f is used, in place of the pointwise norm of the
differential used in our writing of (3.4), but the two objects coincide (see
[10]).

We come back to the proof of (3.2). Recall that, being m doubling (see
[17]), Lebesgue differentiation theorem holds. Hence from (3.4) and the
discussion thereafter we see that up to a properly choosing ε1, and thus
U ε
i,j , x

ε
i,j,k, x

ε
i,j,k,k′ , we can assume that

∣

∣

∣
d
(

dxε
i,j,k

+dxε
i,j,k′√

2
− dxε

i,j,k,k′

)∣

∣

∣

2
≤
∣

∣

ε√
2+1

∣

∣

2
m− a.e. on U ε

i,j .
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Thus to conclude it is sufficient to prove that for given x1, x2, y ∈ X we have
∣

∣

∣
d
(

dx1
+dx2√
2

− dy

)∣

∣

∣
≤ ε√

2+1
⇒ | ⟨∇dx1

,∇dx2
⟩ | ≤ ε.

This follows with minor algebraic manipulations from the identity (3.1):

| ⟨∇dx1
,∇dx2

⟩ | =
∣

∣

∣

∣

∣

∣
d
(

dx1
+dx2√
2

)∣

∣

∣

2
− |ddx1

|2+|ddx2
|2

2

∣

∣

∣

=
∣

∣

∣

∣

∣

∣
d
(

dx1
+dx2√
2

)∣

∣

∣

2
− 1
∣

∣

∣

=
∣

∣

∣

∣

∣

∣
d
(

dx1
+dx2√
2

)∣

∣

∣

2
− |ddy|2

∣

∣

∣

=
∣

∣

∣

〈

d
(

dx1
+dx2√
2

)

+ ddy , d
(

dx1
+dx2√
2

)

− ddy

〉 ∣

∣

∣

≤ (
√
2 + 1)

∣

∣d
(

dx1
+dx2√
2

)

− ddy
∣

∣.

□

The last result we shall need is the Laplacian comparison estimate for
the distance function obtained in [9]. Such result holds in the sharp form,
but we recall it in qualitative form, sufficient for our purposes:

Theorem 3.3. Let (X, d,m) be a RCD
∗(K,N) space and x ∈ X. Then the

distributional Laplacian of dx in X \ {x} is a measure, i.e. there exists a
Radon measure µ on X such that for every f : X → R Lipschitz with support
bounded and contained in X \ {x} it holds

(3.5)

∫

⟨∇f,∇dx⟩ dm = −
∫

f dµ.

Read in terms of measure-valued divergence, the above theorem yields:

Corollary 3.4. Let (X, d,m) be a RCD
∗(K,N) space, x ∈ X and ψ ∈

LIP(X) with support compact and contained in X \ {x}. Then the vector
field ψ∇dx ∈ L2(TX) belongs to D(divm), i.e. it has measure valued diver-
gence on X in the sense of Definition 2.4.

Proof. Since |ψ∇dx| ≤ |ψ| it is clear that ψ∇dx ∈ L2(TX). Theorem 3.3
above, the very definition of measure valued divergence given in Defini-
tion 2.4 and the Leibniz rule given in Proposition 2.5 ensure that ψ∇dx ∈
D(divm, X \ {x}). On the other hand, by construction ψ∇dx is 0 on a neigh-
bourhood of x and thus, trivially, has 0 measure valued divergence in such
neighbourhood. The conclusion comes from Proposition 2.6. □
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We now have all the ingredients to prove our main result:

Theorem 3.5. With the same notations and assumptions of Theorem 3.2,
we pick ε < 1

N .
Then for every i, j we have

(φε
i,j)∗(m|Uε

i,j

) ≪ L
i.

Proof. Set up. By the inner regularity of m applied to the sets U ε
i,j \

{xεi,j,1, . . . , xεi,j,i} we can assume that the U ε
i,j ’s are compact and that xεi,j,k /∈

U ε
i,j for every k = 1, . . . , i. Now fix i, j and, for brevity, write φ,U, x1, . . . , xi

in place of φε
i,j , U

ε
i,j , x

ε
i,j,1, . . . , x

ε
i,j,i respectively.

Step 1: Normal currents. Let (ψδ)δ>0 be a family of Lipschitz, compactly
supported [0, 1]-valued maps on X pointwise converging to χU as δ ↓ 0 and
consider the vector fields

vδk := ψδ∇dxk
∈ L2(TX), ∀k = 1, . . . , i.

By Corollary 3.4 we know that vδk ∈ D(divm).
Now observe that φ : X → R

i is a Lipschitz and proper map (i.e. the
preimage of compact sets is compact) and thus µ := φ∗m is a Radon measure
on R

i and equipping R
i with such measure we see that φ : X → R

i is of
bounded deformation. By Proposition 2.7 the vector fields

uδk := Prϕ(dφ(v
δ
k)) ∈ L2

µ(TR
i)

all belong to D(divµ) and since by construction they have compact support
we see from Corollary 2.12 that the currents

I(uδk) =
−−−→
I(uδk)∥I(uδk)∥ =

ι(uδk)

|uδk|
(|uδk|µ), k = 1, . . . , i

are normal. We also notice that trivially

(3.6) µ|{|uδ
k|>0} ≪ |uδk|µ = ∥I(uδk)∥, k = 1, . . . , i.

Step 2: Independent vector fields. We claim that

(3.7) the vector fields ∇dx1
, . . . ,∇dxi

∈ L2
loc(TX) are independent on U

and to prove this we shall use our choice of ε < 1
N .
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Let f1, . . . , fi ∈ L∞(X) be such that
∑i

k=1 fk∇dxk
= 0 m-a.e. on U and

notice that

0 =

〈

∇dxk
,

i
∑

k′=1

fk′∇dxk′

〉

= fk|ddxk
|2 +

∑

k′ ̸=k

fk′⟨∇dxk
,∇dxk′

⟩ m− a.e. on U.

From (3.1), (3.2) and the fact that ε < 1
N we obtain

|fk| = |fk||ddxk
|2 ≤

∑

k′ ̸=k

|fk′ | |⟨∇dxk
,∇dxk′

⟩|

≤ 1

N

∑

k′ ̸=k

|fk′ | m− a.e. on U.

Adding up in k = 1, . . . , i we deduce
∑

k |fk| ≤ i−1
N

∑

k |fk| m-a.e. on U , and
since by Theorem 3.2 we know that i ≤ N , this forces

∑

k |fk| = 0 m-a.e. on
U , which is the claim (3.7).

Now notice that Theorem 3.2 grants that φ : X → R
i is of bounded

deformation (having equipped R
i with the measure µ = φ∗m), partially in-

vertible on U and such that (φ|U )
−1 is Lipschitz. It has been proved in [3]

that in any infinitesimally Hilbertian space with measure giving finite mass
to bounded sets, thus in particular in our RCD∗(K,N) space (X, d,m), the
Lipschitz functions are dense in W 1,2(X) (this comes from the density in
energy of Lipschitz functions valid in any metric measure space - proved in
[3] - and from the uniform convexity of W 1,2 in infinitesimally Hilbertian
spaces). Therefore Proposition 2.2 grants that the vector fields

u0k := Prϕ(dφ(χU∇dxk
)) ∈ L2

µ(TR
i) k = 1, . . . , i

are independent on {Prϕ(χU ) > 0}, which by Proposition 2.10 is the same
as to say that

ι(u01)(x), . . . , ι(u
0
i )(x) ∈ R

i are independent for µ-a.e. x(3.8)

such that Prϕ(χU )(x) > 0.

Conclusion. The fact that the family (ψδ) is equibounded in L∞(X) and
pointwise converges to χU easily implies that vδk → χU∇dxk

in L2(TX) for
every k = 1, . . . , i. By the continuity of dφ and Prϕ we deduce that for
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any k = 1, . . . , i we have uδk → u0k in L2
µ(TR

i) as δ ↓ 0 and thus by Proposi-

tion 2.10 that ι(uδk) → ι(u0k) in L
2(Ri,Ri;µ) as δ ↓ 0.

Let Aδ ⊂ R
i, δ ≥ 0 be the Borel sets defined, up to µ-negligible sets, as

Aδ :=
{

x ∈ R
i : ι(uδ1)(x), . . . , ι(u

δ
i )(x) are independent

}

.

Since being an independent family is an open condition, the convergence
just proved ensures that for any δn ↓ 0 we have

(3.9) µ

(

A0 \
⋃

n

Aδn

)

= 0.

For δ > 0, we apply Theorem 1.1 to the currents I(uδk): since µ-a.e. on A
δ the

vectors ι(uδk) are all nonzero, we have µ|Aδ
≪ µ|{|uδ

k|>0} for every k = 1, . . . , i

and thus (3.6) and Theorem 1.1 grant that

µ|Aδn
≪ L

i ∀n ∈ N

and thus from (3.9) we deduce

µ|A0
≪ L

i.

On the other hand by (3.8) we know that, up to µ-negligible sets, we have
A0 ⊃ {Prϕ(χU ) > 0} which together with the above implies

Prϕ(χU )µ≪ L
i.

As we have φ∗(m|U ) = Prϕ(χU )µ, the proof is achieved. □
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