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Quantitative stratification of
F-subharmonic functions

JIANCHUN CHU

In this paper, we study the singular sets of F-subharmonic func-
tions u : B3(0™) — R, where F is a subequation. The singular set
S(u) C Bz(0") has a stratification S°(u) C S*(u) C - C S¥(u) C
-+ C 8(u), where x € S¥(u) if no tangent function to u at x is (k +
1)-homogeneous. We define the quantitative ﬂmaﬁﬁcaﬁons‘ss(u)
and SF (u) satisfying 8% (u) = U, S} (u) = U, N, 8§, (u).

When homogeneity of tangents holds for F', we prove that
dimgS*(u) < k and S(u) = S P(u), where p is the Riesz char-
acteristic of F. And for the top quantitative stratification SyP (u),
we have the Minkowski estimate Vol(B,(S;~P(u) N Bi(0"))) <
C’?fl(fBH,,,(On) Au)r?.

When uniqueness of tangents holds for F', we show that SS (u)
is k-rectifiable, which implies S*(u) is k-rectifiable.

When strong uniqueness of tangents holds for F', we introduce
the monotonicity condition and the notion of F-energy. By using
refined covering argument, we obtain a definite upper bound on the
number of {O(u, z) > ¢} for ¢ > 0, where ©(u, ) is the density of
F-subharmonic function u at x.

Geometrically determined subequations F(G) are a very im-
portant type of subequation (when p =2, homogeneity of tan-
gents holds for F(G); when p > 2, uniqueness of tangents holds for
F(G)). By introducing the notion of G-energy and using quantita-
tive differentation argument, we obtain the Minkowski estimate of
quantitative stratification Vol(B,.(Sk .(u)) N By (0™)) < Crm=k=n,
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1. Introduction
1.1. Background

Recently, Harvey and Lawson [21, 22] (see also [10-20, 23]) established a
theory of elliptic equations. The aim of this theory is to study the behavior of
subsolutions in the viscosity sense. They introduced the definitions of Riesz
characteristic, tangential p-flow, tangent and density function. And many
interesting theorems, formulas and properties of subsolutions, tangents and
density functions were established.

In this theory, there is a very important kind of examples called geomet-
rically defined subequations (see [21, Example 4.4] and [22]). To be specific,
let G be a compact subset of the Grassmannian manifold G(p, R™) such that
G is invariant under a subgroup G C O(n) acting transitively on the sphere
S"—1 ¢ R™. The geometric subequation determined by G is defined by

(1.1) F(G) ={A € Sym(n) | trw(A) > 0 for any W € G},

where Sym(n) denotes the space of symmetric n x n matrices with real en-
tries and try (A) denotes the trace of Aly . Let u be a F(G)-subharmonic
function, by the Restriction Theorem 3.2 in [20], we obtain u|y is sub-
harmonic on W for any W € G. F(G)-subharmonic functions are usually
called G-plurisubharmonic functions. And as we can see, convex, C-
plurisubharmonic and H-plurisubharmonic functions are all special cases
of G-plurisubharmonic functions.

In [21], Harvey and Lawson introduced the definitions of homogeneity,
uniqueness and strong uniqueness of tangents. In [22], for geometrically de-
fined subequations F'(G), it was proved that homogeneity of tangents holds
when p = 2 and uniqueness of tangents holds when p > 2. They also proved
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strong uniqueness of tangents holds for many subequations (see [2I, Theo-
rem 13.1] and [22] Theorem 3.2, Theorem 3.12]). When the subequation F’
is convex, for any F-subharmonic function u, upper semicontinuity of den-
sity functions ©M (u,-), ©%(u,-) and OV (u,-) was proved (see [2I, Theorem
7.4]), which implies that for any ¢ > 0 and each density function as above,
the set

E.(u) :=={x | O(u,x) > ¢}

is closed (see [21, Corollary 7.5]). Furthermore, the discreteness of the set
E.(u) was established when strong uniqueness of tangents holds for F' and
p > 2, where p is the Riesz characteristic of F' (see [21, Theorem 14.1, The-
orem 14.17)).

1.2. Definitions and notations

In this paper, many definitions in Harvey and Lawson’s theory will be used.
For the reader’s convenience, we list some related definitions. For more de-
tails, we refer the reader to [21, 22]. We shall use the following notations,
for any function u, point x € R™ and r > 0,

M(u,xz,r) = sup u(x+ry),

y€B1(0™)
1
S(u,xz,r) = / u(x + ry)dy,
NWn JaB, (0)
1
V(u,z,7r) = / u(x + ry)dy,
Wn J By (0m)

where 0" is the origin in R™ and w, is the volume of unit ball in R".
Let F be a closed subset of Sym?(R") (the set of n x n symmetric
matrices). We always assume that the set F' has the following properties:

(1) Positivity: F +P C F, where P = {A € Sym?(R") | A > 0};

(2) ST-Invariance: F' is invariant under a subgroup G' C O(n) which
acts transitively on the sphere S™~!;

(3) Cone Property: tF C F for all t > 0;
(4) Convexity: F is convex.

A closed set F' satisfying Positivity is called a subequation. For each
subequation F', the viscosity F-subsolutions are called F-subharmonic func-
tions.
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Definition 1.1. ([8HI0, 13]) Let Q be a domain in R™. An upper semi-
continuous function » on € is called a F-subharmonic function if for any
z € Q and any function ¢ € C?(Q2) such that

u(zo) = p(zo) and u—¢ <0 near o,

then D%p(z¢) € F.

First, let us recall the definition of the classical p'" Riesz kernel and the
Riesz characteristic. The classical p'* Riesz kernel K, is defined by

2P if1<p<?2
K,(t) =< logt ifp=2

—a if2<p <.

Definition 1.2. (|21, Definition 3.2]) Suppose that F' is an ST-invariant
cone subequation. The Riesz characteristic pr of F' is defined to be

pp:=sup{p | P.. — (p—1)P. € F for any unit vector e € R"},

where P, and P.. denote orthogonal projection onto the line through e and
the hyperplane with normal e respectively.

In this paper, we assume that pp = p for convenience. Next, let us recall
the definitions of tangent and tangent set.

Definition 1.3. ([2I, Definition 9.1]) Suppose that u is a F-subharmonic
function. Let 2 be a point such that B,(x) is in the domain of u, where
p > 0. For any r > 0, the tangential p-flow (or p-homothety) of v at x is
defined as follows.

(1) T p > 2, g (y) = ¥ 2u(x + ry) in Be (0");
(2) 162> p > 1, up(y) = 5oy (u(a + ry) — u(x)) in Be (07);
(3) 1 p =2, upr(y) i= ul(w +ry) — M(u,,7) in Be(07).

Definition 1.4. (21, Definition 9.3]) Suppose that u is a F-subharmonic
function. Let x be an interior point in the domain of u. For each sequence
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rj ¢ 0 such that
U = lim u,,, in L}, (R"),

J]—00

the point-wise defined function

U(y) := lim esssup U
r—0 Br(y)

is called a tangent to u at x. We let T, (u) denote the set of all such tan-
gents U.

In [21I], Harvey-Lawson proved that each tangent U € T,(u) is F-
subharmonic, and U is the unique F-subharmonic function in the Lllo .
UeclL! (R") (see [21, Proposition 9.4]).

loc

-class

Definition 1.5. ([21, Definition 12.1]) Suppose that u is a F-subharmonic
function. Let x be an interior point in the domain of w.

(1) For any u and z, if every tangent ¢ € T, (u) satisfies pgn , = ¢ for
any r > 0, we say that homogeneity of tangents holds for F;

(2) For any w and z, if T(u) is a singleton, we say that uniqueness of
tangents holds for F’;

(3) For any w and z, if T, (u) = {©K,(| - |)}, where © > 0 is a constant,

we say that strong uniqueness of tangents holds for F'.

Remark 1.6. In Definition it is clear that (3) implies (2) and (2)
implies (1).

Next, in order to study the singular sets of F-subharmonic functions, we
have the following definitions.

Definition 1.7. A function i : R"™ — R is said to be k-homogeneous at x €
R” with respect to k-plane V¥ C R™ if h satisfies the following properties:

(1) h is subharmonic on R";

(2) For any r > 0, hyr(y) = h(y + x) for every y € R", where h,, is
the tangential p-flow of h at x;

(3) For any y € R and v € V¥, h(y +v + ) = h(y + ).

If z = 0", we say h is k-homogeneous (or h is a k-homogeneous function) for
convenience.
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Definition 1.8. A function v : B,(z) C R™ — R is said to be (k,¢,r, x)-
homogeneous, if there exists a k-homogeneous function h: R™ — R such
that

|tz — bl L1 (B, 0m)) <€
Definition 1.9. Suppose that homogeneity of tangents holds for F. Let u

be a F-subharmonic function on B(0™). For any 7 > 0 and r € (0,1), we
have the following definitions:

(1) The singular set S(u) is defined by

S(u) := {z € B2(0") | no tangent at x is n-homogeneous}.
(2) The k' stratification S*(u) is defined by
S*(u) := {z € By(0") | no tangent at z is (k + 1)-homogeneous}.
(3) The k" n-stratification 87’7“ (u) is defined by

S,’;(u) :={x € B2(0") | wis not (k+ 1,7, s, z)-homogeneous
for any s € (0,1)}.

(4) The k' (n,r)-stratification S} ,.(u) is defined by

S,I;’r(u) = {x € By(0") | wis not (k+1,n, s, z)-homogeneous
for any s € [r,1)}.

Remark 1.10. When homogeneity of tangents holds for F', we have the
following relationships (see Proposition [8.2):

S%u) c St(u) - C 8" (u) = S(u)
and

(1.2) SFu) = Jshw) =Sk, (u).
n nor

Remark 1.11. When strong uniqueness of tangents holds for F, three
density functions ©M(u,-), ©%(u,-) and ©"(u,-) are equivalent (see [21]
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Proposition 7.1, (12.3)]). And for each density function as above, we have

S(u) =8u) = | Ee(w),

c>0

where E.(u) = {z € B2(0") | ©O(u,x) > c}.
1.3. Main results

In this paper, we assume that F' is a subequation satisfies Positivity, ST-
Invariance, Cone Property and Convexity. Let p be the Riesz characteristic
of F. When 1 < p < 2, the F-subharmonic function is Hélder continuous (see
[21, Theorem 15.1]). Hence, we focus on the case p > 2 in this paper. When
F satisfies different conditions, we obtain different results of the singular
sets.

Theorem 1.12. Suppose that F' is a subequation such that homogeneity of
tangents holds for F. Let u be a F-subharmonic function defined on Ba(0™)
with |ul| L1 (B,omy) < A. For any n > 0, we have

(1) Vol(B, (S (w) 0 Bi(0™)) < Com)y™ ([, gy Dtt) 77 for any
r € (0, %),

(2) S(u) = 8" P(u);

(3) dimpg(S*(u)) <k for any k =1,2,...,n, where dimpS*(u) is the
Hausdorff dimension of S*(u).

Theorem 1.13. Suppose that F' is a subequation such that uniqueness of
tangents holds for F'. Let u be a F-subharmonic function defined on Bo(0™).
Then S*(u) is k-rectifiable for any k = 1,2,...,n.

Theorem 1.14. Suppose that F is a subequation such that strong unique-
ness of tangents holds for F' and p > 2. Let u be a F-subharmonic function
defined on Bz(0") with |[ul| 1,y < A. For any ¢ > 0, there exists a con-
stant C(c, A, F) such that

(1.3) # (Ee(u) N B1(0")) < C(c, A, F)
where # (Eq(u) N B1(0™)) is the cardinality of E.(u) N By (0™).

As alluded to above, there are many subequations satisfying the as-
sumptions of Theorem [1.14] (see [21], 22]). Under the assumption of strong
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uniqueness of tangents, Harvey-Lawson proved that the set E.(u) is discrete
(see [21, Theorem 14.1, Theorem 14.1’]). Theorem [L.14] gives a quantitative
estimate of the cardinality of this set.

In the proof of Theorem [1.14] we introduce the monotonicity condi-
tion and the notion of F-energy. And we prove every F-subharmonic func-
tion satisfies monotonicity condition after subtracting a constant. For F-
subharmonic function satisfies monotonicity condition, we prove by
using refined covering arguments, which is introduced in [31]. Since the set
E.(u) is invariant after subtracting a constant, we obtain Theorem [1.14]

For geometrically defined subequations F(G) (i.e., G-plurisubharmonic
case), we have the following Minkowski estimate of quantitative stratifica-
tion.

Theorem 1.15. Let u be a G-plurisubharmonic function on B2(0™) with
ull L1 (B,(0m)) < A. For any n > 0, there exists constant C(n, A, G) such that
for any r € (0,1), we have

(14 Vol(B,(Sk, () 0 B1(0")) < C(n, A, G)r" 7.

Remark 1.16. It suffices to prove Theorem [I.I5 when G is a smooth
submanifold of G(p, R™). For general G, since G is invariant under a sub-
group G C O(n) acting transitively on the sphere S"~1 Cc R", we fix W € G
and consider Gy = G - W. Then Gy is a smooth submanifold of G(p, R™)
and F(G) C F(Gy). It follows that any G-plurisubharmonic function is Go-
plurisubharmonic function. Then Theorem for smooth G implies The-
orem for general G (see [22], p.2198]). Therefore, without loss of gener-
ality, we assume that G is a smooth submanifold of G(p, R™) in Section 7.

In the proof of Theorem [1.15, we introduce the notion of G-energy,
which is a monotone quantity. The key point is to establish the quantitative
rigidity theorem (Theorem and Theorem [7.7)). Roughly speaking, we
prove it by making use of the information of tangent at infinity, together with
a contradiction argument. Next, combining quantitative rigidity theorem
(Theorem and Theorem [7.7)) and cone-splitting lemma (Lemma , we
obtain decomposition lemma (Lemma , which implies Theorem m

In general outline, we will follow a scheme introduced in [5], where quan-
titative differentation argument was established. By this method, Cheeger
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and Naber proved some new estimates on non-collapsed Riemannian man-
ifolds with Ricci curvature bounded from below, especially Einstein mani-
folds. In fact, this method has already been applied to many areas. Anal-
ogous results were obtained in the study of mean curvature flows, elliptic
equations, harmonic maps and so on (see [3H7]).

Recently, Naber and Valtorta [26] introduced new techniques for esti-
mating the critical and singular set of elliptic PDEs. In [27, 28, [30], they
also got some new results on stationary and minimizing harmonic maps. It
was proved that the k" stratification of singular set is k-rectifiable and ob-
tained more stronger estimates of the quantitative stratification. And these
techniques have also been applied to the study of stationary Yang Mills (see
[29]) and L? curvature bounds on non-collapsed Riemannian manifolds with
bounded Ricci curvature (see [25]).

Acknowledgments. The author would like to thank his advisor Professor
Gang Tian for encouragement and support. The author would also like to
thank Professor Aaron Naber for suggesting this problem and many help-
ful conversations. Partial work was done while the author was visiting the
Department of Mathematics at Northwestern University, supported by the
China Scholarship Council (File No. 201506010010). The author would like
to thank the China Scholarship Council for supporting this visiting. The
author would also like to thank the Department of Mathematics at North-
western University for its hospitality and for providing a good academic
environment.

2. Cone-splitting lemma

In this section, we prove cone-splitting lemma (Lemma [2.3) for F-
subharmonic functions. And we will use it throughout this paper.

Theorem 2.1 (Cone-splitting principle). Let h be a function which is
k-homogeneous at x1 with respect to k-plane V. If there exists a point xo &
w1 + V¥ such that h is 0-homogeneous at w2, then h is (k + 1)-homogeneous
at 1 with respect to (k + 1)-plane VFT! = span{xy — x1, V*}.

Proof. Let {e;}!'_; be the standard basis of R™. Without loss of generality,

we assume that z; = 0", 29 = ep4q and VF = span{ei}le. Since h is k-
homogeneous at x; respect to Vk, it suffices to prove

(2.1) h(x + teg+1) = h(x),
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for all x € R™ and ¢t € R. We split into different cases according to p (Riesz
characteristic of F').

Case 1. p > 2.

Since h is k-homogeneous at 0™ and 0-homogeneous at epy1, By the
definition of homogeneous function, we have

h(z) = hgn 1 () = 2> Ph <”’> .
"ol ||

Let g1 = h|gn-1, we obtain

_ x
(2.2) h(z) = |2 P g1 <Il‘> '
Similarly, there exists function go on the unit sphere S”~! ¢ R” such that

_ T — €L
(2.3) h(x) = |7 — exs1* oo (+> |

|z — ekl

We split up into different subcases.

Subcase 1.1. x € span{eg+1}.
By (2.2) and ([2.3)), we have
2°7Pgi (epr1) = h(2ek4+1) = g2(eps1)

and
8P gi(ex+1) = h(3ext1) = 2° Pga(ent)-
Hence, we obtain g (ex+1) = g2(ex+1) = 0or g1(ex+1) = g2(ex+1) = 0o, which
implies ([2.1)).
Subcase 1.2. x ¢ span{eyy1} and t < 1.

By (2.2) and ([2.3)), we have

T T
hl— ) =|——
<1—t> 1—1¢
and

T T
h<1—t) _'1—t_€’“+1

Then we obtain (2.1)).

2—p
x 1
S I S &
gl(m) o)

2-p z .
1—¢ k+1 1
g2 = — hl’—i-tek 1)-

(‘12_61#1’) |1 —t]*P ( +1)
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Subcase 1.3. = & span{er,1} and t > 1.

If = & span{egt1}, then x + tegi1 & span{eg41}. By Subcase 1.2, we
have h(z) = h(x + tegy1 — texr1) = h(x + tegsr1), which implies ([2.1)).
Case 2. p = 2.

By the property of homogeneous function (see [2I, Section 9]), there

exists two constants O1, 09 > 0 and two functions g, go defined on the unit
sphere S"~! C R" such that

X
h(z) = ©1log |x| + g1 <\x>
Tr — e
= O3 log |x — €k+1’ + g2 <‘$_€kih> .

First, let us prove ©1 = ©,. For any point y & span{er,1} such that h(y) >
—00, by similar calculations in Subcase 1.2, for any ¢ < 1, we obtain

(2.4) By + ters1) = h(y) + (O2 — O1) log(1 — 1).

Since h # —oo, there exists a point xg & span{ep+1} such that h(xg) > —oc.

By (2.4), we have

1 2
(2.5) h <.’E0 + 3€k+1) = h(zg) + (©2 — ©1) log 3
and

2 1
(2.6) h (l’o + 3€k+1> = h(l‘o) + (@2 — @1) log g

By 1D we obtain h(xg + %€k+1) > —o00. Combining this and 1 , it is
clear that

1 1 1 2
(2.7) A <fﬂo + g+ 3€k+1> =h <:Bo + 3€k+1> + (62 — O1)log 3"
Combining ([2.5), (2.6) and (2.7), we get ©1 = O5. Next, by the similar
argument of Case 1, we obtain (2.1)). O

Lemma 2.2. Let u; be a sequence of F-subharmonic functions on Ba(0™)
with ||willy(Byon)) < A. Then there exists a subsequence w;, such that u;,

converges to u in Lj,.(B2(0")), where u is a F-subharmonic function on
By(0™).
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Proof. Every F-subharmonic function is subharmonic function (see
[21, (6.3)]). By the compactness of subharmonic functions, there exists a
subsequence u;, converges to u in L} (B2(0")). On the other hand, F is a
subequation satisfying ST-Invariance and Convexity, which implies that F'
is regular (see [I8 Section 8]) and can not be defined using fewer of the
independent variables (see [2I, Proof of Proposition 9.4]). Since w;, is F-
subharmonic, we obtain that w is a F-subharmonic distribution (see [I8],
Definition 2.3]). By [I8, Theroem 1.1] or [2I, Theorem 9.5, there exists a
F-subharmonic function v in the Llloc—class u. It suffices to prove u = v in
Bs(0™). Since u and v are subharmonic, for any = € By(0"), we obtain

1 1
= li = [ =
u(@) 55250 Wr 8™ /Bs(a:) uly)dy s Wns™ /Bs(:v) o)y =vlw)

as required. O

Lemma 2.3 (Cone-splitting lemma). Let u be a F-subharmonic func-
tion on Ba(0") with |lul[11(,ony) < A. For any e, 7 > 0, there exists constant
d(e, 7, A\, F) such that if

(1) w is (k,6,1,0")-homogeneous with respect to k-plane V*;

(2) u is (0,0, 1,y)-homogeneous, where y € By (0") \ B, (V*),

then u is (k + 1,¢,1,0™)-homogeneous.

Proof. We argue by contradiction, assuming that there exists a sequence of
F-subharmonic functions u; with [[ul|1(p,on)) < A and satisfy the following
properties:

(1) w; is (k,i71,1,0™)-homogeneous with respect to k-plane VF¥;
(2) w; is (0,771, 1, y;)-homogeneous, where y; € B1(0") \ B, (VF);
(3) w; is not (k + 1,¢,1,0™)-homogeneous.
After passing to a subsequence, we assume that lim; . Vzk =Vk,

lim; 00 9 = y € B1(07) \ Ba,(V*) and wu; converges to u in L (Bz(0")),

loc

where u is a F-subharmonic function (see Lemma [2.2). By (1), (2) and
Lemma there exists a function h such that

(a) h is k-homogeneous at 0" with respect to V*;
(b) h is 0-homogeneous at y;
(c) h=wuin B2(0").
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Hence, by Theorem 2.1] we obtain that h is a (k + 1)-homogeneous function.
Combining this with u; converges to u in L}, (B2(0")) and (c), it is clear
that u; is (k + 1,¢,1,0™)-homogeneous when i is sufficiently large, which is
a contradiction. O

3. Top stratification of S(u)

In this section, we give proofs of (1) and (2) in Theorem [1.12]

Proof of (1) in Theorem|[1.13 For any r € (0, %), {Br (%) Y2eE, (wnBy (0n) 18
a covering of B, (E,(u) N B1(0")), where E,(u) = {z € B2(0") | ©%(u,x) >
n}. We take a Vitali covering { B, (z;)}}£, such that

(a) By(z;) N Byr(zj) = 0 for any i # j;
(b) Br(Ey(u) N B1(0") € U; Bsr(:);
(c) z; € Ey(u) N By(0™) for each 1.

For each z;, by the properties of S(u,z;,-) (see [21, Corollary 5.3, Theo-
rem 6.4]), we have

. Sf(u,xz,t) _ S
R IO R
and
SL(U,.%’Z',w

s nondecreasing with respect to t.

K (t)
Since x; € Ey(u) N B1(0"), it then follows that

S/_ (U, Ty, T)

> @S(u,:ri) > .
K (r)

Using S (u, z;,7) = C(n)K] (r) fBT(xi) Au (see e.g. [24, Theorem 3.2.16] or
[21L (7.8)]), it is clear that

/ Au > C(p,n)nr"P.
By ()

By (a), we obtain

M
(3.1) / Au > Z/ Au > C(p,n)nMr"™P.
Biy(0") B, (;)

i=1
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Combining (b) and (3.1)), we get

NE

(3.2) Vol(B, (Ey(u) N B1(0M)) < S Vol(Bs, ()

1

< C(p,n)n " </B o )Au) rP.
140 (07

On the other hand, for every y € S (u) N B1(0™), since 0 is a (n — p + 1)-
homogeneous function, by the definition of S 7 (u), we have

-
Il

(3.3) [g,r = Oll 22 (B (0)) = 1

for any r € (0,1). Now, we take U € T} (u). Combining (3.3) and the defi-
nition of tangent, it is clear that ||U||:(p,(on)) = - By [2I, Theorem 10.1],
there exists a constant C'(p,n) such that

Clomeuy) = = [ U=Vl >
which implies S (u) N B1(0") C g, (u) N Bi(0"). Then by (3.2) (re-
place by C~'n), we obtain

Vol(B,(S;7"(u) N B1(0™))) < C(p, n)C(p,n)n~! </B o Au) rP,

as required. O

Proof of (2) in Theorem . We argue by contradiction, assuming that
there exists a point z € S(u) \ S"P(u). By definition, there exists ¢ € Ty (u)
such that ¢ is (n — p + 1)-homogeneous but not n-homogeneous. It is clear
that

dimpg(S(e)) >n—p+1,

where dimp(S(p)) denotes the Hausdorff dimension of S(¢). By (3.2)) (re-
place u by ¢), we get dimpg(E,(p) N B1(0")) < n —p. By the similar ar-
gument, it is clear that dimpy(Ey(p)) < n — p. Since S(p) = U, Ey(p), we
get

dimp(S(p)) <n—p,

which is a contradiction. O
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4. Hausdorff dimension of S*(u)

In this section, we study the Hausdorff dimension of S*(u). We use an it-
erated blow up argument as in [2] to prove (3) of Theorem [1.12] For con-
venience, we use T, (u) to denote the tangent set to w at x in the following
argument.

Lemma 4.1. Let h be a F-subharmonic function which is k-homogeneous
at O™ with respect to k-plane VF. For any xo ¢ V¥, if o € Ty, (h), then ¢ is
(k + 1)-homogeneous at 0™ with respect to (k + 1)-plane VF*+! = span{zg, V*}.

Proof. By the definition of tangent, there exists a sequence {r;} (lim;_,oc r; =

0) such that hy, ., converges to ¢ in L}, (R™). Since ¢ is subharmonic, in

order to prove Lemma [4.1] it suffices to prove

(4.1) /Br(y) o(r)dr = /B,,,(y+u) o(z)de,

for any y € R™, v € V¥*1 and r > 0. First, we consider the case p > 2.
Case 1. p > 2.

We split up into different subcases.
Subcase 1.1. v = \zg for some A € R.

By direct calculations, we have

(4.2) / o(z)dr = / o(z)dzx
B, (y+v) B, (y+Azo)

= lim hay . (x)dz
1— 00 Br(y-&-)\xo)

= lim rf_Qh(xo + rx)dx
1— 00 Br(y+)\I0)

= lim rf_2h(x0 + iz + iy + Arjzg)de.
1—00 BT(O")
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Since h is homogeneous, it is clear that

(4.3) / rf_2h(:vo + rix 4 riy + Arixg)dx
B,(0")

- 1+ )2 PPk ot ) a
LT(On,)( AT ) " <CU() * 1+ )\ri * 14 )\’I“i v

:/ (1+)\ri)”+2_phxo,n(x)dx.
B_r (

s (—2—)
TFxr; 14+Ar;

On the other hand, since hy, ,, converges to ¢ in L} (R"), it then follows
that

(4.4) lim (1+ )\ri)”+2_p|hx0,ri () — p(z)|dx
1—00 Bﬁm(ﬁ)
S hm 2’h‘$0,7"i (:B) - <p(x)\dac
40 J B, 11(y)
=0.

Combining (4.2)), (4.3) and (4.4]), we obtain

/ o(@)dz — / o(z)ds
B, (y+v) B.(y)

= ‘lim/ (1+)\ri)”+2phxoyri(az)daﬂ—/ o(x)dx
7B s (%) B (y)

TFxr; l+Ar;

1= /B .

Y
T+Xr; ( 14+Ar; )

+ llim/ (1+/\Ti)"+2pg0(:1;)dm—/ o(x)dx
ToJB s (50) B (y)

TFar; | 1+Ar;

<0

I

where we used Lebesgue’s dominated convergence theorem for the last in-
equality. This completes the proof of Subcase 1.1.

Subcase 1.2. v € V¥,
By similar calculations in Subcase 1.1, we have

(4.5) / o(x)dx = lim rf_Qh(:co + x4+ iy + riv)de.
By (y+v) o0 B (0m)
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Since h is k-homogeneous with respect to k-plane V¥, it is clear that

)

(4.6) / P72 h(zo + iz + Ty + riv)da
B,(0")

= / rf_Qh(:UO + rix + ry)de
B.(0™)

= / hag r, (x)dz.
B:(y)

Combining (4.5), (4.6) and hy, ,, converges to ¢ in L} (R"), we get (4.1)),
which completes the proof of Subcase 1.2.
Next, we consider the case p = 2.

Case 2. p = 2.
Similarly, we split up into different subcases.
Subcase 2.1. v = Azg for some A € R.

By the definition of tangential 2-flow (see Definition , we have

/ o(x)dx —/ o(x)dx
B, (y+v) B, (y+Azo)

= lim hao r, (x)dx
1— 00 Bv-(y+>\$0)

= llHl (h($0 + 7"7;$) - M(h7 Zo, rl)) dx
71— 00 Br(y‘f‘)ﬂ?o)

= lim (h(zo + riw + 1y + Arizo) — M (h, xo,7;)) dx.
1—>00 BT(O")

By the homogeneity of h, we obtain

/ (h(xo + rix + ryy + Arixg) — M(h, xg, 1)) dz
B, (0")

[ (o
N B,.(0") 0 1+>\Ti 1+/\7'i

+ M(h,0", 1+ A\r;) — M(h,wo,ri)>d$
_/B »

Yy
T+Xxr; ~14+Ar;

hao . (x)dz + / M(h,0", 1+ Ar;)dx.
B.(0™)
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Since h is homogeneous, we get M (h,0™, 1) =0. By the continuity of
M(h,0m,-), it is clear that

/ o(x)dx = lim hayr, (x)dz.
Br(y+v)

1—00 B

T

y
T+xr; ( 1+Ar; )

By the similar argument in Subcase 1.1, we complete the proof of Subcase
2.1.

Subcase 2.2. v € V*. The proof of Subcase 2.2 is similar to the proof of
Subcase 1.2. O

Lemma 4.2. Let u be a F-subharmonic function on Bo(0™). If
Haus' (S¥(u)) > 0 for 1 > k, then Haus'(A) > 0, where

A= {y € By(0") | there exists a tangent ¢ € Ty(u)
such that Haus'(S*(p)) > 0}.

Proof. Combining Haus!(S*(u)) > 0 and S¥(u) = U, Sf;:(u) (see )7 there
exists a constant 79 > 0 such that Haus' (Sf;o (u)) > 0. By the property of
Hausdorff measure, we have Haus' (SE (u)\ D} (u)) = 0, where

! _ k :
Dy, (u) = {x €S, (u) | limsup .

Hauséo(S,l;fO (u) N B(x)) ey

r—0 wir

Therefore, in order to prove Lemma[4.2] it suffices to prove that there exists
a tangent ¢ € T, (u) such that Haus'(S*(y)) > 0 for any y € Df% (u). By the
definition of Déo (u), there exists a sequence of {r;} (lim;_. 7; =0) such
that

- Haus',, (S,lfo (ul) N B, (y))

Jj—oo wir;

If y+rize 87’7“0 (u) N By, (y), then z € Srlfo (ty,r,) N B1(0"). Combining this
and the definition of Hausdorff measure, we have

> 97t

lim Hausl (SF (uyr,) N B1(0")) > 27"

Jj—00

After passing to a subsequence, we can assume that u,,, converges to ¢ €
Ty(u) in L}, (R").

Claim. If z; € S} (uy,,) and limj o z; = z, then z € Sk ().
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Proof of Claim. For any r € (0,1) and (k + 1)-homogeneous function h, we
have

/ﬁ r¢mm»—mmux>/’ (tyr,)os (@) — B@)]de
B, (07)

Bl(O")

Letting 7 — oo, by Lemma [8.8] we obtain
[ Joerle) = h@)lds = m,
Bi1(0™)

which implies z € S,’;O (¢). We complete the proof of Claim. U

Combining Claim and the property of Hausdorff measure, it is clear that

Hausl(S,lf0 () N B1(0™)) > lim Hausf)o(Sf;O (ty,r,) N B1(0™)) > 27l >0,

J]—00

as desired. O

Theorem 4.3. Let u be a F-subharmonic function on By(0™). Then for
any 1 < k <n, we have

dimg(S*(u)) < k.

Proof. We argue by contradiction. Suppose that Haus!(S¥(u)) > 0 for some
[ > k. By Lemma there exists yo € S¥(u) and po € Ty, (u) such that
Haus'(S*(yp)) > 0. We assume that g is m-homogeneous with respect to m-
plane V", where m < k. By Lemma Haus!(S*(p0)) > 0 and m < k < I,
there exists y1 € S¥(o) \ Vg™ and ¢1 € Ty, (o) such that Haus!(S*(p1)) >
0. By Lemma we obtain that o1 is (m + 1)-homogeneous with re-
spect to (m + 1)-plane V1m+1 = span{VJ", y1}. Repeating this process, there
exist Yr_mi1 € S*¥(Or_m) \ ka_m and ©p—m+1 € Ty .., (Pr—m) such that
Vk—m+1 is (k4 1)-homogeneous, which contradicts with the definition of
Sk(()okfm)' U
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5. Rectifiability of S*(u)

In this section, we prove the k" stratification S¥(u) is k-rectifiable when
uniqueness of tangents holds for F' (i.e., Theorem |1.13). Let u be a F-
subharmonic function on Bg(0") with |lu|z1(B, or)) < A. First, we define

Fsp(u) = {x € B2(0") | u is (0,0, r,x)-homogeneous for any r € (0,7)}.

For any x € (Fs,(u) N SF(u)) \ 8¥71(u), where € > 0, let ¢ be the unique
tangent to v at x. We assume ¢ is k-homogeneous with respect to k-plane
Vf. It then follows that ||¢|| 11 (B,0n)) < A1(A, F).

Lemma 5.1. For any 7 € (0,1), there exists r, such that for any r < ry,
we have

Fﬁ,l(ux,r) C BQT(VJ:C)’
where § = §(e, 27, A1, F) is the constant in Lemma [2.5

Proof. We argue by contradiction, assuming that there exist {r;} and {z;}
such that lim; o 7 = 0 and z; € Fs1(ug,r,) \BQT(V(f). It then follows that
there exists homogeneous function h; such that

/ ’(um,m)zi,r(y) — hi(y)|dy <6
Bi(0™)

for any 7 € (0,1). Since u,,, converges to ¢ in L} _(R"), by Lemma

loc
after passing to a subsequence, we can assume that lim; ,., 2; = z and h;

converges to h in L} (B2(0")). For any r € (0,1), by Lemma we have

loc

/ lo2r(y) — h(y)|dy < lim 1020 (Y) = (Uar:)zr(y)|dy
B, (0m) =00 J B, (0)
+ lim | (U, )z (y) — Ri(y)|dy
11— 00 B1 (O")
+ lim |hi(y) — h(y)ldy
1—00 Bl (0")
)

which implies z € Fs1(¢) \ BQT(Vj). However, by Lemmaand x € SF(u),
we get Fs1(p) C BT(Vj), which is a contradiction. O
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Lemma 5.2. For any r < r,, we have
Fy(u) N Br(x) C Borr (V) + )

Proof. For any = +rz € F5,(u) N B.(x), where z € By(0"), there exists ho-
mogeneous function h such that for any s € (0,r), we have

[ lrsrnao) = o)y <6
B;(0™)
It then follows that
[ M) )~ hw)ldy <
B (0™)

which implies z € Fs;(ug,). Combining this with Lemma we have z +
rz € BQTT(VJf + x). O

Now, we are in a position to prove Theorem [1.13

Proof of Theorem[1.13 For any n >0 and = € (Fj,(u) N SF(u)) \ S¥(u),
by Lemma there exists r, < 7 such that for any r < r,, we have Fs,(u) N
B, (z) C B2TT(VS§ + ), which implies

<<F5,n(u) N sf(u>> \ Sk_l(u)> N By (x) C Barr (VE + ).

Hence, (Fj,(u) N SF(u)) \ S¥71(u) is k-rectifiable (see e.g. [32} p.61, Lemma
1]). Since uniqueness of tangents holds for F, we have S¥(u) = U, (Fj,(u) N
SE(u)). By (1.2), it then follows that

SH 8w = U (Skw)\ 8" )
_UU<(F577 )NSEw) \ W),

which implies S¥(u)\ S¥~!(u) is k-rectifiable. On the other hand, since
uniqueness of tangents holds for F' implies homogeneity of tangents holds
for F', by (3) of Theorem we have Haus®(S*¥~1(u)) = 0. It then follows
that S*~!(u) is k-rectifiable. Hence, S (u) = (8% (u) \ S¥71(u)) U SF 1 (u) is
k-rectifiable. O
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6. F-subharmonic functions

In this section, we consider the singular sets of F-subharmonic functions
and give the proof of Theorem We assume that strong uniqueness of
tangents holds for F' and p > 2, where p is the Riesz characteristic of F.
By [21], Proposition 7.1 and (12.3)], all density functions are equivalent, i.e.,
oM = % = "7Tp+2@v. For convenience, if u is a F-subharmonic function
on By(0"), we use E.(u) to denote the set {x € By(0") | OV (u,z) > ¢} in
this section.

6.1. Monotonicity condition and F-energy

In this subsection, we introduce the monotonicity condition and F-energies
of F-subharmonic functions. And then we prove every F-subharmonic func-
tion satisfies monotonicity condition after subtracting a constant.

Definition 6.1. Let u be a F-subharmonic function on B(0™). We say
that u satisfies monotonicity condition if F-energy defined by

S(u,xz,r)  M(u,z,r)
K K

is nondecreasing in 7 € (0, 1) for any z € B;(0"). And we define O (u, z,0) =
lim, 0 0 (u, x,r)

Lemma 6.2. Let u be a F-subharmonic function on Ba(0") with
ull 1 (Byon)) < A Then there exists constant N(A,p,n) such that u— N
satisfies monotonicity condition.

Proof. For any x € B1(0"), since S(u,x,-) is Kj,-convex on (0,1) (see [21],
Theorem 6.4]). Then we have

S(u,x,r) = f(Kp(r))v

where f is a convex function on (—oo, —1). It follows that

) 1 2 1 S(u,x, 2
6 G < B - TR
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Since F-subharmonic function is subharmonic (see [2I, (6.3)]), by
lull 21 (B,0m)) < A, Lemma (8.5 and the submean value property, we see that

4
(6.2) —C(Ayn) < S(u,z,r) < C(A,n) forre <0, 5),
where C'(A,n) is a constant. Substituting (6.2)) into (6.1)), it is clear that
1 .
(6:3) (% (3)) = Fpn)

where N (A, p, 71) is a constant. Using 1) |D and Kp(%) < 0, there exists
a constant N (N, A, p) such that

0 () A ()

Figure 1 is the graph of f on (—oo, Kp(%)) The red line is tangent line
of f at Ky(3).

N

1 1 1
f(}) - f—’;—(""p(EJJKp(E)

Figure 1.

In Figure 2, by the convexity of f, the slope of line 1 is larger than that
of line 2. It follows that

f(Bp(r) =N f(Ep(s)) = N
Kp(r) =0 = Kp(s) =0

1
for0<s<r<§.



1358 Jianchun Chu

N
1
2

1 1
3= FLU( NE(3)

Figure 2.

Hence,

S(u— N,z,7) B S(u,z,r) — N

Kp(r) Ky
is nondecreasing in r € (0, %) Similarly, by increasing the value of N (if
necessary), we can prove Mi;(_i](w is also nondecreasing. O

Remark 6.3. In [21I], Harvey-Lawson proved the same result except for
the dependence of the constants on L' norm (see 21, Lemma 5.4]).

6.2. Quantitative rigidity results

In this subsection, we prove some quantitative rigidity results of F-
subharmonic functions.

Lemma 6.4. Let u; and u be F-subharmonic functions on Bo(0™). For
¢ >0, if u; converges to u in L, .(B2(0")) and x; converges to x, where
x; € Ec(u;) N B1(0"), then

x € E.(u) N By (0™).
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Proof. For any t > 0, we compute

_l’_

|V(u,x,t) - V(ulal‘lat”

1

/ uy) — ws(y)ldy
Bt(azb)

1

wpt™

< u(y) — wi(y)|dy
— /B i) )

1

wpt™
/ u(y)dy - / u(y)dy
B: (90) B: (Ii)
1
wpt™

_|_

which implies
lim V(u;, x4, t) = V(u,x,t).

1—+00
Therefore, for any 0 < s < r < %, we obtain

V(U, xz, T) — V(’LL, xz, S) — lim V(Uz, Ty, ’I") — V(u“ Zi, 8) c
Kp(r) — Kp(s) oo Ky(r) — Kp(s) T

where we used the condition z; € E.(u;) N B1(0"). By the definition of den-
sity function ©V (see [21, Corollary 5.3]), we obtain ©(u,z) > c. This com-
pletes the proof. O

Lemma 6.5. Let u be a F-subharmonic function on Bo(0™) with
lull L1 (B,0m)) < A and satisfies monotonicity condition. For any e > 0, there
exists constant do(e, A, F') such that if

1
‘9F <u, On, 2) — 9F(u, On, 50) < 50,
then u is (0,¢€,2,0™)-homogeneous.

Proof. We argue by contradiction. Assuming that there exists a sequence of
F-subharmonic function u; on By(0™) such that

(1) Muill L (Baomy) < A

(2) u; satisfies monotonicity condition;

(3) Op(u;, 0", %) — Op(u;, 0,07 1) < il
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(4) w; is not (0, €,2,0™)-homogeneous.

By Lemma [2.2] after passing to a subsequence, we can assume u; converges
to u in L}, .(B2(0™)), where u is a F-subharmonic function. By [21, Lemma
6.5] (or Lemma [8.6), it is clear that u also satisfies monotonicity condition.
For each t € (0, 3), we obtain

a1 non Sw,0m3)  S(u,0m,1)
Y e R A0
M(u,0", %) M(u,0,t)
Kp(3) Kp(t)
_ fim <0F(ui,0”, L GF(ui,O”,t)>
i—00 2
<0,

which implies
S(u, 0", 7) = ©%(u,0")K,(r) and M (u,0", ) = OM(u,0")K,(r)
for any r € (0, %), where ©% and ©M are S-density and M-density (see [21]

Section 6]). Since strong uniqueness holds for u, then ©% = @M (see [21]
(12.3)]). It follows that

S(u,0",r) = M(u,0", ).

Hence, for each sphere 0B, (0™), its average is equal to its maximum. Then
we have

u(x) = @S(U,O”)Kp(r) for z € 0B, (0"),

which implies
u(x) = 0°(u,0")K,(|z|) for z € Bi (0™).

However, u; converges to u in L} (B2(0")). Thus, u; are (0,¢,2,0m)-

homogenous when i is sufficiently large, which is a contradiction. [l

Lemma 6.6. Let u be a F-subharmonic function on By(0™) with
ull L1 (B,0m)) < A. For any ¢ > 0, there exists constant e(c, A, F') such that
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if u is (0,€,1,0™)-homogenous, then

where A1 1
1674

Proof. We argue by contradiction, assuming that there exists a sequence of
F-subharmonic functions u; on By(0™) such that

(1) Nwillr(oory) < A;
(2) w; is (0,771, 1,0™)-homogeneous;

(3) there exists point z; € Eq(u;) N AL

1
674
By Lemma , after passing to a subsequence, we can assume u; converges

to u in L} (B2(0")) and x; converges to x, where u is a F-subharmonic

function. By (2), Lemma and strong uniqueness holds for F', then there
exists a constant © > 0 such that

(6.4) u(x) = OKp(|z|) in B1(0").

By (3) and Lemma we have z € E.(u) N A%j’ which contradicts with
) 0

Remark 6.7. In [21], Harvey and Lawson proved the discreteness of E.(u)
(see [21, Theorem 14.1, Theorem 14.1’]). As an immediate corollary of
Lemmal6.5, Lemmal6.6)and scaling argument, we also prove that every point
in E.(u) is isolated, which gives another proof of discreteness of F.(u).

6.3. Proof of Theorem [1.14]
First, we have the following lemma.

Lemma 6.8. Let u be a F-subharmonic function on Bo(0™) with
lull L1 (Byom)) < A For any x € B1(0"), r € (0,1), there exists constant
N(A, F) such that

/ iy (9)]dy < N.
Bl(on)
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Proof. Without loss of generality, we assume u <0 on B:(0"). Since
V(u,z,-) is K,-convex, we have

V(u,z,1) = V(u,z,7) < V(u,z,1) = V(u,z, %)
Kp(1) — Kp(r) - Ky(1) - Kp(%)

g C(A7p7 n)?

which implies

Viwz,r) _ V(uz,1) Kp(r) — Kp(1)
Kp(r) Kp(r) Kop(r)
Since u < 0 on B (0™), it then follows that
Viu,xz,r
[ talay == [ )y = o e < N ),
By (0m) By (0m) »(r)
as desired. O

Now, we are in the position to prove Theorem
Proof of Theorem|1.14. We split up into two cases.
Case 1. u satisfies monotonicity condition.

For convenience, we let Sy denote # (E.(u) N B1(0™)). And we will ob-
tain an upper bound of Sy by induction argument.

For i =1, we consider the covering {Ba-:(z;)} of E.(u) N Bi(0") such
that

(1) z; € Ee(u) N B(0™);
(2) By-2(z;) are disjoint.

In this covering, there exists a ball containing the largest number of points
in E.(u) N B1(0") (say Bg-1(x1), contains S points in E.(u) N By(0™)).

If S; =Sy, we put T3 = 0, otherwise put 773 = 1. If T3 = 1, by (2) and
the definition of S, it is clear that

272nS0 < 51 < 8.
Furthermore, in this case, we have
(Ee(w) 1 Bi(0") N (Balwn) \ By (a1)) # 0.

We repeat this process by covering E.(u) N Bo-i(z;) with balls of radius
2771, Since E.(u) N B1(0") is discrete, there exists ig € Z, such that S;, =
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1. We define

Then we obtain
(6.5) So < (2211,

In order to get an upper bound of |I|, we consider the point z;,. For any
t € I, by construction, we have

(Belw) N B1(0M) N (By-sos (3,) \ By-ioa (i) # 0,

which implies

(6.6) EC(uxio,Q—i+3) N A%{j’i # (.
We claim that
1
(67) 0 (Uxi0,2—i+270”’ 2) — 9(umi072_7¢+2, 0", 50) > do,

where do(e, ¢, N, F'), e(c, N, F') and N (A, F) are the constants in Lemma

Lemma [6.6] and Lemma respectively.
If (6.7)) is false, then we have

1
0 (Uxio,Q_i‘*'Qa 0", 2) - Q(u:tig,?_“'?a 0", 50) < 0.

By Lemma U, 2-i+2 18 (0,€,2,0™)-homogenous. It follows that U, 2—i+3
is (0, €, 1,0™)-homogenous. Combining this with Lemma we obtain

Ec(umiog—w?») N AL

1
1674

=0,

which contradicts with .
By (6.7)), for any i € I, we have

9(“) Ly, 2_i+1) - a(ua Loy 2_i+250) Z 50-

Since F-subharmonic function is subharmonic (see [21, (6.3)]), by Lemma

it is clear that

1
0 (u,mio, 2> —0(u, z;,,0) < L(A,p,n),



1364 Jianchun Chu

which implies
(6.8) 1] < C(L, bo)-

Combining and , we get the desired estimate.
Case 2. u does not satisfies monotonicity condition.
By Lemma [6.2] we obtain w — N satisfies monotonicity condition. By
Case 1, we have
# (E.(u) N B1(0™)) < C(c, A, F).

By the definition of E.(u), it is clear that E.(u) = E.(u — N). This com-
pletes the proof. O

7. G-plurisubharmonic functions

In this section, we study the singular sets of G-plurisubharmonic functions
and give the proof of Theorem For G, we use F(G) to denote the
associated subequation (see (1.1])). We note that the Riesz characteristic of
F(G) is p (see [21], (4.8)]). Without loss of generality, we assume that G is
a smooth submanifold of G(p, R") (see Remark [1.16]).

7.1. G-energy

In this subsection, we introduce the G-energies of G-plurisubharmonic func-
tions. And then we prove a property of G-energy.

Definition 7.1. Let u be a G-plurisubharmonic function on By (0™). For
any x € Bg(0™) and r € (0, R), the G energy of u is defined by

S/ x> T
O (u, z,r) :/ (u’W—(F zr) dw + / U‘W+ ’ 7q)dT/V
G

M’ (u,x,r)
K (r)

where K, is the Riesz kernel. We define 6g(u, x,0) = lim,_, g (u, z, 7).

Since u is G-plurisubharmonic, S(u|lw 4z, , ), M(u|w 4z, x,-) are Kp-
convex for any W € G and = € B1(0"). It is clear that 6g(u,z,r) is nonde-
creasing function in r.
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Lemma 7.2. Let u be a G-plurisubharmonic function on Br(0™). Then for
any 0 < a < b < R, there exists constant C(a,b,G) such that

J e sy @ < Cllalsa
where Aqp = {x € R"|a < |z| < b}.

Proof. For any 0 < a < b < R, we define
Ea,b = {(VV, .CU) eG x Aa,b ’ WS W}

Thus, E,; 25 G and E.p N A, are fiber bundles, where o and 7 are
projections onto the first and second factor (see [22, p.2196]). We consider
the pull back function 7*u on F, ;. Since the fiber bundle is locally a product
space, then there exists constants C,(a,b,G) and Cr(a,b, G) such that

/||U’W||L1(Aa,bmW)dW=// lu|w (x)|dedW
G G J AL W

s&/ fulw (2)[dVs, ,

E.

—@/ () (W, )|V, ,
FE

s%@/ ()| d,

a,

where dVEg, , is the volume form on E, ;. g

Lemma 7.3. Let u be a G-plurisubharmonic function on Ba(0™) with
lull L1 (Byom))y < A. Then for any x € B1(0"), there exists constant C(G) such
that
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Proof. Since S(u|w s, 2,-) and M (u|lw 44, , ) are K,-convex, we have

(7.1) Oc (u:c;> :/(;S’(ugvl?f;x,é)dw
3)

M’ (ulw 4z, @, 5) M. (u,z,
A R
S(U‘W+$7x’%)*S(U|W+Ia a§)
A ey T
(u|W+ﬂU7 ’3) (U’W—i-xy 72)
+, Ko(3) — KD W
M(u,x,%) M(u,x,%)
Kp(3) — Kp(3)

By the submean value property of subharmonic functions, it is clear that

2 2 3P
(7.2) S (UIWJFz,SU, 3) <M <U’W+a:7x> 3> < lulweallnaay ,owyte),
p 8

where w,, is the volume of unit ball in RP. Combining (7.1] , ., Lemma
and Lemma we obtain

1 337 2 ma bl
b (ux ) </ Sulw o 7 g> Sulws 2)dW
2 G Ky (2

) — Kp(3)
(U|W+:Jc> %) (u|W+fE7 32)
“f. K,(3) ~ K,(3) w
M (u,z, 3) M (u, ,%)

Kp(3) — Kp(3)
<€ [ bl oy +CA
< C”uHLl(A%J-&-a:) + CA
< CA,

where C' depends only on G.
7.2. Quantitative rigidity theorem

In this subsection, we prove quantitative rigidity theorem of G-
plurisubharmonic functions.
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Lemma 7.4. Let {u;} be a sequence of G-plurisubharmonic functions on
Bgr(0™) with ||uil|z1(By(om)) < A. Then there exists a subsequence {u;,} such
that w;, converges to u in L}, (Br(0™)), where u is a G-plurisubharmonic
function. And for almost every W € G, u;, converges to u in L' (Ayp NW)
for any 0 < a < b < R. In particular, for every r € (0, R), we have

lim S(u;, |w,0P,r) = S(ulw,0P,r)
k—o00 )

and
klim M (w;, |w, 0P, 1) = M (ulw, 0P, r)
—00

for almost every W € G, where 0P is the origin in RP.

Proof. By Lemma there exists a subsequence {u;, } such that u;, con-
verges to u in L}, .(Br(0™)), where u is a G-plurisubharmonic function.

For any 0 < a < b < R, recalling E, RN Agp is a fiber bundle, we con-
sider the pull back function 7*u;, and 7*u on E, . Since u;, converges to u
in L'(Aup), we have m*u;, converges to m*u in L*(E,}), i.e.,

lim |7 u;, — mu| =0,
k—o0 E.,

which implies

lim / / s, () — u(x)|ded W = 0.
k—=oo Jg JA, W

By Fatou’s Lemma, we have

/lim/ |ui, () — u(z)|dedW
G k=00 JA, ,nW
< lim // |ui, () — u(z)|dxedW = 0.
k=00 Jg J A, ,nW

Thus, for almost every W € G, we obtain

lim |ui, () — u(z)|dx = 0,
k—o0 Ag W

which implies u;, |y converges to ulw in L*(Agp, N W). Since u;, |w and ulw
are subharmonic functions on A, N W, for any r € (a,b), by Lemma



1368 Jianchun Chu

we obtain
lim S(uw;, |w, 0P, 7r) = S(ulw, 0P, r)
k—o0
and
lim M (u;, |w, 0P, r) = M (ulw, 0P, r)
k—o0 )
for almost every W € G. O

In order to prove quantitative rigidity theorem, we split up into different
cases. First, we consider the case p > 2.

Theorem 7.5 (Quantitative rigidity theorem, p > 2). For any e, \ >
0, there exists constant do(e, N\, G) such that if u is a G-plurisubharmonic
function on B;-1(0") and satisfies

(1) [Jullp (B, 0m) < Ar"PE2 for any r € (0,(50_1);

(2) Oc(u,0m,05") — 0 (u,0m, d0) < do,

then w is (0,¢,1,0™)-homogeneous.

Proof. We argue by contradiction, assuming that there exists a sequence of
G-plurisubharmonic functions u; on B;(0™) such that

(1) il (s, 0m)) < ArP+2 for any r € (0,4);

(2) O (ui, 0™, 4) — O (u;, O, i71) <%

(3) w; is not (0, €, 1,0™)-homogeneous.

By Lemma there exists a subsequence {u;, } such that u;, converges to

u in L}, (R"), where u is a G-plurisubharmonic function on R". And for

any r > 0, we have
lim S(uik‘w,op,r) = S(u’w,op,’l”)
k—o0

and

lim M (u;, |w, 0P, r) = M (u|w, 0P, r)
k—o0
for almost every W € G.
Since S(ulw, 0P, ) and M (u|w, 0P, ) are Kj-convex functions, combining
this with Fatou’s Lemma, Lemma and Lemma for almost any r >
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t > 0, we obtain

QG(U,On,T‘) - 9@(”70n>t)
/ . Y4 / . P
:/ lim <S—(uzk’W7O ,7’) . S—(ulk’W')O 7t)>dW
G

e K/ (r) K/ (t)
M! (u; , 0P, M (u; ;0P 1
[ (Ml 0) Ml 020
e K7 (r) i 0)
. M,—(uikaova) M/—(uik70p’t)
+ lim —
k—o00 k;g(r) kj’o(t)
Sl 7 ,Op, . S, 7 ’0p7 !
S/ lim —(uk|/W Zk)_ —(uk|W.71 23 ) AW
G k—oo Kp(lk) K;](Zk )
M/ 7 07,1 M/ % 70p7 i
‘l‘/ lim f(u k/’W7 7Zk) - 7<uk‘mf_1 2 ) AW
@ k—o0 Kp(Zk) K;;(Zk )
. 1
+ lim M/—(uikv‘op’lk) . M/—(uim?fazk )
k—o00 k;’p(zk) ki}/,(lk )
< klim (HG(uik,O”, Zk) — GG(uik,On, lel))
—00

<0.
By the monotonicity of 0g(u,0",-), we have
Qg(u, On, T) = 9@(u, On, O),

for any r > 0. It then follows that

(7.3) S(ulw, 07, 1) = O(ulw, 0P)Ky(r) + Cs(W)
and
(7.4) M (ulw, 0P, 1) = O(ulw, 0P)K,(r) + Car (W)

for almost every W € G, where

O(ulw,0) = 0 (uly, 0P) = OM (u|y, 0P) (see [21} (12.3)]).
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By (7.3), for any b > a > 0, we obtain

/ Alulw) = / Alulw) — / Alulw)
(By(0" )\ Ba (0n))NW By (0M)NW Ba(0M)NW

_ SL(U|W7Op7b) SL(U’W,OP,CL)
=C(p) ( o0 K >
=0,

where we used S’ (ul|w, 0", ) = C(p) K, (r) fBT.(O”) A(ulw) for any r > 0 (see
e.g. [24] Theorem 3.2.16] or [21], (7.8)]). It then follows that u|y is harmonic
on W\ {0P}. By Harnack’s inequality and (7.4)), it is clear that

(7.5) limsup |z |P~2|u|w (z)] < +oc.

z—0P

Combining Theorem 10.5 in [I] and (7.5)), we get

(7.6) ulw () = O(ulw, 0") Ky (|x]) + hw (x)

on W, where hy is a harmonic function on W. By and , we have
M (hw, 0P, 1) = Cp (W),

for any r > 0. By Strong Maximum Principle, we conclude that hy =

Cr(W). It then follows that u|w = ©(u|w, 0P)K, + Cp (W) for almost ev-
ery W € G. Combining Lemma and (1), by scaling, we obtain

/ / AW < C(G)ro / u(z)|dz < C(G)N2,
G J A, W A
which implies
/ / | = O (ulw, 0P)[227 + Cor (W) dW < C(G)Ar2.
G JA, L W
It then follows that

</@ |CM(W)\dW> r? < C(G) </G@(u|w)dW+ )\> -2

Since p > 2 and r is arbitrary, we have

/ (Cor (W)W = 0.
G
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Therefore, it is clear that wu|w = O(u|w,0P)K, for almost every W € G.
Recalling u is a subharmonic function on R"™, we get u is 0-homogeneous.
However, u;, converges to u in L} (B2(0")). Then wu;, are (0,¢,1,0")-
homogeneous when k is sufficiently large, which is a contradiction. O

Next, we prove quantitative rigidity theorem for the case p = 2. First,
we need the following lemma.

Lemma 7.6. Let u be a G-subharmonic function on Bo(0™). If p = 2, then
M (ulw, 0%) = © (u,0"),
for almost every W € G.

Proof. Let ¢ be a tangent to u at 0. Then there exists a sequence {r;}
such that lim; , 7 = 0 and ug~ », converges to ¢ in L}OC(R”). For almost
every W € G. By Lemma we obtain that wug |y converges to ¢|w
in L1(A12 N W). On the other hand, for any non-polar plane W € G (for
definition of non-polar plane, see [22 p.2194]), by passing to a subsequence,
we can assume (u|w)oz,, converges to ¢ in L} (R?), where 1 € Toz(ulw).
By the definition of the tangential 2-flow, it is clear that

(o) lw () = (ulw)ozr, () = M (ulw, 0%, 75) — M (u, 0", 73),

for almost every x € A2 N W. Since the left hand side converges to (| —
¥) in L'(A; 9N W) and the right hand side is independent of z, then we
obtain

lim (M (ulw, 0%, 7;) — M (u,0",7;)) = C,

1—00

where C' is a constant. It then follows that

(M(U‘Wa(ﬂvri) M(U|W7On7’rl)> =0

oM ,02) — M (y,0") = lim

1—00
as required. O

Theorem 7.7 (Quantitative rigidity theorem, p =2). For any e, \ >
0, there exists constant 6o(e, \,G) such that if u is a G-plurisubharmonic
function on Bs-1(0") and satisfies

(1) l[ullprs, 0y < Ar™(|logr| + 1), for any r € (0,85);

(2) M('LL, Ona 1) =0;
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(3) 0 (u,0™,65") — Og(u, 0™, ) < do,

then u is (0,€,1,0™)-homogeneous.

Proof. We argue by contradiction, assuming that there exists a sequence of
G-plurisubharmonic functions u; on B;(0™) such that

(1

luill L1 (B, 0n)) < Ar™(|logr| + 1), for any 7 € (0, 1);

)
(2) (uuon 1) = 0;
(3) Og(us, 0™, 7) — O (ug, 07,07 1) < i~
(4) w; is not (0,¢,1,0™)-homogeneous.

By Lemma there exists a subsequence {u;,} such that u;, converges
to w in L} (R"), where u is a G-plurisubharmonic function on R™. By (2)
and Lemma we obtain M (u,0",1) = 0. Combining this and the similar
argument in Theorem [7.5] for any r > 0, we have

0 (u,0",r) = 0 (u,0™,0),

which implies
M (u,0™, 1) = O™ (u,0") Ky (r)
and
ulw = 0" (ulw,0%) Kz + C,
for almost every W € G, where Cyy is a constant on W. By Lemma [7.6] we
obtain

u]W = @M(U,On)KQ + Cw.

For x € W, by definition of tangential 2-flow, it is clear that

uon p(2) = u(re) — M(u, 0", 1)
= M (u,0") Ky (rz) + Cyy — OM (u, 0™) Ko (r)

= u(x).

It then follows that ugn ,(x) = u(z) for almost every x € R™. Since ugn
and v are subharmonic functions. We obtain that ug» , = u for any r > 0.
Then u is 0-homogeneous. When k is sufficiently large, u;, is (0,¢,1,0")-
homogeneous, which contradicts with (4). O
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7.3. Covering lemma and decomposition lemma

Let u be a G-plurisubharmonic function on By (0") with [Jul|z:(p,n)) < A.
First, we introduce the following definitions.

Definition 7.8. For any e > 0,t>1 and 0 < r < 1, we define
Hire ={z € B1(0") | My(u, By(z)) > €}

and
Lire={z € B1(0") | Ni(u, By(2)) < ¢},

where
Ni(u, By(z)) = inf{d > 0 | u is (0, §, tr, z)-homogeneous}.

Definition 7.9. For any z € B1(0") and v € (0,1), we define j-tuple
T (z) = (T} (x), T3 (x), ..., T} (x)) by

T] (x) i 1 ifz S 7_[’7*1,’}”,6
B 0 ifxe 57—1’71’6

for all 1 <1i < j, where € = €(n,v, A, G) is the constant in Lemma and
v > 0 is a constant to be determined later.

Definition 7.10. For any j-tuple 77, we define
Epi ={x € B;(0") | TV (x) = T’}.

Next, for each Ep; # (), we define a collection of sets {Cf;ﬂj (T7)} by in-
duction, where Cf;’vj (T7) is the union of balls of radius 77. For j = 0, we put
C;;n/“ (T7) = B1(0™). Assume that C,';‘ﬁj_l(Tj_l) has been defined and satis-
fies Sf?“,,yj (u)NEpi C C’;ﬁj,l (T7-1), where T7~ ! is the (j — 1)-tuple obtained
from 77 by dropping the last entry. For each ball B.;-1(z) of Cgﬁj,l (171,
take a minimal covering of B.;-1(x) N Sf;ﬂj (u) N E7; by balls of radius 7
with centers in B.;-1(z) NS¥_;(u) N Ep;. Define the union of all balls so

, 7,77
obtained to be Cf;ﬁj (17).
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Lemma 7.11. For any x € B1(0"), s € (0,3) and r € (0, 3s71), there ex-
ists constant N (A, p,n) such that

Npn—p+2 when p > 2
JAN RN
B, (0m) Nr™(|logr|+1) when p=2.

Proof. Without loss of generality, we assume u < 0 on B% (0™). When p > 2,
since V' (u, z,-) is K,-convex, we have

Viu,z,1) = V(u,z,75) < V(u,z,1) = V(u,x,
)

)

B[

OSTR) Kolrs) | K1) — Ky

< C(A,p,n),

D=

which implies

V(u,z,7s)
K, (rs)

Viu,z,1)

x Kp(rs) — Kp(1)
K, (rs) < N(A,p,n).

Kp(rs) B

< +C(A,p,n)

Since u < 0 on Bs(0"), it then follows that

V(u,,rs) ,_pio 1o
|uz,s(y)|dy = —/ Up s (Y)dy = wp—————2r" P2 < NP
/B,‘(O") B,.(0m) g Kp(rs)

When p = 2, by similar calculations, we have

M (u,x, sr) — M(u,x,s)
: M T, n’ = 1 < A, 1 .
(1) M 0", 1)] = =2 g < () o

By Harnack’s inequality (see [21], (7.10)]), we obtain

S(ugs,0",r) > C (M (u%s,O", g) — M(u%s,O",r)) + M (ug,s,0",7)
Z —C|10g7‘|,

which implies

1
(78) Vg, 0%7) =n / Stta.s, O, r£)E" 1t > —C(|log ] + 1).
0
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Combining (|7.7]) and (7.8)), it is clear that

/ s ()] dy = / (M (1t 0", 1) — s (9))dy
B,.(0™)

B,.(0™)
+/ | M (ug,s,0", 7)|dy
B,.(07)
< Cr'*(|logr|+ 1),

as desired. O

Lemma 7.12. For alle, 7, v > 0, there exists constant §(e, 7,7, A, G) with
the following property. For any r <1, if & € L1 4, 5(u), then there ewists
nonnegative integer | < n such that

(1) w is (I, €, 7, x)-homogeneous with respect to k-plane V,¥_;

(2) ['7*1,77*,6 N Br(l‘) C BTT(VquI).

Proof. First, we define 6!/ by induction. We put " = 5. Then we define
ol = 6(7’,5[”1],]\7 A, G),G), where § and N are the constants in Lemma
and Lemma respectively. Let us put § < 6% Then § < 61 < 01 <
coe< g = §.Since x € L1 5p.5(u), we have u is (0, 800y, x)-homogeneous.
Then there exists a largest | such that w is (1,6 M r, x)-homogeneous, which
implies ug . is (I, 6, 1,0™)-homogeneous at 0".

If there exists y € (Ly-1 40,6 N Br(2)) \ Brr(V]%,), then §=1(y—2z) €
B1(0™) \ BT(VU%W’O,L) and g, is (1,00, 1, §)-homogeneous. By Lemma (2.3
we obtain ug, is (I + 1,041, 1,0™)-homogeneous, which implies w is (I +
1,60+ x)-homogeneous, which contradicts with our assumption that [ is
the largest one. O

Lemma 7.13 (Covering lemma). There exists constant €(n,v, A, G) such
that if x € L1 i and By;-1(x) is a ball ofCS,Yj,l(Tj_l), then the number
of balls in the minimal covering of Byi-1(x) N Sﬁﬁj (w) N Ly-1 45 ¢ is less than
C(n)y~*.

Proof. We put € = d0(n, 7,7,A,G), where 0 is the constant in Lemma
Since x € L1 45 ¢, by Lemma there exists nonnegative integer | < n
such that

(1) wis (I,1m,77~, z)-homogeneous with respect to k-plane V,F_;

U,z
(2) E,y—l’,yj,n N B,yj—l(.%) C BT,Yj—l(Vk )

uU,x
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Since x € Sky (u), we obtain that u is not (k: +1,1,77~1, x)-homogeneous,

which implies I < k. Hence, by choosing 7 = {5, we have

Bai-i(z) NSy 5 (u) N Ly1 s e € Byama () N B%(Vu’fm).
This completes the proof. U

Lemma 7.14 (Decomposition lemma). There exists constants Cy(n),
Cl (Tl,), K(n7 s A7 G); Q(T]’ 2 A’ G) and 70(775 Av G) such that fOT any v <
and j € Z4, we have

(1) The set Sk J(u) N B1(0™) can be covered by at most % nonempty

k
sets Cn i

(2) Each set Cl;ﬁj is the union of at most (C1y™™)? - (Coy™*)7=C balls
of radius .

Proof. First, we prove (1). We need to prove |T7| < K (1,7, A, G) if Exi # (.
For any 0 < s <t <1 and x € B1(0"), we define

Wy () = Og(u, z,t) — Og(u, z,s) > 0.
Fixing a point zg € Ep,, we consider the set
I= {’L € Z_|_ ‘ W,yi’ﬁ/i—z(xo) > (50},

where d¢ is the constant in Theorem (p > 2) or Theorem (p=2).Tt
is clear that

ZW,yin,ifz (zg) < 3W071($0).
el
By Lemma we have
[I]- 60 < 3C(G)A.

For any ¢ ¢ I, by W, i-2(z9) < do, we have
(7.9) ¢9(ux07,yi_1,0”,fy_1) — O(ugy yi-1,0",7) = Wyi yi2(20) < do.

Now, we put 79 = dg. Thus, if v < 7y, combining (|7 , Theorem- p>2),

Theorem- =2) Lemmaland M (g i1 0 ;1) = 0 when p = 2, we
obtain g, 4i-1 is (0, ¢, 1,0™)-homogeneous, which 1mphes wis (0,6,7! xo)
which implies T7 (zo) = 0. It

homogeneous. Hence, we have xg € L1 i,



Quantitative stratification of F-subharmonic functions 1377

then follows that there exists constant K depending only on G and A such
that

J
T =) T <|I| <K,
1=1

which implies the cardinality of {C*_,(T7)} is at most

s

J K
< .
This proves (1).

Next, we prove (2). Clearly, by an induction argument, (2) is an imme-
diate corollary of Lemma O

7.4. Proof of Theorem [1.15|

In this subsection, we give the proof of Theorem [1.15

2

Proof of Theorem [1.15, First, we put v = mln('yo,Ciq), where 7y and Cy
are the constants in Lemma- Clearly, it suffices to prove (|1.4)) When r <
7. There exists j € Z, such that 7+ <r < fyj By Lemma |7 - i (u) N
B1(0™) can be covered by 55 (C1y™)Q(Coy~*)7~? balls of radius 7/, which
implies

Vol(Byi (Sy () N B1(0)) < 55 (C1y™™)?(Coy ™) =9 (297)"
< C(n,Q,K)(»/)"*.

Since 47 <7 <47, we have SF (u) C 8%, (u), which implies

n,y

Vol(B,(S) . (w)) N By(0™)) < Vol(By (S ., (1)) N By(0™))
< C(n,Q,K)(y7)"
< C(n, A, G)r"F,

as desired. O
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8. Appendix
8.1. Homogeneous functions

In this subsection, we assume that homogeneity of tangents holds for F
and Riesz characteristic p > 2. In Lemma [8.1] we prove a basic property of
homogeneous functions. By using this property, we give the proof of (|1.2]).

Lemma 8.1. Let h; be a sequence of functions on R™. Suppose that h; is k-
homogeneous at y; with respect to k-plane Vlk If lim; o0 5 =9, lim; oo Vlk =
VE and h; converges to u in L'(B,.(0")). Then there exists a function h such
that

(1) h is defined on R™;
(2) h is k-homogeneous at y with respect to k-plane vk,
(8) h=wu in B,(0").

Proof. Without loss of generality, we assume y = 0" and r = 1. We split up
in to different cases.

Case 1. For any ¢, we have y; = 0™ and Vzk =Vk,

When p = 2, for any R > 1, we have

/ \hi() — ()| de = / (h)o-
Br(0m) Br(0m)
T T
< hil=)—h;il—=)|d

1 1
M (hion, =) =M (hi0m, = ).
(ro0rg) =21 (10

(8.1) dim |k = | L1 (B(omy) = 0.

1,]—>0Q

1
'R "R

(z) = (hj)on g(:c)‘ dx

< R"||hi — |l 0m)) + wnR"

By Lemma [8.6] we obtain

On the other hand, when p > 2, by the similar argument, we still have .

Next, by , h; is a Cauchy sequence in L] (R"). There exists a
function h on R™ such that h; converges to h in L}, (R"). It is clear that
h =w in B1(0™). Now, it suffices to prove h is k-homogeneous at 0" with
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respect to V¥, For any r > 0, we have (hi)or » = h;. Letting ¢ — oo, we obtain
h is k-homogeneous. Since h; is homogeneous at 0" with respect to V*, then
for any € R™ and v € V¥, by the property of subharmonic functions, we
have

1
h(z +v) — h(z) = lim —— / h(y)dy — / h(y)dy
s—0 Wy S B.(z+v) B, (x)

1
= lim lim / hi(y)dy — / hi(y)dy
s—0i—00 Wy 8™ B.(z+v) B, (z)
=0,

as desired.
Case 2. General case.

Since lim;_,o Vlk = V¥, there exists a sequence of n x n orthogonal ma-
trices A; such that Vzk = A;VF and lim;_,oo A; = I,,, where I,, is the n x n
identity matrix. We define Bz(x) = h;(A;x + y;), which implies that h; is
k-homogeneous at 0" with respect to V*. For any r € [%, 1), we compute

(8.2) / \hi(z) — u(z)|dz
B,.(07)
< / Ihi( Az + ) — u(Aiz + )| da
B, (0m)
4 / u(Asz + 1) — u(z)|da
B,.(0n)

< / |hi(x) — u(z)|dx + / lu(Ajx + y;) — u(x)|dx
Br(yi) BT(OH)

— 0,

n

) and Lemma By Case

where we used h; converges to u in L'(Bp(0")
1), there exists a function A"

0
1, 1) and scaling argument, for each r € [%,
such that

(1) h" is defined on R™;
(2) A" is k-homogeneous at 0" with respect to k-plane V*;
(3) I = w in B,(0").
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By (2) and (3), we have
h" =h: in R".

Hence, h2 is the desired function. O

Proposition 8.2. If homogeneity of tangents holds for F, then for any
F-subharmonic function u on B2(0™), we have

SF(u)y = JSkw) =[Sk, (u).
n nor

Proof. For any n > 0, by definition, we have S,’;(u) =N, S,];T(u) and 37’7C (u) C
Sk(u). Tt suffices to prove S*(u) C U, Sf;(u) We argue by contradiction,
assuming that S¥(u) ¢ U, S,];(u) Then there exists a point x € B(0™) such
that

(1) = € Sk(u);

(2) Foreachi € Z, there exists a (k + 1)-homogeneous function h; and
r; € (0,1) such that

/ g (y) — hi(y)|dy < it
B](O")

By the compactness of subharmonic functions, after passing to a subse-
quence, we assume

(83) lim ry=7T, llim th — hHLl(B (on)) = 0
1—»00

A 1
1—00 2

and ‘lim Hum,n — h”Ll(Bl(O")) =0.
i—»00 2

If » =0, by the definition of tangent (see [2I], Definition 9.3, Proposi-
tion 9.4]), there exists U € Tj(u) such that u,,,, converges to U in L}, (R").
Combining this and , we have U = hin B1(0"). On the other hand, since
homogeneity of tangents holds for F', U is O—ilomogeneous. By Lemma [1],
there exists a (k + 1)-plane V¥*! such that h is (k + 1)-homogeneous with
respect to VFt1. By Definition we get U = h is (k + 1)-homogeneous,
which contradicts with = € S*(u).

If » >0, by Lemma h =g, in B1(0"). By the definition of tan-
gent set, we have Ty (u) = Ton (ug ) = Ton(hz). By Lemma[8.1] his a (k + 1)-
homogeneous function, which implies Ty~ (h) = {h}, which contradicts with
r € SF(u). O
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8.2. K,-convex functions

In this subsection, we recall some properties of K,-convex functions, where
K, is the Riesz kernel.

Lemma 8.3. Let {f;} be a sequence of Kp-convex functions on (0, R). If
lim; o0 fi(r) = f(r) for almost everyr € (0, R), then we have lim; o fi(r) =
f(r) for every r € (0, R).

Proof. For any € > 0 and r € (0, R), by assumption, there exists 0 < s1 <
So <1 < 83 < 84 < R such that

(8.4) lim fi(s;) = f(s;) for j =1,2,3,4.
1— 00
By the definition of K)-convex functions, for any 1,72 € (s2, s3), we have
fi(s2) = fils1) _ filra) = fiCr1) _ fi(s4) = fi(s3)
Kp(s2) — Kp(s1) = Kp(r2) — Kp(r1) = Kp(sa) — Kp(s3)

Combining and , we obtain that f; and f are Lipschitz functions on
[s2, s3] with uniform Lipschitz constant L(s1, s2, s3, s4, f,p). We can choose
T € (s2,s3) such that |7 —r| <e and lim; oo fi(7) = f(7). It then follows
that for ¢ sufficiently large, we have

[fi(r) = f(O)] < | fi(r) = (P + | fi(F) = fF(F) + 1 f(F) — f(r)]
< 2Le + | fi(7) — f(7)]
< (2L + 1)e,

(8.5)

which implies lim; o fi(r) = f(r). Since r is arbitrary, we complete the
proof. O

Lemma 8.4. Let {f;} be a sequence of K,-convex functions on (0,R). If
lim;_oo fi(r) = f(r) for every r € (0, R), then we have

o L) )
ivee Ki(r)  Kj(r)’

for almost every r € (0, R).

Proof. Since f; are K)-convex functions and f = lim; , f;, it is clear that f
is also K,-convex function. As a result, we obtain f is differentiable almost
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everywhere in (0, R). For any ro € (0, R) at which f is differentiable and for
any € > 0, there exists » > 0 such that

< flro+7r) = flro) _ f'(ro) L

f'(ro) o Slro) = flro—7)
Kp(ro+1) — Kp(ro) — Kp(ro)

K, (ro) = Ky(ro) — Kp(ro — )

Then there exists N > 0 such that for any ¢« > N, we have

f'(ro) f(ro) = f(ro —r) filro) = fitro—7) _ (fi)=(ro)
Ko(ro) ¢S Kylro) = EKplro—1) = Kylro) = Kylro—1) ~ Kp(ro)
and
(fz)Jr(rO) < fi(ro + 7") - fz(""O)
Kp(ro) = Kp(ro+1) — Kp(ro)
f(ro+7) — f(ro) f'(ro)
= Ko+ ) —Kyro) S Kylro)
Combining with
(fi)_(ro) < (fi)% (ro)
K;)(?”o) - K]/) 7"0) ’
we complete the proof. O

8.3. Subharmonic function in RP

In this subsection, we recall some properties of subharmonic functions.

Lemma 8.5. Let v be a subharmonic function on Br(0P) C RP with
vl (B, (0r)\ (B (0r)) < A, where 0 < a < b < R. Then for anyt € (a+d,b—
d), where d > 0, there exists a constant C(t,a,d) such that

M(Ua 0p7 t) > S(U’ Opa t) > _C(t7 a, d)A7

where 0P is the origin in RP.

Proof. 1t suffices to prove S(v,07,t) > —C(t,a,d)A. First, by the submean
value property of subharmonic functions, there exists a constant C(d, A)
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such that

sup v < C(d, A).
By—a(07)\Ba.4(07)

Thus, we compute

/ IC — v(z)|dx = / (é — v(x)) dx
B (07)\Ba+a(07) B (0P)\Bg+a(07)
t
= / pwpsP™t (C — S(v,0P, s)) ds
a+d

> (€= S(0,07,1)) wp (1 — (a + d)P),
where w), is the volume of unit ball in RP. It is clear that

(é - S(%Op,t)) wp (P = (a+ d)P) < [|C = vl £1(B, 07\ Busa(0r))
< Cw, (t? — (a + d)P) + A.

Hence, we obtain

A
Pt > — :
SO0 2 = (a t dy)
]

Lemma 8.6. Let v; and v be subharmonic functions on Br(0P) C RP. If
v; converges to v in L' (By(0P) \ B,(0P)), where 0 < a < b < R, then for any
r € (a,b), we have

(8.6) lim M(v;,07,7r) = M(v,0°,r)
1— 00

and

(8.7) lim S(v;, 07, 7) = S(v, 0P, 7).
1—00

Proof. First, by the property of subharmonic functions, for any z € B, (0P) \
B,(07), we have

vi(x) <vixgs(x) and  lm v; * Ps(z) = v * Ps(x),
1— 00
where ¢ is a mollifier. It then follows that

limsup v;(z) < lim v * ¢5(z) = v(x),
1—00 6—0
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which implies

(8.8) lim sup M (v, 07, 7) < M (v, 07, 7).

1—00
Suppose we have

lim inf M (v;, 0P, r) < M (v, 07, r),

1—00
then there exists a subsequence {v;, } and a number d such that

(8.9) lim M (v;,, 0P, ) = liminf M (v;,0P,r) < d < M(v,0°, 7).

k—o0 i—00

Then we get v;, <d on B,(0P) when k is sufficiently large. By the conver-
gence in L'(By(0P) \ B,(0P)), we obtain v < d on B,.(0P)\ B,(0P). Since v
is subharmonic function, we have

M(v,0P,r) < d,
which contradicts with . Therefore, we conclude that

(8.10) lim inf M (v;, 0P, 7) > M (v, 0P, r).

i—00

Combining (8.8) and (8.10), we prove (8.6).
For the proof of (8.7), by Fatou’s lemma, it is clear that

b
/ lim / |v; — o] | dr < lim |vi(x) —v(x)|dz — 0,
a \"7%JaB, (o) 7700 By (07)\Ba(07)

which implies
lim S(v;, 07, r) = S(v,07,7)

1—+00
for almost every r € (a,b). Since S(v;,0P,-) and S(v,0P,-) are Kj,-convex
functions, by Lemma we obtain ({8.7)). O

Lemma 8.7. Suppose that A; is a sequence of p X p orthogonal matrices
and z; is a sequence of points. Let v be a subharmonic function on Br(0™).
Iflim; o0 2 = 0" and lim; o0 A; = I, (I, is the p X p identity matriz), then
for any r € (0, R), we have

lim lv(Aijx + z;) —v(z)|dx = 0.
71— 00 B,«(O"’)
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Proof. For convenience, we use vs to denote v % ¢5, where ¢; is a mollifier.
By the property of smooth approximation, it is clear that vs converges to v
in L}, .(Br(0™)). On the other hand, since vs is smooth, we have

lim lvs(Aiz + zi) — vs(x)|dz = 0.
1—00 B,(O")

Therefore, we obtain

/ lv(Ax + z;) — v(z)|dz
B,.(0m)
< / lv(Ajz + z) — vs(Aix + 2)|dx
B,(0")
+ / lvs(Ajz + z;) — vs(x)|dz + / lvs(z) — v(z)|dx
B,.(0") B,.(0™)
< / |v(x) —Ug(ﬂ?)’dx-f-/ lvs(Aiz + zi) — vs(x)|dx
B,.(z;)

BT(OH)
4 / lus(z) — v(x)|da
B,.(0m™)

— 0,

as desired. O

Lemma 8.8. Let v; and v be subharmonic functions on Ba(0™), and sup-
pose that v; converges to v in L} (B2(0™)). For any sequence of point {z;} C
B1(0™), if z; converges to z, then we have

lim ‘(U'L)zm(x) - Uz,r(x)’dx7
21— 00 Bl(O”)

for any r € (0,1).

Proof. We split up into different cases.

Case 1. p > 2.
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For any r € (0,1), by Lemma 8.7 we have
/ (W) 200 () — 02 ()|
Bl(on)
< / ()220 () — Va0 ()] + / 0300 (2) — V()
B1(0")

B1(0n)
= / P27y (z) — v(z)|dx
BT(ZZ)
—|—/ P72y (2 + 2) — v(x + 2)|dw
B.,.(0™)
— 0,

as desired.
Case 2. p=2.
By the definition of tangential 2-flow, we have

[ @ (o) = vela)ido
B (0m)
< / lvi(re + z;) —v(re + z)|dx
B1(0”)
+ / | M (vs, ziy 1) — M (v, z,7)|d.
B1(0™)
By the similar argument in Case 1, we obtain
lim lvi(re + z;) —v(re + z)|de =0

1—00 By (0)

Hence, it suffices to prove lim;_,oo M (v;, zi,7) = M (v, z,7). Next, we define
0i(x) = vi(x + z; — z) for every x € B1(0™). It then follows that M (9;, z,7) =
M (v, z;,r). It is clear that

[ o) - vla)ido
)
S/ lvi(z + 2z, — 2) —v(x + 2; — 2)|dz
Bl(O"’)
+/ lv(x + z; — z) —v(z)|dz
B, (0™)

- /Bl(z,-—z) fvi) = v(z)lde + / v(@ + 2 — 2) — v(z)|dw

B;(0™)
— 0,
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where we used Lemma [8.7] Hence, by Lemma we obtain

1]
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3]

[7]
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[9]

[10]

[11]

lim M (v;, z;,r) = im M(9;, z,7) = M(v, z,7).

1—00 1—00
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