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In this paper, we study the singular sets of F -subharmonic func-
tions u : B2(0

n) → R, where F is a subequation. The singular set
S(u) ⊂ B2(0

n) has a stratification S0(u) ⊂ S1(u) ⊂ · · · ⊂ Sk(u) ⊂
· · · ⊂ S(u), where x ∈ Sk(u) if no tangent function to u at x is (k +
1)-homogeneous. We define the quantitative stratifications Sk

η (u)
and Sk

η,r(u) satisfying Sk(u) = ∪ηS
k
η (u) = ∪η ∩r S

k
η,r(u).

When homogeneity of tangents holds for F , we prove that
dimHSk(u) ≤ k and S(u) = Sn−p(u), where p is the Riesz char-
acteristic of F . And for the top quantitative stratification Sn−p

η (u),
we have the Minkowski estimate Vol(Br(S

n−p
η (u) ∩B1(0

n))) ≤
Cη−1(

∫

B1+r(0n)
∆u)rp.

When uniqueness of tangents holds for F , we show that Sk
η (u)

is k-rectifiable, which implies Sk(u) is k-rectifiable.
When strong uniqueness of tangents holds for F , we introduce

the monotonicity condition and the notion of F -energy. By using
refined covering argument, we obtain a definite upper bound on the
number of {Θ(u, x) ≥ c} for c > 0, where Θ(u, x) is the density of
F -subharmonic function u at x.

Geometrically determined subequations F (G) are a very im-
portant type of subequation (when p = 2, homogeneity of tan-
gents holds for F (G); when p > 2, uniqueness of tangents holds for
F (G)). By introducing the notion of G-energy and using quantita-
tive differentation argument, we obtain the Minkowski estimate of
quantitative stratification Vol(Br(S

k
η,r(u)) ∩B1(0

n)) ≤ Crn−k−η.
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1. Introduction

1.1. Background

Recently, Harvey and Lawson [21, 22] (see also [10–20, 23]) established a
theory of elliptic equations. The aim of this theory is to study the behavior of
subsolutions in the viscosity sense. They introduced the definitions of Riesz
characteristic, tangential p-flow, tangent and density function. And many
interesting theorems, formulas and properties of subsolutions, tangents and
density functions were established.

In this theory, there is a very important kind of examples called geomet-
rically defined subequations (see [21, Example 4.4] and [22]). To be specific,
let G be a compact subset of the Grassmannian manifold G(p,Rn) such that
G is invariant under a subgroup G ⊂ O(n) acting transitively on the sphere
Sn−1 ⊂ Rn. The geometric subequation determined by G is defined by

(1.1) F (G) = {A ∈ Sym(n) | trW (A) ≥ 0 for any W ∈ G},

where Sym(n) denotes the space of symmetric n× n matrices with real en-
tries and trW (A) denotes the trace of A|W . Let u be a F (G)-subharmonic
function, by the Restriction Theorem 3.2 in [20], we obtain u|W is sub-
harmonic on W for any W ∈ G. F (G)-subharmonic functions are usually
called G-plurisubharmonic functions. And as we can see, convex, C-
plurisubharmonic and H-plurisubharmonic functions are all special cases
of G-plurisubharmonic functions.

In [21], Harvey and Lawson introduced the definitions of homogeneity,
uniqueness and strong uniqueness of tangents. In [22], for geometrically de-
fined subequations F (G), it was proved that homogeneity of tangents holds
when p = 2 and uniqueness of tangents holds when p > 2. They also proved
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strong uniqueness of tangents holds for many subequations (see [21, Theo-
rem 13.1] and [22, Theorem 3.2, Theorem 3.12]). When the subequation F
is convex, for any F -subharmonic function u, upper semicontinuity of den-
sity functions ΘM (u, ·), ΘS(u, ·) and ΘV (u, ·) was proved (see [21, Theorem
7.4]), which implies that for any c > 0 and each density function as above,
the set

Ec(u) := {x | Θ(u, x) ≥ c}

is closed (see [21, Corollary 7.5]). Furthermore, the discreteness of the set
Ec(u) was established when strong uniqueness of tangents holds for F and
p > 2, where p is the Riesz characteristic of F (see [21, Theorem 14.1, The-
orem 14.1’]).

1.2. Definitions and notations

In this paper, many definitions in Harvey and Lawson’s theory will be used.
For the reader’s convenience, we list some related definitions. For more de-
tails, we refer the reader to [21, 22]. We shall use the following notations,
for any function u, point x ∈ Rn and r > 0,

M(u, x, r) = sup
y∈B1(0n)

u(x+ ry),

S(u, x, r) =
1

nωn

∫

∂B1(0n)
u(x+ ry)dy,

V (u, x, r) =
1

ωn

∫

B1(0n)
u(x+ ry)dy,

where 0n is the origin in Rn and ωn is the volume of unit ball in Rn.
Let F be a closed subset of Sym2(Rn) (the set of n× n symmetric

matrices). We always assume that the set F has the following properties:

(1) Positivity: F + P ⊂ F , where P = {A ∈ Sym2(Rn) | A ≥ 0};

(2) ST-Invariance: F is invariant under a subgroup G ⊂ O(n) which
acts transitively on the sphere Sn−1;

(3) Cone Property: tF ⊂ F for all t ≥ 0;

(4) Convexity: F is convex.

A closed set F satisfying Positivity is called a subequation. For each
subequation F , the viscosity F -subsolutions are called F -subharmonic func-
tions.
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Definition 1.1. ([8–10, 13]) Let Ω be a domain in Rn. An upper semi-
continuous function u on Ω is called a F -subharmonic function if for any
x0 ∈ Ω and any function φ ∈ C2(Ω) such that

u(x0) = φ(x0) and u− φ ≤ 0 near x0,

then D2φ(x0) ∈ F .

First, let us recall the definition of the classical pth Riesz kernel and the
Riesz characteristic. The classical pth Riesz kernel Kp is defined by

Kp(t) =















t2−p if 1 ≤ p < 2

log t if p = 2

− 1
tp−2 if 2 < p <∞.

Definition 1.2. ([21, Definition 3.2]) Suppose that F is an ST-invariant
cone subequation. The Riesz characteristic pF of F is defined to be

pF := sup{p | Pe⊥ − (p− 1)Pe ∈ F for any unit vector e ∈ Rn},

where Pe and Pe⊥ denote orthogonal projection onto the line through e and
the hyperplane with normal e respectively.

In this paper, we assume that pF = p for convenience. Next, let us recall
the definitions of tangent and tangent set.

Definition 1.3. ([21, Definition 9.1]) Suppose that u is a F -subharmonic
function. Let x be a point such that Bρ(x) is in the domain of u, where
ρ > 0. For any r > 0, the tangential p-flow (or p-homothety) of u at x is
defined as follows.

(1) If p > 2, ux,r(y) := rp−2u(x+ ry) in B ρ

r
(0n);

(2) If 2 > p ≥ 1, ux,r(y) :=
1

r2−p (u(x+ ry)− u(x)) in B ρ

r
(0n);

(3) If p = 2, ux,r(y) := u(x+ ry)−M(u, x, r) in B ρ

r
(0n).

Definition 1.4. ([21, Definition 9.3]) Suppose that u is a F -subharmonic
function. Let x be an interior point in the domain of u. For each sequence
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rj ↘ 0 such that

U = lim
j→∞

ux,rj in L1
loc(R

n),

the point-wise defined function

U(y) := lim
r→0

ess sup
Br(y)

U

is called a tangent to u at x. We let Tx(u) denote the set of all such tan-
gents U .

In [21], Harvey-Lawson proved that each tangent U ∈ Tx(u) is F -
subharmonic, and U is the unique F -subharmonic function in the L1

loc-class
U ∈ L1

loc(R
n) (see [21, Proposition 9.4]).

Definition 1.5. ([21, Definition 12.1]) Suppose that u is a F -subharmonic
function. Let x be an interior point in the domain of u.

(1) For any u and x, if every tangent φ ∈ Tx(u) satisfies φ0n,r = φ for
any r > 0, we say that homogeneity of tangents holds for F ;

(2) For any u and x, if Tx(u) is a singleton, we say that uniqueness of
tangents holds for F ;

(3) For any u and x, if Tx(u) = {ΘKp(| · |)}, where Θ ≥ 0 is a constant,
we say that strong uniqueness of tangents holds for F .

Remark 1.6. In Definition 1.5, it is clear that (3) implies (2) and (2)
implies (1).

Next, in order to study the singular sets of F -subharmonic functions, we
have the following definitions.

Definition 1.7. A function h : Rn → R is said to be k-homogeneous at x ∈
Rn with respect to k-plane V k ⊂ Rn if h satisfies the following properties:

(1) h is subharmonic on Rn;

(2) For any r > 0, hx,r(y) = h(y + x) for every y ∈ Rn, where hx,r is
the tangential p-flow of h at x;

(3) For any y ∈ Rn and v ∈ V k, h(y + v + x) = h(y + x).

If x = 0n, we say h is k-homogeneous (or h is a k-homogeneous function) for
convenience.
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Definition 1.8. A function u : Br(x) ⊂ Rn → R is said to be (k, ϵ, r, x)-
homogeneous, if there exists a k-homogeneous function h : Rn → R such
that

∥ux,r − h∥L1(B1(0n)) < ϵ.

Definition 1.9. Suppose that homogeneity of tangents holds for F . Let u
be a F -subharmonic function on B2(0

n). For any η > 0 and r ∈ (0, 1), we
have the following definitions:

(1) The singular set S(u) is defined by

S(u) := {x ∈ B2(0
n) | no tangent at x is n-homogeneous}.

(2) The kth stratification Sk(u) is defined by

Sk(u) := {x ∈ B2(0
n) | no tangent at x is (k + 1)-homogeneous}.

(3) The kth η-stratification Sk
η (u) is defined by

Sk
η (u) := {x ∈ B2(0

n) | u is not (k + 1, η, s, x)-homogeneous

for any s ∈ (0, 1)}.

(4) The kth (η, r)-stratification Sk
η,r(u) is defined by

Sk
η,r(u) := {x ∈ B2(0

n) | u is not (k + 1, η, s, x)-homogeneous

for any s ∈ [r, 1)}.

Remark 1.10. When homogeneity of tangents holds for F , we have the
following relationships (see Proposition 8.2):

S0(u) ⊂ S1(u) ⊂ · · · ⊂ Sn−1(u) = S(u)

and

(1.2) Sk(u) =
⋃

η

Sk
η (u) =

⋃

η

⋂

r

Sk
η,r(u).

Remark 1.11. When strong uniqueness of tangents holds for F , three
density functions ΘM (u, ·), ΘS(u, ·) and ΘV (u, ·) are equivalent (see [21,
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Proposition 7.1, (12.3)]). And for each density function as above, we have

S(u) = S0(u) =
⋃

c>0

Ec(u),

where Ec(u) = {x ∈ B2(0
n) | Θ(u, x) ≥ c}.

1.3. Main results

In this paper, we assume that F is a subequation satisfies Positivity, ST-
Invariance, Cone Property and Convexity. Let p be the Riesz characteristic
of F . When 1 ≤ p < 2, the F -subharmonic function is Hölder continuous (see
[21, Theorem 15.1]). Hence, we focus on the case p ≥ 2 in this paper. When
F satisfies different conditions, we obtain different results of the singular
sets.

Theorem 1.12. Suppose that F is a subequation such that homogeneity of
tangents holds for F . Let u be a F -subharmonic function defined on B2(0

n)
with ∥u∥L1(B2(0n)) ≤ Λ. For any η > 0, we have

(1) Vol(Br(S
n−p
η (u) ∩B1(0

n))) ≤ C(p, n)η−1
(

∫

B1+r(0n)∆u
)

rp for any

r ∈ (0, 15);

(2) S(u) = Sn−p(u);

(3) dimH(Sk(u)) ≤ k for any k = 1, 2, . . . , n, where dimHSk(u) is the
Hausdorff dimension of Sk(u).

Theorem 1.13. Suppose that F is a subequation such that uniqueness of
tangents holds for F . Let u be a F -subharmonic function defined on B2(0

n).
Then Sk(u) is k-rectifiable for any k = 1, 2, . . . , n.

Theorem 1.14. Suppose that F is a subequation such that strong unique-
ness of tangents holds for F and p > 2. Let u be a F -subharmonic function
defined on B2(0

n) with ∥u∥L1(B2(0n)) ≤ Λ. For any c > 0, there exists a con-
stant C(c,Λ, F ) such that

(1.3) # (Ec(u) ∩B1(0
n)) ≤ C(c,Λ, F )

where #(Ec(u) ∩B1(0
n)) is the cardinality of Ec(u) ∩B1(0

n).

As alluded to above, there are many subequations satisfying the as-
sumptions of Theorem 1.14 (see [21, 22]). Under the assumption of strong
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uniqueness of tangents, Harvey-Lawson proved that the set Ec(u) is discrete
(see [21, Theorem 14.1, Theorem 14.1’]). Theorem 1.14 gives a quantitative
estimate of the cardinality of this set.

In the proof of Theorem 1.14, we introduce the monotonicity condi-
tion and the notion of F -energy. And we prove every F -subharmonic func-
tion satisfies monotonicity condition after subtracting a constant. For F -
subharmonic function satisfies monotonicity condition, we prove (6.6) by
using refined covering arguments, which is introduced in [31]. Since the set
Ec(u) is invariant after subtracting a constant, we obtain Theorem 1.14.

For geometrically defined subequations F (G) (i.e., G-plurisubharmonic
case), we have the following Minkowski estimate of quantitative stratifica-
tion.

Theorem 1.15. Let u be a G-plurisubharmonic function on B2(0
n) with

∥u∥L1(B2(0n)) ≤ Λ. For any η > 0, there exists constant C(η,Λ,G) such that
for any r ∈ (0, 1), we have

(1.4) Vol(Br(S
k
η,r(u)) ∩B1(0

n)) ≤ C(η,Λ,G)rn−k−η.

Remark 1.16. It suffices to prove Theorem 1.15 when G is a smooth
submanifold of G(p,Rn). For general G, since G is invariant under a sub-
group G ⊂ O(n) acting transitively on the sphere Sn−1 ⊂ Rn, we fixW ∈ G
and consider G0 = G ·W . Then G0 is a smooth submanifold of G(p,Rn)
and F (G) ⊂ F (G0). It follows that any G-plurisubharmonic function is G0-
plurisubharmonic function. Then Theorem 1.15 for smooth G0 implies The-
orem 1.15 for general G (see [22, p.2198]). Therefore, without loss of gener-
ality, we assume that G is a smooth submanifold of G(p,Rn) in Section 7.

In the proof of Theorem 1.15, we introduce the notion of G-energy,
which is a monotone quantity. The key point is to establish the quantitative
rigidity theorem (Theorem 7.5 and Theorem 7.7). Roughly speaking, we
prove it by making use of the information of tangent at infinity, together with
a contradiction argument. Next, combining quantitative rigidity theorem
(Theorem 7.5 and Theorem 7.7) and cone-splitting lemma (Lemma 2.3), we
obtain decomposition lemma (Lemma 7.14), which implies Theorem 1.15.

In general outline, we will follow a scheme introduced in [5], where quan-
titative differentation argument was established. By this method, Cheeger
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and Naber proved some new estimates on non-collapsed Riemannian man-
ifolds with Ricci curvature bounded from below, especially Einstein mani-
folds. In fact, this method has already been applied to many areas. Anal-
ogous results were obtained in the study of mean curvature flows, elliptic
equations, harmonic maps and so on (see [3–7]).

Recently, Naber and Valtorta [26] introduced new techniques for esti-
mating the critical and singular set of elliptic PDEs. In [27, 28, 30], they
also got some new results on stationary and minimizing harmonic maps. It
was proved that the kth stratification of singular set is k-rectifiable and ob-
tained more stronger estimates of the quantitative stratification. And these
techniques have also been applied to the study of stationary Yang Mills (see
[29]) and L2 curvature bounds on non-collapsed Riemannian manifolds with
bounded Ricci curvature (see [25]).

Acknowledgments. The author would like to thank his advisor Professor
Gang Tian for encouragement and support. The author would also like to
thank Professor Aaron Naber for suggesting this problem and many help-
ful conversations. Partial work was done while the author was visiting the
Department of Mathematics at Northwestern University, supported by the
China Scholarship Council (File No. 201506010010). The author would like
to thank the China Scholarship Council for supporting this visiting. The
author would also like to thank the Department of Mathematics at North-
western University for its hospitality and for providing a good academic
environment.

2. Cone-splitting lemma

In this section, we prove cone-splitting lemma (Lemma 2.3) for F -
subharmonic functions. And we will use it throughout this paper.

Theorem 2.1 (Cone-splitting principle). Let h be a function which is
k-homogeneous at x1 with respect to k-plane V k. If there exists a point x2 ̸∈
x1 + V k such that h is 0-homogeneous at x2, then h is (k + 1)-homogeneous
at x1 with respect to (k + 1)-plane V k+1 = span{x2 − x1, V

k}.

Proof. Let {ei}
n
i=1 be the standard basis of Rn. Without loss of generality,

we assume that x1 = 0n, x2 = ek+1 and V k = span{ei}
k
i=1. Since h is k-

homogeneous at x1 respect to V k, it suffices to prove

(2.1) h(x+ tek+1) = h(x),
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for all x ∈ Rn and t ∈ R. We split into different cases according to p (Riesz
characteristic of F ).

Case 1. p > 2.

Since h is k-homogeneous at 0n and 0-homogeneous at ek+1, By the
definition of homogeneous function, we have

h(x) = h0n, 1

|x|
(x) = |x|2−ph

(

x

|x|

)

.

Let g1 = h|Sn−1 , we obtain

(2.2) h(x) = |x|2−pg1

(

x

|x|

)

.

Similarly, there exists function g2 on the unit sphere Sn−1 ⊂ Rn such that

(2.3) h(x) = |x− ek+1|
2−pg2

(

x− ek+1

|x− ek+1|

)

.

We split up into different subcases.

Subcase 1.1. x ∈ span{ek+1}.

By (2.2) and (2.3), we have

22−pg1(ek+1) = h(2ek+1) = g2(ek+1)

and

32−pg1(ek+1) = h(3ek+1) = 22−pg2(ek+1).

Hence, we obtain g1(ek+1) = g2(ek+1) = 0 or g1(ek+1) = g2(ek+1) = ∞, which
implies (2.1).

Subcase 1.2. x ̸∈ span{ek+1} and t < 1.

By (2.2) and (2.3), we have

h

(

x

1− t

)

=

∣

∣

∣

∣

x

1− t

∣

∣

∣

∣

2−p

g1

(

x

|x|

)

=
1

|1− t|2−p
h(x)

and

h

(

x

1− t

)

=

∣

∣

∣

∣

x

1− t
− ek+1

∣

∣

∣

∣

2−p

g2

(

x
1−t

− ek+1

| x
1−t

− ek+1|

)

=
1

|1− t|2−p
h(x+ tek+1).

Then we obtain (2.1).
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Subcase 1.3. x ̸∈ span{ek+1} and t ≥ 1.

If x ̸∈ span{ek+1}, then x+ tek+1 ̸∈ span{ek+1}. By Subcase 1.2, we
have h(x) = h(x+ tek+1 − tek+1) = h(x+ tek+1), which implies (2.1).

Case 2. p = 2.

By the property of homogeneous function (see [21, Section 9]), there
exists two constants Θ1,Θ2 ≥ 0 and two functions g1, g2 defined on the unit
sphere Sn−1 ⊂ Rn such that

h(x) = Θ1 log |x|+ g1

(

x

|x|

)

= Θ2 log |x− ek+1|+ g2

(

x− ek+1

|x− ek+1|

)

.

First, let us prove Θ1 = Θ2. For any point y ̸∈ span{ek+1} such that h(y) >
−∞, by similar calculations in Subcase 1.2, for any t < 1, we obtain

(2.4) h(y + tek+1) = h(y) + (Θ2 −Θ1) log(1− t).

Since h ̸≡ −∞, there exists a point x0 ̸∈ span{ek+1} such that h(x0) > −∞.
By (2.4), we have

(2.5) h

(

x0 +
1

3
ek+1

)

= h(x0) + (Θ2 −Θ1) log
2

3

and

(2.6) h

(

x0 +
2

3
ek+1

)

= h(x0) + (Θ2 −Θ1) log
1

3
.

By (2.5), we obtain h(x0 +
1
3ek+1) > −∞. Combining this and (2.4), it is

clear that

(2.7) h

(

x0 +
1

3
ek+1 +

1

3
ek+1

)

= h

(

x0 +
1

3
ek+1

)

+ (Θ2 −Θ1) log
2

3
.

Combining (2.5), (2.6) and (2.7), we get Θ1 = Θ2. Next, by the similar
argument of Case 1, we obtain (2.1). □

Lemma 2.2. Let ui be a sequence of F -subharmonic functions on B2(0
n)

with ∥ui∥L1(B2(0n)) ≤ Λ. Then there exists a subsequence uik such that uik
converges to u in L1

loc(B2(0
n)), where u is a F -subharmonic function on

B2(0
n).
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Proof. Every F -subharmonic function is subharmonic function (see
[21, (6.3)]). By the compactness of subharmonic functions, there exists a
subsequence uik converges to u in L1

loc(B2(0
n)). On the other hand, F is a

subequation satisfying ST-Invariance and Convexity, which implies that F
is regular (see [18, Section 8]) and can not be defined using fewer of the
independent variables (see [21, Proof of Proposition 9.4]). Since uik is F -
subharmonic, we obtain that u is a F -subharmonic distribution (see [18,
Definition 2.3]). By [18, Theroem 1.1] or [21, Theorem 9.5], there exists a
F -subharmonic function v in the L1

loc-class u. It suffices to prove u = v in
B2(0

n). Since u and v are subharmonic, for any x ∈ B2(0
n), we obtain

u(x) = lim
s→∞

1

ωnsn

∫

Bs(x)
u(y)dy = lim

s→∞

1

ωnsn

∫

Bs(x)
v(y)dy = v(x),

as required. □

Lemma 2.3 (Cone-splitting lemma). Let u be a F -subharmonic func-
tion on B2(0

n) with ∥u∥L1(B2(0n)) ≤ Λ. For any ϵ, τ > 0, there exists constant
δ(ϵ, τ,Λ, F ) such that if

(1) u is (k, δ, 1, 0n)-homogeneous with respect to k-plane V k;

(2) u is (0, δ, 1, y)-homogeneous, where y ∈ B1(0
n) \Bτ (V

k),

then u is (k + 1, ϵ, 1, 0n)-homogeneous.

Proof. We argue by contradiction, assuming that there exists a sequence of
F -subharmonic functions ui with ∥u∥L1(B2(0n)) ≤ Λ and satisfy the following
properties:

(1) ui is (k, i
−1, 1, 0n)-homogeneous with respect to k-plane V k

i ;

(2) ui is (0, i
−1, 1, yi)-homogeneous, where yi ∈ B1(0

n) \Bτ (V
k
i );

(3) ui is not (k + 1, ϵ, 1, 0n)-homogeneous.

After passing to a subsequence, we assume that limi→∞ V k
i = V k,

limi→∞ yi = y ∈ B1(0n) \B2τ (V
k) and ui converges to u in L1

loc(B2(0
n)),

where u is a F -subharmonic function (see Lemma 2.2). By (1), (2) and
Lemma 8.1, there exists a function h such that

(a) h is k-homogeneous at 0n with respect to V k;

(b) h is 0-homogeneous at y;

(c) h = u in B2(0
n).
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Hence, by Theorem 2.1, we obtain that h is a (k + 1)-homogeneous function.
Combining this with ui converges to u in L1

loc(B2(0
n)) and (c), it is clear

that ui is (k + 1, ϵ, 1, 0n)-homogeneous when i is sufficiently large, which is
a contradiction. □

3. Top stratification of S(u)

In this section, we give proofs of (1) and (2) in Theorem 1.12.

Proof of (1) in Theorem 1.12. For any r ∈ (0, 15), {Br(x)}x∈Eη(u)∩B1(0n) is
a covering of Br(Eη(u) ∩B1(0

n)), where Eη(u) = {x ∈ B2(0
n) | ΘS(u, x) ≥

η}. We take a Vitali covering {Br(xi)}
M
i=1 such that

(a) Br(xi) ∩Br(xj) = ∅ for any i ̸= j;

(b) Br(Eη(u) ∩B1(0
n)) ⊂

⋃

iB5r(xi);

(c) xi ∈ Eη(u) ∩B1(0
n) for each i.

For each xi, by the properties of S(u, xi, ·) (see [21, Corollary 5.3, Theo-
rem 6.4]), we have

lim
t→0

S′
−(u, xi, t)

K ′
p(t)

= ΘS(u, xi)

and
S′
−(u, xi, t)

K ′
p(t)

is nondecreasing with respect to t.

Since xi ∈ Eη(u) ∩B1(0
n), it then follows that

S′
−(u, xi, r)

K ′
p(r)

≥ ΘS(u, xi) ≥ η.

Using S′
−(u, xi, r) = C(n)K ′

n(r)
∫

Br(xi)
∆u (see e.g. [24, Theorem 3.2.16] or

[21, (7.8)]), it is clear that

∫

Br(xi)
∆u ≥ C(p, n)ηrn−p.

By (a), we obtain

(3.1)

∫

B1+r(0n)
∆u ≥

M
∑

i=1

∫

Br(xi)
∆u ≥ C(p, n)ηMrn−p.
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Combining (b) and (3.1), we get

Vol(Br(Eη(u) ∩B1(0
n))) ≤

M
∑

i=1

Vol(B5r(xi))(3.2)

≤ C(p, n)η−1

(

∫

B1+r(0n)
∆u

)

rp.

On the other hand, for every y ∈ Sn−p
η (u) ∩B1(0

n), since 0 is a (n− p+ 1)-
homogeneous function, by the definition of Sn−p

η (u), we have

(3.3) ∥uy,r − 0∥L1(B1(0n)) ≥ η,

for any r ∈ (0, 1). Now, we take U ∈ Ty(u). Combining (3.3) and the defi-
nition of tangent, it is clear that ∥U∥L1(B1(0n)) ≥ η. By [21, Theorem 10.1],

there exists a constant C̃(p, n) such that

C̃(p, n)ΘS(u, y) ≥ −

∫

B1(0n)
U = ∥U∥L1(B1(0n)) ≥ η,

which implies Sn−p
η (u) ∩B1(0

n) ⊂ EC̃−1η(u) ∩B1(0
n). Then by (3.2) (re-

place η by C̃−1η), we obtain

Vol(Br(S
n−p
η (u) ∩B1(0

n))) ≤ C(p, n)C̃(p, n)η−1

(

∫

B1+r(0n)
∆u

)

rp,

as required. □

Proof of (2) in Theorem 1.12. We argue by contradiction, assuming that
there exists a point x ∈ S(u) \ Sn−p(u). By definition, there exists φ ∈ Tx(u)
such that φ is (n− p+ 1)-homogeneous but not n-homogeneous. It is clear
that

dimH(S(φ)) ≥ n− p+ 1,

where dimH(S(φ)) denotes the Hausdorff dimension of S(φ). By (3.2) (re-
place u by φ), we get dimH(Eη(φ) ∩B1(0

n)) ≤ n− p. By the similar ar-
gument, it is clear that dimH(Eη(φ)) ≤ n− p. Since S(φ) =

⋃

η Eη(φ), we
get

dimH(S(φ)) ≤ n− p,

which is a contradiction. □
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4. Hausdorff dimension of Sk(u)

In this section, we study the Hausdorff dimension of Sk(u). We use an it-
erated blow up argument as in [2] to prove (3) of Theorem 1.12. For con-
venience, we use Tx(u) to denote the tangent set to u at x in the following
argument.

Lemma 4.1. Let h be a F -subharmonic function which is k-homogeneous
at 0n with respect to k-plane V k. For any x0 /∈ V k, if φ ∈ Tx0

(h), then φ is
(k + 1)-homogeneous at 0n with respect to (k + 1)-plane V k+1=span{x0, V

k}.

Proof. By the definition of tangent, there exists a sequence {ri} (limi→∞ ri =
0) such that hx0,ri converges to φ in L1

loc(R
n). Since φ is subharmonic, in

order to prove Lemma 4.1, it suffices to prove

(4.1)

∫

Br(y)
φ(x)dx =

∫

Br(y+v)
φ(x)dx,

for any y ∈ Rn, v ∈ V k+1 and r > 0. First, we consider the case p > 2.

Case 1. p > 2.

We split up into different subcases.

Subcase 1.1. v = λx0 for some λ ∈ R.

By direct calculations, we have

∫

Br(y+v)
φ(x)dx =

∫

Br(y+λx0)
φ(x)dx(4.2)

= lim
i→∞

∫

Br(y+λx0)
hx0,ri(x)dx

= lim
i→∞

∫

Br(y+λx0)
rp−2
i h(x0 + rix)dx

= lim
i→∞

∫

Br(0n)
rp−2
i h(x0 + rix+ riy + λrix0)dx.
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Since h is homogeneous, it is clear that
∫

Br(0n)
rp−2
i h(x0 + rix+ riy + λrix0)dx(4.3)

=

∫

Br(0n)
(1 + λri)

2−prp−2
i h

(

x0 +
rix

1 + λri
+

riy

1 + λri

)

dx

=

∫

B r
1+λri

( y

1+λri
)
(1 + λri)

n+2−phx0,ri(x)dx.

On the other hand, since hx0,ri converges to φ in L1
loc(R

n), it then follows
that

lim
i→∞

∫

B r
1+λri

( y

1+λri
)
(1 + λri)

n+2−p|hx0,ri(x)− φ(x)|dx(4.4)

≤ lim
i→∞

∫

Br+1(y)
2|hx0,ri(x)− φ(x)|dx

= 0.

Combining (4.2), (4.3) and (4.4), we obtain
∣

∣

∣

∣

∣

∫

Br(y+v)
φ(x)dx−

∫

Br(y)
φ(x)dx

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

lim
i→∞

∫

B r
1+λri

( y

1+λri
)
(1 + λri)

n+2−phx0,ri(x)dx−

∫

Br(y)
φ(x)dx

∣

∣

∣

∣

∣

∣

≤ lim
i→∞

∫

B r
1+λri

( y

1+λri
)
(1 + λri)

n+2−p|hx0,ri(x)− φ(x)|dx

+

∣

∣

∣

∣

∣

∣

lim
i→∞

∫

B r
1+λri

( y

1+λri
)
(1 + λri)

n+2−pφ(x)dx−

∫

Br(y)
φ(x)dx

∣

∣

∣

∣

∣

∣

≤ 0,

where we used Lebesgue’s dominated convergence theorem for the last in-
equality. This completes the proof of Subcase 1.1.

Subcase 1.2. v ∈ V k.

By similar calculations in Subcase 1.1, we have

(4.5)

∫

Br(y+v)
φ(x)dx = lim

i→∞

∫

Br(0n)
rp−2
i h(x0 + rix+ riy + riv)dx.
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Since h is k-homogeneous with respect to k-plane V k, it is clear that

∫

Br(0n)
rp−2
i h(x0 + rix+ riy + riv)dx(4.6)

=

∫

Br(0n)
rp−2
i h(x0 + rix+ riy)dx

=

∫

Br(y)
hx0,ri(x)dx.

Combining (4.5), (4.6) and hx0,ri converges to φ in L1
loc(R

n), we get (4.1),
which completes the proof of Subcase 1.2.

Next, we consider the case p = 2.

Case 2. p = 2.

Similarly, we split up into different subcases.

Subcase 2.1. v = λx0 for some λ ∈ R.

By the definition of tangential 2-flow (see Definition 1.3), we have

∫

Br(y+v)
φ(x)dx =

∫

Br(y+λx0)
φ(x)dx

= lim
i→∞

∫

Br(y+λx0)
hx0,ri(x)dx

= lim
i→∞

∫

Br(y+λx0)
(h(x0 + rix)−M(h, x0, ri)) dx

= lim
i→∞

∫

Br(0n)
(h(x0 + rix+ riy + λrix0)−M(h, x0, ri)) dx.

By the homogeneity of h, we obtain

∫

Br(0n)
(h(x0 + rix+ riy + λrix0)−M(h, x0, ri)) dx

=

∫

Br(0n)

(

h

(

x0 +
rix

1 + λri
+

riy

1 + λri

)

+M(h, 0n, 1 + λri)−M(h, x0, ri)

)

dx

=

∫

B r
1+λri

( y

1+λri
)
hx0,ri(x)dx+

∫

Br(0n)
M(h, 0n, 1 + λri)dx.
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Since h is homogeneous, we get M(h, 0n, 1) = 0. By the continuity of
M(h, 0n, ·), it is clear that

∫

Br(y+v)
φ(x)dx = lim

i→∞

∫

B r
1+λri

( y

1+λri
)
hx0,ri(x)dx.

By the similar argument in Subcase 1.1, we complete the proof of Subcase
2.1.

Subcase 2.2. v ∈ V k. The proof of Subcase 2.2 is similar to the proof of
Subcase 1.2. □

Lemma 4.2. Let u be a F -subharmonic function on B2(0
n). If

Hausl(Sk(u)) > 0 for l > k, then Hausl(A) > 0, where

A := {y ∈ B2(0
n) | there exists a tangent φ ∈ Ty(u)

such that Hausl(Sk(φ)) > 0}.

Proof. Combining Hausl(Sk(u)) > 0 and Sk(u) =
⋃

η S
k
η (u) (see (1.2)), there

exists a constant η0 > 0 such that Hausl(Sk
η0
(u)) > 0. By the property of

Hausdorff measure, we have Hausl(Sk
η0
(u) \Dl

η0
(u)) = 0, where

Dl
η0
(u) =

{

x ∈ Sk
η0
(u) | lim sup

r→0

Hausl∞(Sk
η0
(u) ∩Br(x))

ωlrl
≥ 2−l

}

.

Therefore, in order to prove Lemma 4.2, it suffices to prove that there exists
a tangent φ ∈ Ty(u) such that Hausl(Sk(φ)) > 0 for any y ∈ Dl

η0
(u). By the

definition of Dl
η0
(u), there exists a sequence of {rj} (limi→∞ rj = 0) such

that

lim
j→∞

Hausl∞(Sk
η0
(u) ∩Brj (y))

ωlr
l
j

≥ 2−l.

If y + riz ∈ Sk
η0
(u) ∩Brj (y), then z ∈ Sk

η0
(uy,rj ) ∩B1(0

n). Combining this
and the definition of Hausdorff measure, we have

lim
j→∞

Hausl∞(Sk
η0
(uy,rj ) ∩B1(0

n)) ≥ 2−l.

After passing to a subsequence, we can assume that uy,rj converges to φ ∈
Ty(u) in L

1
loc(R

n).

Claim. If zj ∈ Sk
η0
(uy,rj ) and limj→∞ zj = z, then z ∈ Sk

η0
(φ).
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Proof of Claim. For any r ∈ (0, 1) and (k + 1)-homogeneous function h, we
have

∫

B1(0n)
|φz,r(x)− h(x)|dx ≥

∫

B1(0n)
|(uy,rj )zj ,r(x)− h(x)|dx

−

∫

B1(0n)
|φzj ,r(x)− (uy,rj )zj ,r(x)|dx

−

∫

B1(0n)
|φz,r(x)− φzj ,r(x)|dx.

Letting j → ∞, by Lemma 8.8, we obtain

∫

B1(0n)
|φz,r(x)− h(x)|dx ≥ η0,

which implies z ∈ Sk
η0
(φ). We complete the proof of Claim. □

Combining Claim and the property of Hausdorff measure, it is clear that

Hausl(Sk
η0
(φ) ∩B1(0

n)) ≥ lim
j→∞

Hausl∞(Sk
η0
(uy,rj ) ∩B1(0

n)) ≥ 2−l > 0,

as desired. □

Theorem 4.3. Let u be a F -subharmonic function on B2(0
n). Then for

any 1 ≤ k ≤ n, we have

dimH(Sk(u)) ≤ k.

Proof. We argue by contradiction. Suppose that Hausl(Sk(u)) > 0 for some
l > k. By Lemma 4.2, there exists y0 ∈ Sk(u) and φ0 ∈ Ty0

(u) such that
Hausl(Sk(φ0)) > 0. We assume that φ0 ism-homogeneous with respect tom-
plane V m

0 , where m ≤ k. By Lemma 4.2, Hausl(Sk(φ0)) > 0 and m ≤ k < l,
there exists y1 ∈ Sk(φ0) \ V

m
0 and φ1 ∈ Ty1

(φ0) such that Hausl(Sk(φ1)) >
0. By Lemma 4.1, we obtain that φ1 is (m+ 1)-homogeneous with re-
spect to (m+ 1)-plane V m+1

1 = span{V m
0 , y1}. Repeating this process, there

exist yk−m+1 ∈ Sk(φk−m) \ V k
k−m and φk−m+1 ∈ Tyk−m+1

(φk−m) such that
φk−m+1 is (k + 1)-homogeneous, which contradicts with the definition of
Sk(φk−m). □
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5. Rectifiability of Sk(u)

In this section, we prove the kth stratification Sk(u) is k-rectifiable when
uniqueness of tangents holds for F (i.e., Theorem 1.13). Let u be a F -
subharmonic function on B2(0

n) with ∥u∥L1(B1(0n)) ≤ Λ. First, we define

Fδ,η(u) = {x ∈ B2(0
n) | u is (0, δ, r, x)-homogeneous for any r ∈ (0, η)}.

For any x ∈
(

Fδ,η(u) ∩ Sk
ϵ (u)

)

\ Sk−1(u), where ϵ > 0, let φ be the unique
tangent to u at x. We assume φ is k-homogeneous with respect to k-plane
V k
φ . It then follows that ∥φ∥L1(B2(0n)) ≤ Λ1(Λ, F ).

Lemma 5.1. For any τ ∈ (0, 1), there exists rx such that for any r < rx,
we have

Fδ,1(ux,r) ⊂ B2τ (V
k
φ ),

where δ = δ(ϵ, 2τ,Λ1, F ) is the constant in Lemma 2.3.

Proof. We argue by contradiction, assuming that there exist {ri} and {zi}
such that limi→∞ ri = 0 and zi ∈ Fδ,1(ux,ri) \B2τ (V

k
φ ). It then follows that

there exists homogeneous function hi such that

∫

B1(0n)
|(ux,ri)zi,r(y)− hi(y)|dy ≤ δ

for any r ∈ (0, 1). Since ux,ri converges to φ in L1
loc(R

n), by Lemma 8.8,
after passing to a subsequence, we can assume that limi→∞ zi = z and hi
converges to h in L1

loc(B2(0
n)). For any r ∈ (0, 1), by Lemma 8.8, we have

∫

B1(0n)
|φz,r(y)− h(y)|dy ≤ lim

i→∞

∫

B1(0n)
|φz,r(y)− (ux,ri)zi,r(y)|dy

+ lim
i→∞

∫

B1(0n)
|(ux,ri)zi,r(y)− hi(y)|dy

+ lim
i→∞

∫

B1(0n)
|hi(y)− h(y)|dy

≤ δ

which implies z ∈ Fδ,1(φ) \B2τ (V
k
φ ). However, by Lemma 2.3 and x ∈ Sk

ϵ (u),

we get Fδ,1(φ) ⊂ Bτ (V
k
φ ), which is a contradiction. □
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Lemma 5.2. For any r ≤ rx, we have

Fδ,r(u) ∩Br(x) ⊂ B2τr(V
k
φ + x)

Proof. For any x+ rz ∈ Fδ,r(u) ∩Br(x), where z ∈ B1(0
n), there exists ho-

mogeneous function h such that for any s ∈ (0, r), we have

∫

B1(0n)
|ux+rz,s(y)− h(y)|dy ≤ δ

It then follows that

∫

B1(0n)
|(ux,r)z, s

r
(y)− h(y)|dy ≤ δ,

which implies z ∈ Fδ,1(ux,r). Combining this with Lemma 5.1, we have x+
rz ∈ B2τr(V

k
φ + x). □

Now, we are in a position to prove Theorem 1.13.

Proof of Theorem 1.13. For any η > 0 and x ∈
(

Fδ,η(u) ∩ Sk
ϵ (u)

)

\ Sk−1(u),
by Lemma 5.2, there exists rx ≤ η such that for any r < rx, we have Fδ,r(u) ∩
Br(x) ⊂ B2τr(V

k
φ + x), which implies

((

Fδ,η(u) ∩ Sk
ϵ (u)

)

\ Sk−1(u)
)

∩Br(x) ⊂ B2τr(V
k
φ + x).

Hence,
(

Fδ,η(u) ∩ Sk
ϵ (u)

)

\ Sk−1(u) is k-rectifiable (see e.g. [32, p.61, Lemma
1]). Since uniqueness of tangents holds for F , we have Sk

ϵ (u) = ∪η(Fδ,η(u) ∩
Sk
ϵ (u)). By (1.2), it then follows that

Sk(u) \ Sk−1(u) =
⋃

ϵ

(

Sk
ϵ (u) \ S

k−1(u)
)

=
⋃

ϵ

⋃

η

((

Fδ,η(u) ∩ Sk
ϵ (u)

)

\ Sk−1(u)
)

,

which implies Sk(u) \ Sk−1(u) is k-rectifiable. On the other hand, since
uniqueness of tangents holds for F implies homogeneity of tangents holds
for F , by (3) of Theorem 1.12, we have Hausk(Sk−1(u)) = 0. It then follows
that Sk−1(u) is k-rectifiable. Hence, Sk(u) =

(

Sk(u) \ Sk−1(u)
)

∪ Sk−1(u) is
k-rectifiable. □
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6. F -subharmonic functions

In this section, we consider the singular sets of F -subharmonic functions
and give the proof of Theorem 1.14. We assume that strong uniqueness of
tangents holds for F and p > 2, where p is the Riesz characteristic of F .
By [21, Proposition 7.1 and (12.3)], all density functions are equivalent, i.e.,
ΘM = ΘS = n−p+2

n
ΘV . For convenience, if u is a F -subharmonic function

on B2(0
n), we use Ec(u) to denote the set {x ∈ B2(0

n) | ΘV (u, x) ≥ c} in
this section.

6.1. Monotonicity condition and F -energy

In this subsection, we introduce the monotonicity condition and F -energies
of F -subharmonic functions. And then we prove every F -subharmonic func-
tion satisfies monotonicity condition after subtracting a constant.

Definition 6.1. Let u be a F -subharmonic function on B2(0
n). We say

that u satisfies monotonicity condition if F -energy defined by

θF (u, x, r) :=
S(u, x, r)

Kp(r)
+
M(u, x, r)

Kp(r)

is nondecreasing in r ∈ (0, 12) for any x ∈ B1(0
n). And we define θF (u, x, 0) =

limr→0 θF (u, x, r)

Lemma 6.2. Let u be a F -subharmonic function on B2(0
n) with

∥u∥L1(B2(0n)) ≤ Λ. Then there exists constant N(Λ, p, n) such that u−N
satisfies monotonicity condition.

Proof. For any x ∈ B1(0
n), since S(u, x, ·) is Kp-convex on (0, 1) (see [21,

Theorem 6.4]). Then we have

S(u, x, r) = f(Kp(r)),

where f is a convex function on (−∞,−1). It follows that

(6.1) f ′+(Kp(
1

2
)) ≤

f(Kp(
2
3))− f(Kp(

1
2))

Kp(
2
3)−Kp(

1
2)

=
S(u, x, 23)− S(u, x, 12)

Kp(
2
3)−Kp(

1
2)

.
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Since F -subharmonic function is subharmonic (see [21, (6.3)]), by
∥u∥L1(B2(0n)) ≤ Λ, Lemma 8.5 and the submean value property, we see that

(6.2) − C(Λ, n) ≤ S(u, x, r) ≤ C(Λ, n) for r ∈

(

0,
4

5

)

,

where C(Λ, n) is a constant. Substituting (6.2) into (6.1), it is clear that

(6.3) f ′+

(

Kp

(

1

2

))

≤ Ñ(Λ, p, n),

where Ñ(Λ, p, n) is a constant. Using (6.2), (6.3) and Kp(
1
2) < 0, there exists

a constant N(Ñ ,Λ, p) such that

f

(

1

2

)

− f ′+

(

Kp

(

1

2

))

Kp

(

1

2

)

= S

(

u, x,
1

2

)

− f ′+

(

Kp

(

1

2

))

Kp

(

1

2

)

≤ N(Ñ ,Λ, p).

Figure 1 is the graph of f on (−∞,Kp(
1
2)). The red line is tangent line

of f at Kp(
1
2).

Figure 1.

In Figure 2, by the convexity of f , the slope of line 1 is larger than that
of line 2. It follows that

f(Kp(r))−N

Kp(r)− 0
≥
f(Kp(s))−N

Kp(s)− 0
for 0 < s < r <

1

2
.
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Figure 2.

Hence,

S(u−N, x, r)

Kp(r)
=
S(u, x, r)−N

Kp(r)

is nondecreasing in r ∈ (0, 12). Similarly, by increasing the value of N (if

necessary), we can prove M(u−N,x,r)
Kp(r)

is also nondecreasing. □

Remark 6.3. In [21], Harvey-Lawson proved the same result except for
the dependence of the constants on L1 norm (see [21, Lemma 5.4]).

6.2. Quantitative rigidity results

In this subsection, we prove some quantitative rigidity results of F -
subharmonic functions.

Lemma 6.4. Let ui and u be F -subharmonic functions on B2(0
n). For

c > 0, if ui converges to u in L1
loc(B2(0

n)) and xi converges to x, where

xi ∈ Ec(ui) ∩B1(0n), then

x ∈ Ec(u) ∩B1(0n).
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Proof. For any t > 0, we compute

|V (u, x, t)− V (ui, xi, t)|

≤
1

ωntn

∫

Bt(xi)
|u(y)− ui(y)|dy

+
1

ωntn

∣

∣

∣

∣

∣

∫

Bt(x)
u(y)dy −

∫

Bt(xi)
u(y)dy

∣

∣

∣

∣

∣

≤
1

ωntn

∫

B1+t(0n)
|u(y)− ui(y)|dy

+
1

ωntn

∣

∣

∣

∣

∣

∫

Bt(x)
u(y)dy −

∫

Bt(xi)
u(y)dy

∣

∣

∣

∣

∣

.

which implies

lim
i→∞

V (ui, xi, t) = V (u, x, t).

Therefore, for any 0 < s < r < 1
2 , we obtain

V (u, x, r)− V (u, x, s)

Kp(r)−Kp(s)
= lim

i→∞

V (ui, xi, r)− V (ui, xi, s)

Kp(r)−Kp(s)
≥ c,

where we used the condition xi ∈ Ec(ui) ∩B1(0n). By the definition of den-
sity function ΘV (see [21, Corollary 5.3]), we obtain Θ(u, x) ≥ c. This com-
pletes the proof. □

Lemma 6.5. Let u be a F -subharmonic function on B2(0
n) with

∥u∥L1(B2(0n)) ≤ Λ and satisfies monotonicity condition. For any ϵ > 0, there
exists constant δ0(ϵ,Λ, F ) such that if

θF

(

u, 0n,
1

2

)

− θF (u, 0
n, δ0) < δ0,

then u is (0, ϵ, 2, 0n)-homogeneous.

Proof. We argue by contradiction. Assuming that there exists a sequence of
F -subharmonic function ui on B2(0

n) such that

(1) ∥ui∥L1(B2(0n)) ≤ Λ;

(2) ui satisfies monotonicity condition;

(3) θF (ui, 0
n, 12)− θF (ui, 0

n, i−1) < i−1;
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(4) ui is not (0, ϵ, 2, 0
n)-homogeneous.

By Lemma 2.2, after passing to a subsequence, we can assume ui converges
to u in L1

loc(B2(0
n)), where u is a F -subharmonic function. By [21, Lemma

6.5] (or Lemma 8.6), it is clear that u also satisfies monotonicity condition.
For each t ∈ (0, 12), we obtain

θF (u, 0
n,

1

2
)− θF (u, 0

n, t) =
S(u, 0n, 12)

Kp(
1
2)

−
S(u, 0n, t)

Kp(t)

+
M(u, 0n, 12)

Kp(
1
2)

−
M(u, 0n, t)

Kp(t)

= lim
i→∞

(

θF (ui, 0
n,

1

2
)− θF (ui, 0

n, t)

)

≤ 0,

which implies

S(u, 0n, r) = ΘS(u, 0n)Kp(r) and M(u, 0n, r) = ΘM (u, 0n)Kp(r)

for any r ∈ (0, 12), where ΘS and ΘM are S-density and M -density (see [21,
Section 6]). Since strong uniqueness holds for u, then ΘS = ΘM (see [21,
(12.3)]). It follows that

S(u, 0n, r) =M(u, 0n, r).

Hence, for each sphere ∂Br(0
n), its average is equal to its maximum. Then

we have

u(x) = ΘS(u, 0n)Kp(r) for x ∈ ∂Br(0
n),

which implies

u(x) = ΘS(u, 0n)Kp(|x|) for x ∈ B 1

2

(0n).

However, ui converges to u in L1
loc(B2(0

n)). Thus, ui are (0, ϵ, 2, 0n)-
homogenous when i is sufficiently large, which is a contradiction. □

Lemma 6.6. Let u be a F -subharmonic function on B2(0
n) with

∥u∥L1(B2(0n)) ≤ Λ. For any c > 0, there exists constant ϵ(c,Λ, F ) such that
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if u is (0, ϵ, 1, 0n)-homogenous, then

Ec(u) ∩A 1

16
, 1
4

= ∅,

where A 1

16
, 1
4

= {x ∈ Rn | 1
16 ≤ |x| ≤ 1

4}.

Proof. We argue by contradiction, assuming that there exists a sequence of
F -subharmonic functions ui on B2(0

n) such that

(1) ∥ui∥L1(B2(0n)) ≤ Λ;

(2) ui is (0, i
−1, 1, 0n)-homogeneous;

(3) there exists point xi ∈ Ec(ui) ∩A 1

16
, 1
4

.

By Lemma 2.2), after passing to a subsequence, we can assume ui converges
to u in L1

loc(B2(0
n)) and xi converges to x, where u is a F -subharmonic

function. By (2), Lemma 8.1 and strong uniqueness holds for F , then there
exists a constant Θ ≥ 0 such that

(6.4) u(x) = ΘKp(|x|) in B1(0
n).

By (3) and Lemma 6.4, we have x ∈ Ec(u) ∩A 1

16
, 1
4

, which contradicts with

(6.4). □

Remark 6.7. In [21], Harvey and Lawson proved the discreteness of Ec(u)
(see [21, Theorem 14.1, Theorem 14.1’]). As an immediate corollary of
Lemma 6.5, Lemma 6.6 and scaling argument, we also prove that every point
in Ec(u) is isolated, which gives another proof of discreteness of Ec(u).

6.3. Proof of Theorem 1.14

First, we have the following lemma.

Lemma 6.8. Let u be a F -subharmonic function on B2(0
n) with

∥u∥L1(B2(0n)) ≤ Λ. For any x ∈ B1(0
n), r ∈ (0, 12), there exists constant

N(Λ, F ) such that
∫

B1(0n)
|ux,r(y)|dy ≤ N.
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Proof. Without loss of generality, we assume u ≤ 0 on B 3

2

(0n). Since

V (u, x, ·) is Kp-convex, we have

V (u, x, 1)− V (u, x, r)

Kp(1)−Kp(r)
≤
V (u, x, 1)− V (u, x, 12)

Kp(1)−Kp(
1
2)

≤ C(Λ, p, n),

which implies

V (u, x, r)

Kp(r)
≤
V (u, x, 1)

Kp(r)
+ C(Λ, p, n)

Kp(r)−Kp(1)

Kp(r)
≤ N(Λ, n, p).

Since u ≤ 0 on B 3

2

(0n), it then follows that

∫

B1(0n)
|ux,r(y)|dy = −

∫

B1(0n)
ux,r(y)dy = ωn

V (u, x, r)

Kp(r)
≤ N(Λ, n, p),

as desired. □

Now, we are in the position to prove Theorem 1.14.

Proof of Theorem 1.14. We split up into two cases.

Case 1. u satisfies monotonicity condition.

For convenience, we let S0 denote # (Ec(u) ∩B1(0
n)). And we will ob-

tain an upper bound of S0 by induction argument.
For i = 1, we consider the covering {B2−1(xj)} of Ec(u) ∩B1(0

n) such
that

(1) xj ∈ Ec(u) ∩B1(0
n);

(2) B2−2(xj) are disjoint.

In this covering, there exists a ball containing the largest number of points
in Ec(u) ∩B1(0

n) (say B2−1(x1), contains S1 points in Ec(u) ∩B1(0
n)).

If S1 = S0, we put T1 = 0, otherwise put T1 = 1. If T1 = 1, by (2) and
the definition of S1, it is clear that

2−2nS0 ≤ S1 < S0.

Furthermore, in this case, we have

(Ec(u) ∩B1(0
n)) ∩

(

B2(x1) \B 1

2

(x1)
)

̸= ∅.

We repeat this process by covering Ec(u) ∩B2−i(xi) with balls of radius
2−i−1. Since Ec(u) ∩B1(0

n) is discrete, there exists i0 ∈ Z+ such that Si0 =
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1. We define

I := {0 ≤ i ≤ i0 | Ti = 1}.

Then we obtain

(6.5) S0 ≤ (22n)|I|.

In order to get an upper bound of |I|, we consider the point xi0 . For any
i ∈ I, by construction, we have

(Ec(u) ∩B1(0
n)) ∩ (B2−i+1(xi0) \B2−i−1(xi0)) ̸= ∅,

which implies

(6.6) Ec(uxi0
,2−i+3) ∩A 1

16
, 1
4

̸= ∅.

We claim that

(6.7) θ

(

uxi0
,2−i+2 , 0n,

1

2

)

− θ(uxi0
,2−i+2 , 0n, δ0) ≥ δ0,

where δ0(ϵ, c,N, F ), ϵ(c,N, F ) and N(Λ, F ) are the constants in Lemma 6.5,
Lemma 6.6 and Lemma 6.8, respectively.

If (6.7) is false, then we have

θ

(

uxi0
,2−i+2 , 0n,

1

2

)

− θ(uxi0
,2−i+2 , 0n, δ0) < δ0.

By Lemma 6.5, uxi0
,2−i+2 is (0, ϵ, 2, 0n)-homogenous. It follows that uxi0

,2−i+3

is (0, ϵ, 1, 0n)-homogenous. Combining this with Lemma 6.6, we obtain

Ec(uxi0
,2−i+3) ∩A 1

16
, 1
4

= ∅,

which contradicts with (6.6).
By (6.7), for any i ∈ I, we have

θ(u, xi0 , 2
−i+1)− θ(u, xi0 , 2

−i+2δ0) ≥ δ0.

Since F -subharmonic function is subharmonic (see [21, (6.3)]), by Lemma
8.5, it is clear that

θ

(

u, xi0 ,
1

2

)

− θ(u, xi0 , 0) ≤ L(Λ, p, n),
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which implies

(6.8) |I| ≤ C(L, δ0).

Combining (6.5) and (6.8), we get the desired estimate.

Case 2. u does not satisfies monotonicity condition.

By Lemma 6.2, we obtain u−N satisfies monotonicity condition. By
Case 1, we have

# (Ec(u) ∩B1(0
n)) ≤ C(c,Λ, F ).

By the definition of Ec(u), it is clear that Ec(u) = Ec(u−N). This com-
pletes the proof. □

7. G-plurisubharmonic functions

In this section, we study the singular sets of G-plurisubharmonic functions
and give the proof of Theorem 1.15. For G, we use F (G) to denote the
associated subequation (see (1.1)). We note that the Riesz characteristic of
F (G) is p (see [21, (4.8)]). Without loss of generality, we assume that G is
a smooth submanifold of G(p,Rn) (see Remark 1.16).

7.1. G-energy

In this subsection, we introduce the G-energies of G-plurisubharmonic func-
tions. And then we prove a property of G-energy.

Definition 7.1. Let u be a G-plurisubharmonic function on B2R(0
n). For

any x ∈ BR(0
n) and r ∈ (0, R), the G energy of u is defined by

θG(u, x, r) =

∫

G

S′
−(u|W+x, x, r)

K ′
p(r)

dW +

∫

G

M ′
−(u|W+x, x, r)

K ′
p(r)

dW

+
M ′

−(u, x, r)

K ′
p(r)

.

where Kp is the Riesz kernel. We define θG(u, x, 0) = limr→0 θG(u, x, r).

Since u is G-plurisubharmonic, S(u|W+x, x, ·), M(u|W+x, x, ·) are Kp-
convex for any W ∈ G and x ∈ B1(0

n). It is clear that θG(u, x, r) is nonde-
creasing function in r.
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Lemma 7.2. Let u be a G-plurisubharmonic function on BR(0
n). Then for

any 0 < a < b < R, there exists constant C(a, b,G) such that

∫

G

∥u|W ∥L1(Aa,b∩W )dW ≤ C∥u∥L1(Aa,b),

where Aa,b = {x ∈ Rn|a ≤ |x| ≤ b}.

Proof. For any 0 < a < b < R, we define

Ea,b := {(W,x) ∈ G×Aa,b | x ∈W}.

Thus, Ea,b
σ

−→ G and Ea,b
π

−→ Aa,b are fiber bundles, where σ and π are
projections onto the first and second factor (see [22, p.2196]). We consider
the pull back function π⋆u on Ea,b. Since the fiber bundle is locally a product
space, then there exists constants Cσ(a, b,G) and Cπ(a, b,G) such that

∫

G

∥u|W ∥L1(Aa,b∩W )dW =

∫

G

∫

Aa,b∩W
|u|W (x)|dxdW

≤ Cσ

∫

Ea,b

|u|W (x)|dVEa,b

= Cσ

∫

Ea,b

|(π⋆u)(W,x)|dVEa,b

≤ CσCπ

∫

Aa,b

|u(x)|dx,

where dVEa,b
is the volume form on Ea,b. □

Lemma 7.3. Let u be a G-plurisubharmonic function on B2(0
n) with

∥u∥L1(B2(0n)) ≤ Λ. Then for any x ∈ B1(0
n), there exists constant C(G) such

that

θG

(

u, x,
1

2

)

≤ C(G)Λ.
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Proof. Since S(u|W+x, x, ·) and M(u|W+x, x, ·) are Kp-convex, we have

θG

(

u, x,
1

2

)

=

∫

G

S′
−(u|W+x, x,

1
2)

K ′
p(

1
2)

dW(7.1)

+

∫

G

M ′
−(u|W+x, x,

1
2)

K ′
p(

1
2)

dW +
M ′

−(u, x,
1
2)

K ′
p(

1
2)

≤

∫

G

S(u|W+x, x,
2
3)− S(u|W+x, x,

1
2)

Kp(
2
3)−Kp(

1
2)

dW

+

∫

G

M(u|W+x, x,
2
3)−M(u|W+x, x,

1
2)

Kp(
2
3)−Kp(

1
2)

dW

+
M(u, x, 23)−M(u, x, 12)

Kp(
2
3)−Kp(

1
2)

.

By the submean value property of subharmonic functions, it is clear that

(7.2) S

(

u|W+x, x,
2

3

)

≤M

(

u|W+x, x,
2

3

)

≤
3p

ωp
∥u|W+x∥L1((A 1

3
,1
∩W )+x),

where ωp is the volume of unit ball in Rp. Combining (7.1), (7.2), Lemma
7.2 and Lemma 8.5, we obtain

θG

(

u, x,
1

2

)

≤

∫

G

S(u|W+x, x,
2
3)− S(u|W+x, x,

1
2)

Kp(
2
3)−Kp(

1
2)

dW

+

∫

G

M(u|W+x, x,
2
3)−M(u|W+x, x,

1
2)

Kp(
2
3)−Kp(

1
2)

dW

+
M(u, x, 23)−M(u, x, 12)

Kp(
2
3)−Kp(

1
2)

≤ C

∫

G

∥u|W+x∥L1((A 1
3
,1
∩W )+x)dW + CΛ

≤ C∥u∥L1(A 1
3
,1
+x) + CΛ

≤ CΛ,

where C depends only on G. □

7.2. Quantitative rigidity theorem

In this subsection, we prove quantitative rigidity theorem of G-
plurisubharmonic functions.
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Lemma 7.4. Let {ui} be a sequence of G-plurisubharmonic functions on
BR(0

n) with ∥ui∥L1(BR(0n)) ≤ Λ. Then there exists a subsequence {uik} such
that uik converges to u in L1

loc(BR(0
n)), where u is a G-plurisubharmonic

function. And for almost every W ∈ G, uik converges to u in L1(Aa,b ∩W )
for any 0 < a < b < R. In particular, for every r ∈ (0, R), we have

lim
k→∞

S(uik |W , 0
p, r) = S(u|W , 0

p, r)

and

lim
k→∞

M(uik |W , 0
p, r) =M(u|W , 0

p, r)

for almost every W ∈ G, where 0p is the origin in Rp.

Proof. By Lemma 2.2, there exists a subsequence {uik} such that uik con-
verges to u in L1

loc(BR(0
n)), where u is a G-plurisubharmonic function.

For any 0 < a < b < R, recalling Ea,b
π

−→ Aa,b is a fiber bundle, we con-
sider the pull back function π⋆uik and π⋆u on Ea,b. Since uik converges to u
in L1(Aa,b), we have π⋆uik converges to π⋆u in L1(Ea,b), i.e.,

lim
k→∞

∫

Ea,b

|π⋆uik − π⋆u| = 0,

which implies

lim
k→∞

∫

G

∫

Aa,b∩W
|uik(x)− u(x)|dxdW = 0.

By Fatou’s Lemma, we have

∫

G

lim
k→∞

∫

Aa,b∩W
|uik(x)− u(x)|dxdW

≤ lim
k→∞

∫

G

∫

Aa,b∩W
|uik(x)− u(x)|dxdW = 0.

Thus, for almost every W ∈ G, we obtain

lim
k→∞

∫

Aa,b∩W
|uik(x)− u(x)|dx = 0,

which implies uik |W converges to u|W in L1(Aa,b ∩W ). Since uik |W and u|W
are subharmonic functions on Aa,b ∩W , for any r ∈ (a, b), by Lemma 8.6,
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we obtain

lim
k→∞

S(uik |W , 0
p, r) = S(u|W , 0

p, r)

and

lim
k→∞

M(uik |W , 0
p, r) =M(u|W , 0

p, r)

for almost every W ∈ G. □

In order to prove quantitative rigidity theorem, we split up into different
cases. First, we consider the case p > 2.

Theorem 7.5 (Quantitative rigidity theorem, p > 2). For any ϵ, λ >
0, there exists constant δ0(ϵ, λ,G) such that if u is a G-plurisubharmonic
function on Bδ−1

0
(0n) and satisfies

(1) ∥u∥L1(Br(0n)) ≤ λrn−p+2, for any r ∈ (0, δ−1
0 );

(2) θG(u, 0
n, δ−1

0 )− θG(u, 0
n, δ0) ≤ δ0,

then u is (0, ϵ, 1, 0n)-homogeneous.

Proof. We argue by contradiction, assuming that there exists a sequence of
G-plurisubharmonic functions ui on Bi(0

n) such that

(1) ∥ui∥L1(Br(0n)) ≤ λrn−p+2, for any r ∈ (0, i);

(2) θG(ui, 0
n, i)− θG(ui, 0

n, i−1) ≤ i−1;

(3) ui is not (0, ϵ, 1, 0
n)-homogeneous.

By Lemma 7.4, there exists a subsequence {uik} such that uik converges to
u in L1

loc(R
n), where u is a G-plurisubharmonic function on Rn. And for

any r > 0, we have

lim
k→∞

S(uik |W , 0
p, r) = S(u|W , 0

p, r)

and

lim
k→∞

M(uik |W , 0
p, r) =M(u|W , 0

p, r)

for almost every W ∈ G.
Since S(u|W , 0

p, ·) andM(u|W , 0
p, ·) areKp-convex functions, combining

this with Fatou’s Lemma, Lemma 7.4 and Lemma 8.4, for almost any r >
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t > 0, we obtain

θG(u, 0
n, r)− θG(u, 0

n, t)

=

∫

G

lim
k→∞

(

S′
−(uik |W , 0

p, r)

K ′
p(r)

−
S′
−(uik |W , 0

p, t)

K ′
p(t)

)

dW

+

∫

G

lim
k→∞

(

M ′
−(uik |W , 0

p, r)

K ′
p(r)

−
M ′

−(uik |W , 0
p, t)

K ′
p(t)

)

dW

+ lim
k→∞

(

M ′
−(uik , 0

p, r)

k′p(r)
−
M ′

−(uik , 0
p, t)

k′p(t)

)

≤

∫

G

lim
k→∞

(

S′
−(uik |W , 0

p, ik)

K ′
p(ik)

−
S′
−(uik |W , 0

p, i−1
k )

K ′
p(i

−1
k )

)

dW

+

∫

G

lim
k→∞

(

M ′
−(uik |W , 0

p, ik)

K ′
p(ik)

−
M ′

−(uik |W , 0
p, i−1

k )

K ′
p(i

−1
k )

)

dW

+ lim
k→∞

(

M ′
−(uik , 0

p, ik)

k′p(ik)
−
M ′

−(uik , 0
p, i−1

k )

k′p(i
−1
k )

)

≤ lim
k→∞

(

θG(uik , 0
n, ik)− θG(uik , 0

n, i−1
k )
)

≤ 0.

By the monotonicity of θG(u, 0
n, ·), we have

θG(u, 0
n, r) = θG(u, 0

n, 0),

for any r > 0. It then follows that

(7.3) S(u|W , 0
p, r) = Θ(u|W , 0

p)Kp(r) + CS(W )

and

(7.4) M(u|W , 0
p, r) = Θ(u|W , 0

p)Kp(r) + CM (W )

for almost every W ∈ G, where

Θ(u|W , 0
p) = ΘS(u|W , 0

p) = ΘM (u|W , 0
p) (see [21, (12.3)]).
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By (7.3), for any b > a > 0, we obtain

∫

(Bb(0n)\Ba(0n))∩W
∆(u|W ) =

∫

Bb(0n)∩W
∆(u|W )−

∫

Ba(0n)∩W
∆(u|W )

= C(p)

(

S′
−(u|W , 0

p, b)

K ′
p(b)

−
S′
−(u|W , 0

p, a)

K ′
p(a)

)

= 0,

where we used S′
−(u|W , 0

n, r) = C(p)K ′
p(r)

∫

Br(0n)∆(u|W ) for any r > 0 (see

e.g. [24, Theorem 3.2.16] or [21, (7.8)]). It then follows that u|W is harmonic
on W \ {0p}. By Harnack’s inequality and (7.4), it is clear that

(7.5) lim sup
x→0p

|x|p−2|u|W (x)| < +∞.

Combining Theorem 10.5 in [1] and (7.5), we get

(7.6) u|W (x) = Θ(u|W , 0
p)Kp(|x|) + hW (x)

on W , where hW is a harmonic function on W . By (7.4) and (7.6), we have

M(hW , 0
p, r) = CM (W ),

for any r > 0. By Strong Maximum Principle, we conclude that hW =
CM (W ). It then follows that u|W = Θ(u|W , 0

p)Kp + CM (W ) for almost ev-
ery W ∈ G. Combining Lemma 7.2 and (1), by scaling, we obtain

∫

G

∫

Ar,2r∩W
|u|W |dW ≤ C(G)rp−n

∫

Ar,2r

|u(x)|dx ≤ C(G)λr2,

which implies
∫

G

∫

Ar,2r∩W
| −Θ(u|W , 0

p)|x|2−p + CM (W )|dW ≤ C(G)λr2.

It then follows that
(
∫

G

|CM (W )|dW

)

rp ≤ C(G)

(
∫

G

Θ(u|W )dW + λ

)

r2.

Since p > 2 and r is arbitrary, we have
∫

G

|CM (W )|dW = 0.
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Therefore, it is clear that u|W = Θ(u|W , 0
p)Kp for almost every W ∈ G.

Recalling u is a subharmonic function on Rn, we get u is 0-homogeneous.
However, uik converges to u in L1

loc(B2(0
n)). Then uik are (0, ϵ, 1, 0n)-

homogeneous when k is sufficiently large, which is a contradiction. □

Next, we prove quantitative rigidity theorem for the case p = 2. First,
we need the following lemma.

Lemma 7.6. Let u be a G-subharmonic function on B2(0
n). If p = 2, then

ΘM (u|W , 0
2) = ΘM (u, 0n),

for almost every W ∈ G.

Proof. Let φ be a tangent to u at 0n. Then there exists a sequence {ri}
such that limi→∞ ri = 0 and u0n,ri converges to φ in L1

loc(R
n). For almost

every W ∈ G. By Lemma 7.4, we obtain that u0n,ri |W converges to φ|W
in L1(A1,2 ∩W ). On the other hand, for any non-polar plane W ∈ G (for
definition of non-polar plane, see [22, p.2194]), by passing to a subsequence,
we can assume (u|W )02,ri converges to ψ in L1

loc(R
2), where ψ ∈ T02(u|W ).

By the definition of the tangential 2-flow, it is clear that

(u0n,ri)|W (x)− (u|W )02,ri(x) =M(u|W , 0
2, ri)−M(u, 0n, ri),

for almost every x ∈ A1,2 ∩W . Since the left hand side converges to (φ|W −
ψ) in L1(A1,2 ∩W ) and the right hand side is independent of x, then we
obtain

lim
i→∞

(

M(u|W , 0
2, ri)−M(u, 0n, ri)

)

= C,

where C is a constant. It then follows that

ΘM (u|W , 0
2)−ΘM (u, 0n) = lim

i→∞

(

M(u|W , 0
2, ri)

K2(ri)
−
M(u|W , 0

n, ri)

K2(ri)

)

= 0,

as required. □

Theorem 7.7 (Quantitative rigidity theorem, p = 2). For any ϵ, λ >
0, there exists constant δ0(ϵ, λ,G) such that if u is a G-plurisubharmonic
function on Bδ−1

0
(0n) and satisfies

(1) ∥u∥L1(Br(0n)) ≤ λrn(| log r|+ 1), for any r ∈ (0, δ−1
0 );

(2) M(u, 0n, 1) = 0;
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(3) θG(u, 0
n, δ−1

0 )− θG(u, 0
n, δ0) ≤ δ0,

then u is (0, ϵ, 1, 0n)-homogeneous.

Proof. We argue by contradiction, assuming that there exists a sequence of
G-plurisubharmonic functions ui on Bi(0

n) such that

(1) ∥ui∥L1(Br(0n)) ≤ λrn(| log r|+ 1), for any r ∈ (0, i);

(2) M(ui, 0
n, 1) = 0;

(3) θG(ui, 0
n, i)− θG(ui, 0

n, i−1) ≤ i−1;

(4) ui is not (0, ϵ, 1, 0
n)-homogeneous.

By Lemma 2.2, there exists a subsequence {uik} such that uik converges
to u in L1

loc(R
n), where u is a G-plurisubharmonic function on Rn. By (2)

and Lemma 8.6, we obtain M(u, 0n, 1) = 0. Combining this and the similar
argument in Theorem 7.5, for any r > 0, we have

θG(u, 0
n, r) = θG(u, 0

n, 0),

which implies

M(u, 0n, r) = ΘM (u, 0n)K2(r)

and

u|W = ΘM (u|W , 0
2)K2 + CW ,

for almost every W ∈ G, where CW is a constant on W . By Lemma 7.6, we
obtain

u|W = ΘM (u, 0n)K2 + CW .

For x ∈W , by definition of tangential 2-flow, it is clear that

u0n,r(x) = u(rx)−M(u, 0n, r)

= ΘM (u, 0n)K2(rx) + CW −ΘM (u, 0n)K2(r)

= u(x).

It then follows that u0n,r(x) = u(x) for almost every x ∈ Rn. Since u0n,r

and u are subharmonic functions. We obtain that u0n,r = u for any r > 0.
Then u is 0-homogeneous. When k is sufficiently large, uik is (0, ϵ, 1, 0n)-
homogeneous, which contradicts with (4). □
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7.3. Covering lemma and decomposition lemma

Let u be a G-plurisubharmonic function on B2(0
n) with ∥u∥L1(B2(0n)) ≤ Λ.

First, we introduce the following definitions.

Definition 7.8. For any ϵ > 0, t ≥ 1 and 0 < r < 1, we define

Ht,r,ϵ = {x ∈ B1(0
n) | Nt(u,Br(x)) > ϵ}

and

Lt,r,ϵ = {x ∈ B1(0
n) | Nt(u,Br(x)) ≤ ϵ},

where

Nt(u,Br(x)) = inf{δ > 0 | u is (0, δ, tr, x)-homogeneous}.

Definition 7.9. For any x ∈ B1(0
n) and γ ∈ (0, 1), we define j-tuple

T j(x) = (T j
1 (x), T

j
2 (x), . . . , T

j
j (x)) by

T j
i (x) =

{

1 if x ∈ Hγ−1,γi,ϵ

0 if x ∈ Lγ−1,γi,ϵ

for all 1 ≤ i ≤ j, where ϵ = ϵ(η, γ,Λ,G) is the constant in Lemma 7.13 and
γ > 0 is a constant to be determined later.

Definition 7.10. For any j-tuple T j , we define

ET j = {x ∈ B1(0
n) | T j(x) = T j}.

Next, for each ET j ̸= ∅, we define a collection of sets {Ck
η,γj (T j)} by in-

duction, where Ck
η,γj (T j) is the union of balls of radius γj . For j = 0, we put

Ck
η,γ0(T j) = B1(0

n). Assume that Ck
η,γj−1(T j−1) has been defined and satis-

fies Sk
η,γj (u) ∩ ET j ⊂ Ck

η,γj−1(T j−1), where T j−1 is the (j − 1)-tuple obtained

from T j by dropping the last entry. For each ball Bγj−1(x) of Ck
η,γj−1(T j−1),

take a minimal covering of Bγj−1(x) ∩ Sk
η,γj (u) ∩ ET j by balls of radius γj

with centers in Bγj−1(x) ∩ Sk
η,γj (u) ∩ ET j . Define the union of all balls so

obtained to be Ck
η,γj (T j).
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Lemma 7.11. For any x ∈ B1(0
n), s ∈ (0, 12) and r ∈ (0, 12s

−1), there ex-
ists constant N(Λ, p, n) such that

∫

Br(0n)
|ux,s(y)|dy ≤

{

Nrn−p+2 when p > 2

Nrn(| log r|+ 1) when p = 2.

Proof. Without loss of generality, we assume u ≤ 0 on B 3

2

(0n). When p > 2,

since V (u, x, ·) is Kp-convex, we have

0 ≤
V (u, x, 1)− V (u, x, rs)

Kp(1)−Kp(rs)
≤
V (u, x, 1)− V (u, x, 12)

Kp(1)−Kp(
1
2)

≤ C(Λ, p, n),

which implies

V (u, x, rs)

Kp(rs)
≤
V (u, x, 1)

Kp(rs)
+ C(Λ, p, n)

Kp(rs)−Kp(1)

Kp(rs)
≤ N(Λ, p, n).

Since u ≤ 0 on B 3

2

(0n), it then follows that

∫

Br(0n)
|ux,s(y)|dy = −

∫

Br(0n)
ux,s(y)dy = ωp

V (u, x, rs)

Kp(rs)
rn−p+2 ≤ Nrn−p+2.

When p = 2, by similar calculations, we have

(7.7) |M(ux,s, 0
n, r)| =

M(u, x, sr)−M(u, x, s)

K2(sr)−K2(s)
| log r| ≤ C(Λ, n)| log r|.

By Harnack’s inequality (see [21, (7.10)]), we obtain

S(ux,s, 0
n, r) ≥ C

(

M
(

ux,s, 0
n,
r

2

)

−M(ux,s, 0
n, r)

)

+M(ux,s, 0
n, r)

≥ −C| log r|,

which implies

(7.8) V (ux,s, 0
n, r) = n

∫ 1

0
S(ux,s, 0

n, rt)tn−1dt ≥ −C(| log r|+ 1).
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Combining (7.7) and (7.8), it is clear that

∫

Br(0n)
|ux,s(y)|dy =

∫

Br(0n)
(M(ux,s, 0

n, r)− ux,s(y))dy

+

∫

Br(0n)
|M(ux,s, 0

n, r)|dy

≤ Crn(| log r|+ 1),

as desired. □

Lemma 7.12. For all ϵ, τ , γ > 0, there exists constant δ(ϵ, τ, γ,Λ,G) with
the following property. For any r ≤ 1, if x ∈ Lγ−1,γr,δ(u), then there exists
nonnegative integer l ≤ n such that

(1) u is (l, ϵ, r, x)-homogeneous with respect to k-plane V k
u,x;

(2) Lγ−1,γr,δ ∩Br(x) ⊂ Bτr(V
k
u,x).

Proof. First, we define δ[l] by induction. We put δ[n] = ϵ
2 . Then we define

δ[l] = δ(τ, δ[l+1], N(Λ,G),G), where δ and N are the constants in Lemma
2.3 and Lemma 7.11, respectively. Let us put δ < δ[0]. Then δ < δ[0] ≤ δ[1] ≤
· · · ≤ δ[n] = ϵ

2 . Since x ∈ Lγ−1,γr,δ(u), we have u is (0, δ[0], r, x)-homogeneous.

Then there exists a largest l such that u is (l, δ[l], r, x)-homogeneous, which
implies ux,r is (l, δ[l], 1, 0n)-homogeneous at 0n.

If there exists y ∈
(

Lγ−1,γr,δ ∩Br(x)
)

\Bτr(V
l
u,x), then ỹ = 1

r
(y − x) ∈

B1(0
n) \Bτ (V

l
ux,r,0n) and ux,r is (l, δ[l], 1, ỹ)-homogeneous. By Lemma 2.3,

we obtain ux,r is (l + 1, δ[l+1], 1, 0n)-homogeneous, which implies u is (l +
1, δ[l+1], r, x)-homogeneous, which contradicts with our assumption that l is
the largest one. □

Lemma 7.13 (Covering lemma). There exists constant ϵ(η, γ,Λ,G) such
that if x ∈ Lγ−1,γj ,ϵ and Bγj−1(x) is a ball of Ck

η,γj−1(T j−1), then the number

of balls in the minimal covering of Bγj−1(x) ∩ Sk
η,γj (u) ∩ Lγ−1,γj ,ϵ is less than

C(n)γ−k.

Proof. We put ϵ = δ(η, τ, γ,Λ,G), where δ is the constant in Lemma 7.12.
Since x ∈ Lγ−1,γj ,ϵ, by Lemma 7.12, there exists nonnegative integer l ≤ n
such that

(1) u is (l, η, γj−1, x)-homogeneous with respect to k-plane V k
u,x;

(2) Lγ−1,γj ,η ∩Bγj−1(x) ⊂ Bτγj−1(V k
u,x).
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Since x ∈ Sk
η,γj (u), we obtain that u is not (k + 1, η, γj−1, x)-homogeneous,

which implies l ≤ k. Hence, by choosing τ = γ
10 , we have

Bγj−1(x) ∩ Sk
η,γj (u) ∩ Lγ−1,γj ,ϵ ⊂ Bγj−1(x) ∩B γj

10

(V k
u,x).

This completes the proof. □

Lemma 7.14 (Decomposition lemma). There exists constants C0(n),
C1(n), K(η, γ,Λ,G), Q(η, γ,Λ,G) and γ0(η,Λ,G) such that for any γ < γ0
and j ∈ Z+, we have

(1) The set Sk
η,γj (u) ∩B1(0

n) can be covered by at most jK nonempty

sets Ck
η,γj .

(2) Each set Ck
η,γj is the union of at most (C1γ

−n)Q · (C0γ
−k)j−Q balls

of radius γj.

Proof. First, we prove (1). We need to prove |T j | ≤ K(η, γ,Λ,G) if ET j ̸= ∅.
For any 0 < s < t < 1 and x ∈ B1(0

n), we define

Ws,t(x) = θG(u, x, t)− θG(u, x, s) ≥ 0.

Fixing a point x0 ∈ ET j , we consider the set

I = {i ∈ Z+ | Wγi,γi−2(x0) ≥ δ0},

where δ0 is the constant in Theorem 7.5 (p > 2) or Theorem 7.7 (p = 2). It
is clear that

∑

i∈I

Wγi,γi−2(x0) ≤ 3W0,1(x0).

By Lemma 7.3, we have

|I| · δ0 ≤ 3C(G)Λ.

For any i /∈ I, by Wγi,γi−2(x0) ≤ δ0, we have

(7.9) θ(ux0,γi−1 , 0n, γ−1)− θ(ux0,γi−1 , 0n, γ) = Wγi,γi−2(x0) < δ0.

Now, we put γ0 = δ0. Thus, if γ < γ0, combining (7.9), Theorem 7.5 (p > 2),
Theorem 7.7 (p = 2), Lemma 7.11 andM(ux0,γi−1 , 0n, 1) = 0 when p = 2, we
obtain ux0,γi−1 is (0, ϵ, 1, 0n)-homogeneous, which implies u is (0, ϵ, γi−1, x0)-

homogeneous. Hence, we have x0 ∈ Lγ−1,γi,ϵ, which implies T j
i (x0) = 0. It
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then follows that there exists constant K depending only on G and Λ such
that

|T j | :=

j
∑

i=1

T j
i ≤ |I| ≤ K,

which implies the cardinality of {Ck
η,γj (T j)} is at most

(

j

K

)

≤ jK .

This proves (1).
Next, we prove (2). Clearly, by an induction argument, (2) is an imme-

diate corollary of Lemma 7.13. □

7.4. Proof of Theorem 1.15

In this subsection, we give the proof of Theorem 1.15.

Proof of Theorem 1.15. First, we put γ = min(γ0, C
− 2

η

0 ), where γ0 and C0

are the constants in Lemma 7.14. Clearly, it suffices to prove (1.4) when r <
γ. There exists j ∈ Z+ such that γj+1 ≤ r < γj . By Lemma 7.14, Sk

η,γj (u) ∩

B1(0
n) can be covered by jK(C1γ

−n)Q(C0γ
−k)j−Q balls of radius γj , which

implies

Vol(Bγj (Sk
η,γj (u)) ∩B1(0

n)) ≤ jK(C1γ
−n)Q(C0γ

−k)j−Q(2γj)n

≤ C(n,Q,K)(γj)n−k−η.

Since γj+1 ≤ r < γj , we have Sk
η,r(u) ⊂ Sk

η,γj (u), which implies

Vol(Br(S
k
η,r(u)) ∩B1(0

n)) ≤ Vol(Bγj (Sk
η,γj (u)) ∩B1(0

n))

≤ C(n,Q,K)(γj)n−k−η

≤ C(η,Λ,G)rn−k−η,

as desired. □
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8. Appendix

8.1. Homogeneous functions

In this subsection, we assume that homogeneity of tangents holds for F
and Riesz characteristic p ≥ 2. In Lemma 8.1, we prove a basic property of
homogeneous functions. By using this property, we give the proof of (1.2).

Lemma 8.1. Let hi be a sequence of functions on Rn. Suppose that hi is k-
homogeneous at yi with respect to k-plane V k

i . If limi→∞ yi=y, limi→∞ V k
i =

V k and hi converges to u in L1(Br(0
n)). Then there exists a function h such

that

(1) h is defined on Rn;

(2) h is k-homogeneous at y with respect to k-plane V k;

(3) h = u in Br(0
n).

Proof. Without loss of generality, we assume y = 0n and r = 1. We split up
in to different cases.

Case 1. For any i, we have yi = 0n and V k
i = V k.

When p = 2, for any R > 1, we have
∫

BR(0n)
|hi(x)− hj(x)|dx =

∫

BR(0n)

∣

∣

∣
(hi)0n, 1

R

(x)− (hj)0n, 1

R

(x)
∣

∣

∣
dx

≤

∫

BR(0n)

∣

∣

∣
hi

( x

R

)

− hj

( x

R

)∣

∣

∣
dx

+ ωnR
n

∣

∣

∣

∣

M

(

hi, 0
n,

1

R

)

−M

(

hj , 0
n,

1

R

)
∣

∣

∣

∣

≤ Rn∥hi − hj∥L1(B1(0n)) + ωnR
n

∣

∣

∣

∣

M

(

hi, 0
n,

1

R

)

−M

(

hj , 0
n,

1

R

)∣

∣

∣

∣

.

By Lemma 8.6, we obtain

(8.1) lim
i,j→∞

∥hi − hj∥L1(BR(0n)) = 0.

On the other hand, when p > 2, by the similar argument, we still have (8.1).
Next, by (8.1), hi is a Cauchy sequence in L1

loc(R
n). There exists a

function h on Rn such that hi converges to h in L1
loc(R

n). It is clear that
h = u in B1(0

n). Now, it suffices to prove h is k-homogeneous at 0n with
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respect to V k. For any r > 0, we have (hi)0n,r = hi. Letting i→ ∞, we obtain
h is k-homogeneous. Since hi is homogeneous at 0n with respect to V k, then
for any x ∈ Rn and v ∈ V k, by the property of subharmonic functions, we
have

h(x+ v)− h(x) = lim
s→0

1

ωnsn

(

∫

Bs(x+v)
h(y)dy −

∫

Bs(x)
h(y)dy

)

= lim
s→0

lim
i→∞

1

ωnsn

(

∫

Bs(x+v)
hi(y)dy −

∫

Bs(x)
hi(y)dy

)

= 0,

as desired.

Case 2. General case.

Since limi→∞ V k
i = V k, there exists a sequence of n× n orthogonal ma-

trices Ai such that V k
i = AiV

k and limi→∞Ai = In, where In is the n× n
identity matrix. We define h̃i(x) = hi(Aix+ yi), which implies that h̃i is
k-homogeneous at 0n with respect to V k. For any r ∈ [12 , 1), we compute

∫

Br(0n)
|h̃i(x)− u(x)|dx(8.2)

≤

∫

Br(0n)
|hi(Aix+ yi)− u(Aix+ yi)|dx

+

∫

Br(0n)
|u(Aix+ yi)− u(x)|dx

≤

∫

Br(yi)
|hi(x)− u(x)|dx+

∫

Br(0n)
|u(Aix+ yi)− u(x)|dx

→ 0,

where we used hi converges to u in L1(B1(0
n)) and Lemma 8.7. By Case

1, (8.2) and scaling argument, for each r ∈ [12 , 1), there exists a function hr

such that

(1) hr is defined on Rn;

(2) hr is k-homogeneous at 0n with respect to k-plane V k;

(3) hr = u in Br(0
n).
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By (2) and (3), we have

hr = h
1

2 in Rn.

Hence, h
1

2 is the desired function. □

Proposition 8.2. If homogeneity of tangents holds for F , then for any
F -subharmonic function u on B2(0

n), we have

Sk(u) =
⋃

η

Sk
η (u) =

⋃

η

⋂

r

Sk
η,r(u).

Proof. For any η > 0, by definition, we have Sk
η (u) =

⋂

r S
k
η,r(u) and Sk

η (u) ⊂
Sk(u). It suffices to prove Sk(u) ⊂

⋃

η S
k
η (u). We argue by contradiction,

assuming that Sk(u) ⊈
⋃

η S
k
η (u). Then there exists a point x ∈ B2(0

n) such
that

(1) x ∈ Sk(u);

(2) For each i ∈ Z+, there exists a (k + 1)-homogeneous function hi and
ri ∈ (0, 1) such that

∫

B1(0n)
|ux,ri(y)− hi(y)|dy < i−1.

By the compactness of subharmonic functions, after passing to a subse-
quence, we assume

lim
i→∞

ri = r, lim
i→∞

∥hi − h∥L1(B 1
2
(0n)) = 0(8.3)

and lim
i→∞

∥ux,ri − h∥L1(B 1
2
(0n)) = 0.

If r = 0, by the definition of tangent (see [21, Definition 9.3, Proposi-
tion 9.4]), there exists U ∈ Tx(u) such that ux,ri converges to U in L1

loc(R
n).

Combining this and (8.3), we have U = h in B 1

2

(0n). On the other hand, since
homogeneity of tangents holds for F , U is 0-homogeneous. By Lemma 8.1,
there exists a (k + 1)-plane V k+1 such that h is (k + 1)-homogeneous with
respect to V k+1. By Definition 1.7, we get U = h is (k + 1)-homogeneous,
which contradicts with x ∈ Sk(u).

If r > 0, by Lemma 8.7, h = ux,r in B 1

2

(0n). By the definition of tan-

gent set, we have Tx(u) = T0n(ux,r) = T0n(h). By Lemma 8.1, h is a (k + 1)-
homogeneous function, which implies T0n(h) = {h}, which contradicts with
x ∈ Sk(u). □
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8.2. Kp-convex functions

In this subsection, we recall some properties of Kp-convex functions, where
Kp is the Riesz kernel.

Lemma 8.3. Let {fi} be a sequence of Kp-convex functions on (0, R). If
limi→∞ fi(r) = f(r) for almost every r ∈ (0, R), then we have limi→∞ fi(r) =
f(r) for every r ∈ (0, R).

Proof. For any ϵ > 0 and r ∈ (0, R), by assumption, there exists 0 < s1 <
s2 < r < s3 < s4 < R such that

(8.4) lim
i→∞

fi(sj) = f(sj) for j = 1, 2, 3, 4.

By the definition of Kp-convex functions, for any r1, r2 ∈ (s2, s3), we have

(8.5)
fi(s2)− fi(s1)

Kp(s2)−Kp(s1)
≤

fi(r2)− fi(r1)

Kp(r2)−Kp(r1)
≤

fi(s4)− fi(s3)

Kp(s4)−Kp(s3)
.

Combining (8.4) and (8.5), we obtain that fi and f are Lipschitz functions on
[s2, s3] with uniform Lipschitz constant L(s1, s2, s3, s4, f, p). We can choose
r̃ ∈ (s2, s3) such that |r̃ − r| ≤ ϵ and limi→∞ fi(r̃) = f(r̃). It then follows
that for i sufficiently large, we have

|fi(r)− f(r)| ≤ |fi(r)− fi(r̃)|+ |fi(r̃)− f(r̃)|+ |f(r̃)− f(r)|

≤ 2Lϵ+ |fi(r̃)− f(r̃)|

≤ (2L+ 1)ϵ,

which implies limi→∞ fi(r) = f(r). Since r is arbitrary, we complete the
proof. □

Lemma 8.4. Let {fi} be a sequence of Kp-convex functions on (0, R). If
limi→∞ fi(r) = f(r) for every r ∈ (0, R), then we have

lim
i→∞

(fi)
′
±(r)

K ′
p(r)

=
f ′(r)

K ′
p(r)

,

for almost every r ∈ (0, R).

Proof. Since fi are Kp-convex functions and f = limi→∞ fi, it is clear that f
is also Kp-convex function. As a result, we obtain f is differentiable almost
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everywhere in (0, R). For any r0 ∈ (0, R) at which f is differentiable and for
any ϵ > 0, there exists r > 0 such that

f ′(r0)

K ′
p(r0)

− ϵ ≤
f(r0)− f(r0 − r)

Kp(r0)−Kp(r0 − r)
≤

f(r0 + r)− f(r0)

Kp(r0 + r)−Kp(r0)
≤

f ′(r0)

K ′
p(r0)

+ ϵ.

Then there exists N > 0 such that for any i ≥ N , we have

f ′(r0)

Kp(r0)
− 2ϵ ≤

f(r0)− f(r0 − r)

Kp(r0)−Kp(r0 − r)
− ϵ ≤

fi(r0)− fi(r0 − r)

Kp(r0)−Kp(r0 − r)
≤

(fi)
′
−(r0)

K ′
p(r0)

and

(fi)
′
+(r0)

K ′
p(r0)

≤
fi(r0 + r)− fi(r0)

Kp(r0 + r)−Kp(r0)

≤
f(r0 + r)− f(r0)

Kp(r0 + r)−Kp(r0)
+ ϵ ≤

f ′(r0)

Kp(r0)
+ 2ϵ.

Combining with

(fi)
′
−(r0)

K ′
p(r0)

≤
(fi)

′
+(r0)

K ′
p(r0)

,

we complete the proof. □

8.3. Subharmonic function in Rp

In this subsection, we recall some properties of subharmonic functions.

Lemma 8.5. Let v be a subharmonic function on BR(0
p) ⊂ Rp with

∥v∥L1(Bb(0p)\(Ba(0p)) ≤ Λ, where 0 < a < b < R. Then for any t ∈ (a+ d, b−
d), where d > 0, there exists a constant C(t, a, d) such that

M(v, 0p, t) ≥ S(v, 0p, t) ≥ −C(t, a, d)Λ,

where 0p is the origin in Rp.

Proof. It suffices to prove S(v, 0p, t) ≥ −C(t, a, d)Λ. First, by the submean
value property of subharmonic functions, there exists a constant C̃(d,Λ)
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such that

sup
Bb−d(0p)\Ba+d(0p)

v ≤ C̃(d,Λ).

Thus, we compute

∫

Bt(0p)\Ba+d(0p)
|C̃ − v(x)|dx =

∫

Bt(0p)\Ba+d(0p)

(

C̃ − v(x)
)

dx

=

∫ t

a+d

pωps
p−1

(

C̃ − S(v, 0p, s)
)

ds

≥
(

C̃ − S(v, 0p, t)
)

ωp (t
p − (a+ d)p) ,

where ωp is the volume of unit ball in Rp. It is clear that

(

C̃ − S(v, 0p, t)
)

ωp (t
p − (a+ d)p) ≤ ∥C̃ − v∥L1(Bt(0p)\Ba+d(0p))

≤ C̃ωp (t
p − (a+ d)p) + Λ.

Hence, we obtain

S(v, 0p, t) ≥ −
Λ

ωp (tp − (a+ d)p)
.

□

Lemma 8.6. Let vi and v be subharmonic functions on BR(0
p) ⊂ Rp. If

vi converges to v in L1(Bb(0
p) \Ba(0

p)), where 0 < a < b < R, then for any
r ∈ (a, b), we have

(8.6) lim
i→∞

M(vi, 0
p, r) =M(v, 0p, r)

and

(8.7) lim
i→∞

S(vi, 0
p, r) = S(v, 0p, r).

Proof. First, by the property of subharmonic functions, for any x ∈ Bb(0
p) \

Ba(0
p), we have

vi(x) ≤ vi ∗ ϕδ(x) and lim
i→∞

vi ∗ ϕδ(x) = v ∗ ϕδ(x),

where ϕ is a mollifier. It then follows that

lim sup
i→∞

vi(x) ≤ lim
δ→0

v ∗ ϕδ(x) = v(x),
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which implies

(8.8) lim sup
i→∞

M(vi, 0
p, r) ≤M(v, 0p, r).

Suppose we have

lim inf
i→∞

M(vi, 0
p, r) < M(v, 0p, r),

then there exists a subsequence {vik} and a number d such that

(8.9) lim
k→∞

M(vik , 0
p, r) = lim inf

i→∞
M(vi, 0

p, r) < d < M(v, 0p, r).

Then we get vik ≤ d on Br(0
p) when k is sufficiently large. By the conver-

gence in L1(Bb(0
p) \Ba(0

p)), we obtain v ≤ d on Br(0
p) \Ba(0

p). Since v
is subharmonic function, we have

M(v, 0p, r) ≤ d,

which contradicts with (8.9). Therefore, we conclude that

(8.10) lim inf
i→∞

M(vi, 0
p, r) ≥M(v, 0p, r).

Combining (8.8) and (8.10), we prove (8.6).
For the proof of (8.7), by Fatou’s lemma, it is clear that

∫ b

a

(

lim
i→∞

∫

∂Br(0p)
|vi − v|

)

dr ≤ lim
i→∞

∫

Bb(0p)\Ba(0p)
|vi(x)− v(x)|dx→ 0,

which implies

lim
i→∞

S(vi, 0
p, r) = S(v, 0p, r)

for almost every r ∈ (a, b). Since S(vi, 0
p, ·) and S(v, 0p, ·) are Kp-convex

functions, by Lemma 8.3, we obtain (8.7). □

Lemma 8.7. Suppose that Ai is a sequence of p× p orthogonal matrices
and zi is a sequence of points. Let v be a subharmonic function on BR(0

n).
If limi→∞ zi = 0n and limi→∞Ai = Ip (Ip is the p× p identity matrix), then
for any r ∈ (0, R), we have

lim
i→∞

∫

Br(0n)
|v(Aix+ zi)− v(x)|dx = 0.
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Proof. For convenience, we use vδ to denote v ∗ ϕδ, where ϕδ is a mollifier.
By the property of smooth approximation, it is clear that vδ converges to v
in L1

loc(BR(0
n)). On the other hand, since vδ is smooth, we have

lim
i→∞

∫

Br(0n)
|vδ(Aix+ zi)− vδ(x)|dx = 0.

Therefore, we obtain

∫

Br(0n)
|v(Aix+ zi)− v(x)|dx

≤

∫

Br(0n)
|v(Aix+ zi)− vδ(Aix+ zi)|dx

+

∫

Br(0n)
|vδ(Aix+ zi)− vδ(x)|dx+

∫

Br(0n)
|vδ(x)− v(x)|dx

≤

∫

Br(zi)
|v(x)− vδ(x)|dx+

∫

Br(0n)
|vδ(Aix+ zi)− vδ(x)|dx

+

∫

Br(0n)
|vδ(x)− v(x)|dx

→ 0,

as desired. □

Lemma 8.8. Let vi and v be subharmonic functions on B2(0
n), and sup-

pose that vi converges to v in L1
loc(B2(0

n)). For any sequence of point {zi} ⊂
B1(0

n), if zi converges to z, then we have

lim
i→∞

∫

B1(0n)
|(vi)zi,r(x)− vz,r(x)|dx,

for any r ∈ (0, 1).

Proof. We split up into different cases.

Case 1. p > 2.
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For any r ∈ (0, 1), by Lemma 8.7, we have
∫

B1(0n)
|(vi)zi,r(x)− vz,r(x)|dx

≤

∫

B1(0n)
|(vi)zi,r(x)− vzi,r(x)|dx+

∫

B1(0n)
|vzi,r(x)− vz,r(x)|dx

=

∫

Br(zi)
rp−2−n|vi(x)− v(x)|dx

+

∫

Br(0n)
rp−2−n|v(x+ zi)− v(x+ z)|dx

→ 0,

as desired.

Case 2. p = 2.

By the definition of tangential 2-flow, we have
∫

B1(0n)
|(vi)zi,r(x)− vz,r(x)|dx

≤

∫

B1(0n)
|vi(rx+ zi)− v(rx+ z)|dx

+

∫

B1(0n)
|M(vi, zi, r)−M(v, z, r)|dx.

By the similar argument in Case 1, we obtain

lim
i→∞

∫

B1(0n)
|vi(rx+ zi)− v(rx+ z)|dx = 0

Hence, it suffices to prove limi→∞M(vi, zi, r) =M(v, z, r). Next, we define
ṽi(x) = vi(x+ zi − z) for every x ∈ B1(0

n). It then follows thatM(ṽi, z, r) =
M(vi, zi, r). It is clear that

∫

B1(0n)
|ṽi(x)− v(x)|dx

≤

∫

B1(0n)
|vi(x+ zi − z)− v(x+ zi − z)|dx

+

∫

B1(0n)
|v(x+ zi − z)− v(x)|dx

=

∫

B1(zi−z)
|vi(x)− v(x)|dx+

∫

B1(0n)
|v(x+ zi − z)− v(x)|dx

→ 0,
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where we used Lemma 8.7. Hence, by Lemma 8.6, we obtain

lim
i→∞

M(vi, zi, r) = lim
i→∞

M(ṽi, z, r) =M(v, z, r).

□
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