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Let X be a smooth irreducible complex algebraic variety of dimen-
sion n and L a very ample line bundle onX. Given a toric degenera-
tion of (X,L) satisfying some natural technical hypotheses, we con-
struct a deformation {Js} of the complex structure on X and bases
Bs of H0(X,L, Js) so that J0 is the standard complex structure
and, in the limit as s→ ∞, the basis elements approach dirac-delta
distributions centered at Bohr-Sommerfeld fibers of a moment map
associated to X and its toric degeneration. The theory of Newton-
Okounkov bodies and its associated toric degenerations shows that
the technical hypotheses mentioned above hold in some generality.
Our results significantly generalize previous results in geometric
quantization which prove “independence of polarization” between
Kähler quantizations and real polarizations. As an example, in the
case of general flag varieties X = G/B and for certain choices of
highest weight λ, our result geometrically constructs a continuous
degeneration of the (dual) canonical basis of V ∗

λ to a collection of
dirac delta functions supported at the Bohr-Sommerfeld fibres cor-
responding exactly to the lattice points of a Littelmann-Berenstein-
Zelevinsky string polytope ∆w0

(λ) ∩ Z
dim(G/B).
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1. Introduction

The motivation for the present manuscript arose from two rather different
research areas: the theory of geometric quantization in symplectic geometry
on the one hand, and the algebraic-geometric theory of Newton-Okounkov
bodies — particularly in its relation to representation theory — on the other.
Since we do not expect all readers of this paper to be familiar with both
theories, we begin with a brief description of each.

We begin with a sketch of geometric quantization. As is well-known, sym-
plectic geometry (Hamiltonian flows on symplectic manifolds) is the mathe-
matical language for formulating classical physics, whereas it is the language
of linear algebra and representation theory (unitary flows on Hilbert spaces)
which forms the basis for formulating quantum physics. It has been a long-
standing question within symplectic geometry to understand, from a purely
mathematical and geometric perspective, the relation between the classical
picture and the quantum picture, in terms of both the phase spaces and the
defining equations of the dynamics. In one direction, to go from “quantum”
to “classical”, one can “take a classical limit”. The reverse direction, i.e.
that of systematically associating to a symplectic manifold (M,ω) a Hilbert
space Q(M,ω) and to similarly relate, for instance, Hamilton’s equations on
(M,ω) to Schrödinger-type equations on Q(M,ω), is generally referred to
as the theory of quantization. In this manuscript, we deal specifically with
geometric quantization, a theory which associates to a symplectic manifold
(M,ω) a Hilbert space Q(M,ω).

For a fixed (M,ω), it turns out that there are many possible ways of con-
structing a suitable Hilbert space Q(M,ω). To describe the choices we first
set some notation. First suppose that [ω] is an integral cohomology class.
Next, let (L,∇, h) be a Hermitian line bundle with connection satisfying
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curv(∇) = ω. Such a triple is called a pre-quantum line bundle, or some-
times a pre-quantization. Also required is a polarization, of which the two
main types are as follows. A Kähler polarization is a choice of compatible
complex structure J on M . Given such a J , one can define the quantiza-
tion Q(M,ω) to be H0(M,L, J), the space of holomorphic sections of L
with respect to this complex structure J . On the other hand, one may also
consider a (possibly singular) real polarization of M , which is a foliation
of M into Lagrangian submanifolds. Among the Lagrangian leaves one can
define a special (usually finite, if M is compact) subset called the Bohr-
Sommerfeld leaves. There is not yet an agreed-upon “correct” definition of
the corresponding Hilbert space for a real polarization, but one approach
which has been investigated, and which will be used in this manuscript, is
to consider distributional sections supported on the set of Bohr-Sommerfeld
leaves. Based on the above discussion, the following natural question arises:
Is the quantization Q(M,ω) “independent of polarization,” i.e., independent
of the choices made? More specifically, we can ask: does the quantization
coming from a Kähler polarization agree with the quantization coming from
a real polarization? The results of this manuscript confirms independence
of polarization in a rather large class of examples, significantly extending
previously known results which were restricted to special cases such as toric
varieties and flag varieties.

We next briefly motivate the theory of Newton-Okounkov bodies. The
famous Atiyah-Guillemin-Sternberg and Kirwan convexity theorems link
equivariant symplectic and algebraic geometry to the combinatorics of poly-
topes. In the case of a toric variety X, the combinatorics of its moment map
polytope ∆ fully encodes the geometry of X, but this fails in the general
case. In his influential work, Okounkov constructed (circa roughly 1996), for
an (irreducible) projective variety X ⊆ P(V ) equipped with an action of a
reductive algebraic group G, a convex body ∆̃ and a natural projection from
∆̃ to the moment polytope ∆ of X. Moreover, the volumes of the fibers of
this projection encode the asymptotics of the multiplicities of the irreducible
representations appearing in the homogeneous coordinate ring of X, or in
other words, the Duistermaat-Heckman measure [18, 19]. Recently, Askold
Khovanskii and the third author (also independently Lazarsfeld and Mustata
[15]) vastly generalized Okounkov’s ideas [11], and in particular constructed
such ∆̃ (called Newton-Okounkov bodies or sometimes simply Okounkov bod-
ies) even without presence of any group action. In the setting studied by
Okounkov, the maximum possible (real) dimension of the Newton-Okounkov
body ∆̃ is the transcendence degree of C(X)U where U is a maximal unipo-
tent subgroup of G; when there is no group action (as in the setting studied
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in [11, 15]) we have dimR(∆̃) = dimC(X). Hence one interpretation of the re-
sults of Okounkov, Lazarsfeld-Mustata and Kaveh-Khovanskii is that there is
a convex geometric/combinatorial object of ‘maximal’ dimension associated
to X, even when X is not a toric variety. This represents a vast expansion of
the possible settings in which combinatorial methods may be used to analyze
the geometry of algebraic varieties. There is promise of a rich theory which
interacts with a wide range of inter-related areas: for instance, the third au-
thor showed [10] that the Littelmann-Berenstein-Zelevinsky string polytopes
from representation theory, which generalize the well-known Gel’fand-Cetlin
polytopes, are examples of ∆̃. In the long-term, one can expect further ap-
plications to Schubert calculus and to geometric representation theory (e.g.
see [13]).

We now turn attention to the present manuscript. Firstly we should
explain that the two seemingly disparate research areas mentioned above
are related due to the results in [8], which uses a certain toric degeneration
that arises from (the semigroup associated to) a Newton-Okounkov body
[2] to construct integrable systems1 on a wide class of projective varieties.
Integrable systems are highly special Hamiltonian systems on symplectic
(or, in our setting, Kähler) manifolds, and naturally give rise to (singular)
real polarizations. Therefore, the theory of Newton-Okounkov bodies and
their associated toric degenerations provide a natural setting in which to
examine the theory of geometric quantization.

Before describing the statement of our main result (Theorem 2.3) in more
detail we first recall the content of two manuscripts of Baier, Florentino,
Mourao, and Nunes [3] and the first author and Konno [7], on which much
of the current manuscript is based.

As already mentioned, a natural question that arises in the theory of ge-
ometric quantization is that of independence of polarization, i.e., the isomor-
phism class of a geometric quantization should be independent of the choices
made. In the above context, this means we wish to show dimH0(X,L, J) is
equal to the number of Bohr-Sommerfeld fibres. Some of the authors of [3]
initiated a “convergence of polarizations” approach to this question. Specifi-
cally, they deform the complex structure on X in such a way that the Kähler
polarization it defines converges, in a suitable sense to be further explained
in Section 2, to the real polarization on the same manifold. (See [17] for an
overview of this program.) Although there are more general versions of this
theory, in this paper we focus particularly on the case of symplectic toric

1Here we use the term “integrable system” in the slightly non-standard sense of
[8, Definition 1.1].
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manifolds as described in [3], where the Kähler polarization converges to the
(singular) real polarization given by the fibres of the moment map (i.e., the
integrable system) for a torus action. Indeed, for the case of a symplectic
toric manifold X associated to a Delzant polytope ∆, it is well-known (see
for example [6]) that there is a natural basis {σm | m ∈ ∆ ∩ Zn} of the space
H0(X,L, J) of holomorphic sections of L that is indexed by the integer lat-
tice points in ∆. It is also well-known that the Bohr-Sommerfeld fibres in
X are exactly the moment map fibres over precisely the same set of integer
lattice points ∆ ∩ Zn. In particular, the dimensions of the two quantizations
agree. This is often seen as one of the most basic and motivational examples
of the phenomenon of “independence of polarization”.

The first author and Konno extend the results of Baier, Florentino,
Mourao, and Nunes [3], which only apply to toric manifolds, to the case
of the complete flag variety Fℓags(Cn) by making use of a toric degenera-
tion of Fℓags(Cn) as constructed in [14]. The precise definition of a toric
degeneration is given in Section 2; roughly, it is a (flat) family of algebraic
varieties over C with generic fiber isomorphic to a given variety (in this case
Fℓags(Cn)) and special fiber a toric variety. The gradient-Hamiltonian-flow
technique pioneered by Ruan [20] allows one to “pull back” the integrable
system on the special fiber to one on the original variety Fℓags(Cn) and also
enables the authors to apply the techniques of [3] to Fℓags(Cn).

With the above as motivation, we now describe the main result of this
manuscript, although we do not give the full and precise statement due to
its rather technical nature. Let X be a smooth, irreducible complex alge-
braic variety with dimC(X) = n, equipped with prequantum data (L,∇, h).
Suppose X admits a toric degeneration X as above (and made precise in
Section 2). Under these assumptions, we can construct from the toric de-
generation X an integrable system µ : X → Rn on X as in [8]. Very roughly,
the main result of this paper then states the following (see Theorem 2.3 for
the precise statement).

Theorem A. Under some natural technical hypotheses on X and its toric
degeneration X, there exists a continuous deformation {Js}s∈[0,∞) of the
complex structure on (the underlying smooth manifold of) X such that
J0 is the original complex structure on X, and in the limit as s goes to
∞, the Kähler polarization defined by Js converges to the (singular) real
polarization associated to the integrable system µ on X.

A notable feature of the above theorem is that, following the work of
[3, 7], Theorem A gives an explicit correspondence between specific elements
of the Kähler and the real quantization (rather than just an equality of
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dimensions). The theorem above places additional hypotheses on X and its
toric degeneration, so one immediately then asks: when do these hypotheses
hold? The second result of this manuscript, made precise in Theorem 5.5, is
that the construction given in [8] gives a large class of examples on which
Theorem A applies, with the caveat that it is necessary to replace the original
line bundle L with a suitable tensor power (or, equivalently, the original
symplectic form with a positive integer multiple thereof). Roughly, our result
(Theorem 5.5) states the following.

Theorem B. Let X be as above, equipped with the line bundle L. Then
the construction of the toric degeneration given by valuations (as in [8])
can be made to satisfy the additional technical hypotheses in Theorem A
for the pair (X,L⊗d) for sufficiently large d and thus gives ‘convergence of
polarization’ in these cases.

It is also worth mentioning that, in the precise statement of our main
Theorem A, as given in Theorem 2.3 below, we assert an existence of a
certain basis of holomorphic sections with appropriate convergence prop-
erties, which then implies Theorem A. In the general case considered in
Theorem A, this basis is not very explicit for some of the values of the de-
formation parameter. However, in the situation of Theorem B where the
toric degeneration arises from a valuation as above, we additionally show in
Theorem 5.6 that this basis can be chosen to be both natural and explicit
throughout the deformation.

As already mentioned, there are several indications of interesting con-
nections between the theory of Newton-Okounkov bodies and representation
theory. Indeed, putting the results of [10] and [8] together, we obtain an
integrable system on a flag variety G/B whose moment map image is pre-
cisely the Littelmann-Berenstein-Zelevinsky string polytope ∆w0

(λ). This
construction uses the so-called (dual) canonical basis of V ∗

λ , the dual space
of the G-module Vλ with highest weight λ. The elements of this basis are
parametrized by the lattice points ∆w0

(λ) ∩ Zdim(G/B). The integrable sys-
tem gives rise to a real polarization of Lλ → G/B whose Bohr-Sommerfeld
fibers are in one-to-one correspondence with ∆w0

(λ) ∩ Zdim(G/B), where Lλ
is the usual pullback line bundle from the Plücker embedding associated to
weight λ. Moreover, in this context, the Borel-Weil theorem implies that
the Kähler quantization H0(G/B,Lλ) can be identified with V ∗

λ . Hence, in
this special case and for sufficiently large multiples of λ, our Theorem A
geometrically constructs a continuous degeneration of a basis of V ∗

λ to a
collection of dirac delta functions supported at the Bohr-Sommerfeld fibres
corresponding exactly to the lattice points ∆w0

(λ) ∩ Zdim(G/B).
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The paper is organized as follows. In Section 2 we recall the necessary
definitions and give a full and precise statement of our main Theorem 2.3.
We set up the necessary family of complex structures, based largely on the
work of [3] and [7], in Section 3. The proof of Theorem 2.3 occupies Section 4.
We then show in Section 5 that the construction in [8] gives many examples
of toric degenerations satisyfing the hypotheses of Theorem 2.3.

We close with some brief comments on open questions. Firstly, we believe
that the proof of our main results can be modified to work for an embedding
of the toric degeneration into Y × C where Y is any smooth projective toric
variety (instead of just a projective space). Secondly, we also believe that
the constructions in this paper should descend to a GIT quotient by a torus
action. We leave these open for future work.

Acknowledgements. We thank Yael Karshon for providing the opportu-
nity for us to learn about each other’s past work, thus helping to initiate
this collaboration.

2. Statement of the main theorem

This section is devoted to the full and precise formulation of both the hy-
potheses for, and the statement of, our main theorem. We first provide a
quick overview of geometric quantization and then dive straight into the
technicalities of our theorem. Some key motivational remarks, which may
aid a reader unfamiliar with this material, are contained in Remark 2.4.

We begin with definitions in the theory of geometric quantization. For
details see e.g. [22]. Let (X,ω) be a symplectic manifold, i.e. X is a smooth
manifold and ω is a closed non-degenerate differential 2-form on X. Sup-
pose (L, h,∇) is a complex line bundle with Hermitian structure h and a
connection ∇ satisfying curv(∇) = ω and with parallel transport preserving
h. Such a triple is called a prequantum line bundle (or sometimes prequan-
tum data, or prequantization) of (X,ω). Note that for a prequantum line
bundle to exist, [ω] must be an integral cohomology class.

To pass from a prequantization to a quantization, we must choose a
polarization, which is an integrable complex Lagrangian distribution on X.
We only deal with two types of polarizations in this manuscript, as follows.
Firstly, a Kähler polarization on (X,ω) is a compatible complex structure
J . Then the corresponding Kähler quantization of X is defined to be the
space of holomorphic sections H0(X,L) of L, where L is equipped with the
holomorphic structure specified by J . Secondly, a (singular) real polarization
on X is a (singular) foliation of X into Lagrangian submanifolds. Let P
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denote the distribution in TX corresponding to a real polarization. By abuse
of language, we frequently refer to both the foliation and the distribution
as a real polarization. A special case, of much recent interest in this area, is
the (singular) foliation given by the fibres of a completely integrable system
F : X → Rn. In this setting, a section σ of L

∣∣
U

over some open set U ⊂ X
is said to be flat along the leaves or leafwise flat if it is covariantly constant
with respect to ∇ in directions tangent to P . Leafwise flat sections always
exist locally, but not usually globally. A leaf ℓ of the real polarization P
is a Bohr-Sommerfeld leaf if there exists a (nonzero) section σ that is flat
along the leaves and defined on all of ℓ. The set of Bohr-Sommerfeld leaves
is typically discrete in the space of leaves.

There is not at present a single agreed-upon definition of quantization
using a real polarization. The basic philosophy is that the quantization cor-
responding to a real polarization “should” be given by leafwise flat sections
over Bohr-Sommerfeld fibres, but since there are no globally defined leafwise
flat sections (the set of Bohr-Sommerfeld fibers being usually discrete), this
is not straightforward. One possible approach is to relax the requirement
that the sections be smooth and look at distributional sections supported
on the set of Bohr-Sommerfeld leaves. Several examples have been investi-
gated using this approach; see [17] and references therein. This is also the
approach we take in this manuscript.

We now set up the terminology and notation required for the statement
of our main theorem. Let X be a smooth, irreducible complex algebraic
variety with dimC(X) = n. We suppose in addition that X is equipped with
prequantum data (ω, J, L, h,∇) as above, where (ω, J) is a Kähler structure
on X and L is a very ample line bundle over X with Chern class equal to
the Kähler class (i.e. c1(L) = [ω] ∈ H2(X,Z)). In [8], using ideas from [16],
a toric degeneration is used to construct an integrable system on X which is
a Hamiltonian Tn-action on an open dense subset of X. Recall that a toric
degeneration of X in the sense of [8] is a flat family π : X → C of irreducible
varieties such that the family is trivial over C∗ = C \ {0} with each fiber
isomorphic to X, and the (possibly singular) central fiber X0 := π−1(0) is a
toric variety with respect to a complex torus T0. In particular there exists
a fiber-preserving isomorphism ϱ : X × C∗ → π−1(C∗) from the trivial fiber
bundle X × C∗ → C∗ to π−1(C∗) and it follows by assumption on X that
X is smooth away from X0. For a fixed t ∈ C∗, let Xt := π−1(t) denote
the fiber of the family X and let ϱt denote the restriction of ϱ to X × {t}.
By assumption, ϱ1 is an isomorphism from X ∼= X × {t} to X1. We will
frequently identify X with X1 using this isomorphism ϱ1.
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In this manuscript, following [8] we assume that X admits a toric de-
generation with the additional property that the family X can be embedded
in P× C (where P ∼= PN is a projective space for an appropriate choice of
N), as an algebraic subvariety such that

(a) the map π : X → C is the restriction to X of the usual projection P×
C → C to the second factor, and

(b) the action of T0 on X0 extends to a linear action of T0 on P ∼= P× {0}.

Sometimes by abuse of notation we think of Xt ⊆ P× {t} as a subvariety
of P via the natural identification P ∼= P× {t}. Next we equip the ambient
projective space P with prequantum data (ωP, JP, LP

∼= O(1),∇P, hP). In
addition to the prequantum data on P, we need data on P× C. We let
Ω = (ωP, ωstd) denote the product Kähler structure on P× C where ωstd is
the standard symplectic structure i

2dz ∧ dz̄ on C with respect to the usual
complex coordinate z. Moreover, by pulling back via the projection π1 :
P× C → P to the first factor, we also have a line bundle π∗1LP on P× C; this
restricts to a line bundle LX on the family X. Let ωt := Ω|Xt

(respectively
Lt := LX|Xt

) denote the restriction of Ω (respectively LX) to the fiber Xt =
π−1(t). Moreover, pulling back the prequantum data on P to P× C via π1
and restricting to X yields prequantum data on X. Let ∇t and ht denote the
restrictions of ∇X and hX, respectively, to the fiber Xt. With this notation
in place we can state further assumptions on our toric degeneration (also
see [8]):

(c) Under the isomorphism ϱ1 : X → X1, the prequantum data (ω1, L1,
∇1, h1) on X1 pulls back to the prequantum data (ω,L,∇, h) on X.

(d) The Kähler form Ω on P× C is T0-invariant, where T0 ∼= (S1)n is the
compact torus subgroup of the complex torus T0

∼= (C∗)n acting on
the toric variety X0.

In this context, it was shown in [8] that X admits an integrable system
which is a Hamiltonian torus action on an open dense subset of X. We quote
the following.

Theorem 2.1. [8, Theorem (A) in Introduction] Let X be a smooth, irre-
ducible complex algebraic variety with dimC(X) = n equipped with a Kähler
structure ω. Let π : X → C be a toric degeneration of X in the sense de-
scribed above. Suppose that π : X → C additionally satisfies assumptions (a)-
(d). Then:
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(1) there exists a surjective continuous map ϕ : X → X0 which is a sym-
plectomorphism on a dense open subset U ⊂ X (in the classical topol-
ogy),

(2) there exists a completely integrable system µ = (F1, . . . , Fn) on (X,ω)
such that its moment map image ∆ coincides with the moment map
image of (X0, ω0) (which is a polytope).

(3) Let U ⊂ X be the open dense subset of X from (1). Then the integrable
system µ = (F1, . . . , Fn) generates a Hamiltonian torus action on U ,
and the inverse image µ−1(∆◦) of the interior of ∆ under the moment
map µ : X → Rn of the integrable system lies in the open subset U .

The main result of the present manuscript extends the above result by
additionally working with the prequantum data. We first state one additional
assumption on the family X. Since P ∼= PN is a standard projective space,
there is a complex torus TP

∼= (C∗)N acting in the standard fashion on P.
By assumption (b) above, the torus T0 acting on X0 extends to a linear
action on P, i.e. there is an inclusion homomorphism ι : T0 →֒ TP inducing
the action of T0 on P, and this action preserves X0 ⊂ P. Similarly there is
an inclusion (by abuse of notation also denoted ι) of compact subgroups ι :
T0 ∼= (S1)n →֒ TP ∼= (S1)N . Let ι∗ : t∗

P
→ t

∗
0 denote the corresponding dual

projection. Let ∆P ⊆ t
∗
P
denote the moment polytope (i.e. the moment map

image) of P associated to the Hamiltonian action on P of TP, and let ∆0 ⊆ t
∗
0

denote the moment polytope of X0 with respect to T0. We will make the
following genericity assumption on X0:

(e) the special fiber X0 ⊆ P of our toric degeneration is the closure of the
T0-orbit through [1 : 1 : 1 : · · · : 1] ∈ P.

From this it follows by standard Hamiltonian-geometry arguments that
ι∗(∆P) = ∆0. We now define

(2.1) W0 := ι∗(∆P ∩ Z
N ) ⊆ ∆0 ∩ Z

n.

Remark 2.2. It is not necessarily the case that ι∗(∆P ∩ ZN ) = ∆0 ∩ Zn

even if ι∗(∆P) = ∆0, as can be seen from the case when X0 is the closure of
the image of the embedding C∗ → P2 given by t 7→ [t2 : t3 : 1].

We call an element of W0 an interior point if it is in the interior if
∆0, and a boundary point if it is on the boundary of ∆0. We will show
in Proposition 3.13 that W0 is the Bohr-Sommerfeld set of the integrable
system defined in Theorem 2.1.
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We can now state the main result of this paper.

Theorem 2.3. Let X be a smooth irreducible complex algebraic variety with
dimC(X) = n. Suppose X is equipped with prequantum data (ω, J, L, h,∇)
as above. Let π : X → C be a toric degeneration of X satisfying assumptions
(a)-(e). Let µ : X → Rn denote the integrable system associated to the toric
degeneration X as in Theorem 2.1. We additionally assume the following
properties hold.

(f) The restriction map H0(P, LP) → H0(X,L) (where we identify X ∼=
X1, L ∼= L1) is surjective.

(g) The restriction to the respective lattices ι∗ : (t∗
P
)Z → (t∗0)Z of the dual

projection is surjective.

(h) The dimension of the space of holomorphic sections of L→ X is the
cardinality of W0, i.e. dimC(H

0(X,L)) = |W0|.

Then there exists a continuous one-parameter family {Js}s∈[0,∞) of complex
structures on the underlying C∞-manifold of X such that the following holds.

• For s = 0, the complex structure J0 agrees with the original complex
structure on X.

• For each s ∈ [0,∞) the triple (X,ω, Js) is Kähler and the Hermitian
line bundle (L, h,∇) induces a holomorphic structure ∂

s
on L.

• For each s ∈ [0,∞) there exists a basis {σms | m ∈W0} of H0(X,L, ∂
s
)

such that for all interior points m ∈W0 the section
σm
s

∥σm
s ∥L1(X)

converges

to a delta function supported on the Bohr-Sommerfeld fiber µ−1(m)
in the following sense: there exist a covariantly constant section δm
of (L,X,∇)µ−1(m) and a measure dθm on µ−1(m) such that, for any
smooth section τ of the dual line bundle L∗ over X, we have:

(2.2) lim
s→∞

∫

X

〈
τ,

σms
∥σms ∥L1(X)

〉
d(vol) =

∫

µ−1(m)
⟨τ, δm⟩dθm

where ∥ · ∥L1(X) denotes the L1-norm with respect to the symplectic
volume.

Remark 2.4. The essential idea behind Theorem 2.3 is a construction due
to Baier, Florentino, Mourao, and Nunes [3] of a varying set {χs}s∈[0,∞) (to
be defined in Section 3) of diffeomorphisms of the underlying smooth man-
ifold of the ambient projective space P which is designed to have certain
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convergence properties. Specifically, let {σm}m∈∆P∩Zn denote the natural
basis of H0(P, LP) already mentioned above (see e.g. [6]) with respect to
the original complex structure. In [3] the authors construct the diffeomor-
phisms χs precisely so that a pullback σms of σm, defined using the χs at
time s, has the form (for large enough s) of a “bell curve” centred at the
Bohr-Sommerfeld fiber µ−1

P
(m) and, as s→ ∞ and with appropriate nor-

malizations, the bell curve gets narrower and narrower, thus converging to a
dirac-delta distribution supported on the Bohr-Sommerfeld fiber. The bulk
of the arguments in the present paper are devoted to taking this fundamen-
tal construction of [3] for the projective space P and making the necessary
adjustments to apply them to our more general situation. We rely heavily
on [7], which already worked out some of the necessary steps for the case of
the full flag variety.

Remark 2.5. • For m ∈W0 a boundary point, we are confident that
similar arguments will show that the support of the section σms local-
izes around the Bohr-Sommerfeld fiber µ−1(m); doing so in this paper,
however, would require including many more details of the construc-
tions in [3] and [7] than we felt was desirable. On the other hand,
for the full statement of the convergence of sections, we do not have
a sufficiently concrete topological description of the fiber µ−1(m) to
construct an analogue of the measure dθm for fibres over boundary
points of W0.

• The normalization factor ∥σms ∥L1(X) in (2.2) guarantees that the “area
under the bell curve” mentioned in Remark 2.4 is always equal to 1 as
s varies.

• There are different versions of convergence in functional analysis, and
the notion used in Theorem 2.3 is called “weak convergence”. In par-
ticular, note that our convergence assertion is not uniform in the space
of test sections τ .

As mentioned in the introduction, the purpose of Sections 3 and 4 is to
prove Theorem 2.3. We show that the theory of Newton-Okounkov bodies
and their associated toric degenerations provides a large class of examples
satisfying the hypotheses of Theorem 2.3 in Section 5.
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3. Variation of complex structures and bases of

holomorphic sections

In order to prove Theorem 2.3 we rely on work of Guillemin and Abreu [1, 4,
5] and, more recently, of Baier, Florentino, Mourao, and Nunes [3]. Moreover,
the first author and Konno [7] have results similar to our Theorem 2.3 for the
special case of flag manifolds and its Gel’fand-Tsetlin integrable system. In
this section we recall the relevant background and establish the preliminary
results required to prove the results in our (more general) case.

3.1. The gradient-Hamiltonian flow

Let X be a smooth, irreducible complex algebraic variety and π : X → C be
a toric degeneration of X satisfying assumptions (a)-(d) as above. We equip
(the smooth locus of) X with the Kähler form ωX := Ω|X as in Section 2.
The proof of our main result will use the gradient-Hamiltonian techniques
of [8] which we now briefly recall.

Following Ruan [20], we define the gradient-Hamiltonian vector field cor-
responding to π on the smooth locus Xsmooth of X as follows. Let ∇(Re(π))
denote the gradient vector field on Xsmooth associated to the real part Re(π),
with respect to the Kähler metric ωX. Since ωX is Kähler and π is holomor-
phic, the Cauchy-Riemann equations imply that ∇(Re(π)) is related to the
Hamiltonian vector field ξIm(π) of the imaginary part Im(π) with respect to
ωX by

(3.1) ∇(Re(π)) = −ξIm(π).

Let Z denote the closed subset of X which is the union of the singular locus
of X and the critical set of Re(π), i.e. the set on which ∇(Re(π)) = 0. The
gradient-Hamiltonian vector field Vπ, which is defined only on the open set
X \ Z, is by definition

(3.2) Vπ := −
∇(Re(π))

∥∇(Re(π))∥2
.

Where defined, Vπ is smooth. For t ∈ R≥0 let ϕt denote the time-t flow
corresponding to Vπ. Note that since Vπ may not be complete, ϕt for a given
t is not necessarily defined on all of X \ Z; this issue is dealt with in the next
proposition.

The gradient-Hamiltonian flow is the tool which allows us to relate the
geometry of different fibres of the toric degeneration. Recall that Xt denotes
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the fiber π−1(t) and that we often identify X1 with the original variety X
using the isomorphism ϱ1 above. We now record some facts, which hold
under our assumptions, assembled from [8, Sections 2-4] and which are also
used in the proof of [8, Theorem (A)].

Proposition 3.1. In the setting above, we have the following.

(a) Let s, t ∈ R with s ≥ t > 0. Where defined, the flow ϕt takes Xs ∩ (X \
Z) to Xs−t. In particular, where defined, ϕt takes a point x ∈ Xt to a
point in the fiber X0. Moreover, for s > t > 0, the map ϕt is defined
on all of Xs and it is a diffeomorphism from Xs to Xs−t.

(b) Where defined, the flow ϕt preserves the symplectic structures, i.e., if
x ∈ Xz ∩ (X \ Z) is a point where ϕt(x) is defined, then ϕ

∗
t (ωz−t)ϕt(x) =

(ωz)x. In particular, for s > t > 0, the map ϕt is a symplectomorphism
between Xs and Xs−t.

(c) For s = t, there exists an open dense subset Ut = Us of Xt and an
open dense subset U0 ⊂ X0 in the smooth locus of X0 such that ϕt is a
symplectomorphism from Ut to U0. Moreover, ϕt extends continuously
to a map ϕt : Xt → X0.

Using the gradient-Hamiltonian flows, for each 0 < t ≤ 1 we construct
an integrable µt : Xt → Rn by pulling back the standard integrable system
µ0 : X0 → Rn (arising from the structure of X0 as a toric variety) on X0

through the maps ϕt [8, Theorem 5.2]. More precisely, we define

(3.3) µt := ϕ∗tµ0 : Xt → R
n.

As a result, the moment map image µt(Xt) for each 0 < t ≤ 1 is equal to
the moment map image ∆0 := µ0(X0) of the toric variety X0. In particular,
we have an integrable system µ : X → Rn on X ∼= X1 whose image is ∆0.
For further details we refer to [8].

In what follows it will sometimes be useful to refer to the families of Xt

and Ut with t ∈ [0, 1], and so we define

X[0,1] := π−1
(
[0, 1]

)
⊂ X

U[0,1] := {x ∈ X[0,1] | x ∈ Uπ(x)}.
(3.4)



✐

✐

“6-Harada” — 2021/11/29 — 18:27 — page 1197 — #15
✐

✐

✐

✐

✐

✐

Convergence of polarizations, toric degenerations 1197

3.2. The varying complex structure

We now define a family {Js,t} of complex structures on X ∼= X1 where s, t
are real parameters with 0 ≤ s <∞ and 0 < t ≤ 1. In Section 4 we will
choose an appropriate continuous function t = t(s) of s and thus define a
1-parameter family {Js = Js,t(s)} of complex structures which will satisfy
the properties asserted in our Theorem 2.3.

For details we refer to [3, 7] but we briefly set some notation. Recall that
P ∼= PN is a standard projective space. By slight abuse of notation we denote
also by P the underlying smooth manifold. Since the usual projective space
PN is naturally a Kähler manifold with Kähler structure (P, ωP, JP), we
may consider P as a symplectic manifold (P, ωP) or as a complex manifold
(P, JP). In [3] the authors construct a family of diffeomorphisms

(3.5) χs : P → P

for s ∈ R with 0 ≤ s <∞ which satisfy the following:

(χ-1) χ0 : P → P is the identity function, and

(χ-2) for any s with 0 ≤ s <∞, the triple (P, ωP, χ
∗
s(JP)) is a Kähler struc-

ture on P.

The family {χs} in (3.5) satisying (χ-1) and (χ-2) is not uniquely deter-
mined; the general construction given in [3] could yield many such choices of
{χs}. We interpret the diffeomorphisms χs as giving rise to a one-parameter
family of Kähler structures on P with respect to the same symplectic struc-
ture but with varying complex structure.

In this paper, we wish to use the varying complex structures χ∗
sJP on P to

define a family of complex structures on X. However, this is not completely
straightforward because a smooth submanifold X of P may be a complex
submanifold of P for the original complex structure JP but may not be
a complex submanifold of P equipped with the altered complex structure
χ∗
sJP. To address this issue, the first author and Konno prove the following

[7, Proposition 6.1].

Proposition 3.2. ([7, Proposition 6.1]) Let V be a smooth submanifold of
P with associated embedding ρ : V →֒ P. Assume that V is a complex sub-
manifold of P with respect to the complex structure JP and let ωV := ρ∗(ωP)
denote the corresponding Kähler form on V . Let χs : P → P for s a real
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parameter, 0 ≤ s <∞, be a family of diffeomorphisms as in (3.5) satisfy-
ing (χ-1) and (χ-2). Then there exists a family {ρs}0≤s<∞ of embeddings
ρs : V →֒ P such that

(a) for all s with 0 ≤ s <∞ we have ρ∗sωP|V = ωV ,

(b) for all s with 0 ≤ s <∞ the image ρs(V ) ⊂ P is a complex submanifold
of (P, χ∗

s(JP)), and

(c) ρ0 = ρ.

In particular, for any s with 0 ≤ s <∞ the pair
(
ωV , ρ

∗
s

(
χ∗
s(JP)|ρs(V )

))
is

a Kähler structure on V . Furthermore, for each choice of family {χs} as
in (3.5), the family of embeddings {ρs} satisfying the above conditions is
unique.

Each fiber Xt (for 0 < t ≤ 1) of our family X is a complex submanifold
of P with respect to the original complex structure JP. Hence, applying
Proposition 3.2 to each Xt, we obtain embeddings

(3.6) ρs,t : Xt → P

where s, t are real parameters with 0 ≤ s <∞ and 0 < t ≤ 1. We can now
define a family {Js,t} of complex structures on X = X1. We have the follow-
ing key diagram (note that it is not commutative):

(3.7) ρs,t(Xt)
⊂

// (P, ωP)
χs

// (P, JP)

X = X1
ϕ1−t

// Xt

ρs,t

OO

ϕt
// X0

OO

and we have the following.

Definition 3.3. Let s, t ∈ R with 0 ≤ s <∞ and 0 < t ≤ 1. Let ϕ1−t : X ∼=
X1 → Xt be the gradient-Hamiltonian flow and let {χs} be a choice of diffeo-
morphisms as in (3.5) and ρs,t : Xt →֒ P be the corresponding embeddings
in (3.6). The complex structure Js,t on X is then defined by

(3.8) Js,t; = (ρs,t ◦ ϕ1−t)
∗(χ∗

sJP|ρs,t(Xt))

Equivalently, Js,t is the pullback (χs ◦ ρs,t ◦ ϕ1−t)
∗JP.

Since both ρs,t and ϕ1−t behave well with respect to the symplectic
structures (Propositions 3.1(b) and 3.2(a)), the following is immediate.
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Lemma 3.4. Let s, t ∈ R with 0 ≤ s <∞ and 0 < t ≤ 1. Then the triple
(X ∼= X1, ω = ω1, Js,t) is Kähler.

In what follows, we will need two further properties of these embeddings
ρs,t and complex structures Js,t, the first of which requires some additional
hypotheses on the family {χs}, as we now explain. As mentioned above, the
family {χs} given in (3.5) is not unique. However, when P is equipped with a
complex torus action and V happens to be the closure in P of a torus orbit,
then it turns out that the family {χs} can be chosen in such a way that V
remains a complex submanifold for all of the complex structures χ∗

sJP, not
just the original complex structure JP. Before proceeding it should be noted
that although the statement of Proposition 3.2 (equivalently [7, Proposition
6.5]) contains the hypothesis that V is smooth, it is shown in the proof of [7,
Proposition 6.5] that the argument for [7, Proposition 6.1] can be extended
in this special case to give a well-defined embedding ρ of V , with analogous
properties.

Proposition 3.5. Let H ⊂ TP be a complex subtorus, acting on P by re-
striction of the standard TP-action on P. Let V denote the (possibly singular)
closure in P of the H-orbit of [1 : 1 : · · · : 1] ∈ P. Then there exists a choice
of a family {χs} as in (3.5), satisfying the assumptions (χ-1) and (χ-2),
such that for all s with 0 ≤ s <∞ we have ρs = ρ0, where ρs is the (unique)
embedding associated to χs constructed in Proposition 3.2 above. In partic-
ular, on the smooth locus of V , the complex structures χ∗

sJP and JP agree,
for all s.

Since the technical aspects of the construction of the above family {χs}
are not used in this manuscript, we do not discuss it further here; for details
see [3, 7]. In the setting of this manuscript, the fiber X0 := π−1(0) over
0 of our family X is by assumption the closure of the T0-orbit of [1 : 1 :
· · · : 1] for T0 ⊂ TP a subtorus of TP. Hence Proposition 3.5 applies, and
we therefore obtain a family {χs} of diffeomorphisms as in (3.5) (satisfying
the assumptions (χ-1) and (χ-2)) such that the associated ρs’s leave X0

invariant, i.e., ρs = ρ0 on X0 for all 0 ≤ s <∞. This will be crucial in what
follows so we now record, by way of emphasis, that

henceforth, we assume that the family {χs} is chosen in
such a way that the conclusion of Proposition 3.5 holds.
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Given this choice of {χs}, in our later arguments we need to know that
the maps ρs,t defined in (3.6) satisfy some continuity conditions with respect
to the parameter t. We record the following.

Proposition 3.6. Let s ∈ R with 0 ≤ s <∞. Let X ⊆ P× C be the toric
degeneration as above and {χs} be a family of diffeomorphisms as above,
chosen so that the conclusion of Proposition 3.5 holds. Then

1) the map X[0,1] → P given by x 7→ ρs,π(x)(x) is continuous, and

2) the map U[0,1] → P× C given by x 7→ (ρs,π(x)(x), π(x)) is a diffeomor-
phism onto its image.

Proof. We first review the construction of the map ρs from [7]. Let χs : P →
P be the diffeomorphisms from (3.5). Let ψs = χ0 ◦ χ

−1
s : P → P and let

ωs = (χ−1
s )∗ωP. By property (χ-2) of the family {χs} we know that (ωs, JP)

is a Kähler structure on P. Thus, any submanifold V of P which is complex
with respect to JP is also a symplectic submanifold with respect to ωs. Hence
we can define a time-dependent vector field Vs on P by

(Vs)ψs(p) =
d

dτ
ψs+τ (p)

∣∣∣
τ=0

for p ∈ P. Following [7] we further define a vector field Ys on V by

(3.9) ιYs

(
ωs|V

)
= −ψ∗

s

(
ιVs
ωP

)∣∣
V
.

Letting φs denote the corresponding flow of the vector field Ys, again fol-
lowing [7] we finally define ρs by

ρs := χ−1
s ◦ ρ0 ◦ φs ◦ χ0

∣∣
V
.

The construction just recounted deals with a single submanifold V ⊆ P.
To prove the proposition we must show that this construction can be ex-
tended to one on a family X ⊆ P× C in a way which guarantees the claimed
smoothness and continuity properties with respect to the extra parameter.
To do this, we first define χ̂s : P× C → P× C by χ̂s(x, t) = (χs(x), t) for
(x, t) ∈ P× C and ψ̂s := χ̂0 ◦ χ̂

−1
s . We then define a time-dependent vector

field V̂s on P× C by

(V̂s)(ψs(p),t) :=
d

dτ
ψ̂s+τ (p, t)

∣∣∣
τ=0
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and a vector field Ŷs on Xsmooth, the smooth locus of X, by

(3.10) ι
Ŷs
(ω̂s) = ι

Ŷs
((χ̂−1

s )∗Ω) = −ψ̂∗
s(ιV̂s

Ω)
∣∣
Xsmooth

where Ω is the product Kähler structure on P× C. Note that V̂s = (Vs, 0) by
definition of ψ̂s and by construction Ŷs is a smooth vector field on Xsmooth.
We wish to analyze the relation between Ys, defined via the above con-
struction from [7] on each Xt separately, and Ŷs, for which we need some
preliminaries. Let pr1 : P× C → P be the projection to the first factor and
V ⊆ TXsmooth denote the vertical subbundle of TXsmooth with respect to pr1,
i.e., Vx := ker(d(pr1)x) for each x ∈ Xsmooth. Then V is a smooth symplec-
tic subbundle of TXsmooth with respect to Ω|Xsmooth

, so there is a canoni-
cal decomposition TXsmooth ∼= V⊕ VΩ and the projection TXsmooth → V is
smooth.

We now claim that

(3.11) − ψ̂∗
s(ιV̂s

Ω) = pr∗1
(
−Ψ∗

s(ιVs
ωP)

)

as 1-forms on P× C. Indeed, for any w ∈ T (P× C) ∼= TP⊕ TC, we may
decompose w = (wP, wC) into its two factors and compute

ψ̂∗
s(ιV̂s

Ω)(w) = Ω(V̂s, (ψ̂s)∗(w))

= ωP(Vs, ((ψ̂s)∗w)P) since V̂s = (Vs, 0)

= ωP(Vs, (Ψs)∗(ωP)) since ψ̂s acts as the identity on the C factor

= (Ψs)∗(ιVs
ωP)(wP)

= pr∗1(Ψ
∗
s(ιVs

ωP))(w).

Now suppose Z ∈ V ⊆ TXsmooth, so Z = (ZP, 0) where ZP ∈ TP ∩ TXsmooth.
We have

ι
Ŷs
(ω̂s)(Z) = −ψ̂∗

s(ιV̂s
Ω)(Z)

= pr∗1(−Ψ∗
s(ιVs

ωP))(Z)

= −Ψ∗
s(ιVs

ωP)(ZP)

= ιYs
(ωs)(ZP)

where the first equality is by (3.10), the second by (3.11), and the last
is the definition (3.9) of Ys on each fiber. From this it follows that the
symplectic-orthogonal projection (Ŷs)vert of Ŷs to the vertical subbundle
V ⊆ TXsmooth agrees, fiberwise, with the vector field Ys defined using the
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original construction from [7]. Since the symplectic-orthogonal projection
is smooth, as argued above, it follows that the vector field Ys, considered
together on all of Xsmooth, is smooth on Xsmooth. Let φ̂s denote the flow
corresponding to (Ŷs)vert, which exists since it exists fiberwise for each Xt

with t ̸= 0, and for X0, the argument in the proof of [7, Proposition 6.1]
shows that a flow exists and extends continuously to all of X0. Hence the
statement (1) of the proposition now follows.

To prove (2), we first observe that the above argument shows that the
map U[0,1] → P× C given by x 7→ (ρs,π(x)(x), π(x)) is smooth. So it suffices
to show that this map is smoothly invertible. We know that for each fixed
t ∈ C with t ̸= 0, the map ρs,t : Xt → P is an embedding. Moreover, Propo-
sition 3.5 implies that on U0 ⊆ X0 we have ρs,0 = ρ0, hence ρs,0 is also an
embedding. It follows that x 7→ (ρs,π(x)(x), π(x)) is injective, so it is bijective
on its image. It remains to show that the inverse map is also smooth. Since
U[0,1] lies in Xsmooth we may decompose TU[0,1] into the vertical subbundle
V and its complement VΩ. With respect to this decomposition and the stan-
dard decomposition TP⊕ TC of P× C, the derivative of the above map at
a point in π−1(t) is of the form

[
(ρs,t)∗ ⋆

0 I

]

where I is an isomorphism and (ρs,t)∗ is injective. Thus the whole derivative
is also injective, and it follows that the inverse mapping is smooth. □

3.3. Pullbacks of prequantum data

The main result of this manuscript deals with quantizations, and in par-
ticular with sections of certain prequantum line bundles. In this section, we
show that the gradient-Hamiltonian flows ϕ1−t and the embeddings ρs,t from
Section 3.2 lift to the total spaces of the relevant line bundles. This will be
crucial for our constructions below. Recall that we have the prequantum
data (LP,∇P, hP) and (LX,∇X, hX) respectively on P and X and that the
latter restricts to give prequantum data on the fibers Xt, which we denote
by (Lt,∇t, ht).

We first recall that the horizontal lift of the gradient-Hamiltonian flow
with respect to the connection ∇X preserves the connections and Hermitian
metrics on each fiber [7, Proposition 4.3].

Lemma 3.7. ([7, Proposition 4.3])
Let s, t ∈ R with s ≥ t > 0.
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1) If s > t, there exists a unique horizontal lift ϕ̃t : Ls → Ls−t of the
gradient-Hamiltonian flow ϕt : Xs → Xs−t to the total spaces of the
prequantum line bundles. The lift ϕ̃t is an isomorphism of line bundles
and also preserves the fiberwise connections and Hermitian structures,
i.e., ϕ̃∗t∇s−t = ∇s and ϕ̃∗ths−t = hs.

2) If s = t, there there exists a unique horizontal lift ϕ̃s=t : Lt|Ut
→ L0|U0

of the gradient-Hamiltonian flow ϕt : Ut → U0 to the total spaces of the
(restricted) prequantum line bundles. The lift ϕ̃t is an isomorphism of
line bundles and also preserves the fiberwise connections and Hermi-
tian structures, i.e., ϕ̃∗t∇0 = ∇t and ϕ̃∗th0 = ht (restricted to Ut and
U0).

3) The map L0|U0
× [0, 1] → LX given by (x, t) 7→ ϕ̃−1

t (x) is smooth, where
the domain L0|U0

× [0, 1] is given the standard smooth structure in-
duced from the product structure.

Proof. The argument is essentially the same as in [7]. For the statement
in (3) we note that the gradient-Hamiltonian flow on X \ Z is smooth and
hence its horizontal lift is also smooth. Now an argument similar to that in
the proof of Proposition 3.6 yields the result. □

We remark that it follows from the above lemma that the following
diagram commutes for t with 0 < t < 1:

L1

��

ϕ̃1−t
// Lt

��

X ∼= X1
ϕ1−t

// Xt

We will also need a similar statement for the embeddings ρs,t [7, Propo-
sition6.3(1)].

Lemma 3.8. ([7, Proposition 6.3(1)]) There exists a lift ρ̃s,t : Lt →
LP|ρs,t(Xt) of ρs,t to the total spaces of the line bundles Lt and LP|ρs,t(Xt)

which identifies the prequantum data. In particular, the following diagram
commutes:

Lt

��

ρ̃s,t
// LP|ρs,t(Xt)

��

Xt
ρs,t

// ρs,t(Xt)
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We need a smoothness property for the map ρ̃s,t, analogous to Proposi-
tion 3.6 for the ρs,t.

Proposition 3.9. Let s ∈ R, 0 ≤ s <∞ be fixed. Let X ⊆ P× C be the
toric degeneration as above and {χs} be the family of diffeomorphisms as
above (in particular chosen so that the conclusion of Proposition 3.5 holds).
For any 0 ≤ t ≤ 1, let ρs,t : Xt →֒ P be the embedding defined in Proposi-
tion 3.2, and let ρ̃s,t be the lifting of ρs,t as defined in Lemma 3.8. Let LU

denote the restriction of the line bundle LX to the open subset U[0,1] defined
in (3.4). Then the map

(3.12) ρ̃s : LU → LP × C, (x, ξ) 7→ (ρ̃s,π(x)(ξ), π(x))

where the pair (x, ξ) consists of a point x ∈ U and ξ ∈ Lx, is a diffeomor-
phism onto its image.

Proof. We recall the construction of ρ̃s,t from [7] and globalize it to the
family Xsmooth. Let Θ: Xsmooth × [0,∞) → P× C be the map (x, s) 7→(
ρs,π(x)(x), π(x)

)
. Let (L′,∇′, h′) = Θ∗(LP×C,∇P×C, hP×C). Note that

L′|Xsmooth×{s0} = ρ∗s0LX.
Let Z ∈ Vect(L′) be the horizontal lift to L′ with respect to ∇′ of the

vector field ∂
∂s on Xsmooth × [0,∞). Then the flow of Z through time s induces

a diffomorphism between the bundles ρ∗0LX and ρ∗sLX over Xsmooth × {0} and
Xsmooth × {s}. This is the same as a diffeomorphism LX → Lρs0 (X) lifting
the map ρs0 , and we denote it by ρ̃s. Since U[0,1] is a subset of Xsmooth by
construction, the map ρ̃s is defined on LU, and is a diffeomorphism onto its
image.

If we restrict the map Θ to the (smooth locus in the) fibre Xt × [0,∞)
we obtain a map Θt : (x, s) 7→ ρs,t(x), which agrees with the map used in [7,
Claim 6.4] to construct the lift of ρs,t over the submanifold Xt. Furthermore,
it is clear that Θ∗

t (LP×C,∇P×C, hP×C) restricts to (L
′,∇′, h′) on Xt × [0,∞);

this agrees with the data used in the construction in [7]. Therefore the lifting
ρ̃s constructed above agrees on Ut with the map ρ̃s,t as constructed in [7],
and the formula given in (3.12) agrees with the map ρ̃s constructed in the
previous paragraph. □

Finally, we analyze the behavior of the diffeomorphisms χs : P → P of
(3.5) with respect to the prequantum data. Recall that LP is a holomorphic
line bundle with respect to the canonical complex structure JP on P (i.e. its
transition functions are holomorphic), and hence there exists a differential
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operator ∂ defining the space of holomorphic sections H0(P, LP, ∂) of LP

over (P, JP). We recall the following [7, Theorem 5.3(A)].

Lemma 3.10. ([7, Theorem 5.3(A)]) There exists a lift χ̃s of χs to an
isomorphism of the line bundle LP such that the following diagram commutes

LP

��

χ̃s
// LP

��

P
χs

// P

and such that the connection ∇P is the canonical Chern connection for the
Hermitian holomorphic line bundle (LP, hP, χ̃

∗
s∂).

From now on we notate

∂s := χ̃∗
s(∂)

and denote by H0(P, LP, ∂s) the corresponding space of sections. From the
definitions of the respective holomorphic structures, it is immediate that
the pullback by χ̃∗

s of a section which is holomorphic with respect to ∂ is
holomorphic with respect to ∂s.

Lemma 3.11. The pullback χ̃∗
s(σ) of a section σ ∈ H0(P, LP, ∂) is an ele-

ment of H0(P, LP, ∂s).

In fact, in our arguments below we will need to pull back sections to the
original variety X via the diagram

(3.13) L
ϕ̃1−t

//

��

Lt
ρ̃s,t

//

��

LP

��

χ̃s
// LP

��

X
ϕ1−t

// Xt
ρs,t

// P
χs

// P

obtained by composing the three diagrams above. We record the following.

Lemma 3.12. Let s, t ∈ R with 0 ≤ s <∞ and 0 ≤ t < 1. Following nota-
tion as above, the pullbacks χ̃∗

s, ρ̃
∗
s,t and ϕ̃

∗
1−t preserve holomorphic sections,

so in particular there is a well-defined map

ϕ̃∗1−t ◦ ρ̃
∗
s,t ◦ χ̃

∗
s : H

0(P, LP, ∂0) → H0(X,L, ∂s,t)

where ∂0 denotes the standard holomorphic structure on (P = PN , ωP, JP).
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Proof. The differential operator ∂s,t is associated to the complex structure
ϕ̃∗1−tρ̃

∗
s,tχ̃

∗
s(JP) obtained by pullback, so the result is immediate from the

definitions. □

We also record the important fact that the Bohr-Sommerfeld fibres of
the integrable system on X correspond to those on X0. In particular, the
Bohr-Sommerfeld set is the set W0 defined in (2.1).

Proposition 3.13. Let W0 := ι∗(∆P ∩ ZN ) ⊆ ∆0 ∩ Zn as defined in (2.1).
Then the Bohr-Sommerfeld fibres in X are precisely the preimages of points
in W0 under the integrable system µ constructed in (3.3).

Proof. Since the gradient-Hamiltonian flow lifts to the line bundle preserving
the connection, it follows that the gradient-Hamiltonian flow maps Bohr-
Sommerfeld fibres in X to Bohr-Sommerfeld fibres in X0. Since the Bohr-
Sommerfeld fibres of the torus moment map are the preimages ofW0, and the
integrable system µ : X → Rn was constructed by pulling back the moment
map for the torus action on X0, we obtain the result. □

3.4. Varying bases of sections {σm
s,t

} of H0(X,L, ∂s,t)

Our main result, Theorem 2.3, asserts the existence of a basis of sections
{σms }, indexed by m ∈W0 and dependent on a real parameter s, where each
σms is holomorphic with respect to the complex structure Js. In this section,
we take a step in this direction by using the results of Section 3.3 to define
sections σms,t in H

0(X,L, ∂s,t).
The sections σms,t are constructed using certain standard sections of

(P, LP) which we now recall. It is well-known that P is a toric variety with
respect to the standard action of its torus TP. For any integer lattice point
in ∆P ∩ ZN , there is a well-known method (see e.g. [6]) to associate to it a
holomorphic section in H0(P, LP, ∂0). In fact, this association yields a bijec-
tive correspondence between ∆P ∩ ZN and a basis for H0(P, LP, ∂0) which
we denote as

m̃ ∈ ∆P ∩ Z
N 7→ σm̃ ∈ H0(P, LP, ∂0).

Now recall that W0 := ι∗(∆P ∩ ZN ) is defined to be precisely the lattice
points in ∆0 which lie in the image of ι∗ of ∆P ∩ ZN . Thus for any m ∈W0,
by assumption there exists a preimage m̃ of m under ι∗.

We can now define our set of sections σms,t. The sections depend on a
choice of preimage m̃ for each m ∈W0, but their essential properties —
such as those asserted in Theorem 2.3 — are independent of these choices.
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For this reason and for simplicity we suppress this choice from the notation.
Specifically, we have the following. (It may be helpful for the reader to refer
to the diagram (3.13).)

Definition 3.14. For eachm ∈W0, let m̃ ∈ ∆P ∩ ZN denote a fixed choice
of preimage of m under ι∗. Let s, t ∈ R with 0 ≤ s <∞ and 0 < t ≤ 1. We
define

(3.14) σms,t := ϕ̃∗1−tρ̃
∗
s,tχ̃

∗
sσ

m̃ ∈ H0(X,L, ∂s,t).

In the next section we will find an appropriate function t = t(s) so that
the bases {σms := σms,t=t(s)} will satisfy the convergence conditions asserted
in Theorem 2.3 with respect to the complex structures Js := Js,t=t(s) and

∂s := ∂s,t=t(s).

4. Proof of the main theorem

We now proceed to a proof of the main result of this manuscript, Theo-
rem 2.3. Much of this section is devoted to proving results about the sections
σms,t defined in Section 3.4, under certain hypotheses on the parameters s and
t. At the end of this section we choose an appropriate function t = t(s) so
that the sections σms := σms,t(s) depend only on the single parameter s and
have the correct convergence properties.

We begin our discussion with a statement about supports. Specifically,
part of the assertion of Theorem 2.3 is that a certain (normalized) sec-
tion weakly converges to a dirac-delta function on the corresponding Bohr-
Sommerfeld fiber. In particular, the support of σms,t=t(s) must concentrate on
a neighborhood of the Bohr-Sommerfeld fiber as s gets large. We make this
precise in the proposition below, for which we need some preliminaries. Let
m ∈W0 ⊂ t

∗
0. For a real number η > 0, let Bη(m) denote the open ball of

radius η around m with respect to the usual metric on t
∗
0. We introduce the

following notation:

(4.1)
Bη(m) := µ−1(Bη(m)), Bη,t(m) := µ−1

t (Bη(m)),

Bη,0(m) := µ−1
0 (Bη(m))

where µ, µt and µ0 are the moment maps for the integrable systems on X,Xt

and X0 respectively. When the point m is clear from context, we sometimes
write Bη,t = Bη,t(m), etc. We also let d(vol) denote the symplectic volume
form on Xt and ρs,t(Xt) for all s and t; since the relevant maps between
these spaces preserve symplectic structures, the ambiguity in this notation
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does not pose problems. We let |·| denote the norm with respect to the
hermitian metric on all the line bundles; again, all relevant maps preserve
the hermitian metric so there is no ambiguity. We let ∥·∥L1(·) denote the
L1-norm of a section over some space; for the sake of space and readability
we will occasionally omit the explicit mention of the space in the notation
and write simply ∥·∥.

We can now state and prove the following.

Proposition 4.1. Let m ∈W0 be an interior point and let σms,t ∈

H0(X,L, ∂s,t) be the section defined in (3.14). Then there exists a continu-
ous function t′ = t′(s) : [0,∞) → [0, 1] such that for every ϵ > 0 and η > 0,
there exists s0 > 0 such that

(4.2)

∫

X\Bη

∣∣∣∣
σms,t

∥σms,t∥L1(X)

∣∣∣∣d(vol) < ϵ

for all s > s0 and 0 ≤ t ≤ t′(s), and moreover, lims→∞ t′(s) = 0.

Remark 4.2. We believe the result of Proposition 4.1 holds for boundary
points as well as interior points but we restrict ourselves to interior points
for the purposes of this paper.

The proof of Proposition 4.1 requires several steps, the first of which
states that the analogous result is true for the special fiber X0. We quote
the following.

Lemma 4.3. ([7, Proposition 6.6, (3) and (4)]) Let m ∈W0 be an inte-
rior point and let m̃ ∈ ∆P ∩ ZN denote the preimage of m fixed in Defini-
tion 3.14. For any ϵ > 0 and η > 0, there exists s0 > 0 such that

∫

X0\Bη,0

∣∣∣∣
χ̃∗
s(σ

m̃)

∥χ̃∗
s(σ

m̃)∥L1(X0)

∣∣∣∣d(vol) < ϵ

for all s > s0.

The following estimate will also be useful. Roughly, it says that for any
fixed s > 0 and any ϵ > 0, there are fibers Xt of the family which are suffi-
ciently close to X0 such that the two maps ρs,t and ϕt do not differ on Xt

by more than distance ϵ.
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Lemma 4.4. Let s, t ∈ R with 0 < s <∞ and 0 ≤ t ≤ 1, let ρs,t : Xt → P

be the embedding in Proposition 3.2, let ϕt : Xt → X0 denote the gradient-
Hamiltonian flow, and let ϵ > 0. Then there exists t0 > 0 such that for any
x ∈ Xt with 0 < t < t0,

dP(ρs,t(x), ϕt(x)) < ϵ

where dP denotes the distance function on P induced from the Kähler metric
on (P, ωP, JP).

Proof. First, we show that we can choose t small enough that ϕt(x) is close
to x, uniformly in Xt. Note that this part of the argument is independent
of the parameter s. Let

B :=
{
(x, t) ∈ X× [0, 1] | π(x) ∈ [0, 1], t ≤ π(x)

}

⊆ P× [0, 1]× [0, 1] ⊆ P× C× [0, 1].

Then B is a closed subset of the compact space P× [0, 1]× [0, 1], and is
therefore compact. Consider the map Ψ : B → B given by Ψ(x, t) =
(ϕt(x), π(x)− t). Note that Ψ is well-defined since t ≤ π(x) by assumption
so π(x)− t ≥ 0. It follows from [8, Part 1, Theorem 4.1] that Ψ is continuous
as a function from B to itself, and hence uniformly continous. In particular,
this implies that for any δ > 0, there exists a t0 > 0 such that for any t < t0
we have dP(ϕt(x), x) < δ for any x ∈ Xt.

We next analyze the embeddings ρs,t : Xt →֒ P. Recall that X[0,1] denotes
π−1([0, 1]) ⊂ X. For a fixed s, let fs denote the map X[0,1] → P given by
x 7→ ρs,π(x)(x). Then fs is continuous by Proposition 3.6, and therefore also
uniformly continuous since X[0,1] is compact. Recall from Proposition 3.5
that ρs,0 = id for all s. Thus for any x ∈ Xt we have

fs(ϕt(x)) = ρs,0(ϕt(x)) = ϕt(x)

since ϕt(x) ∈ X0. Now let ϵ > 0 be given. Choose δ > 0 such that dP(x, y) <
δ implies dP(fs(x), fs(y)) < ϵ for any x, y ∈ X[0,1]. Then choose t0 so that
0 < t < t0 implies dP(ϕt(x), x) < δ for all x ∈ Xt, as above. Then for all
x ∈ Xt with 0 < t < t0,

dP(ρs,t(x), ϕt(x)) = dP(fs(x), fs(ϕt(x))) < ϵ

as required. □
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We are now ready to prove Proposition 4.1. The idea of the proof is
to combine two separate estimates, as we now sketch. On the one hand,
we will use Lemma 4.4 to argue that we can make the integral over X
close to the analogous integral over X0. On the other hand, we know from
Lemma 4.3 that the integral over X0 can be made arbitrarily small. Putting
these estimates together gives the result. We make this precise in the proof
below.

Proof of Proposition 4.1. We first note that by Lemma 4.3 there exists s0 >
0 such that for any s > s0 we have

(4.3)

∫

X0\Bη,0

∣∣∣∣
χ̃∗
s(σ

m̃)

∥χ̃∗
s(σ

m̃)∥L1(X0)

∣∣∣∣ d(vol) <
ϵ

2
.

Next we notice that since χ̃∗
s(σ

m̃) is a holomorphic section of a hermitian
line bundle, its norm |χ̃∗

s(σ
m̃)| is a continuous function on P. Since ρs,t

is continuous in t, as noted in Proposition 3.6, the function t 7→ ∥χ̃∗
sσ

m̃ ◦
ρs,t∥L1(Xt) is a continous function on t. Define C0 and C1, respectively, to be
the minumum and maximum values of ∥χ̃∗

sσ
m̃ ◦ ρs,t∥L1(Xt) for t ∈ [0, 1], and

note that C0 ̸= 0 for sufficiently small t because χ̃∗
s(σ

m̃) is not identically
zero [7, Theorem 5.3 (a5)], and thus χ̃∗

sσ
m̃ ◦ ρs,t is not the zero section for

sufficiently small t.
Similarly, since χ̃∗

s(σ
m̃) is a holomorphic section of a hermitian line bun-

dle on the compact set P, its norm |χ̃∗
s(σ

m̃)| is a continuous, and hence uni-
formly continuous, function on P. Thus for any ϵ > 0, there exists a δ > 0
such that if dP(x, x

′) < δ for x, x′ ∈ P, then

∣∣∣∣|χ̃
∗
s(σ

m̃)|(x)− |χ̃∗
s(σ

m̃)|(x′)

∣∣∣∣ <
ϵC0∥χ̃

∗
sσ

m̃∥L1(X0)

4C1 vol(Xt)
.

Moreover, by Lemma 4.4, for a fixed s with s > s0 as above, we know there
exists t0 = t0(s) > 0 such that for any t with 0 < t < t0 = t0(s) and any
x ∈ Xt we have

dP(ρs,t(x), ϕt(x)) < δ.

For what follows we will also choose t0(s) sufficiently small so that χ̃∗
s(σ

m̃) ◦
ρs,t is not identically zero for 0 < t < t0, so in particular C0 > 0. Now, we
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have that for all x ∈ Xt with 0 < t < t0 = t0(s),

∣∣∣∣
∣∣χ̃∗
s(σ

m̃)
∣∣(ρs,t(x)

)
−
∣∣χ̃∗
s(σ

m̃)
∣∣(ϕt(x)

)∣∣∣∣ <
ϵC0∥χ̃

∗
sσ

m̃∥L1(X0)

4C1 vol(Xt)
(4.4)

≤
ϵ∥χ̃∗

sσ
m̃∥L1(X0)

4 vol(Xt)

where the last inequality is because C0/C1 ≤ 1.
Next we recall that the sections σms,t on X in Definition 3.14 are given by

a sequence of pullbacks. In particular, since both ϕ̃1−t and ρ̃s,t preserve the
hermitian metric and ϕ1−t preserves symplectic structures, we have that

∫

X\Bη

|σms,t| d(vol) =

∫

Xt\Bη,t

∣∣ρ̃∗s,tχ̃∗
s(σ

m̃)
∣∣ d(vol)(4.5)

=

∫

Xt\Bη,t

∣∣χ̃∗
s(σ

m̃)
∣∣ ◦ ρs,t d(vol),

where we also use that ϕ−1
1−t(Bη,t) = Bη by construction (3.3) of the moment

maps µt; for the same reason, the L1-norms satisfy

∥∥σms,t
∥∥
L1(X)

=

∫

X
|σms,t| d(vol)(4.6)

=

∫

Xt

∣∣χ̃∗
s(σ

m̃)
∣∣ ◦ ρs,t d(vol) =

∥∥χ̃∗
s(σ

m̃) ◦ ρs,t
∥∥
L1(Xt)

.

Similarly, since ϕt and ϕ̃t preserve the relevant structures we have

∫

X0\Bη,0

∣∣χ̃∗
s(σ

m̃)
∣∣ d(vol) =

∫

Xt\Bη,t

∣∣ϕ̃∗t χ̃∗
s(σ

m̃)
∣∣ d(vol)(4.7)

=

∫

Xt\Bη,t

∣∣χ̃∗
s(σ

m̃)
∣∣ ◦ ϕt d(vol).

In this case, the L1-norms satisfy

∥∥χ̃∗
s(σ

m̃)
∥∥
L1(X0)

=

∫

X0

∣∣χ̃∗
s(σ

m̃)
∣∣ d(vol)(4.8)

=

∫

Xt

∣∣χ̃∗
s(σ

m̃)
∣∣ ◦ ϕt d(vol) =

∥∥χ̃∗
s(σ

m̃) ◦ ϕt
∥∥
L1(Xt)

;

however, because ϕt preserves the symplectic structure, the above norms are
equal for all t ∈ [0, 1].



✐

✐

“6-Harada” — 2021/11/29 — 18:27 — page 1212 — #30
✐

✐

✐

✐

✐

✐

1212 M. Hamilton, M. Harada, and K. Kaveh

Because of the normalizing factors in the denominators, we will need to
show that ∥χ̃∗

sσ
m̃ ◦ ρs,t∥L1(Xt) is close to ∥χ̃∗

sσ
m̃ ◦ ϕt∥L1(Xt), which we do as

follows: For s > s0 and for all x in Xt, 0 < t ≤ t0(s),
∣∣∣∥χ̃∗

sσ
m̃ ◦ ρs,t∥ − ∥χ̃∗

sσ
m̃ ◦ ϕt∥

∣∣∣(4.9)

≤

∫

Xt

∣∣∣
∣∣χ̃∗
sσ

m̃ ◦ ρs,t
∣∣−
∣∣χ̃∗
sσ

m̃ ◦ ϕt
∣∣
∣∣∣ d(vol)

≤

∫

Xt

ϵC0∥χ̃
∗
sσ

m̃∥L1(X0)

4C1 vol(Xt)
d(vol) =

ϵC0∥χ̃
∗
sσ

m̃∥L1(X0)

4C1

where the last inequality comes from (4.4).
Now, using the fact that

∣∣∣∣
a

h
−
b

k

∣∣∣∣ =
∣∣∣∣
a(k − h) + h(a− b)

hk

∣∣∣∣ ≤
|a||k − h|

|hk|
+

|a− b|

|k|

we obtain that, for our fixed value of s > s0 and for all x ∈ Xt with 0 < t ≤
t0(s), the expression

∣∣∣∣∣
|χ̃∗
sσ

m̃|
(
ρs,t(x)

)

∥χ̃∗
sσ

m̃ ◦ ρs,t∥
−

|χ̃∗
sσ

m̃|
(
ϕt(x)

)

∥χ̃∗
sσ

m̃ ◦ ϕt∥

∣∣∣∣∣

is less than or equal to
∣∣χ̃∗
sσ

m̃
(
ρs,t(x)

)∣∣
∥χ̃∗

sσ
m̃ ◦ ρs,t∥∥χ̃∗

sσ
m̃ ◦ ϕt∥

∣∣∣∥χ̃∗
sσ

m̃ ◦ ρs,t∥ − ∥χ̃∗
sσ

m̃ ◦ ϕt∥
∣∣∣(4.10)

+

∣∣∣
∣∣χ̃∗
s(σ

m̃)
∣∣(ρs,t(x)

)
−
∣∣χ̃∗
s(σ

m̃)
∣∣(ϕt(x)

)∣∣∣
∥χ̃∗

sσ
m̃ ◦ ϕt∥

.

Using (4.9) on the first term, the second estimate in (4.4) on the second term,
the fact that

∣∣χ̃∗
s(σ

m̃)
(
ρs,t(x)

)∣∣ ≤ C1

vol(Xt)
by the definition of C1, the fact that

C0 is the minimum value of ∥χ̃∗
sσ

m̃ ◦ ρs,t∥ (and hence 1
∥χ̃∗

sσ
m̃◦ρs,t∥

≤ 1
C0

), and

the equality (4.8), this becomes
∣∣∣∣∣

∣∣χ̃∗
sσ

m̃
∣∣(ρs,t(x)

)

∥χ̃∗
sσ

m̃ ◦ ρs,t∥
−

∣∣χ̃∗
sσ

m̃
∣∣(ϕt(x)

)

∥χ̃∗
sσ

m̃ ◦ ϕt∥

∣∣∣∣∣(4.11)

≤
C1

C0 vol(Xt)∥χ̃∗
sσ

m̃ ◦ ϕt∥

ϵC0∥χ̃
∗
sσ

m̃∥

4C1
+

1

∥χ̃∗
sσ

m̃ ◦ ϕt∥

ϵ∥χ̃∗
sσ

m̃∥

4 vol(Xt)

=
ϵ

2 vol(Xt)
.
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Putting everything together, for s > s0 and t < t0 for the chosen s0, t0(s)
as above, we have

∫

X\Bη

|σms,t|

∥σms,t∥
d(vol)

(4.12)

=

∫

X\Bη

|σms,t|

∥σms,t∥
d(vol)−

∫

X0\Bη,0

|χ̃∗
s(σ

m̃)|

∥χ̃∗
s(σ

m̃)∥
d(vol)

+

∫

X0\Bη,0

|χ̃∗
s(σ

m̃)|

∥χ̃∗
s(σ

m̃)∥
d(vol)

=

∫

Xt\Bη,t

|χ̃∗
s(σ

m̃)| ◦ ρs,t∥∥χ̃∗
s(σ

m̃) ◦ ρs,t
∥∥ d(vol)−

∫

Xt\Bη,t

|χ̃∗
s(σ

m̃)| ◦ ϕt∥∥χ̃∗
s(σ

m̃) ◦ ϕt
∥∥ d(vol)

+

∫

X0\Bη,0

|χ̃∗
s(σ

m̃)|∥∥χ̃∗
s(σ

m̃)
∥∥ d(vol)

≤

∣∣∣∣
∫

Xt\Bη,t

|χ̃∗
s(σ

m̃)| ◦ ρs,t∥∥χ̃∗
s(σ

m̃) ◦ ρs,t
∥∥ d(vol)−

∫

Xt\Bη,t

|χ̃∗
s(σ

m̃)| ◦ ϕt
∥χ̃∗

s(σ
m̃) ◦ ϕt∥

d(vol)

∣∣∣∣

+

∫

X0\Bη,0

|χ̃∗
s(σ

m̃)|

∥χ̃∗
s(σ

m̃)∥
d(vol)

≤

∫

Xt\Bη,t

∣∣∣∣
|χ̃∗
s(σ

m̃)| ◦ ρs,t∥∥χ̃∗
s(σ

m̃) ◦ ρs,t
∥∥ −

|χ̃∗
s(σ

m̃)| ◦ ϕt
∥χ̃∗

s(σ
m̃) ◦ ϕt∥

∣∣∣∣ d(vol)

+

∫

X0\Bη,0

|χ̃∗
s(σ

m̃)|

∥χ̃∗
s(σ

m̃)∥
d(vol)

≤

∫

Xt\Bη,t

ϵ

2 vol(Xt)
d(vol) +

∫

X0\Bη,0

|χ̃∗
s(σ

m̃)|

∥χ̃∗
s(σ

m̃)∥
d(vol)

≤
ϵ

2 vol(Xt)
· vol(Xt) +

ϵ

2
= ϵ

as required, where the second equality uses (4.5), (4.6), (4.7), and (4.8), the
second-to-last inequality uses (4.11), and the last inequality uses (4.3).

Finally, we wish to prove that there exists t′ = t′(s) : [0,∞) → [0, 1] a
continuous function of s such that (4.12) holds for σms,t for all s and all t with
0 ≤ t ≤ t′(s), and also such that t′(s) → 0 as s→ ∞. To see this, notice first
that immediately before (4.4) we made a choice of t0(s) which depended on
s. In the subsequent argument we proved statements that hold for all t with
0 < t < t0. In particular, these statements are still true if we replace t0 by a
smaller choice of t0. From this it follows that we may assume without loss
of generality that t0 = t0(s) is a monotone non-increasing function of s.
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A standard result from real analysis (see e.g. [21, Lemma 1.6.31(iii)])
says that a bounded, non-decreasing monotone function F : R → R can be
written as F = Fc + Fpp, where Fc is a continuous monotone non-decreasing
function and Fpp is a jump function. Looking at the definition of Fpp in the
proof in [21], it is obvious that Fpp is nonnegative; a little more thought
shows that if F (x) is nonnegative then Fpp(x) ≤ F (x) for all x, so if F (x) is
nonnegative then so is Fc. Taking F (s) = t0(−s) for s ≤ 0 (and constant for
s ≥ 0), we can apply this decomposition to obtain that t0(s) for s > 0 is the
sum of a nonnegative jump function and a continuous positive non-increasing
function t′(s) which therefore satisfies 0 ≤ t′(s) ≤ t0(s). By shrinking t′(s)
if necessary, we can arrange that t′(s) → 0 as s→ ∞. Since the inequalities
at each stage are true for the chosen s and for all t with 0 < t ≤ t0(s), they
are true for 0 < t < t′(s), and we are finished. □

Next, the fiber µ−1
0 (m) is diffeomorphic to a torus and lies entirely within

the open dense torus orbit of X0, and thus it is possible to obtain much
more refined information about the behavior of the family {σms,t} in the
limit. Specifically, let Γ(X,L∗) denote the space of smooth (not necessarily
holomorphic) sections of the dual complex line bundle and let ⟨·, ·⟩ denote the
usual pairing between L∗ and L. For σ ∈ Γ(X,L∗) we let ∥σ∥L1(X) denote
its L1-norm with respect to the Hermitian metric on L, i.e. ∥σ∥L1(X) =∫
X |σ| d(vol). We have the following.

Proposition 4.5. Let m ∈ ∆0 ∩ Zn be an interior lattice point. Let τ ∈
Γ(X1, L

∗
1). Then there exist a covariantly constant section δm of

(L|µ−1(m),∇|µ−1(m)), a measure dθm on µ−1(m), and a continuous function
t = t(s) satisfying lims→∞ t(s) = 0 such that

(4.13) lim
s→∞

∫

X

〈
τ,

σms,t(s)

∥σms,t(s)∥L1(X)

〉
d(vol) =

∫

µ−1(m)
⟨τ, δm⟩ dθm.

The idea of the proof is similar to that of Proposition 4.1 above and
requires a number of steps. Namely, we will relate the LHS of (4.13) to a
limit of integrals on Xt(s) and then approximate the integral on Xt(s) by one
on X0. We then use the fact that the analogous statement to Proposition 4.5
is already known on X0; this is the content of the following lemma.

Lemma 4.6. Let U0 denote the open dense T0-orbit in X0 and let m ∈
∆0 ∩ Zn be an interior lattice point. Let m̃ be the fixed choice of preimage of
m under ι∗ as in Definition 3.14. Then there exists a covariantly constant
section δm,0 of (LP|µ−1

0 (m),∇|µ−1
0 (m)) over µ−1

0 (m) and a measure dθm,0 on



✐

✐

“6-Harada” — 2021/11/29 — 18:27 — page 1215 — #33
✐

✐

✐

✐

✐

✐

Convergence of polarizations, toric degenerations 1215

µ−1
0 (m) such that, for any smooth section τ ∈ Γ(U0, L

∗
P
|V0

) of the dual line
bundle, we have

(4.14) lim
s→∞

∫

X0

〈
τ,

χ̃∗
s(σ

m̃)

∥χ̃∗
s(σ

m̃)∥L1(X0)

〉
d(vol) =

∫

µ−1
0 (m)

⟨τ, δm,0⟩ dθm,0.

Proof. This is essentially the content of an argument given in [7]. Specifically,
the Vsymp and Vcomp in the proof of [7, Proposition 6.6(4)] can be identified
with ourX0. Similarly, their T ℓ

C
(respectively Tn

C
) is our T0 (respectively TP).

Finally, to apply the argument in [7] it is necessary that X0 is the closure of
the T0-orbit of [1 : 1 : · · · : 1] and that ι∗ is surjective on lattices, which hold
by our assumptions (e) and (g), respectively, as stated in Section 2. Thus,
the argument of [7] applies. □

In order to translate the previous lemma to a statement concerning other
fibers, we need some additional information. The next lemma recalls some
results from [8] and also constructs compact subsets Kt which will be useful
for obtaining estimates. Let ∆◦

0 denote the interior of the moment polytope.

Lemma 4.7. Let t ∈ [0, 1]. Then there exists an open subset Ut ⊆ Xt and
a compact subset Kt ⊆ Ut such that:

1) For t = 0, U0 equals µ−1
0 (∆◦

0) ⊆ X0, the open dense T0-orbit in X0. In
particular, U0 lies in the smooth locus of X0.

2) The gradient-Hamiltonian flow ϕs : Ut → Ut−s is a diffeomorphism for
all 0 ≤ s ≤ t. In particular, ϕt is a diffeomorphism from Ut to U0.

3) The flow ϕs : Ut → Ut−s in (2) identifies Kt with Kt−s, i.e., ϕs(Kt) =
Kt−s for all 0 ≤ s ≤ t.

4) The subset Kt contains a neighborhood of every interior Bohr-
Sommerfeld fiber. More precisely, there exists some η > 0 such that, for
any m ∈ ∆◦

0 ∩ Zn, the neighborhood Bη,t(m) as in (4.1) is contained
in Kt.

Proof. In order to satisfy (1), we first define U0 := µ−1
0 (∆◦

0). From [8, Corol-
lary 3.3] it follows that U0 is contained in the locus of points in X where the
gradient-Hamiltonian vector field is defined. Moreover, as in the proof of [8,
Theorem 5.2], we know the gradient-Hamiltonian flow is well-defined on all
of Xt for any t ̸= 0. By [8, Lemma 2.5] we may now define Ut := ϕ−t(U0) =
ϕ−1
t (U0) from which it is immediate that ϕs : Ut → Ut−s is a diffeomorphism

from Ut to Ut−s (with inverse ϕ−s) for any 0 ≤ s ≤ t. This proves (2).
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It remains to define the compact subsets Kt and to prove the claims
(3) and (4). Let C ⊂ ∆◦

0 be a connected closed subset containing within
its interior every interior lattice point, i.e., if m ∈ ∆◦

0 ∩ Zn then m ∈ C◦;
such a C clearly exists. We define Kt := µ−1

t (C). Then Kt is closed since
µt is continuous. Since C ⊆ ∆◦

0 and we saw µ−1
0 (∆◦

0) ⊆ U0 above, it also
follows from the definition (3.3) of the µt that Kt ⊆ Ut. Moreover, since
µt−s ◦ ϕs = µt by construction of the integrable systems (3.3), and the ϕt are
diffeomorphisms on the Ut, it follows that ϕs(Kt) = Kt−s for all 0 ≤ s ≤ t.
This proves (3). Finally, since C contains only a finite number of lattice
points, there exists some η > 0 such that for all interior lattice points m, the
ball Bη(m) is contained in C. This proves (4) and completes the proof. □

Roughly, the idea in what follows is to replace the integrals in previous
proofs by integrals over Kt. By using Proposition 4.1 we will be able to
control the error terms. Then, since Kt is compact by assumption, we will be
able to use a uniform continuity argument. We begin with an estimate which
is uniform on Kt for all sufficiently small t. This will be a key component of
the proof of Proposition 4.5.

Lemma 4.8. Let m̃ be a preimage of an interior lattice point m ∈ ∆0 ∩ Zn.
There exists a continuous function t′′ = t′′(s) : R>0 → [0, 1] such that for any
ε > 0 and any s ∈ R>0, the following holds: if t ∈ [0, 1] satisfies 0 ≤ t ≤ t′′(s)
then

(4.15)

∣∣∣∣
ρ̃∗s,tχ̃

∗
s(σ

m̃)(x)

∥ρ̃∗s,tχ̃
∗
s(σ

m̃)∥L1(Xt)
−

ϕ̃∗t χ̃
∗
s(σ

m̃)(x)

∥ϕ̃∗t χ̃
∗
s(σ

m̃)∥L1(Xt)

∣∣∣∣ < ε.

for all x ∈ Kt.

Proof. The idea of the proof is to show that the LHS of (4.15) is (the norm
of) a continuous section of a line bundle over a suitable family that is equal
to zero for all x ∈ K0 (i.e. when t = 0) for any value of s; then we use uniform
continuity.

Recall that X[0,1] denotes the restriction of our family X to the subset
[0, 1] ⊆ C, i.e. X[0,1] := π−1([0, 1]) ⊂ X, and U[0,1] = {x ∈ X[0,1] | x ∈ Uπ(x)}
is the family of open dense subsets Ut in each fibre, as in (3.4). We also
define

K[0,1] := {x ∈ X[0,1] | x ∈ Kπ(x)}

to be the family of the compact sets Kt from Lemma 4.7 over [0, 1]. Let LK

(respectively LU) denote LX|K[0,1]
(respectively LX|U[0,1]

).
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Now fix s ∈ R with s > 0 and let x ∈ Ut ⊂ Xt for any t. Recall that ϕt
is the gradient-Hamiltonian flow, so in particular ϕt : Xt → X0 takes Xt to
X0 and Ut to U0 (cf. Lemma 4.7). In the LHS of (4.15), the expression
ϕ̃∗t χ̃

∗
s(σ

m̃)(x) is by definition equal to
(
ϕ̃−1
t ◦ χ̃∗

s(σ
m̃)|X0

◦ ϕt
)
(x). In partic-

ular, ϕ̃∗t χ̃
∗
s(σ

m̃) sends each Ut to Lt by definition, so it is a section of the
bundle Lt → Ut. Putting these together for all Ut for t ∈ [0, 1], we obtain a
section of LU → U[0,1]. The L

1-norm in the denominator is independent of
t, since it can be written as

∥ϕ̃∗t χ̃
∗
s(σ

m̃)∥L1(Xt) =

∫

Xt

∣∣ϕ̃∗t χ̃∗
s(σ

m̃)
∣∣ d(vol) =

∫

X0

∣∣χ̃∗
s(σ

m̃)
∣∣ d(vol)

since ϕt preserves the Hermitian and symplectic structures, and so the de-
nominator of the second term is constant on U[0,1].

Recall that σm̃ is holomorphic (hence smooth), χs is smooth, and the
map ϕ : U[0,1] → U0 given by x 7→ ϕπ(x)(x) is smooth (since it is the flow
of a smooth vector field). Together with the last statement in Lemma 3.7
we may conclude that the section of LU → U[0,1] obtained above (sending

x ∈ Ut to ϕ̃
∗
π(x)χ̃

∗
s(σ

m̃)(x)) is smooth. Finally, recalling that when t = 0 the

maps ϕ0 : U0 → U0 and ϕ̃0 : L0|U0
→ L0|U0

are both equal to the identity, we

conclude that the above section restricts on U0 to be equal to χ̃∗

s(σ
m̃)

∥χ̃∗

s(σ
m̃)∥

∣∣∣
U0

.

Next, we consider the expression ρ̃∗s,tχ̃
∗
s(σ

m̃) contained in the LHS of
(4.15). Recall that ρs,t is the embedding Xt → P given in (3.6) and spec-
ified in Proposition 3.2, and ρ̃s,t is the lift of ρs,t to the line bundles (cf.
Lemma 3.8). In particular, for x ∈ Ut the expression ρ̃∗s,tχ̃

∗
s(σ

m̃)(x) is by

definition equal to
(
ρ̃−1
s,t ◦ χ̃s(σ

m̃)|ρs,t(Ut) ◦ ρs,t
)
(x). As in the above case, by

construction ρ̃∗s,t ◦ χ̃
∗
s(σ

m̃) sends each Ut to Lt by definition, so it is a section
of Lt → Ut and by putting these together we obtain a section of LU → U[0,1].
Similarly to the above case, the last statement of Proposition 3.9 allows us
to conclude that this section is continuous. In this case the L1-norm in the
denominator is no longer independent of t, but it will be continuous in t,
and never zero since the section is not the zero section. Moreover, by our
assumption on {χs} and Proposition 3.5 as well as Proposition 3.9 we also
know that ρs,0 = id for all s and its lift ρ̃s,0 acts as the identity on L0|U0

, so
ρ̃∗s,0χ̃

∗
s(σ

m̃) = χ̃∗
s(σ

m̃).
Now for x ∈ K[0,1], let

hs(x) =
ρ̃∗s,tχ̃

∗
s(σ

m̃)(x)

∥ρ̃∗s,tχ̃
∗
s(σ

m̃)∥
−
ϕ̃∗t χ̃

∗
s(σ

m̃)(x)

∥ϕ̃∗t χ̃
∗
s(σ

m̃)∥
.
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By the preceding discussion, hs is a continuous section of LK over K[0,1] and
in particular its absolute value |hs| is a continuous function from K[0,1] to
R. Moreover, by the above, hs(x) = 0 for x ∈ X0.

By the continuity of hs, and since we know K0 ⊆ h−1
s (0), we may cover

K0 with open sets Uα with the property that |hs(x)| < ε for all Uα. Extend
this to an open cover of K[0,1]. The compactness of K[0,1] implies that there
exists a finite subcover, a subset of which is a finite cover of the subset K0 of
K[0,1]. In particular, from the construction of the cover, we may conclude that
there exists some t′′(s) > 0 such that for all 0 ≤ t < t′′(s) and x ∈ Kt we have
|hs(x)| < ε. Now an argument similar to that in the proof of Proposition 4.1
shows that in fact we may choose t′′(s) to be a continuous function of s, as
claimed. □

We are finally ready for a proof of Proposition 4.5.

Proof of Proposition 4.5. We first define the covariantly constant section δm
and measure dθm. Recall that the integrable system on the variety X is de-
fined by pulling back that onX0 via ϕ1. In particular ϕ1 induces a pullback of
the action-angle coordinates on U0 to U = U1 = ϕ−1

1 (U0) and a diffeomor-
phism of tori µ−1

0 (m) ∼= µ−1(m) ∼= (S1)n. Hence by using ϕ1 we may pull
back the covariantly constant δm,0 and measure dθm,0 on U0 of Lemma 4.6
to a covariantly constant δm and dθm respectively. Let τ ∈ Γ(U,L∗

P
|U ) be

a test section. For simplicity of notation we let (ϕ1)∗τ denote the sec-
tion of L∗

P
|U0

obtained by using the identifications ϕ1 : U = U1 → U0 and
ϕ̃1 : LP|U → LP|U0

, so (ϕ1)∗τ(x) := ϕ̃1 ◦ τ ◦ ϕ
−1
1 (x). Then by definition we

have
∫

µ−1
0 (m)

⟨(ϕ1)∗τ, δm,0⟩ dθm,0 =

∫

µ−1(m)
⟨τ, δm⟩ dθm

for any test section. Now let ϵ > 0. From the above it suffices to prove that
we can find a continuous function t = t(s) and an s0 > 0 such that for all
s > s0 we have

∣∣∣∣
∫

X

〈
τ,

σms,t(s)

∥σms,t(s)∥

〉
d(vol)(4.16)

−

∫

µ−1
0 (m)

⟨(ϕ1)∗τ, δm,0⟩ dθm,0

∣∣∣∣ < ϵ.
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First, we know from Lemma 4.6 that there exists s1 such that for all s > s1
we have

∣∣∣∣
∫

X0

〈
(ϕ1)∗τ,

χ̃∗
s(σ

m̃)

∥χ̃∗
s(σ

m̃)∥

〉
d(vol)(4.17)

−

∫

µ−1
0 (m)

⟨(ϕ1)∗τ, δm,0⟩ dθm,0

∣∣∣∣ <
ϵ

4
.

Moreover, since ϕ1 = ϕt ◦ ϕ1−t and all maps preserve the relevant structures,
we have

∣∣∣∣
∫

Xt

〈
(ϕ1−t)∗τ,

ϕ̃∗t χ̃
∗
s(σ

m̃)

∥ϕ̃∗t χ̃
∗
s(σ

m̃)∥

〉
d(vol)(4.18)

−

∫

µ−1
0 (m)

⟨(ϕ1)∗τ, δm,0⟩ dθm,0

∣∣∣∣ <
ϵ

4
.

Next note that τ is a smooth section on the compact space X, so there exists
a constant C > 0 such that ∥τ∥ < C for all x ∈ X. Since ϕ1−t preserves the
Hermitian structure, this also implies that |(ϕ̃1−t)∗τ | < C for all x ∈ Xt and
for all t. Let K = K1 be the compact subset of X = X1 from Lemma 4.7.
Our next step is to approximate the integrals over X and X0 with integrals
over K and K0. Specifically, following Lemma 4.7 (4) let η > 0 be such that
such that Bη = Bη(m) ⊂ K. By Proposition 4.1, there exists s2 > 0 such
that ∫

X∖Bη

∣∣∣∣
σms,t
∥σms,t∥

∣∣∣∣ d(vol) <
ϵ

4C

for any s > s2 and 0 ≤ t ≤ t′(s) where t = t′(s) is the function constructed
in the proof of Proposition 4.1. Since Bη ⊂ K and because we have an upper
bound |τ | < C on the norm of τ , we conclude

∫

X∖K

∣∣∣∣
σms,t
∥σms,t∥

∣∣∣∣|τ | <
∫

X∖Bη

∣∣∣∣
σms,t
∥σms,t∥

∣∣∣∣|τ | <
ϵ

4

for s > s2 and 0 ≤ t ≤ t′(s). Thus

∣∣∣∣∣

∫

X

〈
τ,

σms,t
∥σms,t∥

〉
d(vol)−

∫

K

〈
τ,

σms,t
∥σms,t∥

〉
d(vol)

∣∣∣∣∣(4.19)

=

∣∣∣∣∣

∫

X∖K

〈
τ,

σms,t
∥σms,t∥

〉
d(vol)

∣∣∣∣∣ ≤
∫

X∖K
|τ |

∣∣∣∣
σms,t

∥σms,t∥

∣∣∣∣d(vol) <
ϵ

4
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for these choices of s and t, and in this sense, the integral over X is well
approximated by one over K.

A similar argument, using Lemma 4.3 applied to X0 and K0, gives an
s3 such that for s > s3

∣∣∣∣
∫

X0

〈
(ϕ1)∗τ,

χ̃∗
s(σ

m̃)

∥χ̃∗
s(σ

m̃)∥

〉
d(vol)(4.20)

−

∫

K0

〈
(ϕ1)∗τ,

χ̃∗
s(σ

m̃)

∥χ̃∗
s(σ

m̃)∥

〉
d(vol)

∣∣∣∣ <
ϵ

4

and so the integral over X0 is well approximated by one over K0.
Next, for any 0 < t < 1 we can push forward by ϕ1−t to rewrite the

integral over K as an integral over Kt as follows. Recalling the definition of
σms,t from (3.14) we have

∫

K

〈
τ,

σms,t(s)

∥σms,t(s)∥

〉
d(vol) =

∫

Kt

〈
(ϕ1−t)∗τ,

ρ̃∗s,tχ̃
∗
s(σ

m̃)

∥ρ̃∗s,tχ̃
∗
s(σ

m̃)∥

〉
d(vol).

We then have the following:

∣∣∣∣
∫

Kt

〈
(ϕ1−t)∗τ,

ρ̃∗s,tχ̃
∗
s(σ

m̃)

∥ρ̃∗s,tχ̃
∗
s(σ

m̃)∥

〉
d(vol)

(4.21)

−

∫

Kt

〈
(ϕ1−t)∗τ,

ϕ∗t χ̃
∗
s(σ

m̃)

∥ϕ∗t χ̃
∗
s(σ

m̃)∥

〉
d(vol)

∣∣∣∣

≤

∫

Kt

∣∣∣∣
〈
(ϕ1−t)∗τ,

ρ̃∗s,tχ̃
∗
s(σ

m̃)

∥ρ̃∗s,tχ̃
∗
s(σ

m̃)∥

〉
−

〈
(ϕ1−t)∗τ,

ϕ∗t χ̃
∗
s(σ

m̃)

∥ϕ∗t χ̃
∗
s(σ

m̃)∥

〉∣∣∣∣ d(vol)

=

∫

Kt

∣∣∣∣
〈
(ϕ1−t)∗τ,

ρ̃∗s,tχ̃
∗
s(σ

m̃)

∥ρ̃∗s,tχ̃
∗
s(σ

m̃)∥
−

ϕ∗t χ̃
∗
s(σ

m̃)

∥ϕ∗t χ̃
∗
s(σ

m̃)∥

〉∣∣∣∣ d(vol)

≤

∫

Kt

∣∣(ϕ1−t)∗τ
∣∣
∣∣∣∣
ρ̃∗s,tχ̃

∗
s(σ

m̃)

∥ρ̃∗s,tχ̃
∗
s(σ

m̃)∥
−

ϕ∗t χ̃
∗
s(σ

m̃)

∥ϕ∗t χ̃
∗
s(σ

m̃)∥

∣∣∣∣ d(vol)

≤ C

∫

Kt

∣∣∣∣
ρ̃∗s,tχ̃

∗
s(σ

m̃)

∥ρ̃∗s,tχ̃
∗
s(σ

m̃)∥
−

ϕ∗t χ̃
∗
s(σ

m̃)

∥ϕ∗t χ̃
∗
s(σ

m̃)∥

∣∣∣∣ d(vol)

where the last inequality again uses the upper bound |(ϕ1−t)∗τ | < C. Now
let ε = ϵ

2C vol(Xt)
. (Note that volumes are equal for all fibers, i.e. vol(X) =

vol(Xt) for all t.) Applying Lemma 4.8 to this value of ε, we obtain a
continuous monotone (non-increasing) function t′′(s) of s such that for all
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0 < t < t′′(s) and all x ∈ Kt we have

(4.22)

∣∣∣∣
ρ̃∗s,tχ̃

∗
s(σ

m̃)

∥ρ̃∗s,tχ̃
∗
s(σ

m̃)∥
−

ϕ∗t χ̃
∗
s(σ

m̃)

∥ϕ∗t χ̃
∗
s(σ

m̃)∥

∣∣∣∣ <
ϵ

4C vol(Xt)

which implies that the integral in (4.21) is less than ϵ/4.
Finally, let t(s) = min{t′(s), t′′(s)} be the minimum of the two contin-

uous functions t′(s) and t′′(s) defined earlier. Then t(s) is a continuous,
positive, decreasing function of s, and the estimates in (4.19) and (4.21)
hold for all 0 < t < t(s). Let s0 = max{s1, s2, s3}. The triangle inequality
then implies that the LHS of (4.16) is less than or equal to the sum of the
left-hand sides of (4.18), (4.19), (4.20), and (4.21), each of which is less than
ϵ/4 for s > s0. This implies that, for this function t(s) and this choice of s0,
the inequality (4.16) holds for s > s0, and we are finished with the proof of
Proposition 4.5. □

In Section 3.2 we constructed for each s and t a complex structure Js,t
on X that is compatible with the symplectic structure. Recall also that the
parameter s ∈ [0,∞) corresponds to the deformation of complex structures
while the t ∈ [0, 1] parameter corresponds to the gradient-Hamiltonian flow
from X1 to X0. Our final task is to construct the family Js of complex
structures and the basis of sections σms in the statement of our main The-
orem 2.3. The basic idea behind the definition below is to let s go to ∞
and t go to 0 simultaneously in such a way that the convergence which is
claimed in Theorem 2.3 occurs. Indeed, in Proposition 4.5 we constructed a
continuous function t(s) of s which gives rise to certain key estimates for any
s > 0 and 0 ≤ t < t(s). Thus, setting Js := Js,t(s) would (nearly) do the job;
however, although we need J0 to be the original complex structure (which
is J0,1) on X, our construction of t(s) does not guarantee that t(0) = 1.
The solution to this problem is, roughly speaking, to first move along the
gradient-Hamiltonian flow to t0 while keeping s = 0 before “turning on” the
other deformation. More precisely, we make the following definition.

Definition 4.9. Let t(s) denote the continuous function constructed in
Proposition 4.5. For s ∈ [0,∞), we define

Js :=

{
J0,1+(t0−1)s if 0 ≤ s ≤ 1 and

Js−1,t(s−1) if s > 1.

Note that by construction J0 = J0,1 is the original complex structure
on X, and as s→ ∞, Js has the same convergence properties as Js,t(s).
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Moreover, by construction, the family Js is continuous with respect to the
parameter s. We are finally ready to prove our main Theorem 2.3.

Proof of Theorem 2.3. Consider the family {Js}s∈[0,∞) given in Definition 4.9.
As already noted above, {Js} is a continuous family and J0 = J0,1 is the orig-
inal complex structure by construction. By Lemma 3.4, the pair (ω = ω1, Js)
is a Kähler structure on X for each s ∈ [0,∞). Now define

(4.23) σms :=

{
σm0,1+(t0−1)s if 0 ≤ s ≤ 1

σms−1,t(s−1) if s > 1.

By construction, σms is an element of H0(X,L, ∂s). Moreover, by definition
Js and σ

m
s have the same limiting properties as Js,t(s) and σ

m
s,t(s), and for any

interior point m ∈W0 it was shown in Proposition 4.5 that σms,t(s) has the

required limiting property of (2.2) in the statement of Theorem 2.3. Thus it
remains only to ensure that for each fixed s w have a basis of H0(X,L, ∂s).
By the limiting properties of the σms , we know that as s goes to ∞, the
supports of the sections σms are increasingly concentrated in pairwise disjoint
neighborhoods. It follows that the set {σms } must be linearly independent
for s > s0 with s0 sufficiently large. Since the complex manifolds (X, Js) and
holomorphic line bundles (L, ∂s) are isomorphic for all s, we also know that
dimH0(X,L, ∂s) is constant for all s, and in particular by assumption (h)
in the statement of Theorem 2.3, we have dimH0(X,L, ∂s) = |W0| for all
s. Thus for s ≥ s0 the set {σms } is linearly independent and also spans, so
it is a basis of H0(X,L, ∂s) as desired. For 0 ≤ s ≤ s0, following [7, Section
7.2] we extend the basis {σms }m∈W0

, s ≥ s0, to bases of H0(X,L, ∂s) for s
satisfying 0 ≤ s ≤ s0 in a way that preserves the continuity in the parameter
s. This family then satisfies all the required properties. □

5. Toric degenerations coming from valuations and

Newton-Okounkov bodies

In this section we will show that the toric degenerations coming from Newton-
Okounkov bodies as in [8] can be used to create many examples of algebraic
varieties X with prequantum data (ω, J, L, h,∇) which satisfy the hypothe-
ses of Theorem 2.3. This is the content of the main result of this section,
Theorem 5.5.

We first very briefly recall the ingredients in the definition of a Newton-
Okounkov body. For details we refer the reader to [11, 15] and also [8]. We
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begin with the definition of a valuation (in our setting). We equip Zn with
a group ordering e.g. a lexicographic order.

Definition 5.1. 1) Let A be a C-algebra. A valuation on A is a func-
tion

ν : A \ {0} → Z
n

satisfying the following:
a) ν(cf) = ν(f) for all f ∈ A \ {0} and c ∈ C \ {0},
b) ν(f + g) ≥ min{ν(f), ν(g)} for all f, g ∈ A \ {0} with f + g ̸= 0.
c) ν(fg) = ν(f) + ν(g) for all f, g ∈ A \ {0}.

2) The image ν(A \ {0}) ⊂ Zn of a valuation ν on a C-algebra A is clearly
a semigroup and is called the value semigroup of the pair (A, ν).

3) Moreover, if in addition the valuation has the property that for any
pair f, g ∈ A \ {0} with same value ν(f) = ν(g) there exists a non-zero
constant c ̸= 0 ∈ C such that either ν(g − cf) > ν(g) or else g − cf = 0
then we say that the valuation has one-dimensional leaves.

If ν is a valuation with one-dimensional leaves, then the image of ν is
a sublattice of Zn of full rank. Hence, by replacing Zn with this sublat-
tice if necessary, we will always assume without loss of generality that ν is
surjective.

Given a variety X, there exist many possible valuations with one-
dimensional leaves on its field of rational functions C(X). Strictly speak-
ing, we do not need detailed knowledge of the construction in this paper,
but we note for the reader’s reference that the following example is the one
which arises naturally in geometric contexts: for an n-dimensional variety X,
a choice of an (ordered) coordinate system at a smooth point p on X gives
a valuation on C(X) with one-dimensional leaves, essentially by computing
the order of the zero or pole with respect to the coordinates. See e.g. [11,
Examples 2.12 and 2.13 ] or [15] for details.

The following proposition is simple but fundamental [11, Proposition 2.6]:

Proposition 5.2. Let ν be a valuation on C(X) with one-dimensional
leaves. Let V ⊂ C(X) be a finite-dimensional subspace of C(X). Then
dimC(V ) =

∣∣ν(V \ {0})
∣∣.

Let X be a projective variety of dimension n over C equipped with a
very ample line bundle L. Let E := H0(X,L) denote the space of global
sections of L; it is a finite dimensional vector space over C. The line bundle
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L gives rise to the Kodaira map ΦE of E, from X to the projective space
P(E∗). The assumption that L is very ample implies that the Kodaira map
ΦE is an embedding.

Now let Ek denote the image of the k-fold product E ⊗ · · · ⊗ E in
H0(X,L⊗k) under the natural map given by taking the product of sections.
(In general this map may not be surjective.) The homogeneous coordinate
ring of X with respect to the embedding ΦE : X →֒ P(E∗) can be identified
with the graded algebra

R = R(E) =
⊕

k≥0

Rk,

where Rk := Ek. This is a subalgebra of the ring of sections

R(L) =
⊕

k≥0

H0(X,L⊗k).

For a fixed ν we now associate a semigroup S(R) ⊂ N× Zn to R. First
we identify E = H0(X,L) with a (finite-dimensional) subspace of C(X) by
choosing a non-zero element h ∈ E and mapping f ∈ E to the rational func-
tion f/h ∈ C(X). Similarly, we can associate the rational function f/hk to
an element f ∈ Rk := Ek ⊆ H0(X,L⊗k). We define

(5.1) S = S(R) = S(R, ν, h) =
⋃

k>0

{(k, ν(f/hk)) | f ∈ Ek \ {0}}.

If f ∈ Rk = Ek is a homogeneous element of degree k we also define:

ν̃(f) = (k, ν(f/hk)).

Now define C(R) ⊆ R× Rn to be the cone generated by the semigroup
S(R), i.e., it is the smallest closed convex cone centered at the origin con-
taining S(R). We can now define the central object of interest.

Definition 5.3. Let ∆ = ∆(R) = ∆(R, ν) be the slice of the cone C(R) at
level 1, that is, C(R) ∩ ({1} × Rn), projected to Rn via the projection to the
second factor R× Rn → Rn. We have

∆ = conv

(
⋃

k>0

{x
k
: (k, x) ∈ S(R)

})
.

The convex body ∆ is called the Newton-Okounkov body of R with respect
to the valuation ν.
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From now on, we place the additional assumption that:

S is finitely generated.

The above assumption is a rather strong condition on (X,L, ν) but it holds
in many cases of importance. We note that it is possible to have a finitely
generated semigroup S for one choice of a valuation ν and a non-finitely
generated one for a different choice of ν. From the above assumption it
follows that the Newton-Okounkov body ∆(R) is a rational polytope. In
this context, Anderson proved the following [2, Corollary 5.3].

Theorem 5.4. There is a flat family π : X → C such that:

(a) For any z ̸= 0 the fiber Xz = π−1(z) is isomorphic to X, and π−1(C∗)
is isomorphic to X × C∗. For the remainder of the discussion we fix
an isomorphism X × C∗ → π−1(C∗) ⊂ X.

(b) The special fiber X0 = π−1(0) is isomorphic to Proj(grR) ∼= Proj(C[S])
and is equipped with an action of T = (C∗)n, where n = dimCX. The
normalization of the variety Proj(grR) is the toric variety associated
to the rational polytope ∆(R).

The explicit construction of the family X in [2] depends on a choice of
a so-called Khovanskii basis B = {fij} (cf. [8, Definition 8.1], and also see
[12] for a general theory of Khovanskii bases). The set B also allows us
to concretely embed X as a subvariety of P× C for an appropriate “large”
projective space P. Some of the details are relevant for our later discussions
so we briefly recall the construction here; for details we refer to [8, Sections 8
and 9].

By assumption the semigroup S ⊂ N× Zn is finitely generated. So we
can find a finite set consisting of homogeneous elements in R such that their
valuations are a set of generators for S. More precisely, let r > 0 be a positive
integer and let B = {fij}, for 1 ≤ i ≤ r, 1 ≤ j ≤ ni = dim(Ri), be a finite set
of elements in R satisfying the following properties:

(a) the fij are homogeneous, with fij ∈ Ri for all 1 ≤ i ≤ r, 1 ≤ j ≤ ni,
and

(b) for each i, the collection {fi1, fi2, . . . , fini
} is a vector space basis for

Ri,

(c) the set of images ν̃(B) = {ν̃(f) | f ∈ B} generate S = S(R),

For the remainder of this discussion we fix this “Khovanskii basis” B.
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We now describe more explicitly, in terms of the Khovanskii basis, the
toric degeneration X constructed in [2] and a concrete embedding of X into
P× C for a suitable large projective space C. Let Sd := S ∩ ({d} × Zn) de-
note the level-d piece of the semigroup S. By Proposition 5.2, dim(Ed) =
|ν(Ed)| = |Sd|, and since the {fij} form a Khovanskii basis, for each s ∈ Sd
we know there exists some monomial fα11

11 fα12

12 · · · f
αrnr
rnr

in the {fij}’s, where∑r
i=1 i

∑ni

j=1 αij = d, such that ν(fα11

11 fα12

12 · · · f
αrnr
rnr

) = s. So for each s ∈ S
we fix a choice of such exponents αs := (α(ij),s) such that the above holds.
Then the set

(5.2) {f
α(11),s

11 f
α(12),s

12 · · · f
α(rnr),s

rnr
| s ∈ Sd}

forms a basis for Ed. In [2], a collection of integers wij are associated
to the fij in a certain way (for details see [2] and [8, Section 8]). Us-
ing these integers wij and the above choices we can describe explicitly
the toric degeneration X and its embedding as follows. We first define a
morphism X × C∗ → P((Ed)∗)× C∗ by expressing the Kodaira embedding
X → P((Ed)∗) explicitly using the above basis for Ed. In coordinates we
have
(5.3)

(x, t) 7→

((
t
∑

ij
wijαijf11(x)

α11 · · · frnr
(x)αrnr

∣∣∣∣ αij = α(ij),s , s ∈ Sd

)
, t

)

Then the toric degeneration X ⊆ P× C is defined to be the closure of
the image of (5.3). By its construction, X is isomorphic to the fiber X1 and
X0 is a toric variety [2, Corollary 5.3].

Note that the pullback to X of the line bundle LP over P is L⊗d by con-
struction. Given any prequantum data (ωP, LP, hP,∇P) on P = P((Ed)∗),
it is clear that this data can be pulled back via the embedding (5.3) to
prequantum data (ω,L⊗d, h,∇) on the line bundle L⊗d over X.

We have the following, which is the main result of this section.

Theorem 5.5. Let X be a smooth, irreducible complex algebraic variety
with dimC(X) = n, let L be a very ample line bundle on X, and E :=
H0(X,L). Then there exists a sufficiently large positive integer d and pre-
quantum data (ωP, hP,∇P) on LP → P such that the family X ⊆ P× C

constructed above is a toric degeneration of X in the sense of Section 2,
and moreover, with respect to the pullback prequantum data (ω, h,∇) on
L⊗d → X, this toric degeneration satisfies all the required hypotheses (a)-
(h), and thus gives ’convergence of polarization’ in these cases.



✐

✐

“6-Harada” — 2021/11/29 — 18:27 — page 1227 — #45
✐

✐

✐

✐

✐

✐

Convergence of polarizations, toric degenerations 1227

Proof of Theorem 5.5. The fact that X ⊆ P× C is a toric degeneration sat-
isfying the hypotheses (a) and (b) of Theorem 2.3 follows from the construc-
tion in [2] and is shown in [8]. Moreover, in [8, Section 9] an appropriate
Kähler structure ωP on P is constructed which satisfies condition (d). Indeed,
the construction of ωP is by pulling back a Fubini-Study form associated to
a hermitian structure on an (even larger) projective space, and in particular
— by pulling back the standard prequantum data on a projectivization of a
vector space equipped with a hermitian structure — it is clear that we can
construct the prequantum data (ωP, hP,∇P) compatible with ωP. Now the
hypothesis (c) follows by construction, since the relevant prequantum data
are defined via pullbacks.

We also claim that hypothesis (e) holds in our situation. Indeed, by our
choice of basis (5.2) of Ed, it follows that our embedding (5.3) has the prop-
erty that the coordinates of the embedding correspond exactly to elements
of Sd. In particular, it follows from [2, Proposition 5.1] and [8, Section 8]
that the special fiber X0 is exactly the closure of a T0-orbit through a point
of the form [1 : 1 : · · · : 1], where T0

∼= (C∗)n acts by weight s ∈ Sd ⊆ Zn on
the coordinate associated to s ∈ Sd. It also follows that the set W0 defined
in (2.1) is precisely Sd ⊆ Zn, and thus hypothesis (h) follows from the fact,
already observed above, that dimEd = dimH0(X,L⊗d) = |Sd|.

Next, it is well-known [9, Chapter II, Section 5, Exercise 5.14(b)] that
for sufficiently large d≫ 0, we have Ed = H0(X,L⊗d), so in particular
P((Ed)∗) = P((H0(X,L⊗d))∗) and the restriction map

H0(P, LP) = H0(P(H0(X,L⊗d)∗),O(1)) → H0(X,L⊗d)

is surjective, so X satisfies hypothesis (f) for sufficiently large d.
Finally, we claim that for sufficiently large d≫ 0 we also have that

hypothesis (g) holds. By definition of the torus T0, the graded semigroup
S generates Z×M where M is the character lattice of T0 (and can be
identified with (t∗0)Z). It is easy to see that in this situation there exists d
sufficiently large such that Sd = ν(H0(X,L⊗d) \ {0}) generatesM . Since Sd
is contained in ι∗((t∗

P
)Z) by what we said above, the hypothesis (g) follows

for d sufficiently large.
Thus, by taking d large enough so that both of the last two phenomena

occur, we obtain the results claimed in the theorem. □

Finally, in the situation of an integrable system coming from a toric
degeneration arising from a Newton-Okounkov body, the sections σms,t we
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construct in §3.4 form a basis ofH0(X,L, ∂̄s,t) for all values of s and t. In par-
ticular, in this case we do not need to “extend the basis” non-constructively
as in the last sentence of the proof of Theorem 2.3, at the very end of §4.

Theorem 5.6. Let the notation be as in Theorem 5.5. Then for any fixed
s ≥ 0, t ̸= 0, the set {σms,t | m ∈W0} constructed in Definition 3.14 is linearly
independent. In particular, the set {σms | m ∈Wo} constructed in (4.23) is
a basis for H0(X,Ld, ∂̄s) for every value of s ≥ 0.

Proof. By Definition 3.14, and since ϕ̃1−t is an isomorphism of line bundles
(see Lemma 3.7), it suffices to show that the ρ̃∗s,tχ̃

∗
sσ

m̃ are linearly inde-
pendent in H0(Xt, Lt). By [7, Proposition 6.1(2)], for each s ≥ 0 and each
0 < t ≤ 1 we have a diffeomorphism χ

s,t
: Xt → Xt such that the following

diagram commutes:

P
χs

// P

Xt
?�

ρs,t

OO

χ
s,t

// Xt
?�

ρ

OO

where ρ is the standard embedding of Xt into P as a complex manifold, and
such that (Xt, ρ

∗
s,tωP, χ

∗
sJP) is Kähler. (Note that with our identifications

the map χ0 in [7] is the identity.) The ρs,t appearing in the diagram above
are the embeddings of Proposition 3.2. Similarly, by [7, Proposition 6.3(2)]
the map χ

s,t
lifts to a map χ̃

s,t
: Lt → Lt such that

LP

χ̃s
// LP

LP|Xt

χ̃
s,t

//

ρ̃s,t

OO

LP|Xt

ρ̃

OO

commutes, where ρ̃s,t are the maps in Lemma 3.8. Then χ̃∗
sσ

m̃|Xt
=

χ̃∗
s,t
(σm̃|Xt

). Since the χ̃s,t are line bundle isomorphisms, it will suffice to

show that the σm̃|Xt
’s are linearly independent.

To see this, recall the construction of the embedding of X × C∗ into
P× C. The sections

{fs = f
α(11),s

11 f
α(12),s

12 · · · f
α(rnr),s

rnr
| s ∈ Sd}

from (5.2) form a basis for the global sections of O(1) = LP on the projective
space P = P((Ed)∗). The embedding of the family X × C∗ ⊂ X in P× C in
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this basis is given by the map in (5.3) whose components are t
∑

ij
wijαijfs,

s ∈ Sd. Since the line bundle is O(1), the functions σm̃ in the basis of its
holomorphic sections are simply the coordinate functions on P, and so the
section σm̃|Xt

corresponds to one of the coordinates t
∑

ij
wijαijfs.

By construction, for fixed t ̸= 0 the values of the valuation ṽ on the
components t

∑
ij
wijαijfs are distinct. Since elements with distinct values of

valuation are linearly independent, it follows that, for any fixed t ̸= 0, the
sections {σm̃|Xt

| m ∈W0} are linearly independent, as desired. □
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[15] R. Lazarsfeld and M. Mustaţă, Convex bodies associated to linear series,
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