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922 F. F. Ruffino and J. C. R. Barriga

1. Introduction

A differential extension of a cohomology theory is a refinement of its restric-
tion to the category of smooth manifolds, obtained enriching it with differ-
ential information. The basic example is provided by complex line bundles
with connection on a manifold X. In this case, the topological information is
completely grasped by the first Chern class, that is an element of H2(X;Z).
Adding a connection we refine such a class, providing a piece of information
partially described by the corresponding curvature. The latter is a closed
2-form on X with integral periods, whose de-Rham cohomology class is the
real image of the first Chern class. Equivalently, a line bundle with connec-
tion can be characterized by the pair (χ, ω), where χ is the corresponding
holonomy map, defined on smooth 1-cycles with values in R/Z, and ω is the
curvature. The pair (χ, ω) satisfies a Stokes-type formula, i.e., the value of
χ on a boundary ∂Σ is equal to the integral of ω on Σ modulo Z.

The description through pairs of the form (χ, ω) can be easily general-
ized to any degree, i.e., we can consider a map χ, defined on smooth (n− 1)-
cycles with values in R/Z, and a closed n-form ω such that the Stokes-type
formula keeps on holding. It is quite easy to construct from these data the
corresponding first Chern class, belonging to Hn(X;Z), whose real image is
the de-Rham cohomology class of ω (it follows that ω has integral periods). A
pair of this form is called Cheeger-Simons character. This notion, introduced
in [11] in order to find obstructions to conformal embeddings of Riemannian
manifolds into the Euclidean space, provides a model for the differential re-
finement of singular cohomology. Another interesting model is provided by
the Deligne cohomology [6]. In this case the differential refinement is imple-
mented considering the set of transition functions of a line bundle, thought
of as a Čech cocyle, and adding the local potentials that describe the con-
nection. This model turns out to be isomorphic to the previous one. A more
systematic approach towards a theory of differential refinements of singular
cohomology was developed by Simons and Sullivan in [21]. There, the au-
thors proposed a suitable axiomatic framework and settled the problem of
uniqueness of the extension.

Beyond singular cohomology, the differential extension of K-theory has
been studied intensively too (see [8, 9, 15, 22] and many others). In the
more general setting of differential refinements of arbitrary cohomology the-
ories, foundational work was laid down by Hopkins and Singer in [16], where
the authors proposed a model that produces a differential extension out of
any cohomology theory represented by a spectrum. Such a model has been
completed, describing in detail the S1-integration and the multiplicative
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structure, in [24]. A suitable axiomatic description of this general notion of
differential refinement can be found in [10], where Bunke and Schick proved,
under rather mild hypotheses, that the extension of a fixed theory is unique.

Since a cohomology theory is usually defined on pairs of spaces, it is
natural to construct also the relative version of a differential refinement.
About singular cohomology, in the paper [5] the authors introduced two
different definitions of relative Cheeger-Simons character. Such construc-
tions and their main properties are described in detail in [3]. In the case of
Deligne cohomology, the analogous definitions have been summarized in [13]
and generalized to any cohomology theory in [14], adapting to the relative
case the Hopkins-Singer model.1 Moreover, in [14] we have shown how to
construct some families of long exact sequences naturally associated to a
differential extension.

In this paper we generalize to the relative case the axiomatic framework
for differential cohomology, deducing the long exact sequences directly from
the axioms. Moreover, adapting the technique of Bunke and Schick, we show
that, under the same hypotheses of [10], the extension is unique. After that,
we generalize to any cohomology theory the notion of Cheeger-Simons char-
acter, extending to the relative case the construction shown in [12]. Finally,
we define the integration map for bundles whose fibre has a boundary.

The paper is organized as follows. In Section 2 we state the axioms
for relative differential cohomology and the first properties that can be de-
duced from them. In Section 3 we construct the corresponding long exact
sequences and we prove the exactness in each position. In Section 4 we show
that, under the same hypotheses of [10], there exists a unique relative dif-
ferential extension of a fixed cohomology theory. In Section 5 we define the
differential extension with compact support and we show how to construct
a long exact sequence completely made by differential cohomology groups.
In Section 6 we start introducing the material that will be necessary to con-
struct the relative generalized Cheeger-Simons characters. In particular, we
recall the notion of differential orientation (for maps and manifolds) and the
construction of the integration map. In Section 7 we define the integration
map for classes relative to the boundary and we show how to integrate such
a relative class to the point. In Section 8 we define the relative Cheeger-
Simons characters, starting from the flat case. Finally, in Section 9 we show
how to define the (relative) integration map for bundles whose fibres have
non-empty boundary.

1The case of parallel relative classes had already been considered in [24].
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924 F. F. Ruffino and J. C. R. Barriga

2. Axioms for relative differential cohomology

We are going to state the axioms of relative differential cohomology. When
we use the expression “relative cohomology”, we mean that we are con-
sidering the cohomology groups of any map of spaces, not necessarily an
embedding. Thus, we start with a brief review of the axioms of (topological)
cohomology for maps.

2.1. Relative cohomology

Let C be the category of spaces with the homotopy type of a CW-complex or
of a finite CW-complex. We call C+ the category whose objects are the ones of
C with a marked point, and whose morphisms are the continuous functions
that respect the marked points. Taking the quotient of the morphisms of
C and C+ up to homotopy (relative to the marked point in C+), we get
the categories HC and HC+. Moreover, we denote by C2 the category of
morphism of C, defined in the following way:

• an object of C2 is a morphism ρ : A→ X of C (i.e. a continuous function
between objects of C);

• given two objects η : B → Y and ρ : A→ X, a morphism from η to ρ is
a pair of continuous functions f : Y → X and g : B → A, making the
following diagram commutative:

(1) B
η //

g

��

Y

f
��

A
ρ // X.

We set I := [0, 1] and we call idI : I → I the identity map. A homotopy
between two morphisms (f0, g0), (f1, g1) : η → ρ is a morphism (F,G) : η ×
idI → ρ, such that, for i = 0, 1, we have (F |X×{i}, G|A×{i}) = (fi, gi). Taking
the quotient of the morphisms of C2 by homotopy we define the category
HC2. There are the following natural embeddings of categories:

• C →֒ C+ andHC →֒ HC+, defined identifying an objectX with (X+,∞),
where X+ = X ⊔ {∞};

• C+ →֒ C2 and HC+ →֒ HC2, defined identifying the object (X,x0) with
the morphism ρ : pt→ X such that ρ(pt) = x0;
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• by composition, we get the embeddings C →֒ C2 and HC →֒ HC2; we
can also define these embeddings identifying X with the empty func-
tion ∅ → X, if we consider the empty set as a manifold.

Finally, there are two natural functors Π: C2 → C and Π: HC2 → HC, de-
fined in the following way: if ρ : A→ X is an object, then Π(ρ) = A; if
η : B → Y is another object and (f, g) : ρ→ η is a morphism, then Π(f, g) =
g.

We callAZ the category of Z-graded abelian groups. A cohomology theory
on C2 is defined by a functor h• : HC2 → AZ and a morphism of functors
β• : h• ◦Π → h•+1, satisfying the following axioms:

1) Long exact sequence: the functor h• and the morphism of functors β•

define a functor from HC2 to the category of long exact sequences of
abelian groups, that assigns to an object ρ : A→ X the sequence:

· · · // hn(ρ)
π∗

// hn(X)
ρ∗

// hn(A)
β // hn+1(ρ) // · · ·

(π being the natural morphism from ∅ → X to ρ : A→ X) and to a
morphism the corresponding morphism of exact sequences.

2) Excision: if i : Z →֒ A and j : A →֒ X are embeddings such that the
closure of j(i(Z)) is contained in the interior of j(A), then the mor-
phism

A \ i(Z)
j′ //

ι′

��

X \ j(i(Z))

ι

��
A

j // X

induces an isomorphism between h•(j) and h•(j′).

If the objects of C have the homotopy type of a finite CW-complex this is
enough, otherwise we must add the multiplicativity axiom [17].

Such a definition of cohomology theory is equivalent to the usual one on
pairs of spaces or on spaces with a marked point. In fact, starting from a
reduced cohomology theory on HC+, the cohomology groups of a morphism
ρ : A→ X are defined as the reduced ones of the cone C(ρ) := X ⊔A CA, and
the axioms are satisfied. Vice-versa, if we start from the axioms on the cate-
goryHC2, we can prove that h•(ρ) is naturally isomorphic to h̃•(C(ρ)), hence
the theory is the unique possible extension to HC2 of a reduced cohomology
theory on HC+. In fact, we consider the cylinder Cyl(ρ) := X ⊔A Cyl(A) and
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926 F. F. Ruffino and J. C. R. Barriga

the following commutative diagram:

(2) {∗} �
� v // C(ρ)

A � � i1 //

p′

OO

id
��

Cyl(ρ)

p

OO

π

��
A

ρ // X.

The point {∗} is the vertex of the cone. The projection π shrinks the cylin-
der of A on the base and the projection p collapses the upper base of the
cylinder to the vertex of the cone. Finally, the embedding i1 sends A to
the upper base of the cylinder. Since i1 is a cofibration, the projection p,
that collapses A to a point, induces an isomorphism in relative cohomology
h•(i1) ≃ h̃•(C(ρ)). Moreover, since π is a homotopy equivalence, the pair
(π, id) induces, by the five lemma applied to the corresponding long exact
sequences, an isomorphism h•(i1) ≃ h•(ρ). Composing the two isomorphisms
we get h•(ρ) ≃ h̃•(C(ρ)). Such an isomorphism is natural. In fact, given two
maps ρ : A→ X and η : B → Y and a morphism (k, h) : ρ→ η, from the in-
duced morphism between the two diagrams (2) of ρ and η, we see that the
following diagram commutes:

(3) h•(η)
(k,h)∗ //

≃
��

h•(ρ)

≃
��

h̃•(C(η))
C(k,h)∗ // h̃•(C(ρ)).

In particular, if C(k, h) is a homotopy equivalence, then (k, h)∗ is an iso-
morphism, even if (k, h) is not a homotopy equivalence in the category C2.

In order to introduce products, we call RZ the category of Z-graded
commutative rings. There is a natural forgetful functor RZ → AZ, that we
apply when needed, without writing it explicitly. The cohomology theory
h• is called multiplicative if it can be refined to a functor h• : HC2 → RZ ,
in such a way that the product satisfies a suitable compatibility condition
with the morphisms β•. The isomorphism h•(ρ) ≃ h̃•(C(ρ)) is a ring iso-
morphism, hence the product in relative cohomology is canonically induced
by the one on the corresponding reduced cohomology theory.
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Finally, given a morphism ρ : A→ X, the group h•(ρ) has a natural right
module structure over h•(X):

(4) · : h•(ρ)⊗Z h
•(X) → h•(ρ)

defined as follows. We compute the product h•(ρ)⊗ h•(X) ≃ h̃•(C(ρ))⊗
h̃•(X+) → h̃•(C(ρ) ∧X+) ≃ h̃•(C(ρ× idX)) ≃ h•(ρ× idX). Then we apply
the pull-back via the diagonal morphism

A
ρ //

(idA,ρ)
��

X

∆X

��
A×X

ρ×idX // X ×X.

We could construct (4) directly from the axioms, without passing through
the cone of ρ, but it would be a little bit longer.

2.2. Fibre-wise integration and Stokes theorem

Given a smooth map of manifolds ρ : A→ X, we call Ω•(ρ) the cochain
complex Ω•(X)⊕ Ω•−1(A) with coboundary d(ω, η) = (dω, ρ∗ω − dη). We
get the following short exact sequence of chain complexes:

(5) 0 // (Ω•−1(A),−d•−1)
i // (Ω•(ρ), d•)

π // (Ω•(X), d•) // 0,

where i(η) = (0, η) and π(ω, η) = ω. The complex Ω•(ρ) has a natural right
module structure over Ω•(X), defined by:

(6) (ω, η) ∧ ξ := (ω ∧ ξ, η ∧ ρ∗ξ).

We get correctly that d((ω, η) ∧ ξ) = d(ω, η) ∧ ξ + (−1)|ω|(ω, η) ∧ dξ.
Let us fix the following data:

• a smooth map ρ : A→ X between compact manifolds, possibly with
boundary;

• two fibre bundles f : Y → X and g : B → A with n-dimensional com-
pact oriented fibres, possibly with boundary;

• a morphism of fibre bundles ρ̃ : B → Y covering ρ and inducing a dif-
feomorphism in each fibre;2

2Such a morphism is equivalent to a bundle isomorphism between B and ρ∗Y .
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• an orientation of the bundle f , inducing an orientation of g.

The map ρ is not necessarily neat (e.g., it can be the embedding of ∂X in
X). As well, f and g are not required to be neat (surely they are not when
the fibres have non-empty boundary). This implies that neither ρ̃ is neat
in general, but it is in each fibre, since it is a diffeomorphism. We get the
following diagram:

(7) B
ρ̃ //

g

��

Y

f
��

A
ρ // X.

Notation 2.1. Considering for example the fibration f : Y → X, we denote
the fibre-wise integration of a differential form ω ∈ Ω•(Y ) by

∫

Y/X ω, with

the usual convention
(∫

Y/X ω
)

x
(v1, . . . , vp) :=

∫

Yx
ω(ṽ1, . . . , ṽp, · , . . . , · ),

where df(ṽi) = vi. We denote by
∫

Y/X ω the integration with the opposite

convention, i.e.,
(∫

Y/X ω
)

x
(v1, . . . , vp) :=

∫

Yx
ω( · , . . . , · , ṽ1, . . . , ṽp), hence

∫

Y/X ω = (−1)n(|ω|−1)
∫

Y/X ω,3 n being the dimension of the fibres. In par-

ticular, if Y = X × F (or Y = F ×X) is the trivial fibration, ξ is a form
on X and volF is a volume form on F , then

∫

X×F/X ξ ∧ volF = ξ, while
∫

X×F/X volF ∧ ξ = ξ. It follows that, when the fibre has no boundary,
∫

Y/X dω = d
∫

Y/X ω, while
∫

Y/X dω = (−1)nd
∫

Y/X ω.

We define the fibre-wise integration of a relative form (ω, η) ∈ Ω•(ρ̃) in
the following way, depending on the convention:

∫

ρ̃/ρ
(ω, η) :=

(

∫

Y/X
ω,

∫

B/A
η

)

(8)

∫

ρ̃/ρ
(ω, η) :=

(

∫

Y/X
ω, (−1)n

∫

B/A
η

)

.(9)

It follows that
∫

ρ̃/ρ(ω, η) = (−1)n(|ω|−1)
∫

ρ̃/ρ(ω, η). If the fibres of f and g

have boundary, we call ∂f : Y ′ → X and ∂g : B′ → A the fibre bundles in-
duced by the restrictions of f and g to the union of the boundaries of the
fibres (if A andX have no boundary, then Y ′ = ∂Y and B′ = ∂B); moreover,
we call ∂ρ̃ : B′ → Y ′ the corresponding restriction of ρ̃. We get a diagram

3The sign should be n(|ω| − n), but n and n2 have the same parity.
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analogous to (7). The following relative version of Stokes theorem holds [3,
formula (82) p.165]:

d

∫

ρ̃/ρ
(ω, η) =

∫

ρ̃/ρ
d(ω, η) + (−1)|ω|+n

∫

∂ρ̃/ρ
(ω, η)(10)

(−1)nd

∫

ρ̃/ρ
(ω, η) =

∫

ρ̃/ρ
d(ω, η)−

∫

∂ρ̃/ρ
(ω, η).(11)

2.3. Differential extension

Let M be the category of smooth manifolds or of smooth compact mani-
folds (even with boundary), and let AZ be the category of Z-graded abelian
groups. We consider a cohomology theory h•, defined on a category including
M. We use the following notation:

h• := h•({pt}) h•
R
:= h• ⊗Z R.

We consider the category M2 of morphisms of M. For any object ρ : A→ X
of M2, we call ch: h•(ρ) → H•

dR(ρ; h
•
R
) the generalized Chern character [16,

Sec. 4.8 p.383].4 We follow [10, Sec. 1], adapting the construction to the
relative case.

Definition 2.2. A relative differential extension of h• is a functor ĥ• :
Mop

2 → AZ, together with the following natural transformations of AZ-
valued functors:

• I : ĥ•(ρ) → h•(ρ);

• R : ĥ•(ρ) → Ω•
cl(ρ; h

•
R
), called curvature;

• a : Ω•−1(ρ; h•
R
)/Im(d) → ĥ•(ρ),

such that:

(A1) R ◦ a = d;

4In [16] only the absolute Chern character is discussed, using the language of
spectra. Anyway, since the spaces defining a spectrum are pointed (in order to
define the structure maps), we can easily define the Chern character in reduced
cohomology. Considering the reduced cohomology of the cone, we get the relative
Chern character.
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(A2) the following diagram is commutative:

(12) ĥ•(ρ)
I //

R
��

h•(ρ)

ch
��

Ω•
cl(ρ; h

•
R
)

dR // H•
dR(ρ; h

•
R
);

(A3) the following sequence is exact:

(13) h•−1(ρ)
ch // Ω•−1(ρ; h•

R
)/Im(d)

a // ĥ•(ρ)
I // h•(ρ) // 0;

(A4) calling cov(ρ) the second component of the curvature R(ρ) and
π the natural morphism from ∅ → X to ρ : A→ X, the following
diagram is commutative:

ĥ•(ρ)
π∗

//

cov

��

ĥ•(X)

ρ∗

��

Ω•−1(A)
a // ĥ•(A).

We also call ĥ• relative differential cohomology theory.

Notation 2.3. When ρ : A →֒ X is a closed embedding, we denote ĥ•(ρ)
also by ĥ•(X,A). Restricting to the case A = ∅, we obtain an absolute dif-
ferential extension of h• as usually defined in the literature [10].

A class α̂ ∈ ĥn(ρ) is flat when R(α̂) = 0. Considering flat classes, we
get the functor ĥ•fl : M

op
2 → AZ. Thus, we get the following commutative

hexagon:

(14) Ω•−1(ρ; h•
R
)/Im(d)

d //

a

''

Ω•
cl(ρ; h

•
R
)

dR

&&
H•−1

dR (ρ; h•
R
)

66

a

((

ĥ•(ρ)

R
::

I

$$

H•
dR(ρ; h

•
R
).

ĥ•fl(ρ)
*



77

I // h•(ρ)

ch
88

We will see in Section 4.2 that, under suitable hypotheses (see [10, Chap-
ter 5]), we have a natural isomorphism ĥ•fl(ρ) ≃ h•(ρ;R/Z). Moreover, we
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call Ω•
ch(ρ) the following sub-group of Ω•

cl(ρ). A closed relative form (ω, η)
belongs to Ω•

ch(ρ) if and only if the cohomology class [(ω, η)] ∈ H•
dR(ρ; h

•
R
)

lies in the image of the Chern character ch: h•(ρ) → H•
dR(ρ; h

•
R
).

Lemma 2.4. The group Ω•
ch(ρ) is the image of the curvature functor R,

thus we have the following exact sequence:

(15) 0 // ĥ•fl(ρ)
// ĥ•(ρ)

R // Ω•
ch(ρ)

// 0.

Proof. It immediately follows from diagram (12) that the image of R is
contained in Ω•

ch(ρ). Given a form (ω, η) ∈ Ω•
ch(ρ), let α ∈ h•(ρ) be a class

such that ch(α) = [(ω, η)]. Because of the exact sequence (13), the morphism
I is surjective, hence there exists α̂ ∈ ĥ•(ρ) such that I(α̂) = α. It follows
from diagram (12) that [R(α̂)] = [(ω, η)], thus there exists (α, β) ∈ Ω•−1(ρ)
such that R(α̂) = (ω, η) + d(α, β). Then R(α̂− a(α, β)) = R(α̂)− d(α, β) =
(ω, η). □

Lemma 2.5. The following long exact sequence holds:
(16)

· · · // h•(ρ)
ch // H•

dR(ρ; h
•
R
)

a // ĥ•+1
fl (ρ)

I // h•+1(ρ) // · · · .

Proof. It easily follows from the axioms (A1) and (A3) of Definition 2.2. □

We use the following notation: if ρ : A→ X is a map, we set

(17) ρI := idI × ρ : I ×A→ I ×X.

The inclusions i0, i1 : X → I ×X and j0, j1 : A→ I ×A induce the following
morphisms between ρ and ρI :

A
ρ //

� _

j0
��

X� _

i0
��

I ×A
ρI // I ×X

A
ρ //

� _

j1
��

X� _

i1
��

I ×A
ρI // I ×X.

We set ι0 := (i0, j0) and ι1 := (i1, j1). Analogously, the projections πX : I ×
X → X and πA : I ×A→ A induce the morphism (πX , πA) : ρI → ρ. We set
π := (πX , πA).
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Lemma 2.6 (Homotopy formula). If α̂ ∈ ĥ•(ρI), we have (using for-
mula (9)):

(18) ι∗1α̂− ι∗0α̂ = a

(

∫

ρI/ρ
R(α̂)

)

.

Proof. Since ι0 ◦ π : ρI → ρI is homotopic to the identity of ρI in the cate-
gory M2, we have that I(α̂) = π∗ι∗0I(α̂). We set α̂0 := ι∗0α̂, so that I(α̂) =
π∗I(α̂0). It follows that α̂ = π∗(α̂0)+a(ω, η), therefore ι

∗
0α̂ = α̂0+a(ι

∗
0(ω, η))

and ι∗1α̂ = α̂0 + a(ι∗1(ω, η)). Hence:

ι∗1α̂− ι∗0α̂ = a
(

ι∗1(ω, η)− ι∗0(ω, η)
)

= a

(

∫

∂ρI/ρ
(ω, η)

)

(11)
= a

(

d

∫

ρI/ρ
(ω, η) +

∫

ρI/ρ
d(ω, η)

)

.

The term d
∫

ρI/ρ
(ω, η) can be cut since, applying a to an exact form, we get

0. Moreover, R(α̂) = π∗R(α̂0) + d(ω, η) and
∫

ρI/ρ
π∗R(α̂0) = 0, hence we get

the result. □

Corollary 2.7. Let ρ : A→ X and η : B → Y be two objects of M2 and let
us consider two morphisms (f0, g0), (f1, g1) : η → ρ. If (F,G) : idI × η → ρ is
a homotopy between (f0, g0) and (f1, g1), then, for any α̂ ∈ ĥ•(ρ), we have:

(19) (f1, g1)
∗α̂− (f0, g0)

∗α̂ = a

(

∫

ηI/η
(F,G)∗R(α̂)

)

.

Proof. The result follows replacing α̂ by (F,G)∗α̂ in formula (18). □

Remark 2.8. Thanks to the previous corollary, the flat theory is a
homotopy-invariant functor. From the exact sequence (16), it is easy to
prove that it also satisfies excision and multiplicativity. In fact, both hold
for h• and H•

dR, since they are cohomology theories, thus it is enough to
apply the five lemma.

We briefly recall some basic facts about S1-integration. Given a space
A and fixing a marked point on S1, we get a natural embedding i1 : A→
S1 ×A and a natural projection π1 : S

1 ×A→ A. Since π1 is a retraction
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with right inverse i1, we have the following split exact sequence:

(20) 0 // h•(i1)
π∗

// h•(S1 ×A)
i∗1 //

ξ

ii
h•(A) //

π∗

1

ii
0.

Here π is the natural morphism from ∅ → S1×A to i1 and ξ(α) = (π∗)−1(α−
π∗1i

∗
1α). Moreover, we have the following isomorphism:

(21) s : h•(i1) ≃ h̃•(Σ(A+)) ≃ h̃•−1(A+) ≃ h•−1(A).

Thanks to this picture, we can define the following integration map:

∫

S1

: h•+1(S1 ×A) → h•(A)

α 7→ s ◦ ξ(α).
(22)

We also have the ordinary integration map on differential forms
∫

S1 :
Ω•+1(S1 ×A) → Ω•(A). If we apply it to closed forms, we get a well-defined
integration map in de-Rham cohomology, coinciding with (22).

A similar construction holds in the relative case. Given a morphism
ρ : A→ X, we set Sρ := idS1 × ρ : S1 ×A→ S1 ×X. Fixing a marked point
on S1, we get a natural embedding i1 : ρ→ Sρ and a natural projection
π1 : Sρ→ ρ. We define the groups h•(i1) as follows: we consider the induced
embedding i′1 : C(ρ) → C(Sρ) and we set h•(i1) := h•(i′1) ≃ h̃•(C(Sρ)/C(ρ)).
Since the induced map π′1 : C(Sρ) → C(ρ) is a retraction with right inverse
i′1, we have the following split exact sequence:

0 // h•(i1)
π∗

// h•(Sρ)
i∗1 //

ξ

hh
h•(ρ) //

π∗

1

hh
0.

Here π : C(Sρ) → C(Sρ)/C(ρ) and ξ(α) = (π∗)−1(α− π∗1i
∗
1α). Moreover, we

have the following isomorphism:

s : h•(i1) ≃ h̃•(C(Sρ)/C(ρ)) ≃ h̃•(Σ(C(ρ)) ≃ h̃•−1(C(ρ)) ≃ h•−1(ρ).

Thanks to this picture, we can define the following integration map:

∫

S1

: h•+1(Sρ) → h•(ρ)

α 7→ s ◦ ξ(α).
(23)
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We also have the ordinary integration map on differential forms
∫

S1 :
Ω•+1(Sρ) → Ω•(ρ) defined by

∫

S1(ω, η) :=
(∫

S1 ω,
∫

S1 η
)

. If we apply it to
closed relative forms, we get a well-defined integration map in de-Rham co-
homology, coinciding with the one constructed as (23). Of course (22) is a
particular case of (23).

Notation 2.9. Given a functor F : M2 → C, for any category C, we define
the functor SF : M2 → C by SF(ρ) := F(Sρ) on objects (Sρ being idS1 × ρ)
and SF(f, g) := F(Sf, Sg) on morphisms. Moreover, given two morphisms
ρ : A→ X and φ : S1 → S1, we denote by φ#ρ : Sρ→ Sρ the morphism
(φ× idX , φ× idA).

Definition 2.10. A relative differential extension with integration of h• is
a relative differential extension (ĥ•, I, R, a) together with a natural trans-
formation:

∫

S1

: Sĥ•+1 → ĥ•

such that:

•
∫

S1 ◦(t#ρ)
∗ = −

∫

S1 , where t : S
1 → S1 is defined by t(eiθ) := e−iθ;

•
∫

S1 ◦π∗1 = 0, where π1 : Sρ→ ρ is the projection;

• the following diagram is commutative:

(24) SΩ•(ρ; h•
R
)/Im(d)

a //

∫
S1

��

Sĥ•+1(ρ)
I //

∫
S1

��

R

''
Sh•+1(ρ)

∫
S1

��

SΩ•+1
cl (ρ; h•

R
)

∫
S1

��
Ω•−1(ρ; h•

R
)/Im(d)

a // ĥ•(ρ)
I //

R

77
h•(ρ) Ω•

cl(ρ; h
•
R
),

where the first and last vertical arrows are defined by
∫

S1(ω, η) :=
(∫

S1 ω,
∫

S1 η
)

and the third one by (23).

Finally, we introduce products, thus we suppose that h• is a multiplica-
tive cohomology theory.

Definition 2.11. A multiplicative relative differential extension of h• is a
relative differential extension (ĥ•, I, R, a) such that, for any map ρ : A→ X,
there is a natural right ĥ•(X)-module structure on ĥ•(ρ), in such a way that:
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• I(α̂ · β̂) = I(α̂) · I(β̂), using (4) on the r.h.s.;

• R(α̂ · β̂) = R(α̂) ∧R(β̂), using (6) on the r.h.s.;

• α̂ · a(ω) = a(R(α̂) ∧ ω) for every α̂ ∈ ĥ•(ρ) and ω ∈ Ω•(X; h•
R
)/Im(d);

• a(ω, η) · α̂ = a((ω, η) ∧R(α̂)) for every (ω, η) ∈ Ω•(ρ; h•
R
)/Im(d) and

α̂ ∈ ĥ•(X).

2.4. Parallel classes

A class α̂ ∈ ĥ•(ρ) is called parallel if cov(α̂) = 0 (we recall that cov is the
second component of the curvature). We denote by ĥ•par(ρ) the sub-group of

ĥ•(ρ) formed by parallel classes. Moreover, we use the following notation:

• Ω•
0(ρ) is the sub-group of Ω•(X) containing the forms ω on X such

that ρ∗ω = 0;

• Ω•
cl,0(ρ) is the intersection between Ω•

0(ρ) and Ω•
cl(X);

• Ω•
ch,0(ρ) is the subgroup of Ω•

cl,0(ρ) containing the forms ω such that
the relative cohomology class [(ω, 0)] ∈ H•

dR(ρ) belongs to the image
of the Chern character.

If (ω, 0) is the curvature of a parallel class, then ω ∈ Ω•
ch,0(ρ). We get the

functor ĥ•par : M
op
2 → AZ, together with the following natural transforma-

tions of AZ-valued functors:

• I ′ : ĥ•par(ρ) → h•(ρ), which is the restriction of the functor I;

• R′ : ĥ•par(ρ) → Ωcl,0(ρ; h
•
R
), which is the first component of the curva-

ture R;

• a′ : Ω•−1
0 (ρ; h•

R
)/Im(d) → ĥ•par(ρ), defined by a′(ω) := a(ω, 0).

Parallel classes are well-behaved when ρ is a closed embedding. In this case
they satisfy four properties analogous to axioms (A1)–(A4) in Definition 2.2,
as the next theorem shows.

Theorem 2.12. Let M′
2 be the full sub-category of M2, whose objects are

closed embeddings. The functor ĥ•par : M
′
2
op → AZ satisfies the statements

(A′1)–(A′4), obtained from axioms (A1)–(A4) in Definition 2.2, with the
following replacements:

• ĥ• by ĥ•par;
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• I, R and a by I ′, R′ and a′;

• Ω• and Ω•
cl by Ω•

0 and Ω•
cl,0.

In particular, (A′4) is the statement ρ∗ ◦ π∗ = 0. Moreover, if the functor ĥ•

admits S1-integration or it is multiplicative, the same holds for ĥ•par, with
the analogous axioms.

Proof. It is easy to show that (A′1), (A′2) and (A′4) are just a particular
case of axioms (A1), (A2) and (A4) (actually, they hold even if ρ is not a
closed embedding). We only have to prove that (A′3) holds. The fact that,
in the sequence obtained from (13), the composition of two consecutive mor-
phisms vanishes is again a particular case of the general statement. Let us fix
α ∈ h•(ρ). Because of the exactness of (13), there exists a class α̂′ ∈ ĥ•(ρ)
such that I(α̂′) = α and R(α̂′) = (ω, η). Since ρ is a closed embedding, we
can extend η to a form η̃ on the whole X, thus we set α̂ := α̂′ − a(η̃, 0).
Therefore I(α̂) = I(α̂′)− 0 = α and R(α̂) = (ω, η)− (dη̃, η) = (ω − dη̃, 0). It
follows that α̂ ∈ ĥ•par(ρ) and I(α̂) = α, hence I is surjective. Let us fix

α̂ ∈ ĥ•par(ρ) such that I(α̂) = 0. Because of the exactness of (13), there exists
a form (θ, χ) ∈ Ω•−1(ρ; h•

R
) such that a(θ, χ) = α̂. Since ρ is a closed embed-

ding, we can extend χ to a form χ̃ on the whole X, thus α̂ = a(θ, χ)−
a(d(χ̃, 0)) = a((θ, χ)− (dχ̃, χ)) = a(θ − dχ̃, 0) = a′(θ − dχ̃). Finally, the ex-
actness in the second position follows from the one of (13), since the first
group remains unchanged. The axioms of S1-integration and multiplicativity
easily restricts to parallel classes (even without assuming that ρ is a closed
embedding). □

Theorem 2.13. For any smooth map ρ : A→ X, we have the following
short exact sequence:

(25) 0 // ĥ•fl(ρ)
// ĥ•par(ρ)

R′

// Ω•
ch,0(ρ)

// 0.

Moreover, if ρ is a closed embedding, we have the following short exact se-
quence, which splits non-canonically:

(26) 0 // ĥ•par(ρ) // ĥ•(ρ)
cov // Ω•−1(A) // 0.

Proof. The exactness of (25) immediately follows from (15). The exactness
of the first three arrows of (26) is trivial by definition of parallel classes.
About the last one, given a form η ∈ Ω•−1(A), we can extend it to a form η̃
onX and we have that cov(a(η̃, 0)) = η, hence cov is surjective. In particular,
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if we fix an extension map Ω•−1(A) → Ω•−1(X), η 7→ η̃, through a suitable
open cover of X and a corresponding partition of unity, we get the splitting
Ω•−1(A) → ĥ•(ρ), η 7→ a(η̃, 0). □

Corollary 2.14. Let us fix a manifold Y with no boundary and the trivial
cobordism Y × I. We denote by Y0 := Y × {0} and Y1 := Y × {1} the two
components of ∂(Y × I) ≃ Y × ∂I. We have the following canonical isomor-
phism:

Ψ: ĥ•(Y × I, Y × ∂I)
≃
−→ ĥ•par(Y × I, Y × ∂I)⊕ Ω•−1(Y × ∂I; h•

R
)

α̂ 7→
(

α̂− a(tη1 + (1− t)η0, 0), η0 ⊔ η1
)

,
(27)

where η0 ⊔ η1 = cov(α̂).

Proof. The inverse isomorphism is defined by

(β̂, η0 ⊔ η1) 7→ β̂ + a(tη1 + (1− t)η0, 0).

This is due to the fact that, considering the sequence (26) with X = Y ×
I and A = Y × ∂I, the map Ω•−1(Y × ∂I; h•

R
) → ĥ•(Y × I, Y × ∂I), η0 ⊔

η1 7→ a(tη1 + (1− t)η0, 0) is a canonical splitting. □

The next lemma shows that the groups of parallel classes satisfy exci-
sion as the topological ones (see [4, Theorem 3.8] about Cheeger-Simons
characters).

Lemma 2.15. If i : Z →֒ A and j : A →֒ X are embeddings such that the
closure of j(i(Z)) is contained in the interior of j(A), then the morphism

A \ i(Z)
j′ //

ι′

��

X \ j(i(Z))

ι

��
A

j // X

induces an isomorphism between ĥ•par(j) and ĥ
•
par(j

′).
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Proof. The morphism (ι, ι′) induces the following morphism of exact se-
quences of the form (25):

0 // ĥ•fl(j)
//

��

ĥ•par(j)
R //

��

Ω•
ch,0(j)

//

��

0

0 // ĥ•fl(j
′) // ĥ•par(j

′)
R // Ω•

ch,0(j
′) // 0.

The left arrow is an isomorphism by the excision property of ĥ•fl (Remark
2.8). We now prove that the right one is an isomorphism too, hence the
result follows from the five lemma. We identify A with j(A) and Z with
both i(Z) and j(i(Z)). The group of closed forms Ω•

cl,0(j) contains the
forms ω ∈ Ω•

cl(X) such that ω|A = 0. Similarly, the group of closed forms
Ω•
cl,0(j

′) contains the forms ω ∈ Ω•
cl(X \ Z) such that ω|A\Z = 0. It is clear

that the pull-back (ι, ι′)∗ : Ω•
cl,0(j) → Ω•

cl,0(j
′) is an isomorphism, inducing

the excision isomorphism in de-Rham cohomology. We have to show that
(ι, ι′)∗(Ω•

ch,0(j)) = Ω•
ch,0(j

′). This is a consequence of the commutativity of
the following diagram:

h•(j)
ch //

��

H•
dR(j;h

•
R
)

��

Ω•
cl,0(j)

dRoo

��
h•(j′)

ch // H•
dR(j

′;h•
R
) Ω•

cl,0(j
′).

dRoo

The left and central vertical arrows are isomorphisms too, by excision. □

The following lemma will be useful in the construction of the long exact
sequence of ĥ•.

Lemma 2.16. Using the notation of sequence (20), for every α̂ ∈ ĥ•(A)
there exists a unique class β̂ ∈ ĥ•+1

par (i1) such that
∫

S1 π
∗β̂ = α̂ and R′(β̂) =

π∗1R(α̂) ∧ dt.

Proof. We set α := I(α̂) and, applying the isomorphism (21), β := s−1(α) ∈
h•+1(i1). It follows that

∫

S1 π
∗β = s ◦ ξ ◦ π∗(β) = s(β) = α, the integral be-

ing defined by (22). We choose any parallel differential refinement β̂′ ∈
ĥ•+1
par (i1) such that I(β̂′) = β; this is possible because of property (A′3) of

Theorem 2.12 (in particular, because of the surjectivity of I ′). From the
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commutativity of diagram (24), we get that

(28)

∫

S1

π∗β̂′ = α̂+ a(χ)

for a suitable form χ ∈ Ω•−1(A; h•
R
). We set R(β̂′) = (ω, 0) and R(α̂) = ω̄. It

follows from (28) that

(29)

∫

S1

ω = ω̄ + dχ,

thus, in de-Rham cohomology, s([ω, 0]) = [ω̄]. Since also s([π∗1ω̄ ∧ dt, 0]) =
[ω̄] and s is an isomorphism, we have that [ω, 0] = [π∗1ω̄ ∧ dt, 0], thus there
exists ν ∈ Ω•

0(i1) such that

(30) ω = π∗1ω̄ ∧ dt+ dν, i∗1ν = 0.

Joining (29) and (30) we see that d
∫

S1 ν = dχ, thus

(31)

∫

S1

ν = χ+ λ, dλ = 0.

We set β̂ := β̂′ − a(ν, 0) + a(π∗1λ ∧ dt, 0). It follows that
∫

S1 π
∗β̂ = α̂ and

R(β̂) = (ω, 0)− (dν, 0) = (π∗1ω̄ ∧ dt, 0), as required. The class β̂ is unique: if
we choose another class β̂1 satisfying the statement, the difference β̂ − β̂1 is
a flat class û ∈ ĥnfl(i1) such that

∫

S1 π
∗û = 0. In the topological and de-Rham

theories, the map
∫

S1 ◦π∗ is the isomorphism (21), thus, because of the five
lemma applied to the sequence (16), it is an isomorphism also in the flat
theory. It follows that û = 0, hence β̂ = β̂1. □

3. Long exact sequences

Let us fix a differential cohomology theory ĥ• with S1-integration (it can be
multiplicative or not). We now state three theorems concerning the corre-
sponding long exact sequences. The rest of this section will be devoted to
the construction of the Bockstein maps and to the proofs.

Theorem 3.1. Considering the flat theory, we have the following exact
sequence for every map ρ : A→ X:

(32) · · · −→ ĥ•fl(ρ) −→ ĥ•fl(X) −→ ĥ•fl(A) −→ ĥ•+1
fl (ρ) −→ · · · .
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The morphisms involved are ρ∗ : ĥ•fl(X) → ĥ•fl(A) and π
∗ : ĥ•fl(ρ) → ĥ•fl(X),

where π is the natural morphism from ∅ → X to ρ, and the Bockstein map
Bock: ĥ•fl(A) → ĥ•+1

fl (ρ), that we are going to construct in following para-
graphs.

Remark 3.2. The sequence (32), together with Remark 2.8, shows that, if
ĥ• is a relative differential cohomology theory with S1-integration, then the
flat theory ĥ•fl is a cohomology theory on M2.

Theorem 3.3. Considering the whole groups ĥ•, we get long exact se-
quences of the following form:

(33)

· · · ĥ•−1
fl (ρ) ĥ•−1

fl (X) ĥ•−1(A)

ĥ•(ρ) ĥ•(X) h•(A)

h•+1(ρ) h•+1(X) h•+1(A) · · · .

The first line is a left-infinite part of (32), except for the last morphism,
which is the composition between ρ∗ : ĥ•−1

fl (X) → ĥ•−1
fl (A) and the inclusion

ĥ•−1
fl (A) →֒ ĥ•−1(A). Similarly, from h•(A) on we just have a part of the long

exact sequence of the topological theory. The morphism ĥ•(X) → h•(A) is
the composition between ρ∗ : ĥ•(X) → ĥ•(A) and I : ĥ•(A) → h•(A). We
will define the Bockstein map Bock: ĥ•−1(A) → ĥ•(ρ) in the following. We
remark that (33) represents a family of exact sequences, since we are free to
decide at which degree we put the group ĥ•−1(A) instead of the flat one.

Theorem 3.4. Considering parallel classes, if ρ is a closed embedding we
get long exact sequences of the following form:

(34)

· · · ĥ•−1
fl (ρ) ĥ•−1

fl (X) ĥ•−1
fl (A)

ĥ•par(ρ) ĥ•(X) ĥ•(A)

h•+1(ρ) h•+1(X) h•+1(A) · · · .
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For a generic map ρ, we have to stop at ĥ•(A) and cut the third line.

The Bockstein map in the first line is the composition of the one of the
flat theory with the embedding ĥ•fl(ρ) →֒ ĥ•par(ρ). The Bockstein map in the

second line is the composition of the projection ĥ•(A) → h•(A) with the
Bockstein map of the sequence of h•.

Historically, the first version of a long exact sequence for differential
cohomology appeared in [5, Theorem 3.2], but it corresponds to the sequence
(58) of the present paper, that we will discuss later on. The sequences (33)
and (34) first appeared in [3, Corollary 70 p.67 and Theorem 15 p.130]
about Cheeger-Simons characters. Moreover, (34) is also introduced in [24,
Theorem 2.7 p.8] about the Hopkins-Singer model and both (33) and (34)
are discussed in [13] for Deligne cohomology and in [14] for the Hopkins-
Singer model. Here we deduce (32)–(34) directly from the axioms of relative
differential cohomology.

3.1. Construction of the Bockstein map

We define the Bockstein map of (33) in six steps (S1)–(S6). We use the
following notation:

(35) ā(ω, η) := (−1)|ω|a(ω, η) R̄(α̂) := (−1)|α̂|R(α̂).

(S1) Given α̂ ∈ ĥ•−1(A), thanks to Lemma 2.16 there exists a unique
class β̂ ∈ ĥ•par(i1) such that

∫

S1 π
∗β̂ = α̂ and R(β̂) = π∗1R(α̂) ∧ dt,

where π1 : S
1 ×A→ A is the natural projection and i1 : A →֒ S1 ×

A is the natural embedding, defined marking a point on S1.

(S2) Embedding S1 in C, we suppose that the marked point is 1. We
have a natural projection p̄ : (I, {0, 1}) → (S1, {1}), defined by t 7→
e2πit, inducing the projection p = p̄× idA : (I ×A, {0, 1} ×A) →
(S1 ×A, {1} ×A), that can be thought of as a morphism p : i0,1 →
i1 between the embeddings i0,1 : A ⊔A →֒ I ×A and i1 : A →֒ S1 ×
A. We get the class p∗β̂ ∈ ĥ•par(i0,1).

(S3) We define the following class, using (35):

γ̂ = p∗β̂ − ā(t · p∗π∗1R(α̂), 0) ∈ ĥ•(i0,1).
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In the previous expression, within ā( · ), we denoted by t the co-
ordinate of I and by p the projection p : I ×A→ S1 ×A, defined
in the previous step, without the two subspaces.

Since R(β̂) = (π∗1R(α̂) ∧ dt, 0) and R ◦ ā(t · p∗π∗1R(α̂), 0) =
(p∗π∗1R(α̂) ∧ dt, 0 ⊔ R̄(α̂)), it follows that

(36) R(γ̂) = (0, 0 ⊔ −R̄(α̂)).

For ϵ = 0, 1, we call jϵ : A→ A× I the embedding with image A×
{ϵ}. Moreover, we call π the natural morphism from ∅ → I ×A to
i0,1. It follows from axiom (A4) and formula (36) that j∗0π

∗γ̂ = 0
and j∗1π

∗γ̂ = −a(R̄(α̂)).

(S4) Let us consider the following morphism:

(37) A ⊔A
i0,1 //

id
��

A× I

π
��

A ⊔A
id′

// A

where id′ acts as the identity on both components of the domain.
Let us call ĥ•0( · ) the sub-group of ĥ•( · ) formed by classes such
that the first component of the curvature is vanishing. For any
map ρ : B → Y , we denote by Ω•

ch′(ρ) the group of closed forms η ∈
Ω•(B) such that the class [(0, η)] ∈ H•+1

dR (ρ) belongs to the image
of the Chern character. From diagram (37) we get the following
morphism of exact sequences:

(38) 0 // ĥ•fl(i0,1)
// ĥ•0(i0,1)

cov // Ω•−1
ch′ (i0,1) // 0

0 // ĥ•fl(id
′) //

(π,id)∗

OO

ĥ•0(id
′)

cov //

(π,id)∗

OO

Ω•−1
ch′ (id′) // 0.

We start proving that the left arrow is an isomorphism. Note that
the vertical maps of diagram (37) are homotopy equivalences, so
they induce isomorphisms in the topological theory h•. Thus, us-
ing the long exact sequences associated to the horizontal maps and
applying the five lemma, we see that (π, id)∗ : h•(id′) → h•(i0,1) is
an isomorphism too. The same holds about the de-Rham theory,
hence, applying again the five lemma to the exact sequence (16),
we conclude that (π, id)∗ : ĥ•fl(id

′) → ĥ•fl(i0,1) is an isomorphism.
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The right arrow of diagram (38) is an isomorphism too, since it
is an equality, therefore, applying again the five lemma, we de-
duce that also the central arrow is an isomorphism. Thus, we get
a unique class δ̂ ∈ ĥ•0(id

′) whose pull-back is γ̂. By construction
R(δ̂) = (0, 0 ⊔ −R̄(α̂)), thus, if we pull δ̂ back to A ⊔A, by axiom
(A4) it vanishes on the first component of A ⊔A.

(S5) Let us consider the following morphism:

(39) A ⊔A
id′

//

ρ′′

��

A

ρ

��
X ⊔A

ρ′

// X.

The morphism ρ′ acts as the identity on the first component
of X ⊔A and as ρ on the second. The morphism ρ′′ is defined
by ρ′′(a1 ⊔ a2) := ρ(a1) ⊔ a2. Let us call ĥ•1(id

′) the sub-group of
ĥ•0(id

′) formed by classes whose curvature is of the form [(0, 0 ⊔ η)].
Similarly, let us call ĥ•1(ρ

′) the sub-group of ĥ•0(ρ
′) formed by

classes whose curvature is of the form [(0, 0 ⊔ η)]. In both cases,
we call Ω•

ch′(A) the group of closed forms η on A such that the
class [(0, 0 ⊔ η)] belongs to the image of the Chern character. We
get the following morphism of exact sequences:

(40) 0 // ĥ•fl(id
′) // ĥ•1(id

′)
R // Ω•−1

ch′ (A) // 0

0 // ĥ•fl(ρ
′) //

(ρ,ρ′′)∗

OO

ĥ•1(ρ
′)

R //

(ρ,ρ′′)∗

OO

Ω•−1
ch′ (A) // 0.

The left arrow is an isomorphism. In fact, let us consider the map-
ping cones C(id′) and C(ρ′′). The embeddings CA →֒ C(id′) (A
being the first component of A ⊔A) and CX →֒ C(ρ′) are cofibra-
tions, because their images are a deformation retract of a neigh-
bourhood. Thus, collapsing CA and CX to a point, we see that
both C(id′) and C(ρ′) are homotopically equivalent to the suspen-
sion Σ(A+), i.e., to the double cone of A with the two vertices
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identified. We get the following commutative diagram:

(41) C(id′)
≃ //

(ρ,ρ′′)

��

C(id′)/CA

≈

��
C(ρ′)

≃ // C(ρ′)/CX

where ‘≃’ denotes a homotopy equivalence and ‘≈’ an homeomor-
phism. This implies that (ρ, ρ′′)∗ : h̃•(C(ρ′)) → h̃•(C(id′)) is an iso-
morphism, being the composition of three isomorphisms, therefore
(ρ, ρ′′)∗ : h•(ρ′) → h•(id′) is an isomorphism too. The same holds
for the de-Rham cohomology, thus, applying the five lemma to the
exact sequence (16), we see that the left arrow of diagram (40) is
an isomorphism. The right arrow of (40) is an isomorphism too,
since it is an equality, hence, again because of the five lemma, the
central arrow of diagram (40) is an isomorphism as well. There-
fore, we get a unique class ε̂ ∈ ĥ•1(ρ

′), whose pull-back is δ̂. By
construction R(ε̂) = (0, 0 ⊔ −R̄(α̂)).

(S6) Finally, let us consider the following morphism:

A
ρ //

id
��

X

id
��

X ⊔A
ρ′

// X.

The pull-back of ε̂ is a class µ̂ ∈ ĥ•(ρ) and we set Bock•−1(α̂) :=
(−1)|α̂|µ̂. It follows that R(µ̂) = (0,−R(α̂)).

This completes the construction of the sequence (33). By construction, we
have that:

(42) R ◦ Bock(α̂) = (0,−R(α̂)).

The next lemma shows the behaviour of the Bockstein map on topologically
trivial classes.

Lemma 3.5. The following formula holds:

(43) Bock ◦ a(η) = a(0, η).
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Proof. Let us set α̂ = a(η) in step (S1). It follows that β̂ = a(π∗1η ∧ dt). In
step (S3), setting p1 := π1 ◦ p, we get:

γ̂ = a(p∗1η ∧ dt, 0)− ā(t · p∗1dη, 0) = (−1)|η|a(dt ∧ p∗1η + t · p∗1dη, 0)

= (−1)|η|a(d(t · p∗1η), 0)
(⋆)
= (−1)|η|+1a(0, 0 ⊔ η) = ā(0, 0 ⊔ η),

the equality (⋆) being due to the fact that

0 = a ◦ d(t · p∗1η, 0) = a(d(t · p∗1η), 0 ⊔ η) = a(d(t · p∗1η), 0) + a(0, 0 ⊔ η).

Then, in step (S4), δ̂ = ā(0, 0 ⊔ η) and, in step (S5), ε̂ = ā(0, 0 ⊔ η). Finally,
in step (S6), we get µ̂ = (−1)|η|+1ā(0, η) = a(0, η). □

Remark 3.6. Formulas (42) and (43) are coherent with the functoriality
of the exact sequence with respect to (5). In fact, the following diagram
commutes:

Ω•−1(A)
i //

a

��

Ω•(ρ)
π //

a

��

Ω•(X)

a

��

ĥ•(A)
Bock //

−R

��

ĥ•+1(ρ)
π∗

//

R

��

ĥ•+1(X)

R

��
Ω•(A)

i // Ω•+1(ρ)
π // Ω•+1(X).

Moreover, let us suppose that, in formula (43), dη = 0. Then a(η) only de-
pends on the de-Rham cohomology class [η], hence we can write a[η]. The
Bockstein map in the (topological) exact sequence of de-Rham cohomology
is defined by BockdR[η] = [0, η], coherently with (5), thus formula (43) be-
comes Bock ◦ a[η] = a ◦ BockdR[η], coherently with the functoriality of the
Bockstein map.

If we consider the composition ĥ•−1(X) → ĥ•−1(A) → ĥ•(ρ), in general
it does not vanish. In fact, in (33) only the flat group ĥ•−1

fl (X) appears in
this segment of the sequence. The next lemma shows the behaviour of the
composition.

Lemma 3.7. The following formula holds:

(44) Bock ◦ ρ∗(β̂) = −a(R(β̂), 0).
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Proof. Let us consider the following morphism ρ′ := (idX , ρ) : ρ→ idX :

A
ρ //

ρ

��

X

idX

��
X

idX // X.

We get the following diagram:

ĥ•(X)
ρ∗

// ĥ•(A)
Bock // ĥ•+1(ρ)

ĥ•(X)
id //

id

OO

ĥ•(X)
Bock′

//

ρ∗

OO

ĥ•+1(idX).

ρ′∗

OO

It follows that Bock ◦ ρ∗(β̂) = ρ′∗ ◦ Bock′(β̂). Since h•(idX) = 0, because
of the sequence (13) we have that ĥ•(idX) ≃ Ω•−1(ρ; h•

R
)/Im(d), hence ev-

ery element of ĥ•(idX) is of the form a(ω, η). Moreover, (ω, η)− d(η, 0) =
(ω, η)− (dη, η) = (ω − dη, 0), thus every element of ĥ•(idX) is of the form
a(ω, 0), therefore:

R ◦ Bock′(β̂) = R ◦ a(ω, 0) = (dω, ω)

R ◦ Bock′(β̂)
(42)
= (0,−R(β̂)).

Comparing the second components we get ω = −R(β̂), hence Bock′(β̂) =
a(−R(β̂), 0). It follows that Bock ◦ ρ∗(β̂) = ρ′∗ ◦ Bock′(β̂) = a(−R(β̂), 0). □

Remark 3.8. Let us suppose that, in formula (44), β̂ = a(θ). Then we get
Bock ◦ a(ρ∗θ) = −a(dθ, 0). Because of formula (43) we have Bock ◦ a(ρ∗θ) =
a(0, ρ∗θ). The two results are coherent. In fact, (dθ, 0)+(0, ρ∗θ) = (dθ, ρ∗θ) =
d(θ, 0), hence, since a vanishes on exact forms, we have that a(dθ, 0) +
a(0, ρ∗θ) = 0.

The Bockstein map of (33) has been defined. The one of (32) coincides
with the one of (33), applied to flat classes; it follows from formula (42) that
the image of a flat class is flat. Finally, in the comments after the sequence
(34), we have already shown how to define the corresponding Bockstein
maps. It remains to prove the exactness of each sequence.

3.2. Exactness

We start from (32).



✐

✐

“4-Ruffino” — 2021/7/9 — 2:16 — page 947 — #27
✐

✐

✐

✐

✐

✐

Relative diff. cohomology and generalized CS characters 947

Exactness in ĥnfl(X). The fact that ρ∗ ◦ π∗ = 0 is an easy consequence
of axiom (A4) in Definition 2.2. Let us consider a class α̂ ∈ Ker(ρ∗). We
set α = I(α̂). Since ρ∗α = 0, because of the exactness of the topological
sequence, there exists a class β ∈ h•(ρ) such that π∗β = α. Let β̂′ ∈ ĥ•(ρ)
be any differential class such that I(β̂′) = β. It follows that π∗β̂′ = α̂+ a(θ),
being θ ∈ Ω•−1(X; h•

R
), thus R(π∗β̂′) = dθ, therefore there exists a closed

form η ∈ Ω•−1(A; h•
R
) such that R(β̂′) = (dθ, ρ∗θ + η). Let us prove that the

de-Rham class [η] belongs to the image of the Chern character. In fact,
we have that ρ∗π∗β̂′ = ρ∗α̂+ ρ∗a(θ) = a(ρ∗θ) and, by axiom (A4), ρ∗π∗β̂′ =
a(cov(β̂′)) = a(ρ∗θ + η) = a(ρ∗θ) + a(η). It follows that a(η) = 0, hence η ∈
Ω•−1
ch (X; h•

R
). This implies that there exists γ̂ ∈ ĥn−1(A) such that R(γ̂) = η,

thus we set β̂ := β̂′ − a(θ, 0) + Bock(γ̂). Because of the following Remark
3.9, we have that π∗ ◦ Bock = 0, therefore π∗β̂ = (α̂+ a(θ))− a(θ)− 0 = α̂
and R(β̂) = (dθ, ρ∗θ + η)− (dθ, ρ∗θ)− (0, η) = (0, 0).

Exactness in ĥnfl(A). If β̂ ∈ ĥ•fl(X), by formula (44) we have that Bock ◦
ρ∗(β̂) = 0, thus Bock ◦ ρ∗ = 0. Let us consider a flat class α̂ ∈ Ker(Bock).
Setting α := I(α̂), we have that Bock(α) = 0, thus there exists β ∈ h•(X)
such that α = ρ∗β. If β̂′ ∈ ĥ•(X) is any differential refinement of β, there
exists θ ∈ Ω•−1(X; h•

R
) such that ρ∗β̂′ = α̂+ a(θ). Applying formula (43) we

get Bock ◦ ρ∗(β̂′) = Bock ◦ a(θ) = a(0, θ) and applying formula (44) we get
Bock ◦ ρ∗(β̂′) = −a(R(β̂′, 0)), thus a(R(β̂′), θ) = 0. It follows that (R(β̂′), θ)
represents a class belonging to the image of the Chern character, hence there
exists a class γ̂ ∈ ĥ•(ρ) such that R(γ̂) = (R(β̂′), θ). We set β̂ := β̂′ − π∗γ̂.
We get that R(β̂) = R(β̂′)−R(β̂′) = 0 and ρ∗β̂ = α̂+ a(θ)− a(θ) = α̂.

Exactness in ĥnfl(ρ). It follows from the construction of the Bockstein
map that π∗ ◦ Bock = 0. In fact, if µ̂ = Bock(α̂), by the step (S6) we have
that µ̂ = (id, id)∗ε̂. The pull-back π∗µ̂ coincides with the pull-back of ε̂ via
the following composition:

∅ //

��

X

id
��

∅ //

��

X ⊔A

id⊔ρ
��

A
ρ //

id
��

X

id
��

X ⊔A //id⊔ρ // X.

The last map provides the pull-back from ε̂ to µ̂ and the composition of
the first two coincides with π. The composition of the last two morphism
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coincides with the following:

∅ //

��

X ⊔A

id⊔ρ
��

X ⊔A //id⊔ρ // X.

By axiom (A4), the pull-back of ε̂ is equal to a(cov(ε̂)). Since we start from
a flat class α̂, we have that cov(ε̂) = 0, thus the pull-back vanishes.

Remark 3.9. Even if α̂ is not flat, since ε̂ ∈ ĥ•1(id ⊔ ρ) by construction, it
follows that cov(ε̂) vanishes on X, thus the pull-back to ∅ → X is 0. This
proves that π∗ ◦ Bock = 0 in (32) and in (33).

Let us consider a flat class µ̂ ∈ Ker(π∗). It is enough to prove that there
exists a flat class ε̂ ∈ ĥ•fl(id ⊔ ρ) such that (id, id)∗ε̂ = µ̂. In fact, dealing with
flat classes, all of the steps (S1)-(S5) consist in the application of an isomor-
phism, thus, starting from ε̂, we get a class α̂ ∈ ĥ•−1

fl (A) such that Bock(α̂) =
µ̂. Applying the steps analogous to (S1)-(S5) to the topological class α, we
get the Bockstein map of the topological exact sequence, hence, in partic-
ular, we get a class ε ∈ h•(id ⊔ ρ) such that (id, id)∗ε = µ := I(µ̂). Let ε̂′′ ∈
ĥ•(id ⊔ ρ) be any differential class such that I(ε̂′′) = ε. It follows that there
exists a relative form (θ, η) ∈ Ω•−1(ρ) such that (id, id)∗ε̂′′ = µ̂+ a(θ, η).
We set ε̂′ := ε̂′′ − a(θ, 0 ⊔ η), so that (id, id)∗ε̂′ = (µ̂+ a(θ, η))− a(θ, η) = µ̂.
Now we have to reach a flat class with the same pull-back of ε̂′. We have
that (id, id)∗R(ε̂′) = R(µ̂) = 0, thus there exists a form χ ∈ Ω•−1(X) such
that R(ε̂′) = (0, χ ⊔ 0). Let us show that the de-Rham class [χ] belongs to
the image of the Chern character. We consider the pull-back of ε̂′ via the
following composition:

∅ //

��

X ⊔A

id⊔ρ
��

∅ //

��

X

id
��

A
ρ //

id
��

X

id
��

X ⊔A //id⊔ρ // X.
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The pull-back of ε̂′ from the last to the third line is µ̂ and the pull-back to
the second line is π∗(µ̂), that vanishes by hypothesis. Thus, the overall pull-
back is 0. On the other side, the pull-back from the forth to the first line, by
the axiom (A4), is a(cov(ε̂′)) = a(χ) ⊔ 0, thus a(χ) = 0. This shows that χ ∈
Ω•−1
ch (X), thus there exists a class γ̂ ∈ ĥ•−1(X) such that R(γ̂) = χ. Consid-

ering the sequence (33) associated to the last line of the previous diagram,
we get the class Bock(γ̂ ⊔ 0) ∈ ĥ•(id ⊔ ρ) and we set ε̂ := ε̂′ + Bock(γ̂ ⊔ 0).
It follows that R(ε̂) = (0, χ ⊔ 0) + (0,−R(γ̂ ⊔ 0)) = 0. Moreover, because of
the naturality of the Bockstein map, (id, id)∗Bock(γ̂ ⊔ 0) = Bock(id∗(γ̂ ⊔
0)) = Bock(0) = 0, thus (id, id)∗ε̂ = µ̂− 0 = µ̂.

About (33), we must prove the exactness from ĥ•−1
fl (X) to h•(A). Actu-

ally, the exactness in ĥ•−1
fl (X) easily follows from the embedding ĥ•−1

fl (A) →֒

ĥ•−1(A) and the exactness of (32). Similarly, the exactness in h•(A) easily
follows from the surjectivity of I : ĥ•(X) → h•(X) and the exactness of the
sequence associated to h•. Thus, there are three meaningful positions left.

Exactness in ĥn−1(A). The composition Bock ◦ ρ∗, starting from ĥ•fl(X),
coincides with the one of the flat sequence, hence it vanishes. Given α̂ ∈
ĥn−1(A), if Bockn−1(α̂) = 0 then R(α̂) = 0, because of formula (42). There-
fore the kernel of Bockn−1 is contained in the flat part ĥn−1

fl (A), hence the
exactness follows from the one of (32).

Exactness in ĥn(ρ). We have already proven that π∗ ◦ Bock = 0 in Re-
mark 3.9. Let us consider µ̂ ∈ ĥn(ρ) such that π∗µ̂ = 0. It follows that
R(µ̂) = (0, η). Moreover, 0 = ρ∗π∗µ̂ = a(η), thus η represents a class be-
longing to the image the Chern character. It follows that there exists a
class α̂ ∈ ĥn−1(A) such that R(α̂) = −η. Then, because of formula (42),
Bock(α̂) = µ̂+ µ̂′, with µ̂′ ∈ ĥnfl(ρ). Since 0 = π∗Bock(α̂) = π∗µ̂′, because of

the exactness of (32) there exists a class α̂′ ∈ ĥn−1
fl (A) such that Bock(α̂′) =

µ̂′. It follows that Bock(α̂− α̂′) = µ̂.
Exactness in ĥn(X). The pull-back to A of a class in ĥn(ρ) is topologi-

cally trivial because of the long exact sequence of h• (or because of axiom
(A4)). Let us fix a class ν̂ ∈ ĥn(X), such that ρ∗I(ν̂) = 0. It follows that
ρ∗ν̂ = a(η) for a suitable η ∈ Ω•−1(A). We set ω := R(ν̂). Then ρ∗ω = dη,
that is equivalent to d(ω, η) = 0. Moreover:

Bock ◦ ρ∗(ν̂)
(44)
= −a(ω, 0)

Bock ◦ ρ∗(ν̂) = Bock ◦ a(η)
(43)
= a(0, η).
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It follows that a(ω, η) = 0, thus we can fix a class α̂′ ∈ ĥn(ρ) such that
R(α̂′) = (ω, η). It follows that π∗(α̂′) = ν̂ + ν̂ ′, with ν̂ ′ flat. Then:

ρ∗π∗(α̂′) = a(η) + ρ∗ν̂ ′

ρ∗π∗(α̂′)
(A4)
= a ◦ cov(α̂′) = a(η).

Thus ρ∗ν̂ ′ = 0 and, by the exactness of the flat sequence, we can find α̂′′

such that π∗α̂′′ = ν̂ ′. Setting α̂ := α̂′ − α̂′′, we get that π∗α̂ = ν̂.
About (34), we must prove the exactness from ĥ•−1

fl (A) to h•+1(ρ). Ac-

tually, the exactness in ĥ•−1
fl (A) easily follows from the embedding ĥ•fl(ρ) →֒

ĥ•par(ρ) and the exactness of (32). Similarly, the exactness in h•+1(ρ) easily

follows from the surjective map I : ĥ•(A) → h•(A) and the exactness of the
sequence associated to h•. Thus, there are three meaningful positions left.

Exactness in ĥ•par(ρ). If a class belongs to the image of the Bockstein
map, it follows from the exact sequence of the flat theory that its pull-back
to X vanishes. Vice-versa, let us consider µ̂ ∈ ĥ•(ρ)par such that π∗µ̂ = 0. It
follows that R(µ̂) = (0, 0), thus the class is flat. By the sequence of the flat
theory, we can find a pre-image via the Bockstein morphism.

Exactness in ĥn(X). The pull-back to A of a class in ĥ•par(ρ) vanishes

because of the axiom (A4). Vice-versa, let us fix a class ν̂ ∈ ĥ•(X) such
that ρ∗ν̂ = 0. Since, in particular, ρ∗I(ν̂) = 0, by the exactness of (33) there
exists α̂′ ∈ ĥ•(ρ) such that π∗α̂′ = ν̂. We set (ω, η) := R(α̂′), thus ω = R(ν̂).
We have that 0 = ρ∗π∗α̂′ = a(η), thus there exists a class β̂ ∈ h•−1(A) such
that R(β̂) = η. We set α̂ := α̂′ + Bock(β̂). Then, by formula (42), R(α̂) =
(ω, η) + (0,−η) = (ω, 0), thus α̂ is parallel, and, by the exactness of (33),
π∗α̂ = ν̂.

Exactness in ĥ•(A). If a class α̂ ∈ ĥ•(A) is the pull-back of a class in
X, it follows from the exact sequence of h• that it lies in the kernel of
the (topological) Bockstein map. Vice-versa, if it belongs to the kernel, by
the exact sequence of h• we can find a class β̂ ∈ ĥn(X) such that ρ∗I(β̂) =
I(α̂), hence ρ∗β̂ = α̂+ a(θ) for a suitable form θ ∈ h•−1(A). If ρ is a closed
embedding, there exists a form ξ ∈ h•−1(X) such that θ = ρ∗ξ, thus ρ∗(β̂ −
a(ξ)) = α̂.

4. Existence and uniqueness

We are going to verify that any cohomology theory admits a relative dif-
ferential extension, that is unique under the same hypotheses stated in [10]
about the absolute case.
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4.1. Existence

Given a cohomology theory h•, there exists a relative differential extension
with S1-integration, which is multiplicative if h• is. This can be shown using
the Hopkins-Singer model [14]. We briefly recall the construction and verify
that it satisfies the axioms.

Definition 4.1. If X is a smooth manifold, Y a topological space, V •

a graded real vector space and κn ∈ Cn(Y ;V •) a real singular cocycle, a
differential function from X to (Y, κn) is a triple (f, h, ω) such that:

• f : X → Y is a continuous function;

• h ∈ Cn−1
sm (X;V •) (‘sm’ means smooth);

• ω ∈ Ωn
cl(X;V •)

satisfying the following condition, where χ : Ω•(X;V •) → C•(X;V •) is the
natural morphism:

(45) δn−1h = χn(ω)− f∗κn.

Moreover, a homotopy between two differential functions (f0, h0, ω) and
(f1, h1, ω) is a differential function (F,H, π∗ω) : X × I → (Y, κn), such that
F is a homotopy between f0 and f1, H|X×{i} = hi for i = 0, 1, and π : X ×
I → X is the natural projection.

We represent a fixed cohomology theory h• via an Ω-spectrum
(En, en, εn), where en is the marked point of En and εn : (ΣEn,Σen) →
(En+1, en+1) is the structure map, whose adjoint ε̃n : En → Ωen+1

En+1 is a
homeomorphism. We also fix real singular cocycles ιn ∈ Cn(En, en, h

•
R
) rep-

resenting the Chern character of h•, such that ιn−1 =
∫

S1 ε
∗
nιn [24].

Definition 4.2. Given a differential function (f, h, ω) : X → (En, ιn), a
strong topological trivialization of (f, h, ω) is a homotopy (F,H, π∗ω) : X ×
I → (En, ιn) between (f, h, ω) and a function of the form (cen , χ(η), dη),
where cen is the constant function with value en and η ∈ Ωn−1(X; h•

R
).

Let us consider a smooth function between manifolds ρ : A→ X. We de-
fine the cylinder Cyl(ρ) := X ⊔ (A× I)/ ∼, where (a, 0) ∼ ρ(a). We consider
the following natural maps:

• ιCyl(ρ) : Cyl(ρ) → X × I, x 7→ (x, 0), [(a, t)] 7→ (ρ(a), t);
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• ιCyl(A) : Cyl(A) → Cyl(ρ), (a, t) 7→ [(a, t)];

• ιA : A→ Cyl(ρ), a 7→ [(a, 0)];

• ι′A : A→ Cyl(ρ), a 7→ (a, 1);

• πA : I ×A→ A, (t, a) 7→ a.

In general Cyl(ρ) is not a manifold, nevertheless we will deal with differential
functions (f, h, ω) : Cyl(ρ) → (En, ιn), defined in the following way:

• f : Cyl(ρ) → En is a continuous function.

• ω ∈ Ωn
cl(X; h•

R
), and it defines a smooth cocycle χn(ω) on Cyl(ρ) as fol-

lows. Let us consider the pull-back π∗Xω on X × I. A simplex σ : ∆n →
Cyl(ρ) is defined to be smooth if and only if the composition ιCyl(ρ) ◦
σ : ∆n → X × I is. The smooth cochain χn(ω) on Cyl(ρ) is defined by
χn(ω)(σ) := χn(π∗Xω)(ιCyl(ρ) ◦ σ).

• h ∈ Cn−1
sm (Cyl(ρ); h•

R
) and it satisfies δn−1h = χn(ω)− f∗ιn.

Definition 4.3. The group ĥn(ρ) contains the equivalence classes
[(f, h, ω, η)], where:

• (f, h, ω) : Cyl(ρ) → (En, ιn) is a differential function such that
ι∗Cyl(A)(f, h, ω) is a strong topological trivialization of ι∗A(f, h, ω) veri-

fying the relation (ι′A)
∗(f, h, ω) = (cen , χ(η), dη);

• (f, h, ω, η) is equivalent to (g, k, ω, η) if the differential functions
(f, h, ω) and (g, k, ω) are homotopic relatively to the upper base of the
cylinder. This means that a homotopy (F,H, π∗ω) : Cyl(ρI) → (En, ιn)
between the two functions is required to satisfy (ι′A)

∗
I(F,H, π

∗ω) =
π∗A(ι

′
A)

∗(f, h, ω), where (ι′A)I is defined as in formula (17).5

We set:

(46) I[(f, h, ω)] := [f ] R[(f, h, ω, η)] := (ω, η),

where [f ] ∈ [(Cyl(ρ), A× {1}), (En, en)] ≃ hn(ρ). Moreover, we define the
map a in the following way. Given a form ω ∈ Ωn(X; h•

R
), we set ω̃ :=

π∗Aρ
∗ω ∈ Ωn(Cyl(A); h•

R
) and, given a form η ∈ Ωn−1(A; h•

R
), we set η̃ :=

π∗Aη ∈ Ωn−1(Cyl(A); h•
R
). We define the smooth singular cochain χn(ω, η) ∈

5Since I is (locally) compact, I × Cyl(ρ) is canonically homeomorphic to Cyl(ρI).
We will apply this homeomorphism when necessary, without stating it explicitly.
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Cn
sm(ρ; h•

R
) as follows. We fix a real number ε ∈ (0, 1) and we take a smooth

non-decreasing function θ : I → I such that θ(t) = 0 for t ≤ ε and θ(1) = 1.
We fix the open cover {U,W} of Cyl(ρ) defined by U := A× ( ε3 , 1] and
W := A× [0, ε2) ⊔ρ X. For each smooth chain σ : ∆n → Cyl(ρ), we take the
iterated barycentric subdivision, so that the image of each sub-chain is con-
tained in U or in W ; then, for each small chain σ′, we set

χn(ω, η)(σ′) =

{

χn
(

ω̃ − d(θη̃)
)

(σ′) if σ′ ⊂ U

χn(ω)(πX ◦ σ′) if σ′ ⊂W,

where πX : W → X is the natural projection defined by [a, t] 7→ ρ(a) and
[x] 7→ x. Note that the morphism is well defined for σ′ ⊂ U ∩W , since θ(t) =
0 for t ≤ ε. Finally, we define

a : Ωn−1(ρ; h•
R
)/Im(d) → ĥn(ρ)

[(ω, η)] 7→ [(cen , χ
n−1(ω, η), dω, ρ∗ω − dη)].

(47)

The cochain χn−1(ω, η) depends on the choice of the function θ, but the
equivalence class [(cen , χ

n−1(ω, η), dω, ρ∗ω − dη)] does not, since two differ-
ent functions θ lead to homotopic representatives.

Given two maps ρ : A→ X and η : B → Y and a morphism (φ, ψ) : ρ→
η, there is a natural induced map (φ, ψ) : Cyl(ρ) → Cyl(η), x 7→ φ(x),
[(a, t)] 7→ [(ψ(a), t)]. We define the pull-back

(φ, ψ)∗[(f, h, ω, η)] := [(f ◦ φ,φ∗h, φ∗ω, ψ∗η)].

Let us verify that axioms (A1)–(A4) of Definition 2.2 hold. The first one
is a direct consequence of the definitions (47) and (46). About axiom (A4),
we have that

ρ∗π∗[(f, h, ω, η)] = ρ∗[(f |X , h|X , ω)]

= ι∗A[(f, h, ω)]
(∗)
= a(η) = a ◦ cov([(f, h, ω, η)]),

the equality (∗) being due to the fact that, by definition, ι∗Cyl(A)(f, h, ω) is a

homotopy between ι∗A(f, h, ω) and a(η) = (cen , χ(η), dη). In order to verify

(A2), we observe that a representative (f, h, ω, η) of an element of ĥn(ρ), as
defined in 4.3, can be described in the following equivalent way:

• f : (Cyl(ρ), A× {1}) → (En, en) is a map of pairs;

• h ∈ Cn−1(Cyl(ρ); h•
R
);
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• (ω, η) ∈ Ωn
cl(ρ; h

•
R
);

• δn−1(h, 0) = (χn(ω), χn−1(η))− (f∗ιn, 0), the boundary δ being the
one of the mapping cone complex C•(Cyl(ρ))⊕ C•−1(A) associated
to the embedding of the upper base ι′A : A→ Cyl(ρ).

The condition δn−1(h, 0) = (χn(ω), χn−1(η))− (f∗ιn, 0) implies that

[(ω, η)]dR = [f∗ιn] = ch[f ],

where f is a map of pairs. Finally, in order to show that axiom (A3) holds, the
proof is similar to [24, Theorems 2.4 and 2.5], applied to the pair (Cyl(ρ), A×
{1}).

This differential extension has a natural S1-integration, defined integrat-
ing each component of the differential function (f, h, ω, η) as shown in [24,
Chapter 3]. Moreover, if h• is multiplicative, then ĥ• is multiplicative too,
the product being defined as in [24, Chapter 4].

4.2. Uniqueness for smooth cofibrations

We are going to show that the uniqueness result of [10] holds even in the
relative case, under the same hypotheses. Our aim consists in extending to
the relative case the construction of the morphism between any two differ-
ential extensions of h•, described in [10, Section 3]. It will easily follow that
it induces a morphism between the corresponding long exact sequences of
the form (33), therefore it is an isomorphism because of the five lemma.

We use the results of [10, Section 2] about approximation of spectra
through manifolds, assuming the same hypotheses therein. Let h• be a co-
homology theory and consider a spectrum {En, en, εn}n∈Z representing it.
For a fixed n ∈ Z, we take a sequence of pointed manifolds {Ei, ai}i∈Z and
two sequences of maps

xi : (Ei, ai) → (En, en) ki : (Ei, ai) → (Ei+1, ai+1)

such that xi = xi+1 ◦ ki. Moreover, for a given class u ∈ h•(En, en), we fix
a family of closed forms ωi ∈ Ω•(Ei, ai; h

•
R
) such that ωi = k∗i ωi+1 and, in

the reduced cohomology with marked point ai, we have [ωi]dR = ch(x∗iu).
Finally, we fix a family of differential classes ûi ∈ ĥ•par(Ei, ai) such that
I ′(ûi) = x∗i (u) and R

′(ûi) = ωi.
6

6The notation ĥ•par(Ei, ai) refers to the cohomology of the embedding {ai} →֒ Ei.
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Let (ĥ•, I, R, a) and (ĥ′•, I ′, R′, a′) be two differential extensions of h•.
The morphism from ĥ• to ĥ′• we are looking for is much easier to construct
in the case of a closed embedding ρ : A →֒ X, since ρ is a smooth cofibration.
In this case, for any v̂ ∈ ĥn(ρ), there exists a morphism in the category C2

(48) A � � ρ //

��

X

f
��

en
� � ien // En

such that I(v̂) is represented by the homotopy class [f ] ∈ [ρ, ien ]. It follows
that I(v̂) = f∗(u), where u ∈ hn(ien) is the tautological class represented by
the identity map of (En, en). By the approximation lemmas [10, Props. 2.1
and 2.3], there exist a based manifold (Ei, ai) and a map

A
ρ //

��

X

fi
��

ai
� �

iai // Ei

such that f = xi ◦ fi. Note that I(v̂) = f∗(u) = f∗i x
∗
i (u) = f∗i (I(ûi)) =

I(f∗i ûi), hence we have

v̂ = f∗i û+ a(ζ, ν)

for a unique (ζ, ν) ∈ Ωn−1(ρ; h•
R
)/Im(ch). Repeating the same construction

for ĥ′•, we define:

Φ: ĥ•(ρ) → ĥ′•(ρ)

f∗i û+ a(ζ, ν) 7→ f∗i û
′
i + a′(ζ, ν).

In order to show that Φ is well defined, we must verify that it is inde-
pendent of the choice of the functions fi. Let us fix v̂ ∈ ĥn(ρ). As in the
absolute case, we may reduce the problem to the case of two homotopic
functions fi, f̃i : ρ→ (Ei, ai) such that I(v̂) = f∗i x

∗
i (u) = f̃∗i x

∗
i (u); we con-

sider a homotopy F : ρI → (Ei, ai). To each fj and f̃j we associate as above
the forms (ζ, ν) and (ζ̃ , ν̃) and the morphisms Φ and Φ̃ respectively. We
define (α, β) =

∫

ρI/ρ
F ∗(ωi, 0). We note that F ∗(ωi, 0) = R(F ∗ûi), so by the
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homotopy formula we obtain

f∗i ûi − f̃∗i ûi = a(α, β) f∗i û
′
i − f̃∗i û

′
i = a′(α, β).

Since v̂ = f∗i û
′ + a′(ζ, ν) = f̃∗i û

′ + a′(ζ̃ , ν̃), the homotopy formula also im-
plies that a′(ζ̃ , ν̃) = a′(ζ, ν) + a′(α, β), thus:

Φ(v̂) = f∗i û
′
i + a′(ζ, ν)

= f∗i û
′
i + a′(ζ̃ , ν̃)− a′(α, β) = a′(ζ̃ , ν̃) + f̃∗i û

′
i = Φ̃(v̂).

In order to show that Φ induces a morphism of long exact sequences it
is enough to show that Φ commutes with the Bockstein map. This easily
follows from the naturality of Φ, since it commutes with each of the steps
(S1)–(S6). From the five lemma, it follows that it is an isomorphism.

This implies in particular that, at least on closed embeddings, any differ-
ential extension of h• is naturally isomorphic to the Hopkins-Singer model,
summarized in Section 4.1. Since in such a model the flat theory is isomor-
phic to h•(ρ;R/Z), the latter being defined via the Moore spectrum (see [10,
Chapter 5]), it follows that the same isomorphism holds about h•fl.

7

4.3. Uniqueness for generic maps (sketch)

For a generic smooth map ρ : A→ X, the construction of Φ is less trivial,
since we cannot represent any element of h•(ρ) via a morphism of the form
(48). We just sketch such a construction, deferring the details to a future
paper. In order to use the language of spectra in this general context, we
must use cones or cylinders. In particular, we can replace (48) by a map of
the following form:

(49) A � � i1 //

��

Cyl(ρ)

f

��
en

� � ien // En,

where i1 is the embedding of A in the upper base of the cylinder. Now we
should apply the same idea used above, but of course we must deal with the

7In [10] the authors gave an independent proof of this result, since the details
of the integration map in the Hopkins-Singer model had not been worked out yet.
Now we do not have this problem any more (see [24]).
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fact that Cyl(ρ) is not a manifold in general. We can extend the groups ĥ•

to cylinders following [2]. We start defining smoothness.

Definition 4.4. Given a smooth map ρ : A→ X, we consider the map
ιCyl(ρ) : Cyl(ρ) → X × I, x 7→ (x, 0) and [(a, t)] 7→ (ρ(a), t).

• Given a manifold Y and a function f : Y → Cyl(ρ), the function f is
smooth if and only if ιCyl(ρ) ◦ f : Y → X × I is smooth.

• Given a cylinder Cyl(η) (in particular, it can be a manifold) and a
function g : Cyl(ρ) → Cyl(η), the function g is smooth if and only if, for
any manifold Y and any smooth map f : Y → Cyl(ρ), the composition
g ◦ f : Y → Cyl(η) is smooth.

• A singular chain σ : ∆• → Cyl(ρ) is smooth if and only if it is smooth
as a function from the manifold ∆• to Cyl(ρ). We call Csm

• (Cyl(ρ))
the corresponding group. A smooth real singular cochain is an element
of C•

sm(Cyl(ρ)) := Hom(Csm
• (Cyl(ρ)),R).

• A differential form on Cyl(ρ) is a smooth singular cochain φ ∈
C•
sm(Cyl(ρ)) such that, for any manifold Y and any smooth map

f : Y → Cyl(ρ), the pull-back f∗φ is (the image of) a differential form
on Y . We call Ω•(Cyl(ρ)) the corresponding group.

Now we can show how to extend to cylinders the group ĥ•. Let us con-
sider a smooth map between cylinders φ : Cyl(ν) → Cyl(ξ). We define the
category Cφ in the following way. An object is a diagram of the form

(50) Cyl(ν)
φ // Cyl(ξ)

A
ρ //

v

OO

X,

u

OO

where ρ is a smooth map between manifolds and u and v are smooth too.
We denote such an object by (u, v) : ρ→ φ. A morphism from the object
(u′, v′) : η → φ to the object (u, v) : ρ→ φ is a diagram of the form (1), such
that u ◦ f = u′ and v ◦ g = v′.

Definition 4.5. An element of the group ĥ•(φ), with curvature (ω, η) ∈
Ω•(φ), is a functor α̂ : Cφ → AZ with the following properties. We set
(u, v)!α̂ := α̂((u, v) : ρ→ φ).

• Given (u, v) : ρ→ φ, we have that (u, v)!α̂ ∈ ĥ•(ρ).
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• Given a morphism (f, g) : η → ρ, we have that (f, g)∗(u, v)!α̂ = (u ◦
f, v ◦ g)!α̂.

• Given (u, v), (u′, v′) : ρ→ Cyl(φ) and a smooth homotopy (U, V ) :
ρI → φ between (u, v) and (u′, v′), we have that (u, v)!α̂− (u′, v′)!α̂ =
a
(∫

I(U, V )∗(ω, η)
)

.

We set R(α̂) := (ω, η). Moreover, given (ω′, η′) ∈ Ω•−1(φ), we define a(ω′, η′)
as the class such that (u, v)!(a(ω′, η′)) = a((u, v)∗(ω′, η′)).

Given a morphism from ψ : Cyl(ν ′) → Cyl(ξ′) to φ : Cyl(ν) → Cyl(ξ),
i.e. a pair of smooth functions h : Cyl(ξ′) → Cyl(ξ) and k : Cyl(ν ′) → Cyl(ν)
such that φ ◦ k = h ◦ ψ, we define the pull-back (h, k)∗ : ĥ•(φ) → ĥ•(ψ) by
(h, k)∗(f, g)!(α̂) := (f ◦ h, g ◦ k)!(α̂). In this way we get the functor ĥ• from
the category of smooth maps between cylinders to AZ, that can be easily
endowed with the corresponding S1-integration.

Given a smooth map ρ : A→ X between manifolds, we call ĥ•0(i1) the
subgroup of ĥ•(i1) formed by the classes whose curvature (ω, η) ∈ Ω•(i1) ver-
ifies ι∗Cyl(A)ω = π∗Adη. In particular, we call ĥ•par,0(i1) the subgroup of ĥ•0(i1)

formed by the classes whose curvature (ω, 0) ∈ Ω•(i1) verifies ι∗Cyl(A)ω = 0.
We have the natural isomorphisms:

(51) ĥ•(ρ)
≃
−→ ĥ•0(i1) ĥ•par(ρ)

≃
−→ ĥ•par,0(i1),

induced by pull-back from the following diagram:

(52) A � � i1 // Cyl(ρ)

π

��
A

ρ // X.

In order to prove that they are isomorphisms, we construct the long exact
sequence (34) (truncated at ĥ•(A) in general), replacing ĥ•par(ρ) by ĥ

•
par,0(i1),

and we apply the five lemma. The morphism ĥ•par,0(i1) → ĥ•(X) is the pull-
back via the inclusion of X in Cyl(ρ), while the Bockstein map is defined by
(u, v)!(Bock(α)) := Bock(v∗(α̂)). The sequence is exact because the kernel
of ĥ•par,0(i1) → ĥ•(X) is made by flat classes vanishing on X, hence, by
the suspension isomorphism in the flat theory, the Bockstein map is an
isomorphism from ĥ•fl(A) to such a kernel. Now the five lemma implies that
the second map of (51) is an isomorphism. Now we consider the sequence
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(25) and the corresponding sequence

0 // ĥ•par,0(i1)
// ĥ•0(i1)

R′

// Ω•
ch,0(ρ)

// 0.

Applying the five lemma again we get the first isomorphism of (51).
Now we construct the morphism Φ as above. For any v̂ ∈ ĥn(ρ), we

embed it in ĥn(i1) via (51), hence there exists a morphism of the form (49),
such that I(v̂) is represented by the homotopy class [f ] ∈ [i1, ien ]. It follows
that I(v̂) = f∗(u), where u ∈ hn(ien) is the tautological class represented by
the identity map of (En, en). By the approximation lemmas, there exist a
based manifold (Ei, ai) and a map

A � � i1 //

��

Cyl(ρ)

fi
��

ai
� �

iai // Ei

such that f = xi ◦ fi. Note that I(v̂) = f∗(u) = f∗i x
∗
i (u) = f∗i (I(ûi)) =

I(f∗i ûi), hence we have

v̂ = f∗i û+ a(ζ, ν)

for a unique (ζ, ν) ∈ Ωn−1(i1; h
•
R
)/Im(ch). Repeating the same construction

for ĥ′•, we define:

Φ: ĥ•(ρ) → ĥ′•(ρ)

f∗i û+ a(ζ, ν) 7→ f∗i û
′
i + a′(ζ, ν).

Applying the five lemma to the exact sequence (33) we get the uniqueness
of the relative extension. In particular, the isomorphism with the Hopkins-
Singer model provides the isomorphism h•fl(ρ) ≃ h•(ρ;R/Z).

5. Complements on differential extensions

We show some other interesting versions of the notion of differential refine-
ment.

5.1. Differential cohomology with compact support

We are going to define the compactly-supported version of differential co-
homology. This has been done about ordinary differential cohomology in
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[4], using the language of Cheeger-Simons characters. Here we generalize
the construction to any cohomology theory, within the axiomatic setting.
Given a smooth manifold X, we denote by KX the directed set formed by
the compact subsets of X, the partial ordering being given by set inclusion.
We think of KX as a category, whose objects are the compact subsets of X
and such that the set of morphisms from K to H contains one element if
K ⊂ H and is empty otherwise. There is a natural functor CX : KX → Mop

2 ,
assigning to an objectK the open embedding iK : X \K →֒ X and to a mor-
phism K ⊂ H the natural morphism iKH : iH → iK defined by the following
diagram:

(53) X \H
� _

��

� � iH // X

X \K � � iK // X.

Given a cohomology theory h• and a differential extension ĥ• : Mop
2 → AZ,

the corresponding compactly-supported differential extension ĥ•cpt(X) is the

colimit of the composition functor ĥ•par ◦ CX : KX → AZ:

(54) ĥ•cpt(X) := colim
(

ĥ•par ◦ CX : KX → AZ

)

.

Since ĥ•par and CX are both contravariant, the composition is covariant.

Concretely, an element α̂cpt ∈ ĥ•cpt(X) is an equivalence class α̂cpt = [α̂],

represented by a parallel class α̂ ∈ ĥ•par(X,X \K), K being a compact sub-

set of X. The colimit is taken over the groups ĥ•par(X,X \K), where, if
K ⊂ H, the corresponding morphism in the direct system is the pull-back
i∗KH : ĥ•par(X,X \K) → ĥ•par(X,X \H). If X itself is compact, we get a

canonical isomorphism ĥ•(X)≃ ĥ•cpt(X), identifying α̂∈ ĥ•(X)= ĥ•par(X,X\
X) with the class represented by α̂ itself for K = X.

We have defined the group associated to a manifold X. We can extend
this definition to the category M′ whose objects are smooth manifolds (the
same of the categoryM) and whose morphisms are open embeddings. In fact,
let us fix an open embedding ι : Y →֒ X. For any compact subset K ⊂ Y ,
from the embedding of pairs ιK : (Y, Y \K) →֒ (X,X \ ι(K)), we get the
induced morphism ι∗K : ĥ•par(X,X \ ι(K)) → ĥ•par(Y, Y \K). By the excision
property of parallel classes 2.15, it follows that ι∗K is an isomorphism. If
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K ⊂ H, the following diagram commutes:

ĥ•par(Y, Y \K)
(ι∗K)−1

//

i∗KH

��

ĥ•par(X,X \ ι(K))

i∗KH

��

ĥ•par(Y, Y \H)
(ι∗H)−1

// ĥ•par(X,X \ ι(H))

therefore we get an induced morphism between the colimits, i.e., ι∗ :
ĥ•cpt(Y ) → ĥ•cpt(X).

We can define as above the following functors:

h•cpt(X) := colim
(

h• ◦ CX : KX → AZ

)

Ω•
cpt(X) := colim

(

Ω• ◦ CX : KX → AZ

)

Ω•
cl,cpt(X) := colim

(

Ω•
cl ◦ CX : KX → AZ

)

Ω•
ex,cpt(X) := colim

(

Ω•
ex ◦ CX : KX → AZ

)

Ω•
ch,cpt(X) := colim

(

Ω•
ch ◦ CX : KX → AZ

)

.

A relative form ω ∈ Ω•(X,X \K) is defined as a form ω ∈ Ω•(X) whose
restriction to X \K vanishes. Since the pull-back i∗KH : Ω•(X,X \K) →
Ω•(X,X \H) is injective, an element of Ω•

cpt(X) is a form ω on X whose
support is compact, i.e., such that ω vanishes on the complement of a com-
pact subset ofX. The same holds for closed forms. In the case of exact forms,
an element of Ω•

ex,cpt(X) is a form ω on X such that there exists a form with

compact support η ∈ Ω•−1
cpt (X) satisfying the identity ω = dη. Finally, an el-

ement of Ω•
ch,cpt(X) is a form ω on X whose support K is compact and such

that the relative de-Rham class [ω] ∈ H•
dR(X,X \K) belongs to the image

of the Chern character. We also recall that colimit on abelian groups is an
exact functor, hence the colimit of a quotient is the quocient of the colimits.
For example, H•

dR,cpt(X) = Ω•
cl,cpt(X)/Ω•

ex,cpt(X).
We easily get the following natural transformations of AZ-valued func-

tors:

• Icpt : ĥ
•
cpt(X) → h•cpt(X);

• Rcpt : ĥ
•
cpt(X) → Ω•

cl,cpt(X; h•
R
);

• acpt : Ω
•−1
cpt (X; h•

R
)/Im(d) → ĥ•cpt(X).

These transformations satisfy axioms analogous to (A1)–(A3) of Defini-
tion 2.2, replacing the functors and the natural transformations involved
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with the corresponding compactly-supported version. The proof of (A1)
and (A2) is straightforward and the proof of (A3) is analogous to [4, Theo-
rem 4.2].

If ĥ• is multiplicative, the module structure stated in Definition 2.11
induces the following natural module structure:

· : ĥmcpt(X)× ĥn(X) → ĥn+m
cpt (X)

([α̂], β̂) 7→ [α̂ · β̂].

Here naturality consists in the commutativity of the following diagram for
any open embedding ι : Y → X:

ĥmcpt(Y )× ĥn(X)
id×ι∗ //

ι∗×id
��

ĥmcpt(Y )× ĥn(Y ) // ĥn+m
cpt (Y )

ι∗
��

ĥmcpt(X)× ĥn(X) // ĥn+m
cpt (X).

Finally, we have the following natural homomorphism, which in general is
neither injective nor surjective:

S : ĥ•cpt(X) → ĥ•(X)

[α̂] 7→ π∗X α̂,

where πX : (X, ∅) →֒ (X,X \K) is the natural inclusion of pairs and the
naturality consists in the commutativity of the following diagram for any
open embedding ι : Y → X:

ĥ•cpt(Y )
S //

ι∗
��

ĥ•(Y )

ĥ•cpt(X)
S // ĥ•(X).

ι∗

OO

5.2. Relative cohomology with compact support

We can also define the relative version of compactly-supported cohomology.
We only treat the case of a closed embedding i : A →֒ X. We define the
functor CX,A : KX → Mop

2 , assigning to an object H the function i′H : (X \
H) ⊔A→ X, that acts as iH on X \H and as the embedding i on A, and
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to a morphism K ⊂ H the natural morphism i′KH : i′H → i′K defined by the
following diagram:

(55) (X \H) ⊔A
� _

��

i′H // X

(X \K) ⊔A
i′K // X.

We call ĥ•0(i
′
K) the group formed by the classes α̂ such that cov(α̂) vanishes

on X \H (but not necessarily on A). We define:

(56) ĥ•cpt(X,A) := colim
(

ĥ•0 ◦ CX,A : KX → AZ

)

.

We can extend this definition to the category M′
2 whose objects are smooth

manifold pairs and whose morphisms are open embeddings. Let us fix a mor-
phism ι : (Y,B) →֒ (X,A). For any compact subset K ⊂ Y , from the embed-
ding of pairs ιK : (Y, Y \K) →֒ (X,X \ ι(K)), we get the induced morphism
ι′∗K : ĥ•0(i

′
K,X) → ĥ•0(i

′
K,Y ), where we denoted by i′K,X the morphism i′K on

the manifold X. The excision property of parallel classes 2.15 easily ex-
tends to ĥ0, hence ι

′∗
K is an isomorphism. If K ⊂ H, the following diagram

commutes:

ĥ0par(i
′
K,Y )

(ι′∗K)−1

//

i∗KH

��

ĥ•par(i
′
K,X)

i∗KH

��

ĥ•par(i
′
H,Y )

(ι′∗H)−1

// ĥ•par(i
′
H,X),

therefore we get an induced morphism between the colimits, i.e., ι∗ :
ĥ•cpt(Y,B) → ĥ•cpt(X,A).

5.3. Extension with differential long exact sequence

In [5] the authors proposed two definitions of relative Cheeger-Simons char-
acter. The first one corresponds to the relative differential extension of sin-
gular cohomology that we described above. The second one is interesting
because it fits into a long exact sequence completely formed by differential
cohomology groups and it can be generalized to any cohomology theory in
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the following way (see [13] for Deligne cohomology and [14] for the Hopkins-
Singer model of any cohomology theory):

(57)
ˆ̂
h•(ρ) :=

Ker
(

ĥ•(ρ) → ĥ•(A)
)

Im
(

ĥ•−1(X) → ĥ•(ρ)
) .

The morphism appearing in the numerator is the composition between the
map ĥ•(ρ) → ĥ•(X), appearing in (33), and the pull-back ρ∗ : ĥ•(X) →
ĥ•(A). By axiom (A4), it sends a class α̂, with curvature (ω, η), to a(η).
The morphism appearing in the denominator is the composition between the
pull-back ρ∗ : ĥ•−1(X) → ĥ•−1(A) and the Bockstein map of the sequence
(33), described explicitly by formula (44).

Theorem 5.1. Given a smooth map ρ : A→ X, the following sequence is
exact:

(58) · · · −→
ˆ̂
h•−1(ρ) −→ ĥ•−1(X) −→ ĥ•−1(A) −→

ˆ̂
h•(ρ) −→ · · · .

Proof. The same of [13, Theorem 2.1]. □

Remark 5.2. In the papers [13] and [14] we also considered the extension
that we called “of type III”. For completeness, we briefly show how to re-
produce it axiomatically. We need to recover the following exact sequences
(see [14], sequences (3) and (5), and [13], sequences (6) and (8)):

· · ·
// ĥ•−1

fl
(X)

ρ∗ // ĥ•−1(A)
β //

I

����

ĥ•(ρ) //

π

����

ĥ•(X) // h•(A) //
· · ·

· · ·
// ĥ•−1

fl
(X) // h•−1(A)

β′

// ĥ•

III(ρ) // ĥ•(X) // h•(A) //
· · · .

It follows by diagram chasing that we have an embedding ĥ•−1(A)

ρ∗ĥ•−1
fl (X)

→֒

ĥ•(ρ) whose image contains Ker(π). Moreover, by exactness π(β(α̂)) = 0 if
and only if β′(I(α̂)) = 0, if and only if I(α̂) is a restriction of a torsion class
on X. Therefore, we define ĥ•III(ρ) as the quotient of ĥ

•(ρ) by the subgroup

of ĥ•−1(A)

ρ∗ĥ•−1
fl (X)

formed by the classes [α̂] such that I(α̂) extends to a torsion

class on X.

6. Orientation and integration

Following [7, Sec. 4.8–4.10], we briefly recall the topological notions of ori-
entation and integration and we extend them to the differential case, as we
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did in [12, Chap. 3]; actually, we slightly modify some definitions, in order
to describe in a more unitary way the cases of manifolds without bound-
ary, with boundary and (partially) with corners. We will use the expression
“compact manifold” to indicate a compact smooth manifold with corners (in
particular, with or without boundary). All of the statements can be easily
generalized removing the compactness hypothesis, but this is the only case
we will need.

6.1. Topological orientation of a vector bundle

Let X be a compact manifold and π : E → X a real vector bundle of rank
n. The bundle E is orientable with respect to a multiplicative cohomology
theory h• if there exists a Thom class u ∈ hncpt(E) [20, p.253]. We define the

Thom isomorphism T : h•(X) → h•+n
cpt (E), α 7→ u · π∗α, and we call integra-

tion map its inverse
∫

E/X : h•cpt(E) → h•−n(X), u · π∗α 7→ α. If the charac-
teristic of h• is 0, the n-degree component of chu defines an orientation of
E in the usual sense, hence it is possible to integrate a compactly-supported
form fibre-wise. We define the Todd class Td(u) :=

∫

E/X chu ∈ H0
dR(X; h•

R
).

The following formula holds:

(59)

∫

E/X
chα = Td(u) ·

(

ch

∫

E/X
α

)

.

Lemma 6.1 (2x3 principle). Given two bundles E,F → X, we call pE :
E ⊕ F → E and pF : E ⊕ F → F the natural projections. Let (u, v, w) be
a triple of Thom classes on E, F and E ⊕ F respectively, such that w =
p∗Eu · p∗F v. Two elements of such a triple uniquely determine the third one.

For the proof see [20, Prop. 1.10 p.307].

6.2. Topological orientation of smooth maps

Definition 6.2. A representative of an h•-orientation of a smooth neat
map between compact manifolds f : Y → X is the datum of:

• a neat embedding ι : Y →֒ X × RN , for any N ∈ N, such that πX ◦ ι =
f ;

• a Thom class u of the normal bundle Nι(Y )(X × RN );

• a diffeomorphism φ : Nι(Y )(X × RN ) → U , for U a neat tubular neigh-
bourhood of ι(Y ) in X × RN .
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We now introduce a suitable equivalence relation among representatives
of orientations. Let us consider a representative (J, U,Φ) of an h•-orientation
of id× f : I × Y → I ×X and a neighbourhood V ⊂ I of {0, 1}. We say that
the representative is proper on V if a vector (x, v)(t,y) ∈ Nι(V×Y )(V ×X ×
RN )ι(t,y) is sent by Φ to a point Φ((x, v)(t,y)) ∈ V ×X × RN whose first
component is t. This means that the following diagram commutes:

(60) Nι(V×Y )(V ×X × RN )
Φ //

πN

��

U

πI

��
ι(V × Y )

πI // I.

In this case, calling f0 := id{0} × f and f1 := id{1} × f , we can define the
restrictions (J, U,Φ)|f0 and (J, U,Φ)|f1 .

Definition 6.3. A homotopy between two representatives (ι, u, φ) and
(ι′, u′, φ′) of an h•-orientation of f : Y → X is a representative (J, U,Φ) of
an h•-orientation of id× f : I × Y → I ×X, such that:

• (J, U,Φ) is proper over a neighbourhood V ⊂ I of {0, 1};

• (J, U,Φ)|f0 = (ι, u, φ) and (J, U,Φ)|f1 = (ι′, u′, φ′).

On the trivial bundle X × RN there is a canonical Thom class, defined
in the following way. On pt× RN , whose compactification is pt× SN , we
put the class u0 ∈ h̃N (SN ) corresponding to the suspension of 1 ∈ h0. Then,
we put on X × RN the class π∗

RNu0.

Definition 6.4. Let us consider a representative (ι, u, φ), with ι : Y →֒
X × RN .

• For any L ∈ N, we define ι′ : Y →֒ X × RN+L by ι′(y) := (ι(y), 0). Then
Nι′(Y )(X × RN+L) ≃ Nι(Y )(X × RN )⊕ (ι(Y )× RL).

• We put the canonical orientation u0 on the trivial bundle ι(Y )× RL,
and the orientation u′ induced by u and u0 on Nι′(Y )(X × RN+L).

• Finally, for vy ∈ Nι(Y )(X × RN ) and w ∈ RL, we define φ′(vy, w) :=
(φ(vy), w) ∈ X × RN+L.

The representative (ι′, u′, φ′) is called equivalent by stabilization to (ι, u, φ).
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Definition 6.5. A h•-orientation on f : Y → X is an equivalence class
[ι, u, φ] of representatives, up to the equivalence relation generated by ho-
motopy and stabilization.

Because of the uniqueness up to homotopy and stabilization of the tubu-
lar neighbourhood and of the diffeomorphism with the normal bundle, the
class [ι, u, φ] does not depend on φ, hence we denote it by [ι, u]. Moreover,
any two embeddings ι and ι′ become equivalent by homotopy and stabiliza-
tion, therefore the meaningful datum is u.

Remark 6.6. If X and Y are manifolds with boundary, an orientation on
f : Y → X canonically induces an orientation on ∂f := f |∂Y : ∂Y → ∂X. In
fact, fixing a representative (ι, u, φ) for f , by neatness ι restricts to ι′ : ∂X →֒
∂Y × RN . The normal bundle and the tubular neighbourhood, being neat,
restrict to the boundary too, hence we get a representative (ι′, u′, φ′) for ∂f .
Any homotopy of representatives, being neat, determines a homotopy on the
boundary, therefore the resulting orientation of ∂f is well-defined. A similar
remark holds when X and Y have corners, but we need to be more careful
in defining ∂f . We omit the details, since they are irrelevant for the present
paper.

Definition 6.7. Let f : Y → X and g : X →W be h•-oriented neat maps,
with orientations [ι, u] and [κ, v], where ι : Y →֒ X × RN and κ : X →֒W ×
RL. There is a naturally induced h•-orientation on g ◦ f : Y →W , that we
denote by [κ, v][ι, u], defined in the following way:

• we choose the embedding ξ = (κ, idRN ) ◦ ι : Y →֒W × RL+N ;

• on the normal bundle

Nξ(Y )(W × R
L+N ) ≃ Nι(Y )(X × R

N )⊕Nκ(X)×RN (W × R
L+N )|ξ(Y )

≃ Nι(Y )(X × R
N )⊕ (π∗LNκ(X)(W × R

L))|ξ(Y ),

for πL : R
L+N → RL, we put the Thom class w induced from the ones

on Nι(Y )(X × RN ) and Nκ(X)(W × RL).

We set [κ, v][ι, u] := [ξ, w].

The following lemma is a consequence of Lemma 6.1 and of the unique-
ness up to homotopy and stabilization of the embedding ι.
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Lemma 6.8 (2x3 principle). Let f : Y →X and g : X→W be h•-oriented
neat maps, with orientations [ι, u] and [κ, v], and let [ξ, w] := [κ, v][ι, u] be the
orientation induced on g ◦ f . Two elements of the triple ([ι, u], [κ, v], [ξ, w])
uniquely determine the third one.

For the proof see [19, Theorem 5.24 p.233]. Finally, let us consider two
smooth neat maps f, g : Y → X, with representatives (ι, u, φ) and (ι′, u′, φ′)
respectively. A homotopy between (ι, u, φ) and (ι′, u′, φ′) is defined as in 6.3,
replacing id× f with a smooth neat homotopy F : I × Y → I ×X between
f and g.8 The existence of such a homotopy only depends on the equivalence
classes [ι, u] and [ι′, u′], therefore we can give the following definition.

Definition 6.9. Two smooth neat h•-oriented maps f, g : Y → X are ho-
motopic as h•-oriented maps if there exists a homotopy between any two
representatives of the orientations of f and g.

Remark 6.10. We remark that, since a homotopy must be neat from I × Y
to I ×X by definition, it restricts to the boundary, thus it is a homotopy of
maps of pairs f, g : (Y, ∂Y ) → (X, ∂X). In particular, it induces a homotopy
between ∂f and ∂g.

6.3. Topological orientation of smooth manifolds

In this subsection we discuss separately the cases of manifolds without
boundary, with boundary and (partially) with corners.

Definition 6.11. An h•-orientation of a manifold without boundary X is
an h•-orientation of the map pX : X → {pt}.

By definition, giving an orientation to pX means fixing an orientation u
on the (stable) normal bundle of X; when u has been fixed, we set Td(X) :=
Td(u).

Given a manifold with boundary X, we recall that a defining function
for the boundary is a smooth neat map Φ: X → I such that ∂X = Φ−1{0}
(by neatness, it follows that Φ−1{1} = ∅).

Definition 6.12. An h•-orientation on a smooth manifold with boundary
X is a homotopy class of h•-oriented defining functions for the boundary
(see Def. 6.9).

8A homotopy is usually defined as a function F ′ : I × Y → X, but we consider
the function F : I × Y → I ×X, (t, y) 7→ (t, F ′(t, y)).
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It easy to verify that any two defining functions are neatly homotopic,
therefore the only meaningful datum is again the Thom class u.

Remark 6.13. We set HN := {(x1, . . . , xN ) ∈ RN : xN ≥ 0} (it is the lo-
cal model of an n-dimensional manifold with boundary). Definition 6.12
is equivalent to fixing a neat embedding ι : X →֒ HN , a Thom class on
the normal bundle and a difeomorphism with a neat tubular neighbour-
hood, up to homotopy and stabilization. In fact, if we fix an h•-orientation
[ι, u, φ] of a defining map Φ: X → I, following Definition 6.12, we have
that ι : X →֒ I × RN . Since Φ−1{1} = ∅, the image of ι is contained in
[0, 1)× RN ≃ HN+1. This confirms that Definition 6.12 is natural.

Remark 6.14. It follows from Remark 6.6 that an orientation on a mani-
fold with boundary canonically induces an orientation on the boundary. In
particular, let us fix a defining function Φ: X → I and an orientation [ι, u],
with ι : X →֒ I × RN . We call i∂X : ∂X →֒ X the natural embedding and we
set ι′ := ι ◦ i∂X : ∂X →֒ {0} × RN and u′ := u|∂X . We get the orientation
[ι′, u′] of ∂X.

Remark 6.15. If we apply Definition 6.12 to a manifold without boundary
(which is a particular case of a manifold with boundary), we get a function
Φ: X → I whose image is contained in (0, 1), the latter being diffeomorphic
to R. A representative (ι, u, φ) of an orientation of Φ is constructed from the
embedding ι : X →֒ (0, 1)× RN ≃ {pt} × RN+1, therefore it can be thought
of as a representative of an orientation of pX : X → {pt}. Any two such
defining functions are homotopic, (0, 1) being contractible, and a homotopy
between them determines a homotopy of representatives of an orientation of
pX : X → {pt}. This shows that Definition 6.11 is (equivalent to) a particular
case of Definition 6.12.

With respect to manifold with corners, we just consider the following
case, that will be useful in order to define the generalized Cheeger-Simons
characters.

Definition 6.16. A manifold with split boundary is a triple of manifolds
(X,M,N) such that:

• X is a manifold with corners andM and N are manifolds with bound-
ary;

• ∂X =M ∪N , M and N being embedded sub-manifolds (not neat in
general) of ∂X of codimension 0;
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• ∂M = ∂N =M ∩N ;

• {corners of X} ⊂M ∩N .

A defining function for the boundary of (X,M,N) is a smooth neat
map Φ: X → I × I such thatM = Φ−1(I × {0}) and N = Φ−1({0} × I) (by
neatness, it follows that Φ−1(I × {1}) = Φ−1({1} × I) = ∅). The definition
of h•-orientation is analogous to 6.12. Remark 6.13 keeps on holding, re-
placing HN by HN,2 := {(x1, . . . , xN ) ∈ RN : xN−1, xN ≥ 0}. Remark 6.14
holds in the sense that an orientation of (X,M,N) induces an orienta-
tion of M and one of N , with defining functions (up to homotopy) ΦM :=
Φ|M : M → I × {0} ≈ I and ΦN := Φ|N : N → {0} × I ≈ I respectively. Fi-
nally, Remark 6.15 holds too, in the sense that, setting N = ∅, we recover
the notion of orientation for a manifold with boundary.

6.4. Topological integration

Let f : Y → X be a neat map. If we fix a representative (ι, u, φ) of an orien-
tation of f , the Gysin map f! : h

•(Y ) → h•−n(X), for n = dimY − dimX,
is defined as:

(61) f!(α) =

∫

RN

i∗φ∗(u · π∗α),

i being the natural inclusion of the tubular neighbourhood i : U →֒ X × RN ,
inducing a push-forward in compactly-supported cohomology. The Gysin
map f! only depends on the h•-orientation [ι, u], not on the specific repre-
sentative ([19, Theorem 5.24 p.233], [7, Sec. 4.9]). If Y and X are oriented,
because of the 2x3 principle a map f : Y → X inherits an orientation, hence
the Gysin map is well-defined.

Theorem 6.17. Let f : Y → X be a neat h•-oriented map of compact man-
ifolds.

• The Gysin map f! only depends on the homotopy class of f as an
h•-oriented map.

• The Gysin map is a morphism of h•(X)-modules, i.e., given α ∈ h•(Y )
and β ∈ h•(X):

f!(α · f∗β) = f!α · β.

• Given another neat h•-oriented map g : Z → Y and endowing f ◦ g of
the naturally induced orientation (Def. 6.7), we have (f ◦ g)! = f! ◦ g!.
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For the proof see [19, Theorem 5.24 p.233]. If X and Y are manifolds
with boundary, considering Remark 6.6, one has, for every α ∈ h•(Y ):

(62) (∂f)!(α|∂Y ) = (f!α)|∂X .

Such a formula is due to the fact that all the structures involved in the
definition of (∂f)! are the restrictions to the boundary of the corresponding
structures for f!. A similar result holds when X and Y have corners.

6.5. Differential orientation of a vector bundle

If we consider a differential refinement ĥ• of h•, in order to orient a vector
bundle one just has to refine a Thom class u to a differential Thom class.

Definition 6.18. Let ĥ• be a multiplicative differential extension of h•.
A differential Thom class of E is a compactly supported class û ∈ ĥncpt(E)
such that I(û) ∈ hncpt(E) is a Thom class for h•.

Using the product ĥ•cpt(E)⊗Z ĥ
•(E) → ĥ•cpt(E), we define the differen-

tial Thom morphism, which is not surjective any more, as α̂ 7→ û · π∗α̂.
We define the Todd class Td(û) :=

∫

E/X R(û) ∈ Ω0
cl(X; h•

R
). It follows that

I(Td(û)) = Td(I(û)).

Definition 6.19. Let πX : I ×X → X be the natural projection and i0, i1 :
X → I ×X the natural embeddings. Two differential Thom classes û, û′ ∈
ĥncpt(E) are homotopic if there exists a Thom class Û ∈ ĥncpt(π

∗
XE) such that

i∗0Û = û, i∗1Û = û′ and Td(Û) = π∗XTd(û).

Lemma 6.20 (2x3 principle). Given two bundles E,F → X, with pro-
jections pE : E ⊕ F → E and pF : E ⊕ F → F , we consider a triple (û, v̂, ŵ)
of differential Thom classes on E, F and E ⊕ F respectively, such that ŵ is
homotopic to p∗E û · p∗F v̂. Two elements of such a triple uniquely determine
the third one up to homotopy.

Lemma 6.21. On the trivial bundle X × RN there is a canonical homotopy
class of differential Thom classes, refining the canonical topological one.

For the proofs see [7, prob. 4.187] and [12, cor. 3.19].
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6.6. Differential orientation of smooth maps

We define a representative of an ĥ•-orientation of f as in Definition 6.2, but
considering a differential Thom class. Fixing such a representative (ι, û, φ),
the Gysin map f! : ĥ

•(Y ) → ĥ•−n(X) is well-defined via formula (61) ap-
plied to differential classes. Moreover, we have the following natural map on
differential forms, called curvature map:

R(ι,û,φ) : Ω
•(Y ; h•

R
) → Ω•−n(X; h•

R
)

ω 7→

∫

X×RN/X
i∗φ∗(R(û) ∧ π

∗ω).
(63)

The following definition is analogous to 6.3, but it takes into account the
curvature map.

Definition 6.22. A homotopy between two representatives (ι, û, φ) and
(ι′, û′, φ′) of an ĥ•-orientation of f : Y → X is a representative (J, Û ,Φ) of
an ĥ•-orientation of id× f : I × Y → I ×X, such that:

• (J, I(Û),Φ) is proper over a neighbourhood V ⊂ I of {0, 1};

• (J, Û ,Φ)|f0 = (ι, û, φ) and (J, Û ,Φ)|f1 = (ι′, û′, φ′);

• π∗X ◦R(ι,û,φ) = R(J,Û ,Φ) ◦ π
∗
Y .

In particular, it follows that R(ι,û,φ) = R(ι′,û′,φ′). Thanks to Lemma 6.21,
we define the equivalence of representatives up to stabilization as in the
topological framework (Def. 6.4).

Definition 6.23. An ĥ•-orientation on f : Y → X is an equivalence class
[ι, û, φ] of representatives, up to the equivalence relation generated by ho-
motopy and stabilization.

Remark 6.24. By construction the curvature map (63) only depends on
the orientation, not on the specific representative, therefore we will denote
it by R[ι,û,φ].

Remark 6.6 keeps on holding. Now we need to extend to the differential
setting the fundamental properties of topological orientation, in particu-
lar Definition 6.7 and Lemma 6.8. This can be done adding the following
hypothesis, that will force us to focus on submersions. Let us consider a
vector vy ∈ Nι(Y )(X × RN )ι(y). It is sent by φ, as defined in 6.2, to a point
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φ(vy) ∈ X × RN . If f is a submersion, we can require that the first compo-
nent of φ(vy) is f(y). This means that the following diagram commutes:

(64) Nι(Y )(X × RN )
φ //

πN

��

U

πX

��
ι(Y )

πX // X.

Definition 6.25. A representative of an ĥ•-orientation of a smooth neat
map f : Y → X is proper if diagram (64) commutes.9

Lemma 6.26. If (ι, û, φ) is proper, then:

(65) R[ι,û,φ](ω) =

∫

Y/X
Td(û) ∧ ω.

Corollary 6.27. Let (ι, û, φ) and (ι, û′, φ′) be two proper representatives
of an ĥ•-orientation of a smooth neat map f : Y → X, such that û and û′

are homotopic as differential Thom classes. Then the two representatives are
homotopic (independently of φ and φ′), thus [ι, û, φ] = [ι, û′, φ′].

For the proof see [12, Lemma 3.25] and [7, Problems 4.221 and 4.224].

Lemma 6.28. Let f : Y → X be a neat submersion. For any neat embed-
ding ι : Y →֒ X × RN and any differential Thom class û of the normal bun-
dle, there exists a proper representative (ι, û, φ) of an ĥ•-orientation of f .

For the proof see [12, Lemma 3.23] and [7, paragraph before Prob-
lem 4.219]. Because of Lemma 6.28 and Corollary 6.27, given a neat sub-
mersion f : Y → X, a neat embedding ι : Y →֒ X × RN and any differential
Thom class û, the ĥ•-orientation [ι, û] is well-defined, extending (ι, û) to
any proper representative (ι, û, φ). The orientation [ι, û] only depends on
the homotopy class of û. Moreover, if f : Y → X and g : X →W are ĥ•-
oriented neat submersions, there is a naturally induced ĥ•-orientation on
g ◦ f : Y →W , defined as in 6.7. The following lemma is a consequence of
Lemma 6.20 and of the uniqueness up to homotopy and stabilization of the
embedding ι.

9The same definition could be given for a representative of an h•-orientation, but
it is more relevant in the differential framework.
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Lemma 6.29 (2x3 principle). Let f : Y → X and g : X →W be ĥ•-
oriented neat submersions, with orientations [ι, û] and [κ, v̂], and let [ξ, ŵ] be
the orientation induced on g ◦ f . Two elements of the triple ([ι, û], [κ, v̂], [ξ, ŵ])
uniquely determine the third one.

Finally, Definition 6.9 can be easily adapted to the differential frame-
work, considering a smooth neat homotopy with a differential orientation.
When such a definition holds, two maps f, g : Y → X are homotopic as ĥ•-
oriented maps.

6.7. Differential orientation of smooth manifolds

We define the notion of differential orientation of a manifold without bound-
ary as in the topological case (Def. 6.11); when the orientation û of the
stable normal bundle has been fixed, we set Td(X) := Td(û). When X
has a boundary, we have to take into account that a defining map for
the boundary is not a submersion in general, therefore we cannot apply
many results cited above. For this reason, we slightly modify the defini-
tion of orientation. Following definition (63), the curvature map should be
ω 7→

∫

I×RN/I i∗φ∗(R(û) ∧ π
∗ω), but we also integrate on I the result:

R∂
(ι,û,φ) : Ω

•(X; h•
R
) → Ω•−n(pt; h•

R
)

ω 7→

∫ 1

0

∫

I×RN/I
i∗φ∗(R(û) ∧ π

∗ω).
(66)

Definition 6.30. An ĥ•-orientation on a smooth manifold with boundary
X is a homotopy class of ĥ•-oriented defining functions for the boundary,
considering the curvature map (66) in the definition of homotopy.

This means that the curvature map fromX to the point must be constant
along the homotopy, not the one from X to I, as would follow from the
definition without replacing the curvature map. The double integral in (66)
is equivalent to the integral on the whole I × RN . Considering Remark 6.13,
we are just integrating on HN+1. It follows that:

R∂
(ι,û,φ)(ω) =

∫

Nι(X)H
N+1

R(û) ∧ π∗ω(67)

=

∫

X

(
∫

Nι(X)H
N+1/X

R(û)

)

∧ ω) =

∫

X
Td(X) ∧ ω.
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This result is analogous to formula (65), therefore we can state the following
corollary, analogous to 6.27.

Corollary 6.31. Let (ι, û, φ) and (ι, û′, φ′) be two representatives of an
ĥ•-orientation of the defining function Φ: X → I, such that û and û′ are
homotopic as differential Thom classes. Then the two representatives are
homotopic (independently of φ and φ′), thus [ι, û, φ] = [ι, û′, φ′].

It follows that an orientation of X only depends on ι and û, therefore
an orientation on a neat submersion f : Y → X and an orientation on X
induce an orientation on Y by Definition 6.7. Because of Corollary 6.27 and
the uniqueness up to homotopy and stabilization of the embedding ι, we get
the following lemma, analogous to 6.29.

Lemma 6.32 (2x3 principle). Let f : Y → X be a neat submersions be-
tween manifolds with boundary. Let [ι, û] be an orientation of f , [κ, v̂] an
orientation of X, and let [ξ, ŵ] be the orientation induced on Y . Two ele-
ments of the triple ([ι, û], [κ, v̂], [ξ, ŵ]) uniquely determine the third one.

With this definition of the curvature map, Remark 6.15 extends to the
differential setting, i.e., an orientation of a manifold without boundary can
be thought of as a particular case of an orientation of a manifold with bound-
ary. This confirms the naturality of the definition. As well, Remark 6.15
keeps on holding. Finally, in the case of manifolds with split boundary, we
define a ĥ•-orientation in the same way, the curvature map (66) being de-
fined integrating over I × I.

6.8. Differential integration

The Gysin map f! : ĥ
•(Y ) → ĥ•−n(X), for n = dimY − dimX, is defined

similarly to (61), starting from a representative of an ĥ•-orientation:

(68) f!(α̂) =

∫

RN

i∗φ∗(û · π∗α̂).

The integration map
∫

RN : ĥ•+N
cpt (X × RN ) → ĥ•(X) is defined as follows.

The open embedding j : RN →֒ (S1)N , defined through the embedding R →֒
R+ ≃ S1 in each coordinate, induces the push-forward (id× j)∗ : ĥ

•
cpt(X ×
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RN ) → ĥ•(X × (S1)N ), thus we define

(69)

∫

RN

α̂ :=

∫

S1

· · ·

∫

S1

(id× j)∗α̂.

It is easy to prove from the axioms that:

R(f!α̂) = R(ι,û,φ)(R(α̂)) f!a(ω) = a(R(ι,û,φ)(ω)),

thus the following diagram commutes:
(70)

Ω•−1(Y ; h•
R
)/Im(d)

a //

R(ι,û,ϕ)

��

ĥ•(Y )
I //

f!
��

R

''
h•(Y )

f!
��

Ω•
cl(Y ; h•

R
)

R(ι,û,ϕ)

��
Ω•−n−1(X; h•

R
)/Im(d)

a // ĥ•−n(X)
I //

R

77
h•−n(X) Ω•−n

cl (X; h•
R
).

As a consequence of formula (18), f! only depends on the ĥ•-orientation
of f , not on the specific representative [7, Sec. 4.10]. We now consider a
submersion f : Y → X. In this case the Gysin map provides a good notion
of integration.

Theorem 6.33. Let f : Y → X be a neat ĥ•-oriented submersion between
compact manifolds.

• The Gysin map f! only depends on the homotopy class of f as an
ĥ•-oriented map.

• The Gysin map is a morphism of ĥ•(X)-modules, i.e., given α̂ ∈ h•(Y )
and β̂ ∈ ĥ•(X):

f!(α̂ · f∗β̂) = f!α̂ · β̂.

• Given another neat ĥ•-oriented map g : Z → Y and endowing f ◦ g of
the naturally induced orientation (Def. 6.7), we have (f ◦ g)! = f! ◦ g!.

• We have that:

(71) R(f!α̂) =

∫

Y/X
Td(û) ∧R(α̂) f!(a(ω)) = a

(
∫

Y/X
Td(û) ∧ ω

)

.
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For the proof see [12, Lemmas 3.24 and 3.27] and [7, Problems 4.219 and
4.233]. Equations (71) follows from formula (65) and the commutativity of
diagram (70). Moreover, formula (62) keeps on holding.

Remark 6.34. Let us consider a submersion f : Y →X between ĥ•-oriented
manifolds. If X and Y have no boundary, since pY = pX ◦ f , it follows from
Lemma 6.29 that f inherits a unique orientation from the ones of X and
Y . Hence, the integration map f! : ĥ

•(Y ) → ĥ•−n(X) is well-defined for sub-
mersions between compact ĥ•-oriented manifolds without boundary. If X
and Y have boundary, the same result follows from 6.32.

6.9. Flat classes

The Gysin map f! : ĥ
•(Y ) → ĥ•−n(X), defined in the previous section, de-

pends on the ĥ•-orientation of f , but, if we restrict it to flat classes, it
only depends on the topological h•-orientation. In fact, ĥ•fl(X) has a natural

graded-module structure over h•(X), i.e., the product h•(X)⊗Z ĥ
•
fl(X) →

ĥ•fl(X) is well-defined. This can be easily proven in the two following steps.

• The product of differential classes ĥ•(X)⊗ ĥ•(X) → ĥ•(X) restricts
to the product ĥ•(X)⊗ ĥ•fl(X) → ĥ•fl(X), since, the curvature being
multiplicative, if one of the two factors has vanishing curvature, also
the result has.

• The product α̂ · β̂, when β̂ is flat, only depends on I(α̂). In fact, if
I(α̂) = 0, then α̂ = a(ω). Because of Definition 2.11, we have a(ω) · β̂ =
a(ω ∧R(β̂)) = a(0) = 0.

We can show in the same way that also the product ĥ•cpt(E)⊗Z ĥ
•(E) →

ĥ•cpt(E) can be refined to h•cpt(E)⊗Z ĥ
•
fl(E) → ĥ•fl,cpt(E), therefore, given a

real vector bundle π : E → X of rank n with (topological) Thom class u, we
define the Thom isomorphism:

Tfl : ĥ
•
fl(X) → ĥ•+n

fl,cpt(E)

α̂ 7→ u · π∗α̂.

From this it easily follows that the Gysin map f!, when applied to a flat
class, only depends on the topological orientation of f . Lemma 6.17 keeps
on holding, with the same proof (for any f , not necessarily a submersion).
With respect to the commutativity of diagram (70) (that, in the case of a
submersion, leads to the last item of Theorem 6.33), obviously the behaviour
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of the curvature is trivial in the flat case. About the map a, the commuta-
tivity of the diagram is equivalent to the following lemma (and, in the case
of a submersion, to the right-hand side of equation (71)).

Lemma 6.35. Given a h•-oriented smooth neat map f : Y → X and a class
θ ∈ H•−1

dR (Y ; h•
R
), we have:

(72) f!(a(θ)) = a(f!(Td(u) ∧ θ)).

Equivalently, for any α ∈ h•(X)⊗Z R:10

(73) f!(a(chα)) = a(ch(f!α)).

Proof. Let us consider a differential Thom class û of Nι(Y )(X × RN ) refining
the orientation u induced by the ones of X and Y . We have:

f!(a(θ)) =

∫

RN

i∗φ∗(û · π∗a(θ))

=

∫

RN

i∗φ∗(a([R(û)] ∧ π
∗θ)) = a

(
∫

RN

i∗φ∗(chu ∧ π∗θ)

)

= a

(
∫

RN

i∗φ∗(ch
(n)u ∧ π∗(Td(u) ∧ θ)

)

= a(f!(Td(u) ∧ θ)).

This proves (72). In order to prove (73), we observe that, since the fibre-
wise integration and the Thom isomorphism are inverse to each other in de-
Rham cohomology, we have that ch(u) = ch(n)u ∧ π∗Td(u), where chn(u) is
the n-degree component of ch(u), that provides an ordinary orientation to
Nι(Y )(X × RN ). Hence:

ch(f!α) = ch

∫

RN

i∗φ∗(u · π∗α) =

∫

RN

i∗φ∗

(

ch(u) ∧ π∗ch(α)
)

=

∫

RN

i∗φ∗

(

ch(n)u ∧ π∗Td(u) ∧ π∗ch(α)
)

= f!(Td(u) ∧ ch(α)),

therefore

a(ch(f!α)) = a(f!(Td(u) ∧ ch(α)))
(72)
= f!(a(chα)).

□

10In equation (73) we are considering the Chern character as defined on h•(X)⊗Z

R, in which case it is an isomorphism. If we consider it as defined on h•(X), then
a(chα) = 0, and formula (73) implies coherently that f!(a(chα)) = 0.
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Corollary 6.36. The Gysin map associated to a h•-oriented smooth map
f : Y → X induces the following morphism of exact sequences of h•-modules:

· · · // h•(Y ) //

��

h•(Y )⊗Z R //

��

ĥ•+1
fl (Y ) //

��

h•+1(Y ) //

��

· · ·

· · · // h•(X) // h•(X)⊗Z R // ĥ•+1
fl (X) // h•+1(X) // · · ·

where the map h•(X)⊗Z R → ĥ•+1
fl (X) is defined by α 7→ a(chα).

7. Relative integration and integration to the point

We are going to show that the Gysin map, both in the topological and in
the differential case, can also be defined for classes relative to the boundary.
Moreover, in this section we will define the integration of relative classes
to the point, that will be used to define the relative generalized Cheeger-
Simons characters and the integration map when the fibres have non-empty
boundary. As far as we know, these constructions have not been considered
in the literature up to now.

7.1. Relative Thom (iso)morphism

If π : E → X is a real vector bundle of rank n and A ⊂ X is a topological
subspace, fixing a Thom class u of E we also get the relative version of
the Thom isomorphism, i.e., T : h•(X,A) → h•+n

cpt (E,E|A), α 7→ u · π∗α [1,
Theorem 11.7.34]. When the bundle is smooth and A is a closed subman-
ifold of X, the same construction holds in the differential setting, getting
the relative Thom morphism T : ĥ•(X,A) → ĥ•+n

cpt (E,E|A), α̂ 7→ û · π∗α̂. In
this section we will apply such an (iso)morphism to the following particular
case: π : E → X is a smooth vector bundle, X being a manifold with bound-
ary, and A = ∂X. It follows that E|A = ∂E, therefore we get the Thom
(iso)morphism for classes relative to the boundary, i.e., T : h•(X, ∂X) →
h•+n
cpt (E, ∂E) and T : ĥ•(X, ∂X) → ĥ•+n

cpt (E, ∂E).

7.2. Relative topological integration

Let f : Y → X be a smooth neat map and let us fix a representative of an
h•-orientation (ι, u, φ). We define the Gysin map on classes relative to the
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boundary:

(74) f!! : h
•(Y, ∂Y ) → h•−n(X, ∂X)

where n = dimY − dimX. The definition is analogous to (61), but applying
the relative Thom isomorphism on the normal bundle. Even in this case the
map f!! only depends on the orientation [ι, u], not on the specific representa-
tive. With the same technique of [19, Prop. 5.24] one can prove the following
theorem.

Theorem 7.1. Let f : Y → X be a neat h•-oriented map of compact man-
ifolds.

• The Gysin map f!! only depends on the homotopy class of f as an
h•-oriented map (see Remark 6.10).

• The Gysin map is a morphism of h•(X, ∂X)-modules, i.e., given α ∈
h•(Y, ∂Y ) and β ∈ h•(X, ∂X):

f!!(α · f∗β) = f!!α · β.

• Given α ∈ h•(Y ) and β ∈ ĥ•(X, ∂X):

f!!(α · f∗β) = f!α · β.

• Given another neat h•-oriented map g : Z → Y and endowing f ◦ g of
the naturally induced orientation (Def. 6.7), we have (f ◦ g)!! = f!! ◦
g!!.

We remark that, if LX : h•(X) → hn−•(X, ∂X) is the Lefschetz dual-
ity [23], then f! = L−1

X ◦ f∗ ◦ LY . If we consider the duality in the form

L′
X : h•(X, ∂X) → hn−•(X), then f!! = L′

X
−1 ◦ f∗ ◦ L

′
Y .

7.3. Relative differential integration

The Gysin map f!! : ĥ
•(Y, ∂Y ) → ĥ•−n(X, ∂X), for n = dimY − dimX, is

defined similarly to (61), starting from a representative of an ĥ•-orientation.
As a consequence of formula (18), it only depends on the corresponding
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orientation. Considering the following version of diagram (7):

∂X × RN � � //

πX |∂X×RN

��

X × RN

πX

��
∂X � � // X

and applying formulas (8) and (6), we define the relative curvature map:

Rrel
(ι,û,φ) : Ω

•(Y, ∂Y ; h•
R
) → Ω•−n(X, ∂X; h•

R
)

(ω, ρ) 7→

∫

X×RN/X
i∗φ∗(R(û) ∧ π

∗(ω, ρ)).
(75)

Calling ∂(ι, û, φ) the representative induced on the boundary by (ι, û, φ), it
follows that

(76) Rrel
(ι,û,φ)(ω, ρ) =

(

R(ι,û,φ)(ω), R∂(ι,û,φ)(ρ)
)

.

It is easy to prove from the axioms that:

R(f!!α̂) = Rrel
(ι,û,φ)(R(α̂)) f!!a(ω, ρ) = a(Rrel

(ι,û,φ)(ω, ρ)),

thus the following diagram commutes:
(77)

Ω•−1(Y, ∂Y ; h•
R
)/Im(d)

a //

Rrel
(ι,û,ϕ)

��

ĥ•(Y, ∂Y )
I //

f!!

��

R

((
h•(Y, ∂Y )

f!!

��

Ω•

cl(Y, ∂Y ; h•
R
)

Rrel
(ι,û,ϕ)

��
Ω•−n−1(X, ∂X; h•

R
)/Im(d)

a // ĥ•−n(X, ∂X)
I //

R

66
h•−n(X, ∂X) Ω•−n

cl (X, ∂X; h•
R
).

We now consider a submersion f : Y → X, choosing proper representa-
tives of orientations.

Theorem 7.2. Let f : Y → X be a neat ĥ•-oriented submersion between
compact manifolds.

• The Gysin map f!! only depends on the homotopy class of f as an
ĥ•-oriented map (see Remark 6.10).
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• The Gysin map is a morphism of ĥ•(X)-modules, i.e., given α̂ ∈
h•(Y, ∂Y ) and β̂ ∈ ĥ•(X):

f!!(α̂ · f∗β̂) = f!!α̂ · β̂.

• Given α̂ ∈ h•(Y ) and β̂ ∈ ĥ•(X, ∂X):

f!!(f
∗β̂ · α̂) = β̂ · f!α̂.

• Given another neat ĥ•-oriented map g : Z → Y and endowing f ◦ g of
the naturally induced orientation (Def. 6.7), we have (f ◦ g)!! = f!! ◦
g!!.

• Considering the following version of diagram (7):

∂Y � � //

f |∂Y

��

Y

f
��

∂X � � // X

and applying formulas (8) and (6), we have:
(78)

R(f!!α̂) =

∫

Y/X
Td(û) ∧R(α̂) f!!a(ω, η) = a

(
∫

Y/X
Td(û) ∧ (ω, η)

)

.

Equations (78) follows from formula (65) (in the relative setting) and
the commutativity of diagram (77).

7.4. Flat classes

The relative Gysin map f!! : ĥ
•(Y, ∂Y ) → ĥ•−n(X, ∂X), defined in the pre-

vious section, depends on the ĥ•-orientation of f , but, if we restrict it to
flat classes, it only depends on the topological h•-orientation. The rea-
son is the same of Section 6.9, applying the relative Thom isomorphism
Tfl : ĥ

•
fl(X, ∂X) → ĥ•+n

fl,cpt(E, ∂E). Lemma 7.1 keeps on holding (for any f ,
not necessarily a submersion). The relative versions of Lemma 6.35 (in the
case of a submersion, the right-hand side of equation (78)) and Corollary 6.36
hold with the same proof.
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7.5. Integration to the point - Manifolds without boundary

If X is an h•-oriented manifold of dimension n without boundary, the inte-
gration (pX)! : h

•(X) → h•−n is well-defined applying (61). The same holds
about the differential extension, defining (pX)! : ĥ

•(X) → ĥ•−n through (68).
Since pX is a submersion, formula (71) becomes the following in this case:

R((pX)!(α̂)) =

∫

X
Td(X) ∧R(α̂)

(pX)!(a(ω)) = a

(
∫

X
Td(û) ∧ ω

)

.

(79)

As a particular case, X can be the boundary of another manifold. Equiv-
alently, we consider a manifold with non-empty boundary X and the inte-
gration to the point (p∂X)!. We start from the following preliminary lemma,
then we will show the behaviour of (p∂X)!.

Lemma 7.3. Let X be a ĥ•-oriented manifold with non-empty boundary
and Φ: X → I a defining function for the boundary, as a part of the orien-
tation of X (see Def. 6.12). For any α̂ ∈ ĥ•(X), we have:

(80)

∫ 1

0
R(Φ!α̂) =

∫

X
Td(X) ∧R(α̂).

Proof. Let (ι, û, φ) be any representative of the orientation of Φ. Because of
the commutativity of diagram (70), we have that R(Φ!α̂) = R(ι,û,φ)(R(α̂)).

It follows from definition (66) that
∫ 1
0 R(Φ!α̂) = R∂

(ι,û,φ)(R(α̂)), hence the

result follows from formula (67). □

Theorem 7.4. Let X be a ĥ•-oriented manifold with non-empty boundary.
For any α̂ ∈ ĥ•(X), considering the induced ĥ•-orientation on ∂X, we have:

(81) (p∂X)!(α̂|∂X) = −a

(
∫

X
Td(X) ∧R(α̂)

)

.

In particular, in the topological framework, (p∂X)!(α|∂X) = 0.

Proof. Let Φ be a defining function for the boundary, as a part of the orien-
tation ofX. Since Φ−1{1} = ∅, the map ∂Φ: ∂X → ∂I can be identified with
p∂X : ∂X → {0}. Thanks to formula (62), one has (p∂X)!(α̂|∂X) = (Φ!α̂)|{0}.
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Since (Φ!α̂)|{1} = 0, because Φ−1(1) = ∅, from the homotopy formula (18)
we have:

(p∂X)!(α̂|∂X) = −
(

(Φ!α̂)|{1} − (Φ!α̂)|{0}
) (18)

= −a

(
∫

I
R(Φ!α̂)

)

.

The result follows from formula (80). □

7.6. Integration to the point - Manifolds with boundary

When X has a boundary, neither of the two Gysin maps (pX)! and (pX)!! is
well defined, since pX is not neat. Nevertheless, we can define the integration
map to the point for classes relative to the boundary, that we denote anyway
by (pX)!!, in the following way. In the topological framework, we set:

(pX)!! : h
•(X, ∂X) → h•−n

α 7→

∫

S1

Φ!!(α),
(82)

where the map Φ: (X, ∂X) → (I, ∂I) is provided by the orientation of X
(see Def. 6.12) and the integration over S1 is defined as follows. Since

(83) h•+1−n(I, ∂I) ≃ h•+1−n(I/∂I, ∂I/∂I) ≃ h•+1−n(S1, ∗),

‘∗’ being a marked point on S1, we apply the suspension isomorphism

∫

S1

: h•+1−n(S1, ∗)
≃
−→ h•−n(S0, ∗∗) ≃ h•−n,

‘∗∗’ being a marked point on S0.
In order to define the integration map for differential classes, we can

apply a formula analogous to (82), but we have to define the integration
over S1, since the isomorphism (83) does not apply any more. We first show
how to integrate a parallel class defined on (I, ∂I). The idea is that, glueing
the two boundary points, we get a class on (S1, ∗) as in the topological
case. Nevertheless, we have to take care of the smoothness condition when
glueing the two extrema, hence we need a class that vanishes not only on
∂I, but also in an open neighbourhood [0, ε) ∪ (1− ε, 1]. In order to achieve
this condition, we consider a smooth function ξ : (I, ∂I) → (I, ∂I) such that
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ξ|[0,ε) = 0 and ξ|(1−ε,1] = 1.11 Given α̂ ∈ ĥ•par(I, ∂I), we consider its pull-back

ξ∗α̂ ∈ ĥ•par(I, ∂I). Thanks to the following lemma, the class ξ∗α̂ induces a
well-defined class on (S1, ∗), that we can integrate, getting a class on the
point. Finally, we will have to prove that the latter is independent of the
choice of ξ.

Notation 7.5. We set I ′ := [0, ε) ∪ (1− ε, 1] for a fixed ε. Moreover, we
denote by π : (I, ∂I) → (S1, ∗) the natural projection and we set S′ := π(I ′).
We think of π as a map of pairs π : (I, I ′) → (S1, S′).

Lemma 7.6. The pull-back π∗ : ĥ•par(S
1, S′)→ ĥ•par(I, I

′) is an isomorphism.

Proof. Given α̂ ∈ ĥ•par(I, I
′), we have to show that there exists a unique

class β̂ ∈ ĥ•par(S
1, S′) such that π∗(β̂) = α̂. We set α := I(α̂). Since π∗ is an

isomorphism in (topological) cohomology, there exists a unique class β ∈
h•(S1, S′) such that π∗β = α. We choose any parallel differential refinement
β̂′ ∈ ĥ•par(S

1, S′) of β. It follows that π∗β̂′ = α̂+ a(η, 0), with η|I′ = 0. There

exists a unique form η̄ on (S1, S′) such that π∗η̄ = η, thus we set β̂ := β̂′ −
a(η̄, 0) and we get π∗β̂ = α̂. About the uniqueness, let us suppose that β̂′′ is
another parallel class such that π∗β̂′′ = α̂. Then π∗(β̂ − β̂′′) = 0, thus, since
π∗ is an isomorphism in cohomology, I(β̂ − β̂′′) = 0. It follows that β̂ − β̂′′ =
a(ξ, 0), with π∗a(ξ, 0) = 0, thus [(π∗ξ, 0)] = chu. Since π∗ is an isomorphism
in cohomology, there exists v such that u = π∗v, hence π∗[(ξ, 0)] = π∗(chv).
Again since π∗ is an isomorphism in cohomology, it follows that [(ξ, 0)] =
chv, hence a(ξ, 0) = 0, therefore β̂ = β̂′′. □

Notation 7.7. Considering the statement of Lemma 7.6, we set π∗ :=
(π∗)−1.

Summarizing, given a class α̂ ∈ ĥ•par(I, ∂I) and a smooth function ξ :

(I, ∂I)→(I, ∂I) such that ξ|[0,ε)=0 and ξ|(1−ε,1]=1, we get ξ∗α̂∈ ĥ•par(I, I
′).

Applying Lemma 7.6, we get π∗ξ
∗α̂ ∈ ĥ•par(S

1, S′). We can think of π∗ξ
∗α̂ as

an absolute class on S1, applying the pull-back with respect to the natural
morphism idS1 : (S1, ∅) → (S1, S′), therefore we can integrate π∗ξ

∗α̂ on S1.

11It is natural to think of ξ as an increasing function, but we will see that it is not
necessary, since in any case it is smoothly homotopic to the identity of I relatively
to ∂I.
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We get the following integration map:
∫

I
: ĥ•par(I, ∂I) → ĥ•−1

α̂ 7→

∫

S1

π∗ξ
∗α̂.

(84)

Lemma 7.8. The integration map (84) is independent of the choice of ξ.

Proof. Let us fix two maps ξ and ξ′, vanishing on [0, ε) ∪ (1− ε, 1] and
[0, ε′) ∪ (1− ε′, 1] respectively. We call

∫

I and
∫ ′
I the corresponding integra-

tion maps (84). We set J := I = [0, 1], in order to distinguish the two compo-
nents of I × I = I × J (this notation will make clearer the fibre-wise integra-
tions). Let us consider a homotopy Ξ: (I, ∂I)× J → (I, ∂I) between them.
By formula (19), thinking of ξ and ξ′ as relative maps (ξ, ξ|∂I), (ξ

′, ξ′|∂I) :
(I, ∂I) → (I, ∂I), we get

ξ∗α̂− (ξ′)∗α̂ = a

(
∫

I×J/I
R(Ξ∗α̂)

)

.

It follows that:
∫ ′

I
α̂−

∫

I
α̂ =

∫

S1

π∗(ξ
∗α̂− (ξ′)∗α̂) =

∫

S1

π∗a

(
∫

I×J/I
R(Ξ∗α̂)

)

= a

(
∫

S1

π∗

∫

I×J/I
R(Ξ∗α̂)

)

= a

(
∫

I×J
Ξ∗R(α̂)

)

.

Since α̂ ∈ ĥnpar(I, ∂I), it follows that

R(α̂) ∈ Ωn(I; h•
R
) = Ω0(I; hn

R
)⊕ Ω1(I; hn−1

R
).

Integrating over I × J , only the components of degree 2 or more are mean-
ingful, therefore we get 0. This shows that

∫

I α̂ =
∫ ′
I α̂. □

Now we can give the following definition, for an ĥ•-oriented manifold
with boundary X of dimension n:

(pX)!! : ĥ
•(X, ∂X) → ĥ•−n

α̂ 7→

∫

I
Ψ1

(

Φ!!(α̂)
)

,
(85)

Ψ1 being the first component of the isomorphism (27) with Y = {pt}. For any
representative (ι, û, φ) of an orientation of Φ, we call ∂(ι, û, φ) the induced
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representative on ∂X and we define the following curvature map:

Rpt
(ι,û,φ) : Ω

•(X, ∂X; h•
R
) → Ω•−n(pt; h•

R
)

(ω, ρ) 7→ R∂
(ι,û,φ)(ω) +R∂(ι,û,φ)(ρ).

(86)

It follows from formulas (65) and (67) that:

(87) Rpt
(ι,û,φ)(ω, ρ) =

∫

X
Td(X) ∧ ω +

∫

∂X
Td(∂X) ∧ ρ.

Theorem 7.9. The following diagram is commutative:12

(88)

Ω•−1(X, ∂X; h•
R
)/Im(d)

a //

R
pt

(ι,û,ϕ)

��

ĥ•(X, ∂X)
I //

(pX)!!
��

R

''
h•(X, ∂X)

(pX)!!

��

Ω•

cl(X, ∂X; h•
R
)

R
pt

(ι,û,ϕ)

��
h•−n−1
R

a // ĥ•−n I //

R

77
h•−n h•−n

R
.

Proof. Let us consider (ω, η) ∈ Ω•−1(X, ∂X; h•
R
). Let us compute (pX)!! ◦

a(ω, η). Applying (ΦX)!! ◦ a(ω, η), because of the commutativity of diagram
(77), we get a(ω′, 0 ⊔ η′), where ω′ = R(ι,û,φ)(ω) and η

′ = R∂(ι,û,φ)(η). We ex-
tend 0 ⊔ η′ to η̃′ on I, so that a(ω′, η′) = a((ω′, η′)− d(η̃′, 0)) = a((ω′, η′)−
(dη̃′, 0 ⊔ η)) = a(ω′ − dη̃′, 0). Since cov(a(ω′ − dη̃′, 0)) = 0 ⊔ ω′|0), by defi-
nition, (pX)!! ◦ a(ω, η) =

∫

S1 π∗ξ
∗a(ω′ − dη̃′ − (1− t)ω′|0) = a(

∫

I(ω
′ − dη̃′ −

(1− t)ω′|0)). The integral of (1− t)ω′|0 vanishes since there is not dt leg,
hence we get

a(

∫

I
ω′ −

∫

∂I
η̃′) = a(

∫

I
ω′ + η′)

= a(R∂
(ι,û,φ)(ω) +R∂(ι,û,φ)(η)) = a(Rpt

(ι,û,φ)(ω, η)).

The commutativity with I follows from the construction of (pX)!!, since
the differential integration to the point is a refinement of the topological
one.

12In the diagram, observe that Ωn(pt; h•
R
) = Ω0(pt; hn

R
) ≃ hn

R
. Moreover, every

form on the point is closed and only the zero one (in any degree) is exact.
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With respect to the curvature, let us consider α̂ ∈ ĥ•(X, ∂X), with
R(α̂) = (ω, η). Applying (ΦX)!! we get β̂ := (ΦX)!!α̂. Because of the com-
mutativity of diagram (77), we have that R(β̂) = (ω′, 0 ⊔ η′), where ω′ =
R(ι,û,φ)(ω) and η′ = R∂(ι,û,φ)(η). By definition, (pX)!!(α̂) =

∫

S1 π∗ξ
∗(β̂ −

a((1− t)η′, 0)), whose curvature is
∫

I(R
′(β̂) + dt ∧ η′) = (

∫

I ω
′) + η′ =

R∂
(ι,û,φ)(ω) +R∂(ι,û,φ)(η) = Rpt

(ι,û,φ)(ω, η). □

As a particular case, X can be one component of a manifold with
split boundary. Equivalently, we consider a manifold with split boundary
(X,M,N), with M ̸= ∅, and the integration to the point (pM )!!. We set
again J := I, in order to distinguish the two components of I × J = I × I.
In order to achieve a result analogous to formula (81) in the relative case,
we consider a defining function for the boundary Φ: X → I × J , we call
πJ : I × J → J the projection and we set Φ′ := πJ ◦ Φ: X → J . It follows
that Φ′−1{0} =M , hence Φ′|M = pM , and Φ′−1{1} = ∅. Of course Φ′ is not
neat, for the same reason why pM is not.

Topologically, we can define the following integration map:

Φ′
!! : h

•(X,N) → h•−n+1(J)

α 7→

∫

S1×J/J
Φ!!(α),

(89)

considering Φ: (X,N) → (I × J, ∂I × J). The map Φ!! : h
•(X,N) →

h•−n+2(I × J, ∂I × J) is defined by the same construction of the relative
Gysin map (74), using the Thom isomorphism relative to N . The integra-
tion over S1 is defined observing that h•−n+2(I × J, ∂I × J) ≃ h•−n+2(S1 ×
J, {∗} × J) ≃ h̃•−n+2(S1 ∧ (J+)) and applying the suspension isomorphism
h̃•−n+2(S1 ∧ (J+)) ≃ h̃•−n+1(J+) ≃ h•−n+1(J).

In order to define the analogous integration map in the differential frame-
work, we consider a smooth function ξ : (I, ∂I) → (I, ∂I) such that ξ|[0,ε) = 0
and ξ|(1−ε,1] = 1, and we think of it as a function ξ : (I × J, ∂I × J) →
(I × J, ∂I × J), constant on J . Since Lemma 7.6 keeps on holding, with
respect to the pull-back π∗ : ĥ•par(S

1 × J, S′ × J) → ĥ•par(I × J, I ′ × J), we
get the integration map:

∫

I×J/J
: ĥ•par(I × J, ∂I × J) → ĥ•−1(J)

α̂ 7→

∫

S1

π∗ξ
∗α̂.

(90)
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Therefore, we define:

Φ′
!! : ĥ

•(X,N) → ĥ•−n+1(J)

α̂ 7→

∫

I×J/J
Ψ1

(

Φ!!(α̂)
)

,
(91)

Ψ1 being the first component of the isomorphism (27) with Y = J .

Remark 7.10. The construction of Φ′
!!, that we have shown, is completely

analogous to the one of (pX)!!, but there is only one difference, concern-
ing the proof of Lemma 7.8. In order to show that the integration map
is independent of ξ, let us consider a homotopy Ξ: (I, ∂I)× J ′ → (I, ∂I)
between ξ and ξ′, inducing the homotopy Ξ: (I, ∂I)× J × J ′ → (I, ∂I)× J
which is constant along J . With the same proof we get

∫ ′
I×J/J α̂−

∫

I×J/J α̂ =

a
(∫

I×J×J ′/J Ξ
∗R(α̂)

)

. Now R(α̂), being defined on I × J , has also a com-

ponent of degree 2, that could be non-vanishing after integrating along J ′

and I. Nevertheless, such an integral is a 0-form, whose value at t ∈ J is
∫

I×J ′
Ξ∗
tR(α̂|I×{t}). The restriction R(α̂|I×{t}) of the degree-2 component is

a 2-form on I × {t}, hence it vanishes.

It follows from the construction that

(92) Φ′
!!(α̂)|{0} = (pM )!!(α̂|(M,∂M)),

since all the tools and the operations involved in the definition of Φ′
!! restrict

on M to the corresponding ones for (pM )!!.

Lemma 7.11. Let (X,M,N) be a ĥ•-oriented manifold with split boundary
and Φ: X → I × J a defining function for the boundary, as a part of the
orientation of X. We call R′ and cov the two components of the curvature
R. For any α̂ ∈ ĥ•(X,N), we have:

(93)

∫

J
R(Φ′

!!α̂) =

∫

X
Td(X) ∧R′(α̂) +

∫

N
Td(N) ∧ cov(α̂).

Proof. By formulas (91) and (90) we have that

∫

J
R(Φ′

!!α̂) =

∫

J
R

(
∫

S1

π∗ξ
∗Ψ1

(

Φ!!(α̂)
)

)

=

∫

J

∫

S1

π∗ξ
∗R
(

Ψ1

(

Φ!!(α̂)
))

=

∫

I×J
ξ∗R

(

Ψ1

(

Φ!!(α̂)
)) (⋆)

=

∫

I×J
R
(

Ψ1

(

Φ!!(α̂)
))

.(94)
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In order to prove the equality (⋆), it is enough to choose ξ as a diffeomor-
phism from (ε, 1− ε) to (0, 1). When we apply Ψ1, defined in formula (91),
to Φ!!(α̂), we have that η1 = 0, thus η0 = cov(Φ!!(α̂)). It follows that

Ψ1(Φ!!(α̂)) = Φ!!(α̂)− a
(

(1− t)cov(Φ!!(α̂)), 0
)

R
(

Ψ1(Φ!!(α̂))
)

= R′
(

Φ!!(α̂)
)

+ dt ∧ cov(Φ!!(α̂))− (1− t)dcov(Φ!!(α̂))
∫

I×J
R
(

Ψ1(Φ!!(α̂))
)

=

∫

I×J
R′
(

Φ!!(α̂)
)

+

∫

J
cov(Φ!!(α̂)).(95)

The term (1− t)dcov(Φ!!(α̂)) vanishes when integrated on I, since there is
no dt component. Joining (94) and (95) we get:

(96)

∫

J
R(Φ′

!!α̂) =

∫

I×J
R′
(

Φ!!(α̂)
)

+

∫

J
cov(Φ!!(α̂)).

Let (ι, û, φ) be any representative of the orientation of Φ. Because of the
commutativity of diagram (77) and formula (76), on (I × J, ∂I × J) we have
that

R(Φ!!α̂)
(77)
= Rrel

(ι,û,φ)(R(α̂))
(76)
=
(

R(ι,û,φ)(R
′(α̂)), R(ι,û,φ)|N (cov(α̂))

)

.

Therefore:
∫

I×J
R′
(

Φ!!(α̂)
)

=

∫

I×J
R(ι,û,φ)(R

′(α̂))
(#)
=

∫

X
Td(X) ∧R′(α̂)

∫

J
cov(Φ!!(α̂)) =

∫

J
R(ι,û,φ)|N (cov(α̂))

(66)
= R∂

(ι,û,φ)|N
(cov(α̂))

(67)
=

∫

N
Td(N) ∧ cov(α̂).

The equality (#) follows again from formula (67), adapted to the case of a
manifold with split boundary. □

Theorem 7.12. Let (X,M,N) be a ĥ•-oriented manifold with split bound-
ary. For any α̂ ∈ ĥ•(X,N), considering the induced ĥ•-orientation on M ,
we have:

(97) (pM )!!(α̂|(M,∂M)) = −a

(
∫

X
Td(X) ∧R′(α̂) +

∫

N
Td(N) ∧ cov(α̂)

)

.

In particular, in the topological framework, (pM )!!(α|(M,∂M)) = 0.
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Proof. Let Φ be a defining function for the boundary, as a part of the orien-
tation of X. The map ΦM : M → I can be identified with a defining function
for the boundary ofM . Since (Φ′

!!α̂)|{1} = 0, because Φ−1(I × {1}) = ∅, from
formula (92) and the homotopy formula (18) we have:

(pM )!!(α̂|(M,∂M)) = −
(

(Φ′
!!α̂)|{1} − (Φ′

!!α̂)|{0}
) (18)

= −a

(
∫

J
R(Φ′

!!α̂)

)

.

The result follows from formula (93). □

Finally, we remark that, since the flat theory is a (topological) cohomology
theory, we can integrate a flat class over the point just using (82). We get
the integration map (pX)!! : ĥ

•
fl(X, ∂X) → ĥ•−n

fl , that only depends on the
topological h•-orientation of X.

8. Flat pairing and generalized Cheeger-Simons characters

We are going to define the relative version of generalized Cheeger-Simons
characters, starting from flat classes.

8.1. Relative homology

We extend to the relative case the geometric model for the dual homology
theory h•, described in [18]. When we say “relative”, we consider the coho-
mology of any smooth map, not necessarily the embedding of the boundary
as in the previous section. The following definition generalizes the one given
in [12].

Definition 8.1. Given a continuous map ρ : A→ X, between spaces hav-
ing the homotopy type of a finite CW-complex, we define:

• the group of n-precycles as the free abelian group generated by the
quintuples (M,u, α, f, g), with:
– (M,u) a smooth compact manifold, possibly with boundary, with
h•-orientation u, whose connected components {Mi} have dimen-
sion n+ qi, with qi arbitrary;

– α ∈ h•(M), such that α|Mi
∈ hqi(M);

– f : M → X a continuous function;
– g : ∂M → A a continuous function such that ρ ◦ g = f |∂M ;

• the group of n-cycles, denoted by zn(ρ), as the quotient of the group
of n-precycles by the free subgroup generated by elements of the form:
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– (M,u, α+ β, f, g)− (M,u, α, f, g)− (M,u, β, f, g);
– (M,u, α, f, g)− (M1, u|M1

, α|M1
, f |M1

, g|∂M1
)

− (M2, u|M2
, α|M2

, f |M2
, g|∂M2

), for M =M1 ⊔M2;
– (M,u, φ!α, f, g)− (N, v, α, f ◦ φ, g ◦ φ|∂N ) for φ : N →M a neat

submersion, oriented via the 2x3 principle, and φ! the Gysin map
for absolute classes (α is not relative to the boundary);

• the group of n-boundaries, denoted by bn(ρ), as the subgroup of
zn(ρ) generated by the cycles which are representable by a pre-cycle
(M,u, α, f, g) such that there exists a quintuple ((W,M,N), U,A, F,G),
where (W,M,N) is a manifold with split boundary, U is an h•-
orientation of W and U |M = u, A ∈ h•(W ) such that A|M = α, F :
W → X is a smooth map satisfying F |M = f and G : N → A is a
smooth map satisfying ρ ◦G = F |N and G|∂N = g.

We define hn(ρ) := zn(ρ)/bn(ρ).

There is a natural map:

ξn : hn(ρ) → Homh•(hn−•(ρ), h
•)

α 7→
(

[M,u, β, f, g] 7→ (pM )!!(β · (f, g)∗α)
)

,
(98)

where pM : M → {pt} (see Def. (85)) and (f, g) is the following morphism:

∂M � � ι //

g

��

M

f
��

A
ρ // X.

In order to multiply β and (f, g)∗α, we used the module structure (4), since
β is an absolute class on M , while (f, g)∗α is relative to the boundary. We
verify that (98) is well-defined. If we consider a neat submersion φ : N →M
and two representatives (M,u, φ!β, f, g) and (N, v, β, f ◦ φ, g ◦ φ|∂N ) of the
homology class, we have:

ξn(α)[N, v,β, f ◦ φ, g ◦ φ|∂N ] = (pN )!!(β · (φ,φ|∂N )∗(f, g)∗α)

= (pM )!!(φ,φ|∂N )!!(β · (φ,φ|∂N )∗(f, g)∗α)

= (pM )!!(φ!β · (f, g)∗α) = ξn(α)[M,u, φ!β, f, g].

If (M,u, β, f, g)=∂((W,M,N), U,B, F,G), then, by Theorem 7.12, (pM )!!(β ·
(f, g)∗α) = 0, thus ξn(α) is well-defined on homology classes. Finally, the
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image of α is a h•-module homomorphism, since, for γ ∈ ht:

ξn(α)([(M,u, β, f, g)] ∩ γ) = ξn(α)[M,u, β · (pM )∗γ, f, g]

= (pM )!!(β · (f, g)∗α · (pM )∗γ)

= (pM )!!(β · (f, g)∗α) · γ

= ξn(α)[M,u, β, f, g] · γ.

Tensorizing with R, we get the isomorphism:

(99) ξn
R
: hn(ρ)⊗Z R

≃
−→ Homh•(hn−•(ρ), h

•
R
).

Moreover, thanks to the structure of h•-module on h•( · ;R/Z), we get the
following map:

ξn
R/Z : h

n(ρ;R/Z) → Homh•(hn−•(ρ), h
•
R/Z)

α 7→
(

[M,u, β, f, g] 7→ (pM )!!(β · (f, g)∗α)
)

.
(100)

8.2. Flat pairing

We define the natural ĥ•fl-valued pairing for a map ρ : A→ X between ĥ•fl
and h•, that, in the case of singular differential cohomology, reduces to the
holonomy of a flat relative Deligne cohomology class. When ĥ•fl ≃ h•( · ;R/Z),
such a pairing coincides with formula (100).

Definition 8.2. For ρ : A→ X a smooth map (not necessarily neat), we
have the following natural pairing:

ξnfl : ĥ
n
fl(ρ) → Homh•(hn−•(ρ), ĥ

•
fl)

α̂ 7→
(

[M,u, β, f, g] 7→ (pM )!!(β · (f, g)∗α̂)
)

.
(101)

The invariance by h• is defined by:

(102) ξnfl (α̂)([M,u, β, f, g] · γ) = ξnfl (α̂)([M,u, β, f, g]) · γ.

In order to show that (101) is well-defined, i.e. that it does not depend
on the representative (M,u, β, f, g), and that formula (102) holds, we apply
the same argument used about (98).
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Lemma 8.3. We have the following morphism of complexes of h•-modules
(the lower one not being exact in general):

· · ·
r // hn(ρ)⊗Z R

a //

ξn
R

��

ĥn+1
fl (ρ)

I //

ξn+1
fl

��

hn+1(ρ)
r //

ξn+1

��

· · ·

· · ·
r′ // Homh•(hn−•(ρ), h

•
R
)

a′

// Homh•(hn+1−•(ρ), ĥ
•
fl)

I′

// Homh•(hn+1−•(ρ), h
•)

r′ // · · ·

Proof. We only have to prove the commutativity of the square under the map
a. It easily follows from the fact that, for α ∈ h•(ρ)⊗Z R and β ∈ h•(X):

a(chα) · β = a(ch(αβ)).

That’s because, for any differential refinement β̂ of β, we have a(chα) · β̂ =
a(chα ·R(β̂)) = a(chα · chβ) = a(ch(αβ)). □

We call hn
Z
the image of the Chern character ch: hn → Hn

dR(pt; h
•
R
) ≃ hn

R
,

which coincides with α 7→ α⊗Z R.

Theorem 8.4. If h• has no torsion, the pairing (101) is an isomorphism
and ĥ•fl ≃ h•−1

R
/h•−1

Z
.

Proof. Same of [12, Theorem 5.5]. □

8.3. Homology via differential cycles

We can define pre-cycles, cycles and boundaries as in Definition 8.1, but
refining each orientation and each cohomology class to a differential one.
We call ẑn(ρ) and b̂n(ρ) the corresponding groups of cycles and boundaries.
It follows that ẑn(ρ) is generated by classes of the form [(M, û, α̂, f, g)], and
b̂n(ρ) is generated by cycles with a representative such that (M, û, α̂, f, g) =
∂((W,M,N), Û , Â, F,G). We define h′n(ρ) := ẑn(ρ)/b̂n(ρ).

Theorem 8.5. The natural group morphism:

Φ: h′•(ρ) → h•(ρ)

[(M, û, α̂, f, g)] → [(M, I(û), I(α̂), f, g)]

is an isomorphism.

Proof. It follows from the same result about absolute classes [12, Theo-
rem 6.2] and the five lemma applied to the long exact sequence in homology
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associated to ρ. Alternatively, one can adapt to the relative case the same
proof of [12, Theorem 6.2]. □

8.4. Cheeger-Simons characters

The following definition generalizes to any cohomology theory the one of [5]
and [13] (type II).

Definition 8.6. A Cheeger-Simons differential ĥ•-character of degree n on
ρ : A→ X is a triple (χn, ωn, ηn−1), where:

(103) χn ∈ Hom
ĥ•(ẑn−•(ρ), ĥ

•) (ωn, ηn−1) ∈ Ωn(ρ; h•
R
)

such that, if (M, û, β̂, f, g) = ∂((W,M,N), Û , B̂, F,G), then:

χn[M, û, β̂, f, g] = −a

(
∫

W
Td(W ) ∧R(B̂) ∧ F ∗ωn(104)

+

∫

N
Td(N) ∧R(B̂|N ) ∧G∗ηn−1

)

.

The ĥ•-invariance is defined by:

(105) χn(α̂)([M, û, β̂, f, g] · γ̂) = χn(α̂)[M, û, β̂, f, g] · γ̂.

We denote by ȟn(ρ) the group of characters of degree n.

We briefly comment on formula (104). Let us suppose that [M, û, β̂, f, g]∈
ẑn−k(X) and thatM is connected. Then dim(M) = n− k + q and β̂∈ ĥq(M),
hence dim(W ) = n− k + q + 1 and B̂ ∈ ĥq(W ). Thus, in the r.h.s. of (104),
we integrate on W a h•

R
-valued form of degree 0 + q + n, hence we get a

form on the point of degree q + n− (n− k + q + 1) = k − 1. Applying a, we
get a class belonging to ĥk, as desired.

Theorem 8.7. There is a natural graded-group morphism:

CS•
ĥ
: ĥ•(ρ) → ȟ•(ρ)

α̂ 7→ (χ,R(α̂)),
(106)

where χ is defined, for [M, û, β̂, f, g] ∈ ẑn−k(ρ), by:

χ[M, û, β̂, f, g] := (pM )!!(β̂ · (f, g)∗α̂).
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Proof. If we consider two representatives (M,u, φ!β, f, g) and (N, v, β, f ◦
φ, g ◦ φ|∂N ) of the same homology class, we have:

χ[N, v̂,β̂, f ◦ φ, g ◦ φ|∂N ] = (pN )!!(β̂ · (φ,φ|∂N )∗(f, g)∗α̂)

= (pM )!!(φ,φ|∂N )!!(β̂ · (φ,φ|∂N )∗(f, g)∗α̂)

= (pM )!!(φ!β̂ · (f, g)∗α̂) = χ[M, û, φ!β̂, f, g].

Let us now suppose that (M, û, β̂, f, g) = ∂((W,M,N), Û , B̂, F,G). From
formula (97), replacing X by W and α̂ by β̂ · (f, g)∗α̂, we get formula (104).
Finally:

χ([(M, û, β̂, f, g)] ∩ γ̂) = χ[M, û, β̂ · (pM )∗γ̂, f, g]

= (pM )!!(β̂ · (f, g)∗α̂ · (pM )∗γ̂)

= (pM )!!(β̂ · (f, g)∗α̂) · γ̂ = χ[M, û, β̂, f, g] · γ̂. □

The proof of the following theorem is straightforward from the previous
definition.

Theorem 8.8. When α̂ is flat, the value of the associated Cheeger-Simons
character over [M, û, β̂, f, g] coincides with the value of (101) on the corre-
sponding homology class.

Considering the pairing (101), we have the following embedding:

j : Homh•(hn−•(ρ), ĥ
•
fl) →֒ ȟn(ρ).

In fact, a morphism φn ∈ Homh•(hn−•(ρ), ĥ
•
fl) determines a unique mor-

phism χn : ẑn−•(ρ)→ ĥ• defined by χn[M, û, β̂, f, g] := φn[M, I(û), I(β̂), f, g],
and we define j(φn) := (χn, 0, 0). It follows from formula (104) that the
image of j is the subgroup of generalized Cheeger-Simons characters with
vanishing curvature, that we call ȟnfl(ρ). Let us consider the embedding

i : ĥ•fl(ρ) →֒ ĥ•(ρ). The following diagram commutes:

ĥnfl(ρ)
ξnfl //

� _

i
��

Homh•(hn−•(X), ĥ•fl)� _

j
��

ĥn(ρ)
CSn

ĥ // ȟn(ρ).

Therefore i restricts to the embedding i′ : Ker(ξnfl ) →֒ Ker(CSn
ĥ
), and j re-

stricts to the embedding j′ : Im(ξnfl ) →֒ Im(CSn
ĥ
). Because of j and j′ we
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can construct a morphism b : Coker(ξnfl ) → Coker(CSn
ĥ
). We now show that

actually i′ and b are isomorphisms.

Theorem 8.9. The following canonical isomorphisms hold:

Ker(ξnfl ) ≃ Ker(CSn
ĥ
), Coker(ξnfl ) ≃ Coker(CSn

ĥ
).

Proof. If α̂ ∈ ĥn(ρ) is not flat, then CSn
ĥ
(α̂) ̸= 0, since CSn

ĥ
(α̂) = (χn, R(α̂))

and R(α̂) ̸= 0. Hence Ker(CSn
ĥ
) ⊂ Ker(ξnfl ) and the equality follows. More-

over, ȟnfl(ρ) ∩ Im(CSn
ĥ
) = Im(ξnfl ), hence b : Coker(ξ

n
fl ) → Coker(CSn

ĥ
) is an

embedding. If (χn, ωn, ηn−1) ∈ ȟn(ρ), we consider a class α̂ ∈ ĥn(ρ) such
that R(α̂) = (ωn, ηn−1), and we call (χ′

n, ωn, ηn−1) := CSĥ(α̂). Then (χ′
n −

χn, 0, 0) ∈ ȟnfl(ρ), and, in Coker(CSn
ĥ
), one has

[(χn, ωn, ηn−1)] = [(χ′
n − χn, 0, 0)] ∈ Im b.

Therefore b is also surjective. □

Corollary 8.10. If h• has no torsion, (106) is an isomorphism.

Proof. It immediately follows from Theorems 8.9 and 8.4. □

Corollary 8.10 holds in particular for ordinary differential cohomology.13

In this case differential characters can be defined on smooth singular cycles,
without enriching them with a differential cohomology class. In the absolute
setting this is the definition of (ordinary) Cheeger-Simons character, intro-
duced in [11], and historically it is one of the starting points of the whole
theory of differential cohomology.

9. Integration relative to the boundary

Let us consider a smooth fibre bundle f : Y → X, such that X is a manifold
without boundary and Y with boundary. It follows that the typical fibre is a
manifold with boundary M . Moreover, the restriction of f to the boundary,
that we call ∂f : ∂Y → X, is a fibre bundle too, with typical fibre ∂M .
Of course f is not neat, therefore we cannot apply the integration map

13The expression “ordinary differential cohomology” is commonly used to indicate
the differential refinement of singular cohomology.
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as previously defined, but we can define the following integration map for
classes relative to the boundary:

(107) f!! : ĥ
•(Y, ∂Y ) → ĥ•−m(X),

m being the dimension ofM . When X is a point, we get (85) as a particular
case. The map (107) generalizes to any cohomology theory the one described
in [13].

9.1. Topological integration

Let us start with the notion of orientation. The idea is the following. We
choose a neat embedding ι : Y →֒ X ×HN , such that πX ◦ ι = f (restricting
ι to the boundary, we get the embedding ∂ι : ∂Y →֒ X × RN−1). This is
always possible: for example, we can choose a neat embedding κ : Y →֒ HN

and define ι := f × κ. Then we choose a Thom class on the normal bundle
and a neat tubular neighbourhood, as always. We think of ι as a map to
X × RN−1 × I, through the embedding [0,+∞) ≈ [0, 1) ⊂ I. In this way,
we can first integrate on RN−1, getting a class in X × I, relative to X × ∂I.
This is equivalent to getting a class in X × S1, therefore we can integrate
on S1 and obtain the result.

Let us define this integration map using the same language of Sections
6 and 7. Given a fibre bundle f : Y → X, such that ∂X = ∅, a defining
function for the boundary is a smooth neat map Φ: Y → X × I such that
∂Y = Φ−1(X × {0}) (by neatness, it follows that Φ−1{1} = ∅). In particular,
the restriction of Φ to a fibre Yx := π−1{x} is a defining function for the
boundary of Yx.

Definition 9.1. An h•-orientation on f : Y → X is a homotopy class of
h•-oriented defining functions for the boundary.

Remarks analogous to 6.13, 6.14 and 6.15 hold in this case. In partic-
ular, the remark analogous to 6.13 shows that the idea we sketched at the
beginning of this section corresponds to Definition 9.1. We set:

f!! : h
•(Y, ∂Y ) → h•−m(X)

α 7→

∫

S1

Φ!!(α),
(108)

where the map Φ: (Y, ∂Y ) → (X × I,X × ∂I) is provided by the orienta-
tion of f and the integration over S1 is defined as follows. Since h•+1−m(X ×
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I,X × ∂I) ≃ h•+1−m(X × S1, X × {∗}) = h̃•+1−m(X+ ∧ S1), ‘∗’ being a
marked point on S1, we apply the suspension isomorphism h̃•+1−m(X+ ∧
S1) ≃ h̃•−m(X+) ≃ h•−m(X) and we get the result. The same construction
holds for differential integration of flat classes.

9.2. Differential integration

We generalize the curvature map (66) in the following natural way:

R∂
(ι,û,φ) : Ω

•(Y ; h•
R
) → Ω•−m(X; h•

R
)

ω 7→

∫

X×RN−1×I/X
i∗φ∗(R(û) ∧ π

∗ω)
(109)

and we define:

Rpt
(ι,û,φ) : Ω

•(Y, ∂Y ; h•
R
) → Ω•−m(X; h•

R
)

(ω, η) 7→ R∂
(ι,û,φ)(ω) +R∂(ι,û,φ)(η).

(110)

Requiring that the orientation is proper, i.e. that the fibre of the normal
bundle of ι(Y ) in ι(y) = (x, t) is sent by φ to a subset of {x} ×Hn, it follows
from formulas analogous to (65) and (67) that:

(111) Rpt
(ι,û,φ)(ω, η) =

∫

Y/X
Td(û) ∧ ω +

∫

∂Y/X
Td(û|∂Y ) ∧ η.

Definition 9.2. An ĥ•-orientation on f : Y → X is a homotopy class of
ĥ•-oriented defining functions for the boundary, considering the curvature
map (109) (equivalently, (110)) in the definition of homotopy.

Corollary 6.31 and Lemma 6.32 hold with the same proof. Applying
the isomorphism (27) with Y = X, we can integrate on RN and apply the
following integration map analogous to (84):

∫

I
: ĥ•par(X × I,X × ∂I) → ĥ•−1(X)

α̂ 7→

∫

X×S1

π∗ξ
∗α̂.

(112)

This defines (107). The following lemma, that generalize [3, Theorem 47
p.170] to any cohomology theory, shows the naturality of this integration
map.
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Theorem 9.3. Let us consider the following diagram, whose rows (except
for i∗) are segments of the long exact sequences (33) associated respectively
to i : ∂Y →֒ Y and idX : X → X:

ĥ•−1(∂Y )
B1 //

(∂f)!

��

ĥ•(Y, ∂Y )
π∗

1 //

f!!

ww

ĥ•(Y )

f#

ww

i∗ // ĥ•(∂Y )

(∂f)!

xx

ĥ•−m(X)
B2 // ĥ•−m+1(idX)

π∗

2 // ĥ•−m+1(X).

We set f#(α̂) := −a
(∫

Y/X Td(Y/X) ∧R(α̂), 0
)

. The left triangle and the
right parallelogram of the diagram commute. The central parallelogram com-
mutes provided that we restrict ĥ•(Y, ∂Y ) to the subgroup of parallel classes.

Proof. Let us fix a defining map Φ: Y → X × I that represent the fixed ori-
entation of f . It follows that ∂f = Φ|∂Y : ∂Y → X × {0}. Moreover, we call
BI : ĥ

•−1(X × ∂I) → ĥ•(X × I,X × ∂I) the Bockstein map of the sequence
(33) associated to the embedding X × ∂I →֒ X × I. About the left triangle,
since all of the steps (S1)–(S6) in Section 3.1 commute with the Gysin map,
it follows that Φ!!(B1(α̂)) = BI((∂f)!(α̂)). Moreover, applying the isomor-
phism (27) and the integration map (112) to a class of the form BI(α̂

′), the
class π∗ξ

∗Ψ1(BI(α̂
′)) ∈ ĥ•(X × S1, X × S′) coincides with the class β̂ pro-

vided by Lemma 2.16 such that
∫

X×S1 β̂ = α̂′ and R′(β̂) = π∗1R(α̂
′) ∧ dt. It

follows that

f!!(B1(α̂)) =

∫

I
Ψ1Φ!!(B1(α̂)) =

∫

I
Ψ1BI((∂f)!(α̂))

=

∫

S1

π∗ξ
∗Ψ1(BI((∂f)!(α̂))) = (∂f)!(α̂).

The commutativity of the right parallelogram is essentially formula (81) in
the case of a fibre bundle. About the central parallelogram, since Ω•−1(X) ≃
ĥ•(idX), ω ≃ a(ω, 0), and ω = cov(a(ω, 0)), it follows from formula (42) that
B2(β̂) = a(−R(β̂)). Since the integration map commutes with the curvature
(110), it follows from formula (111) that

B2(f!!(α̂)) = −a

(

∫

Y/X
Td(Y/X) ∧R′(α̂) +

∫

∂Y/X
Td(∂Y/X) ∧ cov(α̂), 0

)

.

If cov(α̂) = 0, we get precisely f#π
∗
2(α̂). □
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Notation Index

C Category of spaces with the homotopy type of a CW-
complex or of a finite CW-complex. 924

C+ Category whose objects are the ones of C with a marked
point. 924

HC Homotopy category of C. 924
HC+ Homotopy category of C+. 924
C2 Category of morphism of C. 924
AZ Category of Z-graded abelian groups. 925
C(ρ) Cone X ⊔A C(A) of a map ρ : A→ X. 925
Cyl(ρ) Cylinder X ⊔A Cyl(A) of a map ρ : A→ X. 925
RZ Category of Z-graded rings. 926
∫

Y/X ω Fibrewise integration of a differential form ω, usual con-
vention. 928

∫

Y/X ω Fibrewise integration of a differential form ω, opposite
convention. 928

M Category of smooth manifolds. 929
h• Cohomology groups of the point in the theory h, i.e. h•({∗}).

929
h•
R

Cohomology groups of the point tensor R, i.e. h• ⊗ R. 929
M2 Category with objects smooth maps between manifolds.

929
ch Generalized Chern character. 929
H•

dR(ρ; h
•
R
) de Rham cohomology group of ρ with values in h•

R
. 929

I Morphism from differential extension to topological the-
ory. 929

R Curvature morphism. 929
Ω•
cl(ρ; h

•
R
) Closed relative forms over ρ. 929

a Morphism from relative forms to topologically trivial dif-
ferential classes. 929

cov(ρ) Second component of the curvature R(ρ). 930
ĥ•fl Flat classes, i.e. kernel of the curvature morphism R. 930
Ω•
ch(ρ) Subgroup of Ω•

cl(ρ; h
•
R
) with de Rham classes in the image

of the Chern character. 931
ρI For a map ρ : A→ X define ρI := idI × ρ : I ×A→ I ×

X. 931
Sρ For a map ρ : A→ X define Sρ := idS1 × ρ : S1 ×A→

S1 ×X. 933
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ĥ•par(ρ) Subgroup of ĥ•(ρ) formed by parallel classes, i.e. vanishing
cov. 935

Ω•
0(ρ) Subgroup of Ω•(X) containing the forms with vanishing

pullback. 935
Ω•
cl,0(ρ) Intersection between Ω•

0(ρ) and Ω•
cl(X). 935

Ω•
ch,0(ρ) Subgroup of Ω•

cl,0(ρ) containing the forms with relative de
Rham cohomology class in the image of the Chern char-
acter. 935

M′
2 Full subcategory of M2, whose objects are closed embed-

dings. 935
ĥ•0( · ) Subgroup of ĥ•( · ) formed by classes such that the first

component of the curvature is vanishing. 942
Ω•
ch′(ρ) Group of closed forms η ∈ Ω•(B), for a map ρ : B → Y ,

such that the class [(0, η)] ∈ H•+1
dR (ρ) belongs to the image

of the Chern character. 942
ĥ•1(id

′) the sub-group of ĥ•0(id
′) formed by classes whose curvature

is of the form [(0, 0 ⊔ η)]. 943
KX Directed set formed by the compact subsets of X. 960
ĥ•cpt(X) Compactly-supported differential extension. 960

Ω•
ex,cpt(X) Forms ω on X such that there exist a form η ∈ Ω•−1

cpt (X)
with ω = dη. 961

Ω•
ch,cpt(X) Forms on X whose support is compact and such that the

relative de-Rham class belongs to the image of the Chern
character. 961

Td(u) Todd class oriented vector bundle with Thom class u. 965
Nι(Y )(X × RN ) Normal bundle associated to the embedding ι : Y →֒ X ×

RN . 965
f! Gysin map associated to a neat map f : Y → X and a

representative (ι, u, φ) of an orientation of f . 970
Td(û) Differential Todd class. 971
R(ι,û,φ) Curvature map (or integration of forms) w.r.t a map f

and a representative (ι, u, φ) of an orientation of f . 972
R∂

(ι,û,φ) Curvature map (or integration to the point) for a manifold
with boundary. 974

f!! Gysin map relative to the boundary associated to a neat
map f : Y → X and a representative (ι, u, φ) of an orien-
tation of f . 980
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Rrel
(ι,û,φ) Curvature map (or integration of relative forms) rela-

tive to the boundary w.r.t a map f and a representative
(ι, u, φ) of an orientation of f . 981

(pX)!! Integration map to the point for classes relative to the
boundary for the non-neat map pX . 984

Rpt
(ι,û,φ) Curvature map (or integration of relative forms to the

point) w.r.t a representative (ι, u, φ) of an orientation of
a defining map. 987

zn(ρ) Group of relative n-cycles for ρ. 991
bn(ρ) Group of relative n-boundaries for ρ. 992
ẑn(ρ) Group of relative differential n-cycles for ρ. 994
b̂n(ρ) Group of relative differential n-boundaries for ρ. 994
ȟn(ρ) Generalized Cheeger-Simons differential ĥ•-characters of

degree n for ρ. 995
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