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We show that some embedded standard 13-spheres in Shimada’s
exotic 15-spheres have Z2 quotient spaces, P 13s, that are fake real
13-dimensional projective spaces, i.e., they are homotopy equiv-
alent, but not diffeomorphic to the standard RP13. As observed
by F. Wilhelm and the second named author in [RW], the Davis
SO(2)× G2 actions on Shimada’s exotic 15-spheres descend to the
cohomogeneity one actions on the P 13s. We prove that the P 13s are
diffeomorphic to well-known Z2 quotients of certain Brieskorn vari-
eties, and that the Davis SO(2)× G2 actions on the P 13s are equiv-
ariantly diffeomorphic to well-known actions on these Brieskorn
quotients. The P 13s are octonionic analogues of the Hirsch-Milnor
fake 5-dimensional projective spaces, P 5s. K. Grove and W. Ziller
showed that the P 5s admit metrics of non-negative curvature
that are invariant with respect to the Davis SO(2)× SO(3)-
cohomogeneity one actions. In contrast, we show that the P 13s do
not support SO(2)× G2-invariant metrics with non-negative sec-
tional curvature.

1 Introduction 708

2 Preliminaries 712

3 The cohomogeneity one actions of G = SO(2) × G2

on S13
k

and P 13

k
721

4 The G-invariant metrics on M13

k
730

5 Rigidities of non-negatively curved metrics 738

6 Proofs of Theorems 1.2, 1.3 and 1.10 743

707



✐

✐

“5-He” — 2021/5/7 — 15:45 — page 708 — #2
✐

✐

✐

✐

✐

✐

708 C.-X. He and P. Rajan

Appendix A The computations of Riemann curvature
tensors 752

References 758

1. Introduction

A fake real projective space is a manifold homotopy equivalent, but not
diffeomorphic, to the standard real projective space. The first examples were
constructed by Hirsch and Milnor in dimensions 5 and 6, see [HM]. They are
quotients of the images of embedded standard 5- and 6-spheres in Milnor’s
exotic spheres [Mi] under certain free involutions.

The analogous exotic 15-spheres Σ15s were constructed by N. Shimada
in [Sh] as certain 7-sphere bundles over the 8-sphere. The antipodal map on
the 7-sphere fiber defines a natural involution T on the Σ15s. In [RW], F.
Wilhelm and the second named author observed that the images of certain
embedded standard 13- and 14-spheres in Σ15s are invariant under the invo-
lution, and thus the quotient spaces are homotopy equivalent to the standard
13- and 14-real projective spaces. Following the Hirsch-Milnor’s argument,
they showed that the quotients of the embedded 14-spheres in some Σ15s are
not diffeomorphic to the standard RP14. They also observed that because
there are exotic 14-spheres, the Hirsch-Milnor’s argument breaks down in
the case of the homotopy RP13s. Our first result resolves this issue.

Theorem 1.1. The quotient spaces of the embedded 13-spheres in certain
Shimada’s spheres Σ15s are fake real projective spaces, i.e., they are homo-
topy equivalent, but not diffeomorphic to the standard 13-projective space.

Via a construction by M. Davis [Da], the Hirsch-Milnor fake P 5s ad-
mit cohomogeneity one actions by SO(2)× SO(3). Similarly, the fake P 13s
in Theorem 1.1 admit cohomogeneity one actions by SO(2)× G2. From
K. Grove and W. Ziller’s results in [GZ1], O. Dearricott observed that all
fake P 5s carry SO(2)× SO(3) invariant metrics with non-negative sectional
curvature, see [GZ1, p.334]. As these P 13s are octonionic analogue of P 5s,
one may suspect that they also admit such invariant metrics. We show that
this is not the case.

Theorem 1.2. None of the fake P 13s support an SO(2)× G2 invariant
metric with non-negative sectional curvature.
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The Davis actions on the fake projective spaces come from actions on
their 2-fold covers. The lifted actions are non-linear ones, in the sense that
they are not sub-actions of the standard action of SO(n+ 1) on Sn. We
will show that, these non-linear SO(2)× SO(3) actions on the 5-sphere are
very special: they are the only non-linear cohomogeneity one actions on the
homotopy spheres that can be by isometries with respect to a non-negatively
curved metric.

Theorem 1.3. For n ≥ 2, let Σn be a homotopy sphere. Suppose that
Σnadmits a non-negatively curved metric that is invariant under a coho-
mogeneity one action. Then either

1) Σn is equivariantly diffeomorphic to the standard sphere and the action
is linear, or

2) n = 5, Σ5 is the standard 5-sphere and the non-linear actions is given
by SO(2)× SO(3).

In particular, Theorem 1.3 implies

Any exotic sphere with an invariant non-negatively curved metric
has cohomogeneity at least two.

Remark 1.4. (a) In Theorem 1.2, when the symmetry group is enlarged
to SO(2)× SO(7), the obstruction was already proved in [GVWZ] by K.
Grove, L. Verdiani, B. Wilking and W. Ziller. Since G2 is a proper subgroup
in SO(7), there are more invariant metrics in the case of SO(2)× G2, and
our result does not follow from theirs directly.

(b) In Theorem 1.3, the non-linear SO(2)× SO(3) actions on the 5-sphere
are equivariantly diffeomorphic to certain actions on the Brieskorn varieties
M5s, see, e.g., Section 2.2.

The starting point of our proofs is the study of the Davis actions of
G = SO(2)× G2 on Shimada’s exotic 15-spheres, where G2 is the simple ex-
ceptional Lie group as the automorphism group of the octonions O. For each
odd integer k, denote Σ15

k the total space of the 7-sphere bundle over the
8-sphere, with the Euler class [S8] and the second Pontrjagin class 6k[S8]
where [S8] is the standard generator of the cohomology group H8(S8). Shi-
mada showed that each Σ15

k is homeomorphic to the standard 15-sphere,
but not diffeomorphic if k2 ̸≡ 1 mod 127, see [Sh]. In [Da](or see Section
2.1), using the octonion algebra, Davis introduced the actions of G on Σ15

k s
such that G2 acts diagonally on the 7-sphere fiber and the 8-sphere base,
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whereas SO(2) acts via Möbius transformation. It is observed in [RW], that
the Davis action on Σ15

k leaves the image S13k of the embedded 13-sphere
invariant and commutes with the involution T . Thus the restricted action
on S13k descends to the quotient space P 13

k = S13k /T . They also observed that
the G-actions on S13k and P 13

k are cohomogeneity one, i.e., the orbit space
is one dimensional. On the other hand, for the cohomogeneity one actions
on the homotopy spheres, aside from linear actions on the standard spheres,
there are families of non-linear actions [St]. They are examples given by
the 2n− 1 dimensional Brieskorn varieties M2n−1

d , which are defined by the
equations

zd0 + z21 + · · ·+ z2n = 0 and |z0|2 + |z1|2 + · · ·+ |zn|2 = 1.

The Brieskorn varieties carry cohomogeneity one actions by SO(2)× SO(n)
via

(eiθ, A) (z0, z1, . . . , zn) =
(

e2iθz0, e
−idθA(z1, . . . , zn)

t
)

with A ∈ SO(n). A natural involution, denoted by I, is defined by
I(z0, z1, . . . , zn) = (z0,−z1, . . . ,−zn). It is clear that the involution has no
fixed point and commutes with the SO(2)× SO(n)-action; and thus the
quotient space N2n−1

d = M2n−1
d /I admits a cohomogeneity one action by

SO(2)× SO(n). Note that when n = 7, the actions on M13
d and N13

d re-
stricted to the group G = SO(2)× G2 are also cohomogeneity one. We have
the following

Theorem 1.5. For each odd integer k, the G-manifolds: the 13-sphere S13k

and the Brieskorn variety M13
k , with G = SO(2)× G2 are equivariantly dif-

feomorphic, and so are the quotient spaces P 13
k = S13k /T and N13

k = M13
k /I.

Remark 1.6. Theorem 1.1 follows from Theorem 1.5 above and the dif-
feomorphism classification of N2n−1

d in [AB] and [Gi] (or see Section 2.2).

Remark 1.7. The universal cover of P 13
k is the standard 13−sphere for all

odd integers k. The space P 13
1 , i.e., k = 1, is diffeomorphic to the standard

RP13 from the construction in [Sh] and [RW]. From Theorem 1.5 above,
the known diffeomorphism classification of N13

k implies that there are 64
different oriented diffeomorphism types of P 13

k s.

Remark 1.8. (a) The Davis actions of SO(2)× G2 on Shimada’s exotic
spheres Σ15

k s can be viewed as the octonionic analogs of the SO(2)× SO(3)
actions on Milnor’s exotic spheres Σ7s found in the same paper [Da]. Note
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that SO(3) is the automorphism group of the quaternions, and a special case
of the SO(2)× SO(3) actions on a certain Σ7 was found in [GM].

(b) The Davis actions of SO(2)× SO(3) on Milnor’s exotic spheres also
leave the images of the embedded 5-sphere invariant, and hence induce co-
homogeneity one actions on the Hirsch-Milnor’s fake 5-projective spaces as
observed in [RW]. These actions are equivariantly diffeomorphic to those
on the Brieskorn varieties N5

d ’s, which was first discovered by E. Calabi
(unpublished, cf. [HH, p. 368])

Remark 1.9. In [ADPR], U. Abresch, C. Durán, T. Püttmann and A. Rigas
gave a geometric construction of free exotic involutions on the Euclidean
sphere S13 using the wiedersehen metric on the Euclidean sphere S14. Thus
the quotient spaces are fake 13-projective spaces. Moreover, in [DP], Durán
and Püttmann provided an explicit nonlinear action of O(2)× G2 on the
Euclidean sphere S13, and showed that it is equivariantly diffeomorphic to
the Brieskorn variety M13

3 .

In the second part of this paper, we study of the curvature properties
of the invariant metrics on S13k and P 13

k with G = SO(2)× G2. Since any
invariant metric on the quotient space P 13

k can be lifted to an invariant
metric on S13k , we restrict ourselves to the spheres S13k s, or equivalently M13

k s.
Note that M13

k and M13
−k are equivariantly diffeomorphic, and so we assume

that k ≥ 1.
On a Riemannian manifold with cohomogeneity one action, the princi-

pal orbits are hypersurfaces, and there are precisely two non-principal orbits
that have codimensions strictly bigger than one if the manifold is simply-
connected. They are called singular orbits. In [GZ1], Grove and Ziller con-
structed invariant metrics with non-negative sectional curvature on coho-
mogeneity one manifolds for which both singular orbits have codimension
two. Particularly, their construction yields non-negatively curved metrics
on 10 of 14 (unoriented) 7 dimensional Milnor’s spheres and all Hirsch-
Milnor’s fake 5-projective spaces. Their metrics on the Milnor’s spheres are
of cohomogeneity 4. They arise from a cohomogeneity one construction as
associated bundles to principal bundles which in turn have (cohomogeneity
one) Grove-Ziller metrics. However, not every cohomogeneity one manifold
admits an invariant metric with non-negative curvature. The first examples
were found in [GVWZ], and then generalized to a larger class in [He] by the
first named author. The most interesting class in [GVWZ] is the Brieskorn
varieties M2n−1

d . It is showed that for n ≥ 4 and d ≥ 3, M2n−1
d does not

support an SO(2)× SO(n) invariant metric with non-negative curvature. In
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our case, the group G is a proper subgroup of SO(2)× SO(7) and, hence the
family of G invariant metrics is strictly larger. We extend their obstruction
to our case.

Theorem 1.10. For any odd integer d ≥ 3, the Brieskorn variety M13
d does

not support an SO(2)× G2 invariant metric with non-negative curvature.

Remark 1.11. The techniques used to prove Theorem 1.10 are similar to
those in [GVWZ] and [He]. However the special feature of the Lie group G2

and the strictly larger class of invariant metrics make the argument more
involved.

Remark 1.12. For the Brieskorn variety M13
d with d ≥ 4 an even integer,

the principal isotropy subgroup has a simpler form than the one in the odd
case, see Remark 2.11. This leads to a much more complicated form of the
invariant metrics in the even case, see Remark 4.4, which is not covered by
our proof. So for an even integer d ≥ 4, the question whether M13

d admits
an SO(2)× G2-invariant metric with non-negative curvature remains open.

Remark 1.13. As observed in [ST], all P 13
k s and S13k s support even SO(2)×

SO(7) invariant metrics that simultaneously have positive Ricci curvature
and almost non-negative sectional curvature. For the invariant metrics with
positive Ricci curvature alone, it also follows from the result in [GZ2]. A
Riemannian manifold admits an almost non-negative sectional curvature if
it collapses to a point with a uniform lower curvature bound.

We refer to the Table of Contents for the organization of the paper.
Theorem 1.5 is proved in Section 3, and Theorems 1.2, 1.3 and 1.10 are
proved in Section 6.

Acknowledgement. It is a great pleasure to thank Frederick Wilhelm
who has brought this problem to our attention, and we had numerous dis-
cussions with him on this paper. We thank Wolfgang Ziller for useful commu-
nications, and Karsten Grove for his interest. We also thank the anonymous
referees for their careful reading and critical comments.

2. Preliminaries

In this section, we recall the Davis action on the exotic 15-spheres Σ15
k s, and

the Brieskorn varieties with cohomogeneity one action. We refer to [Ba] and
[Mu] for the basics of the algebra of the Cayley numbers (i.e., the octonions)
and the Lie group G2.



✐

✐

“5-He” — 2021/5/7 — 15:45 — page 713 — #7
✐

✐

✐

✐

✐

✐

Fake RP13 with cohomogeneity one actions 713

2.1. Shimada’s exotic 15-spheres Σ15

k
s, the embedded 13- and

14-spheres and the Davis action

Consider the Cayley numbers O and let u 7→ ū be the standard conjuga-
tion. A real inner product on O is defined by u · v = 1/2(uv̄ + vū). Let
{e0, e1, . . . , e7} be an orthonormal basis of O over R with e0 = 1. We follow
the multiplications of elements in O given by [Mu], for example, e1e2 = e3,
e1e4 = e5 and e1e7 = e6. Any v ∈ O has the following form

v = v0e0 + v1e1 + · · ·+ v7e7.

Denote ℜv = v0 the real part and ℑv = v1e1 + · · ·+ v7e7 the imaginary part.
We have

v̄ = v0e0 − v1e1 − · · · − v7e7

and

|v|2 = v20 + v21 + · · ·+ v27 = vv̄.

The unit 7-sphere consists of all unit octonions:

S
7 = {v ∈ O : |v| = 1} .

We write S8 = O ⊔φ O as the union of two copies of O which are glued
together along O− {0} via the following map

ϕ : O− {0} → O− {0}(2.1)

u 7→ ϕ(u) =
u

|u|2
.

For any two integers m and n, let Em,n be the manifold formed by gluing the
two copies of O× S7 via the following diffeomorphism on (O− {0})× S7:

(2.2) Φm,n : (u, v) 7→ (u′, v′) =

(

u

|u|2
,
um

|u|m v
un

|u|n
)

.

The natural projection pm,n : Em,n → S8 sends (u, v) to u and (u′, v′) to
u′. It gives Em,n the structure of an S7-bundle over S8 with the transition
map Φm,n. The total space Em,n is homeomorphic to S15, if and only if,
m+ n = ±1; see [Sh, Section 2].
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Using the fact that G2 is the automorphism group of O, in [Da], Davis
observed that G2 acts on Em,n as follows:

g(u, v) = (g(u), g(v))

and

g(u′, v′) = (g(u′), g(v′)).

From [Da, Remark 1.13], the G2-manifolds Em,n and Em′,n′ are equivari-
antly diffeomorphic, whenever (m,n) = ±(m,n) or ±(n,m). Furthermore,
the bundles Em,n admit another SO(2) symmetry via Möbius transforma-
tions that commutes with the G2-action. Write an element γ ∈ SO(2) as

(2.3) γ = γ(a, b) =

(

a b
−b a

)

and a2 + b2 = 1.

In terms of the coordinate charts, the action on the sphere bundle Em,n is
defined by

γ ⋆ u = (au+ b)(−bu+ a)−1(2.4)

γ ⋆ u′ = (−b+ au′)(a+ bu′)−1

and

γ ⋆ v =
(−bu+ a)mv(−bu+ a)n

|−bu+ a|m+n(2.5)

γ ⋆ v′ =
(a+ bū′)mv′(a+ bū′)n

|a+ bū′|m+n .

The formulas above are compatible with the transition map Φm,n. Davis
showed the following

Lemma 2.1 (Davis). The formulas (2.4) and (2.5) give a well-defined
action of SO(2) on Em,n. Furthermore the action is G2-equivariant, and for
any v ∈ O(not necessarily unit) we have

|γ ⋆ v| = |v| and
∣

∣γ ⋆ v′
∣

∣ =
∣

∣v′
∣

∣ .
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Suppose now that m+ n = 1 and k = m− n. So k is an odd number
and

(2.6) m =
k + 1

2
and n =

−k + 1

2
.

We set Σ15
k = Em,n, and note that it is homeomorphic to the 15-sphere. A

Morse function on Σ15
k in [Sh] is given by

(2.7) f1(x) =
ℜv

√

1 + |u|2
=

ℜ(u′(v′)−1)
√

1 + |u′(v′)−1|2
.

Here ℜv denotes the real part of v. Note that f1 has only two critical points
as (u, v) = (0,±1). Set

(2.8) S
14
k = f−1

1 (0) =
{

x ∈ Σ15
k : ℜv = ℜ(u′(v′)−1) = 0

}

and it is diffeomorphic to the standard S14 for all k. Consider the following
function on S14k :

(2.9) f2(x) =
ℜ(uv)

√

1 + |u|2
=

ℜv′
√

1 + |u′|2
.

It is straightforward to verify that on S14k , the function f2 has precisely two
non-degenerate critical points as (u′, v′) = (0,±1). It follows that

S
13
k = f−1

2 (0) ∩ S
14
k

=
{

x ∈ Σk : ℜ(uv) = ℜv = ℜv′ = ℜ(u′(v′)−1) = 0
}

⊂ Σ15
k(2.10)

is diffeomorphic to the standard 13-sphere for all k. Let

T : Em,n → Em,n(2.11)

(u, v) 7→ (u,−v) and (u′, v′) 7→ (u′,−v′)

be the antipodal map on the fiber S7. The two spheres S14k and S13k are
invariant under this involution T . Denote

P 14
k = S

14
k /T and P 13

k = S
13
k /T

the quotient spaces.
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Remark 2.2. Note that Milnor’s exotic 7-spheres Σ7s are diffeomorphic to
3-sphere bundles over the 4-sphere. The involution T on Σ15s is the analogue
of the natural involution on Σ7s given by the antipodal map of the 3-sphere
fiber, see [Mi] and [HM].

In [RW], Wilhelm and the second named author observed that the Davis
action of G = SO(2)× G2 on Σ15

k leaves both S14k and S13k invariant and
commutes with the involution T .

Lemma 2.3. The SO(2)× G2 action on Σ15
k restricts to an action on the

spheres S14k , S13k and descends to the quotient spaces P 14
k , P 13

k .

Proof. It is easy to see that the action commutes with the involution T . So
it is sufficient to show that the defining conditions of S13k and S14k in Σ15

k are
preserved by the SO(2)× G2 action. In the following we give a proof for S13k ,
and the argument for S14k is similar.

Since G2 is the automorphism group of O, it is easy to see that the
defining conditions are preserved. Next we consider the action by SO(2).
Let γ = γ(a, b) in equation (2.3). Note that ℜ(xy) = ℜ(yx) for any x, y ∈ O.
We have

ℜ (γ ⋆ v) =
1

|a− bu|ℜ {(a− bu)mv(a− bu)n}

=
1

|a− bu|ℜ
{

(a− bu)m+nv
}

=
1

|a− bu| (aℜv − bℜ(uv))

= 0,

and

ℜ ((γ ⋆ u)(γ ⋆ v)) =
1

|a− bu|ℜ
{

(au+ b)(a− bu)−1(a− bu)mv(a− bu)n
}

=
1

|a− bu|ℜ(au+ b)v

= 0.

For the coordinates (u′, v′), since u′(v′)−1 = u′v̄′/ |v′|2 and ℜ
(

u′(v′)−1
)

=
0; it follows that ℜ (ū′v′) = 0. Similar to the case of (u, v), we have
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ℜ(γ ⋆ v′) =
1

|a+ bū′|ℜ
{

(a+ bū′)mv′(a+ bū′)n
}

=
1

|a+ bū′|ℜ
{

(a+ bū′)v′
}

= 0

and

ℜ
(

(γ ⋆ u′)(γ ⋆ v′)−1
)

=
∣

∣a+ bū′
∣

∣ℜ
{

(−b+ au′)(a+ bu′)−1(a+ bū′)−n(v′)−1(a+ bū′)−m
}

=
∣

∣a+ bū′
∣

∣ℜ
{

(−b+ au′)(a+ bu′)−1(a+ bū′)−1(v′)−1
}

=
∣

∣a+ bū′
∣

∣

(

a2 + b2
∣

∣u′
∣

∣

2
+ ab(u′ + ū′)

)

ℜ
{

(−b+ au′)(v′)−1
}

= 0.

This shows that S13k is invariant under the SO(2) action, which finishes the
proof. □

Remark 2.4. In [RW], following the Hirsch-Milnor argument in [HM], they
also showed that P 14

k and P 13
k are homotopy equivalent to the standard RP14

and RP13 for all k; and P 14
k is not diffeomorphic to RP14, when k ≡ 3, 5

mod 8.

2.2. Brieskorn varieties, Kervaire spheres and homotopy
projective spaces

For any integers n ≥ 3 and d ≥ 1, the Brieskorn variety M2n−1
d is the smooth

(2n− 1)-dimensional submanifold of Cn+1, defined by the equations

{

zd0 + z21 + · · ·+ z2n = 0

|z0|2 + |z1|2 + · · ·+ |zn|2 = 1.

When d = 1,M2n−1
1 is diffeomorphic to the standard sphere S2n−1; and when

d = 2, M2n−1
2 is diffeomorphic to the unit tangent bundle of Sn.

Theorem 2.5 (Brieskorn). Suppose n≥3 and d≥2. The manifold M2n−1
d

is homeomorphic to the standard sphere S2n−1, if and only if, both n and d
are odd numbers. Assume that n and d are odd numbers, it is the Kervaire
sphere, if and only if, d ≡ ±3 mod 8.
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Remark 2.6. The Kervaire sphere is known to be exotic if n ≡ 1 mod 4.

Denote I the following involution on M2n−1
d :

(z0, z1, . . . , zn) 7→ (z0,−z1, . . . ,−zn).

Clearly it is fixed-point free. Atiyah and Bott showed the following result,
see also [Gi, Corollary 4.2].

Theorem 2.7 ([AB, Theorem 9.8]). If the involution I on the topological
spheres M4m−3

d and M4m−3
k are isomorphic, then

d ≡ ±k mod 22m.

In particular the involution I acting on M4m−3
3 = S4m−3 is not isomorphic

to the standard antipodal map whenever m ≥ 2.

Corollary 2.8. There are 64 smoothly distinct real projective spaces M13
k /I

with k = 1, 3, . . . , 127.

The group G̃ = SO(2)× SO(n) acts on M2n−1
d by

(

eiθ, A
)

(z0, Z) =
(

e2iθz0, e
−idθAZ

)

, for (z0, Z) ∈ C⊕ C
n.

Note that our convention is different from the one in [GVWZ], as we have
e−idθ for the action of eiθ on Z = (z1, . . . , zn)

t. The norm |z0| is invariant
under this action, and two points belong to the same orbit if and only if
they have the same value of |z0|. Let t0 be the unique positive solution of
td0 + t20 = 1, and then we have 0 ≤ |z0| ≤ t0. It follows that the orbit space
is [0, t0]. The orbit types and isotropy subgroups of this action have been
well-studied, see for example, [HH], [BH] and [GVWZ].

In our case, we assume that d is odd. When n = 7, the embedding G2 ⊂
SO(7) induces the action of G = SO(2)× G2 onM13

d . To describe the isotropy
subgroups of the G-action we introduce the following subgroups in G2:

• Denote O(6), the subgroup in SO(7) that maps e1 to ±e1, SO(6) the
subgroup that fixes e1, and SU(3) = SO(6) ∩ G2.

• The other subgroup in G2 that fixes e3 is denoted by SU(3)3, and the
complex structure on C3 = spanR {e1, e2, e4, e7, e6, e5} is given by the
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left multiplication of e3. Note that

(SO(2)× SO(5)) ∩ G2 = U(2) ⊂ SU(3)3

where SO(2)× SO(5) ⊂ SO(7) has the block-diagonal form, and the
embedding U(2) ⊂ SU(3)3 is given by h 7→ diag

{

(deth)−1, h
}

. To see
this, take A = diag {A1, A2} ∈ (SO(2)× SO(5)) ∩ G2 with

A1 =

(

cos t sin t
− sin t cos t

)

for some t. Since e3 = e1e2, we have

A(e3) = A(e1)A(e2)

= (e1 cos t+ e2 sin t) (−e1 sin t+ e2 cos t)

= e3

and thus A ∈ SU(3)3. Using the complex structure of SU(3)3, A1 acts
on C = spanR {e1, e2} by eit, and A2 acts invariantly on C2 =
spanR {e4, e7, e6, e5}. So the element A embeds diagonally in SU(3)3
with (1, 1)-entry eit.

• The common subgroup SU(2) = SU(3) ∩ SU(3)3 and it is also given by
SU(2) = SO(4) ∩ G2 where SO(4) ⊂ SO(7) as A 7→ diag {I3, A} and I3
is the identity matrix.

Since G2 acts transitively on S6 = {v ∈ O : ℜv = 0 and |v| = 1} with
SU(3) and SU(3)3 as isotropy subgroups at e1 and e3 respectively, these
two groups are conjugate by an element in G2.

We follow the notions in [GVWZ] to determine the isotropy subgroups.
Denote B− the singular orbit with |z0| = 0, and choose p− = (0, 1, i, 0, . . . , 0)
∈ B− with isotropy subgroup K−. We also denote B+ the singular orbit with

|z0| = t0, and choose p+ = (t0, i
√

td0, 0, . . . , 0) with isotropy subgroup K+.

Note that B− and B+ have codimensions 2 and n− 1 = 6 respectively. Let
c(t) be a normal minimal geodesic connecting p− = c(0) and p+ = c(L). The
isotropy subgroup at c(t)(0 < t < L) stays unchanged that is the principal
isotropy subgroup H. We have

Theorem 2.9. The cohomogeneity one action of G = SO(2)× G2 on M13
d

with d odd has the following isotropy subgroups:
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1) The principal isotropy subgroup is

H = Z2 · SU(2) = (ε, diag {ε, ε, 1, A})

where ε = ±1 and A is a 4× 4-matrix.

2) At p−, the isotropy subgroup is

K− = SO(2)SU(2) =

(

eiθ, diag

{(

cos dθ sin dθ
− sin dθ cos dθ

)

, 1, A

})

where A is a 4× 4-matrix.

3) At p+, the isotropy subgroup is

K+ = O(6) ∩ G2 = (detB, diag {detB,B})

where B ∈ O(6) ∩ G2.

Remark 2.10. Denote j, the complex structure given by the left multipli-
cation of e3. For the group H, we have diag {ε, ε, 1, A} ∈ (SO(2)× SO(5)) ∩
G2 and A ∈ U(2) ⊂ SU(3)3 with detA = ε. For the group K−, we have

diag

{(

cos dθ sin dθ
− sin dθ cos dθ

)

, 1, A

}

∈ (SO(2)× SO(5)) ∩ G2

and A ∈ U(2) ⊂ SU(3)3 with detA = e−jdθ.

Remark 2.11. If d is an even integer, then the isotropy subgroup K− is
the same as in the case d odd. The other two isotropy subgroups are

H = Z2 × SU(2) = (ε, diag {I3, A})
K+ = Z2 × SU(3) = (ε, diag {1, B})

where ε = ±1, A ∈ SO(4) ∩ G2 = SU(2) and B ∈ SO(6) ∩ G2 = SU(3).

Clearly the G-action commutes with the involution I and hence induces
an action onN13

d = M13
d /I. Write [z0, z1, . . . , z7] ∈ N13

d , the equivalence class
under the involution I.

Corollary 2.12. The cohomogeneity one action of G = SO(2)× G2

on N13
d = M13

d /I with d odd, has the following isotropy subgroups.
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1) The principal isotropy subgroup is

H̄ = Z2 × (Z2 · SU(2)) = (ε1, diag {ε2, ε2, 1, A})

where ε1,2 = ±1 and A is a 4× 4-matrix.

2) The singular isotropy subgroup at [0, 1, i, 0, . . . , 0] is

K̄− = Z2 · SO(2)SU(2) =
(

eiθ, diag

{

ε

(

cos dθ sin dθ
− sin dθ cos dθ

)

, 1, A

})

where ε = ±1 and A is a 4× 4-matrix.

3) The singular isotropy subgroup at [t0, i
√

td0, 0, . . . , 0] is

K̄+ = Z2 × (O(6) ∩ G2) = (ε, diag {detB,B})

where ε = ±1 and B ∈ O(6) ∩ G2.

Remark 2.13. Similar to Remark 2.10, for the group H̄ we have A ∈
U(2) ⊂ SU(3)3 with detA = ε2, and for the group K̄− we have A ∈ U(2) ⊂
SU(3)3 with detA = εe−jdθ.

3. The cohomogeneity one actions of G = SO(2) × G2 on S
13

k

and P 13

k

In this section we determine the cohomogeneity one action of G on S13k and
P 13
k , see Theorem 3.4 and Corollary 3.5. Then we prove Theorem 1.5 in the

Introduction. At the end of this section, we determine the Weyl group of
the cohomogeneity one action on M13

k , see Proposition 3.6.
Throughout this section, we assume that k is an odd integer. For the

basics of cohomogeneity one manifolds, we refer to [GWZ, Section 1].

Since the actions of SO(2) and G2 commute, we determine the orbit
space B of S13k under the G2 action, and then consider the SO(2)-action on
B.

Proposition 3.1. The orbit space of S13k under the G2-action is

B2 = B1 ⊔Φ B2

with B1
∼= B2

∼= R× [0,∞), where the two charts are determined as follows:
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1) the point [x1 + x2e3, e1] in B1 is identified with the G2-orbit at (x1 +
x2e3, e1) in the chart with coordinates (u, v);

2) the point [x′1 + x′2e3, e1] in B2 is identified with the G2-orbit at (x
′
1 +

x′2e3, e1) in the chart with coordinates (u′, v′),

and the gluing map Φ : B1\ {0} → B2\ {0} is given by

Φ ([x, e1]) =
[

x/ |x|2 , e1
]

for any x = x1 + x2e3 ̸= 0.

Proof. On the chart with coordinates (u, v) we have ℜv = 0 and |v| = 1,
i.e., v ∈ S6 ⊂ ℑO. Write u = u0 + u1 with u1 ∈ ℑO. Then the condition
ℜ(uv) = 0 is equivalent to ⟨u1, v⟩ = 0. Since G2 acts transitively on S6, there
exists some σ1 ∈ G2 such that e1 = σ1(v), and then σ1(u) = u0 + σ1(u1)
with σ1(u1) ∈ ℑO. The left multiplication of e1 induces a complex struc-
ture on the space C3 = spanR {e2, . . . , e7}. The isotropy subgroup at e1 ∈ S6

is SU(3). Note that we also have ⟨e1, σ1(u1)⟩ = 0. Since SU(3) acts transi-
tively on S5 ⊂ C3, there is σ2 ∈ SU(3) ⊂ G2 such that σ2(σ1(u1)) = |u1| e3.
Let σ = σ2σ1 ∈ G2, then we have σ(u, v) = (u0 + |ℑu| e3, e1).

Next we consider the chart with coordinates (u′, v′). First, we have
v′ ∈ S6 ⊂ ℑO. Write u′ = u′0 + u′1 with u′1 ∈ ℑO. Then the condition
ℜ(u′(v′)−1) = 0 is equivalent to ℜ(ū′v′) = 0, i.e., ⟨u′1, v′⟩ = 0. Similar to the
argument for (u, v), there is a τ1 ∈ G2 such that e1 = τ1(v

′) and ⟨e1, τ1(u′1)⟩ =
0. Then there is a τ2 ∈ SU(3), the isotropy subgroup of e1 in G2, such
that τ2(τ1(u

′
1)) = |u′1| e3. It follows that τ(u′, v′) = (u′0 + |ℑu′| e3, e1) with

τ = τ2τ1 ∈ G2.
Now we consider the transition map Φm,n. Let (u, v) = σ(x1 + x2e3, e1)

with (x1, x2) ∈ R× [0,∞), i.e., u = σ(x1 + x2e3) and v = σ(e1). Write

x1 + x2e3 = r (cos θ + sin θe3)

for some θ ∈ [0, π]. Then the image (u′, v′) = Φm,n(u, v) is given by

u′ = σ

(

x1 + x2e3
x21 + x22

)

= σ

(

cos θ + sin θe3
r

)

v′ = σ

(

(x1 + x2e3)
me1(x1 + x2e3)

n

|x1 + x2e3|

)

= σ {(cos(kθ) + sin(kθ)e3) e1} ,

i.e., (u′, v′) is in the orbit of (r−1(cos θ + sin θe3), (cos(kθ) + sin(kθ)e3)e1).
Since all orbits have a point with (y1 + y2e3, e1) with y2 ≥ 0, it follows that
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there exists a τ ∈ G2 such that

1

r
(cos θ + sin θe3) = τ(y1 + y2e3)

cos(kθ)e1 + sin(kθ)e2 = τ(e1).

In fact we may choose τ such that it fixes e3, and rotates in {e1, e2}-plane
by the second equation above and the space spanned by {e4, . . . , e7}. Such
τ exists in another copy of SU(3), which is the isotropy subgroup of e3.
Denote [u, v] and [u′, v′], the G2-orbits in coordinate charts (u, v) and (u′, v′)
respectively. In a summary, under the transition map Φm,n, we have

Φm,n ([r(cos θ + sin θe3), e1]) =

[

1

r
(cos θ + sin θe3), e1

]

which defines the map Φ. This finishes the proof. □

Next, we consider the SO(2)-action on the orbit space B2. Recall

(3.1) γ = γ(a, b) =

(

a b
−b a

)

with a2 + b2 = 1.

Proposition 3.2. Let γ be an element in SO(2) as in (3.1). Then γ acts
on the G2-orbit space B2 = B1 ⊔Φ B2 as follows.

(1) If b = 0, then we have

γ ⋆ (u, v) = (u, sgn(a)v)

γ ⋆ (u′, v′) = (u′, sgn(a)v′)

on the (u, v)- and (u′, v′)-coordinate charts.

(2) If b ̸= 0, then we have

γ ⋆ [u1 + u2e3, e1]

=

[

−a

b
+

a− bu1

b
(

(a− bu1)2 + b2u22
) +

u2
(a− bu1)2 + b2u22

e3, e1

]

,

γ ⋆ [u′1 + u′2e3, e1]

=

[

a

b
− a+ bu′1

b ((a+ bu′1)
2 + b2(u′2)

2)
+

u′2
(a+ bu′1)

2 + b2(u′2)
2
e3, e1

]

where [u1 + u2e3, e1] ∈ B1 and [u′1 + u′2e3, e1] ∈ B2.
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Proof. Take (u, v) ∈ S13k through the orbit [u1 + u2e3, e1] ∈ B1 and write a−
bū = r(cos θ + sin θe3), i.e.,

{

a− bu1 = r cos θ

bu2 = r sin θ.

then

(3.2)











u1 =
1

b
(a− r cos θ)

u2 =
r

b
sin θ.

Claim. We have

γ ⋆ u = −a

b
+

1

rb
(cos θ + sin θe3)

γ ⋆ v = e1 (cos(kθ) + sin(kθ)e3) .

It follows from a straightforward computation. We have

γ ⋆ u = (au+ b)(a− bu)−1

= (au1 + b+ au2e3)
a− bū

|a− bu|2

=
(a2 + b2) cos θ − ar + (a2 + b2) sin θe3

rb

=
−ra+ cos θ + sin θe3

rb
.

This gives the first formula. Then we have

γ ⋆ v =
(a− bu)me1(a− bu)n

|a− bu|

= e1
(a− bū)m(a− bu)1−m

r

= e1
(a− bū)m(a− bū)m−1

r2m−1

= e1 (cos(2m− 1)θ + e3 sin(2m− 1)θ) .

This gives the second formula, as 2m− 1 = k. This finishes the proof of the
claim.
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Next we derive the action of γ on chart with coordinates (u′, v′). Take
(u′, v′) ∈ S13k , through the orbit [u′1 + u′2e3, e1] ∈ B2 with u′2 ≥ 0. Write a+
bū′ = r(cos t+ sin te3), i.e.,

{

a+ bu′1 = r cos t

−bu′2 = r sin t.

A straightforward computation shows the following:

γ ⋆ u′ =
a

b
− 1

rb
(cos t+ e3 sin t)

γ ⋆ v′ = e1 (cos(kt)− sin(kt)e3) .

From a similar argument in Proposition 3.1, both (γ ⋆ u, γ ⋆ v) and (γ ⋆ u, e1)
are in the same G2-orbit. This also holds for (u′, v′) and thus we finish the
proof. □

Remark 3.3. (a) One can see that the action of γ on B = B1 ⊔Φ B2 is
compatible with the map Φ. Restrict Φ to the first component. Take u =
u1 + u2e3 and u′ = Φ(u) = u′1 + u′2e3 with

u′1 =
u1

u21 + u22

u′2 =
u2

u21 + u22
.

Then a direct calculation shows that Φ(γ ⋆ u) = γ ⋆ u′.
(b) Restricted to the u and u′-component, the action of γ is the Möbius

transformation of the upper half plane with the identification

u1 + u2e3 ∼ u1 + iu2.

The unique fixed point is e3 with (u1, u2) = (0, 1). The action of SO(2) is by
isometries with respect to the hyperbolic metric

ds2 =
du21 + du22

u22
,

so that we can identify the orbit spaces as the line segment {u2e3 : 0≤u2≤1}.

Theorem 3.4. The cohomogeneity one action of G = SO(2)× G2 on S13k

has the following isotropy subgroups:
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(1) At (e3, e1) in the (u, v)-coordinate chart, the isotropy subgroup is

K = SO(2)SU(2) =

(

eiθ, diag

{(

cos kθ sin kθ
− sin kθ cos kθ

)

, 1, A

})

where A is a 4× 4-matrix.

(2) At (u1, e1) in the (u, v)-coordinate chart with u1 ∈ R, or (0, e1) in the
(u′, v′)-coordinate chart, the isotropy subgroup is

L = O(6) ∩ G2 =
(

detB,
(

detB 0
0 B

))

where B ∈ O(6) ∩ G2.

(3) At (u1 + u2e3, e1) in the (u, v)-coordinate chart with (u1, u2) ∈ R×
(0,∞)− (0, 1), the isotropy subgroup is

H = Z2 · SU(2) = (ε, diag {ε, ε, 1, A})

where ε = ±1 and A is a 4× 4-matrix.

Proof. Suppose q = g(p) for some g ∈ G2. Then the isotropy subgroups have
the following relation:

Gq =
{

(γ, h) ∈ SO(2)× G2 : (γ, g
−1hg) ∈ Gp

}

,

i.e., g−1Gqg = Gp. So it is sufficient to just consider the isotropy subgroups
on B2. From Proposition 3.1, we only need to consider the (u, v)-coordinate
chart, and the point (0, e1) in the (u′, v′)-coordinate chart.

We first consider the isotropy subgroup at (u, v) = (u1 + u2e3, e1) ∈ S13k .
Choose an element (γ−1, h), with γ = γ(a, b) ∈ SO(2) given by equation (3.1)
and h ∈ G2. Suppose that (γ−1, h) ∈ G(u,v), we have

h(u, v) = γ ⋆ (u, v).

In the first case we assume that the isotropy subgroup contains an element
(γ−1, h) with b ̸= 0. Write (u1, u2) in terms of (r, θ) as in equations (3.2).
Following Proposition 3.2, we have

−a

b
+

1

rb
(cos θ + sin θe3) =

a

b
− r

b
cos θ + h(e3)

r

b
sin θ

e1 cos(kθ)− e2 sin(kθ) = h(e1).
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Since ℜh(e3) = 0, these two equations above are equivalent to the following
equations:

2a =

(

r +
1

r

)

cos θ

(r sin θ)h(e3) =
sin θ

r
e3

h(e1) = e1 cos(kθ)− e2 sin(kθ).

If sin θ = 0, then cos θ = ±1. From the first equation above we have, ei-
ther a ≥ 1 or a ≤ −1. In either case, we have b = 0 that contradicts our
assumption that b ̸= 0. So we have sin θ ̸= 0, and thus the second equa-
tion implies that h(e3) = r−2e3. It follows that r = 1 and a = cos θ from the
first equation. From equations (3.2) we have u1 = 0, u2 = 1 and b = sin θ.
In this case h is the rotation in the plane spanR {e1, e2} while fixing e3.
The left multiplication of e3 defines a complex structure on the vector space
spanR {e1, e2, e4, . . . , e7} and

h

(

e1
e2

)

=

(

cos kθ − sin kθ
sin kθ cos kθ

)(

e1
e2

)

.

So we have (u, v) = (e3, e1), γ = R(θ) and h|{e1,e2} = R(−kθ). It follows that
(γ−1, h) ∈ K in Case (1).

In the second case we assume that b = 0. Suppose that a = 1, then we
have γ ⋆ (u, v) = (u, v). It follows that h(u, v) = (u, v), i.e.,

h(u1 + u2e3) = u1 + u2e3

h(e1) = e1.

It follows that h ∈ SU(3) if u2 = 0. If u2 ̸= 0, then we have h(e3) = e3, and
so h ∈ SU(2). Now suppose that a = −1 and we have γ ⋆ (u, v) = (u,−v). It
follows that h(u, v) = (u,−v), i.e.,

h(u1 + u2e3) = u1 + u2e3

h(e1) = −e1.

If u2 = 0, then we have h(e1) = −e1. If u2 ̸= 0, then we have h(e3) = e3 and
h(e1) = −e1. It follows that the isotropy subgroup at (u1, e1) is L as in Case
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(2), and the identity component is

L0 = {(1, A) : A ∈ SU(3) ⊂ G2} .

The isotropy subgroup at (u1 + u2e3, e1) with u2 > 0 and (u1, u2) ̸= (0, 1) is
H as in Case (3).

Next we consider the isotropy subgroup at (u′, v′) = (0, e1). Suppose that
(γ−1, h) ∈ G(0,e1) with γ being given by (3.1). If b ̸= 0, then from Proposi-
tion 3.2, we have

0 =
a

b
− 1

ab

i.e., a2 = 1 and thus b = 0. So we have b = 0 and γ ⋆ (0, e1) = (0, sgn(a)e1).
It follows that h(e1) = sgn(a)e1. So we have (γ−1, h) ∈ L as in Case (2). This
finishes the proof. □

Corollary 3.5. The cohomogeneity one action of G = SO(2)× G2 on P 13
k

has the following isotropy subgroups

K̄ = Z2 · SO(2)SU(2) =
(

eiθ, diag

{

ε

(

cos kθ sin kθ
− sin kθ cos kθ

)

, 1, A

})

where ε = ±1 and A is a 4× 4-matrix,

L̄ = Z2 × (O(6) ∩ G2) = (ε, diag {detB,B})
where ε = ±1 and B ∈ O(6) ∩ G2,

H̄ = Z2 × (Z2 · SU(2)) = (ε1, diag {ε2, ε2, 1, A})
where ε1,2 = ±1 and A is a 4× 4-matrix.

Now we show the equivariant diffeomorphisms between S13k and M13
k ,

and between P 13
k and N13

k .

Proof of Theorem 1.5. From the general structure result, see for example
[GWZ, Section 1], two cohomogeneity one manifolds with the same isotropy
subgroups are equivariantly diffeomorphic. In our case, let D2 and D6 be
disks with ∂D2 = S1 = K−/H and ∂D6 = S5 = K+/H with K± and H being
given in Theorem 2.9. Then M13

k is equivariantly diffeomorphic to the union
of the two disk bundles glued together along the boundary G/H:

B13 = G×K− D
2 ∪G/H G×K+ D

6.

From Theorem 3.4, the sphere S13k is also equivariantly diffeomorphic to the
B13 above. It follows that S13k is equivariantly diffeomorphic to M13

k . The
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equivariant diffeomorphism between P 13
k and N13

k follows from a similar
argument and Corollaries 2.12, 3.5. This finishes the proof. □

In the last part of this section we determine the Weyl group W, which
will be used to determine the invariant metrics on M13

k .

Proposition 3.6. The Weyl group of the cohomogeneity one action of G =
SO(2)× G2 on M13

k is W ≃ Z2 ⋉ Z4, which is generated by w− ∈ K− and
w+ ∈ K+:

w− = (i, A) with A = diag















(

0 ε
−ε 0

)

, 1,









0 0 0 −ε
0 1 0 0
0 0 1 0
ε 0 0 0























w+ = (1, diag {1,−1,−1, 1, 1,−1,−1}) ,

where ε = 1 for k = 1, 5, . . ., and ε = −1 for k = 3, 7, . . ..

Proof. First, it is easy to check that w+ ∈ K+ and neither of w± is in H.
We show that w− ∈ K−. It is sufficient to prove that A ∈ G2. Since eiθ = i,
we may assume that θ = π

2 . It follows that ε = sin kθ. Let j be the complex
structure induced by the left multiplication of e3. So we have

A|span
R
{e1,e2} = jk, A|span

R
{e4,e7} = −jk and A|span

R
{e6,e5} = 1,

i.e., A embeds in U(2) ⊂ SU(3)3 with the image diag
{

jk,−jk, 1
}

and so
A ∈ G2.

We check that each w± is of order 2:

w2
− = (−1, diag {−1,−1, 1,−1, 1, 1,−1}) ∈ H

and

w2
+ = (1, I7) ∈ H.

This shows that w± are generators of the Weyl group. Next we determine
the order of w−w+. Write w−w+ = (i, B), and we have

B = diag















(

0 −ε
−ε 0

)

,−1,









0 0 0 ε
0 1 0 0
0 0 −1 0
ε 0 0 0























.
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It follows thatB2 = I7, the identity matrix. So we have (w+w−)2 = (−1, I7) ̸∈
H, but (w+w−)4 = (1, I7) ∈ H, i.e., W = ⟨w−, w+⟩ ≃ Z2 ⋉ Z4 (is just the di-
hedral group D8) which finishes the proof. □

4. The G-invariant metrics on M13

k

In this section we determine all G invariant metric on M13
k with G = SO(2)×

G2. See Proposition 4.3 for the invariant metrics on the regular part, and
Lemma 4.6 for the conditions to ensure the smoothness of the metrics at the
singular orbits.

Throughout this section, we assume that k is an odd integer. We refer
to [GZ2, Section 1] for the description of invariant metrics on a general
cohomogeneity one manifold.

Recall that c(t) is a normal minimal geodesic between two singular orbits
B− and B+; with c(0) = p− ∈ B−, and c(L) = p+ ∈ B+. On the regular part
of M13

k , the metric is determined by

gc(t) = dt2 + gt

where gt is a family of homogeneous metrics on G/H. By means of Killing
vector fields, we identify the tangent space of G/H at c(t), t ∈ (0, L) with an
AdH-invariant complement p of the isotropy subalgebra h of H in g, and the
metric gt is identified with an AdH-invariant inner product on p.

In the following, we introduce a few subspaces in p such that the invariant
metric has a block-diagonal form. The Lie algebra g2 of G2 has the following
embedding in so(7):
(4.1)

X =





















0 x1 − y1 x2 + y2 −x5 + y5 −x6 − y6 x3 + y3 x4 − y4
−x1 + y1 0 b y4 y3 y6 y5
−x2 − y2 −b 0 x3 x4 x5 x6
x5 − y5 −y4 −x3 0 a y2 y1
x6 + y6 −y3 −x4 −a 0 x1 x2
−x3 − y3 −y6 −x5 −y2 −x1 0 a+ b
−x4 + y4 −y5 −x6 −y1 −x2 −a− b 0





















for a, b, x1, . . . , x6, y1, . . . , y6 ∈ R. We choose the following bi-invariant inner
product on g2:

Q0(X,X) = −1

4
trX2 = a2 + ab+ b2 +

6
∑

i=1

(

x2i + y2i
)

− x1y1 + x2y2 + x3y3 − x4y4 − x5y5 + x6y6.
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The Lie algebra h of H = Z2 · SU(2) has the following form

(4.2) h =















(

O3×3 O3×4

O4×3 A4×4

)

with A =









0 a −x2 x1
−a 0 x1 x2
x2 −x1 0 a
−x1 −x2 −a 0























where Op×q is the zero matrix. The Q0-orthogonal complement m of h is
given by

m = {X ∈ g2 : b+ 2a = 0, x1 + y1 = 0, and x2 − y2 = 0} .

Note that, h ⊂ so(4) is the standard embedding of su(2) ⊂ so(4):

A1 + iA2 7→
(

A1 −A2

A2 A1

)

.

Denote the following matrices in m:

U0 = diag



















0 −2 0
2 0 0
0 0 0



 ,









0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0























,

U1 = diag



















0 0 0
0 0 2
0 −2 0



 ,









0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0























,

and

U2 = diag



















0 0 2
0 0 0
−2 0 0



 ,









0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0























.

Then we have

Q0(Ui, Ui) = 3 and Q0(Ui, Uj) = 0 for 0 ≤ i ̸= j ≤ 2.
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Denote m’s subspaces

m1 =



























































0 0 0 0 0 0 0
0 0 0 x4 −x3 −x6 x5
0 0 0 x3 x4 x5 x6
0 −x4 −x3 0 0 0 0
0 x3 −x4 0 0 0 0
0 x6 −x5 0 0 0 0
0 −x5 −x6 0 0 0 0





















= x3E1 + x4E2 + x5E3 + x6E4







































,

and

m2 =







































1√
3





















0 0 0 −2x5 −2x6 2x3 2x4
0 0 0 −x4 x3 x6 −x5
0 0 0 x3 x4 x5 x6

2x5 x4 −x3 0 0 0 0
2x6 −x3 −x4 0 0 0 0
−2x3 −x6 −x5 0 0 0 0
−2x4 x5 −x6 0 0 0 0





















= x3F1 + x4F2 + x5F3 + x6F4







































.

Note that our matrices of E1, . . . E4 and F1, . . . , F4 are different from those
in [GVWZ]. We have Q0(Ep, Fq) = 0 for 1 ≤ p, q ≤ 4, and

Q0(Ei, Ei) = 1 Q0(Ei, Ej) = 0

Q0(Fi, Fi) = 1 Q0(Fi, Fj) = 0

for 1 ≤ i ̸= j ≤ 4.
Next, we consider the Lie algebra g = so(2)⊕ g2 with the following bi-

invariant inner product

(4.3) Q(sE12 +X, sE12 +X) =
3k2

4
s2 +Q0(X,X)

where sE12 ∈ so(2), and E12 is the skew-symmetric 2× 2-matrix with (2, 1)-
entry 1. So we have

(4.4) p = so(2) +m.

Let

X1 =

(

2

k
E12 + U0

)

/
√
6, X2 =

(

2

k
E12 − U0

)

/
√
6(4.5)

Y1 = U1/
√
3, Y2 = U2/

√
3.(4.6)
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It follows that {X1, X2, Y1, Y2, E1, . . . , E4, F1, . . . , F4} is a Q-orthonormal
basis of p, and

k− = h+ spanR {X1} , Tc(0)B− ≃ m1 +m2 + spanR {X2, Y1, Y2}
k+ = h+m1 + spanR {Y1} , Tc(L)B+ ≃ m2 + spanR {X1, X2, Y2} .

From the explicit forms of the generators of the Weyl group W in Propo-
sition 3.6, we determine the action of W on each subspace in p.

Lemma 4.1. The action of the Weyl group W is given by the following:

1) Adw−
acts on p via

X1 7→ X1, X2 7→ X2, Y1 7→ εY2, Y2 7→ −εY1

and

E1 7→
ε

2
E4 +

√
3ε

2
F4, F1 7→

√
3ε

2
E4 −

ε

2
F4

E2 7→
1

2
E2 +

√
3

2
F2, F2 7→

√
3

2
E2 −

1

2
F2

E3 7→
1

2
E3 +

√
3

2
F3, F3 7→

√
3

2
E3 −

1

2
F3

E4 7→ −ε

2
E1 −

√
3ε

2
F1, F4 7→ −

√
3ε

2
E1 +

ε

2
F1.

2) Adw+
acts on p via

X1 7→ X2, X2 7→ X1, Y1 7→ Y1, Y2 7→ −Y2

and

E1 7→ −E1, E2 7→ −E2, E3 7→ E3, E4 7→ E4;

F1 7→ −F1, F2 7→ −F2, F3 7→ F3, F4 7→ F4.

We determine the irreducible summands of the AdH representation on p

in the following

Lemma 4.2. The adjoint representation of H on the space p is determined
by the following:
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1) For the connected component H0 = SU(2) ⊂ H, the representation of
AdH0

on

p = spanR {X1, X2, Y1, Y2} ⊕m1 ⊕m2

is given by

1⊕ 1⊕ 1⊕ 1⊕ [µ2]R ⊕ [µ2]R

where 1 is the trivial representation, and [µ2]R is the standard repre-
sentation of SU(2) on C2 = R4.

2) The element

τ = (−1, diag {−1,−1, 1,−1, 1, 1,−1}) ∈ H

acts trivially on spanR {X1, X2, E2, E3, F2, F3}, and maps v to −v on
spanR {Y1, Y2, E1, E4, F1, F4}.

Proof. First note that the adjoint representation of H is trivial on the line
spanned by E12 ∈ so(2). Recall that from the embedding (4.2) of the Lie
algebras, the identification between SU(2) and H0 = SU(2) ⊂ SU(3) ⊂ SO(7)
is given by

(

α β
−β̄ ᾱ

)

7→ h = diag

{

I3,

(

h1 −h2
h2 h1

)}

with

h1 =

(

a1 b1
−b1 a1

)

and h2 =

(

−b2 a2
a2 b2

)

where α = a1 + ia2, β = b1 + ib2 and the complex structure is induced by
the left multiplication of e3. It is straightforward to check that AdhUj = Uj

for j = 0, 1, 2 and the following relations

Adh









E1 F1

E2 F2

E3 F3

E4 F4









= hT









E1 F1

E2 F2

E3 F3

E4 F4









.

This shows the first part. The statement in the second part follows by a
straightforward computation. □

Denote X∗, the Killing vector field generated by X ∈ p along c(t). Using
the fixed background inner product Q on p, the invariant metric gt, t ∈ (0, L)
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can be written as

gt(X
∗, Y ∗) = Q(P (t)X,Y )

for any X,Y ∈ p, where P (t) is a family of positive definite AdH-invariant
endomorphisms of p. From Lemma 4.2 and Schur’s Lemma in representation
theory, we have

Proposition 4.3. Restricted to the regular part M13
k − (B+ ∪B−), a G-

invariant metric g = dt2 + gt is determined by the following inner products
on the tangent space of Tc(t)G/H ∼= p (0 < t < L):

gt(X1, X1) = f2
1 (t), gt(X2, X2) = f2

2 (t), gt(X1, X2) = f12(t)

gt(Y1, Y1) = h21(t), gt(Y2, Y2) = h22(t), gt(Y1, Y2) = h12(t)

gt(Ei, Ei) = a21(t), gt(Fi, Fi) = a22(t), gt(Ei, Fi) = a12(t)

gt(E1, F4) = gt(E3, F2) = b12(t), gt(E2, F3) = gt(E4, F1) = −b12(t),

with i = 1, . . . , 4, and the other components vanish. Here the 10 functions
are smooth on (0, L) and gt is positive definite for any t ∈ (0, L).

Remark 4.4. If k is an even integer, from Remark 2.11, the principal
isotropy subgroup is H = Z2 × SU(2), and the adjoint representation of H
on p is given by Case (1) in Lemma 4.2. It follows that for an invariant
metric on the regular part, we need 10 smooth functions to describe the
inner products on spanR {X1, X2, Y1, Y2}, other 6 smooth functions for the
inner products on m1 ⊕m2.

Remark 4.5. If the group is SO(2)× SO(7), there are 6 functions involved
for an invariant metric on M13

k , see [BH] and [GVWZ].

There are further conditions required such that the metric dt2 + gt can
be extended smoothly to singular orbits at t = 0 and L. These conditions
are given in [BH] and [GVWZ] when the group is SO(2)× SO(7). For our
case with G = SO(2)× G2, we have

Lemma 4.6. Assume k ≥ 3 odd. To ensure the metric g = dt2 + gt can
be smoothly extended to the singular orbits at t = 0 and L, the following
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conditions hold.

f1(0) = 0, f12(0) = 0, h1(0) = h2(0) > 0, h12(0) = 0,

a12(0) =
√
3
2

(

a21(0)− a22(0)
)

, b12(0) = 0,

f ′
1(0) =

4
k
√
6
, f ′

12(0) = 0, f ′
2(0) = 0, h′1(0) = h′2(0) = h′12(0) = 0,

a′1(0) = a′2(0) = a′12(0) = b′12(0) = 0;

and

h2(L) = a2(L) > 0, h′2(L) = a′2(L) = 0, h1(L) = a1(L) = 0.

Proof. We first consider the singular orbit at t = 0. Note that σ =
(ei2π/k, Id) ∈ K− acts trivially on B− = G/K−, and the slice representation
on the 2-disk bundle of B− is given by R(2θ) for R(θ) ∈ SO(2). Here R(ϕ)
for ϕ ∈ [0, 2π) is the counterclockwise rotation with the matrix form

R(ϕ) =

(

cosϕ sinϕ
− sinϕ cosϕ

)

.

It follows that the singular orbit B− is the fixed points set of σ and hence
totally geodesic, see also [GVWZ, p. 162].

SinceX1 collapses onB−, we have f1(0) = 0 and f12(0) = 0. The isotropy
representation of K− = SO(2)SU(2) on the tangent space of

Tc(0)B− = spanR {X2}+ spanR {Y1, Y2}+m1 +m2

is given by

1 + ρ2 ⊗ 1 + ρ2 ⊗ [µ2]R

where ρ2 is the standard action of SO(2) on R2 via R(kθ). Note that the
third component above is not irreducible as a real representation. That the
second component is irreducible as a real representation, implies that

h1(0) = h2(0) > 0, h12(0) = 0.

In the following we consider the representation on m1 +m2. An explicit
matrix form of the SO(2) action on ℑO = spanR {e1, . . . , e7} is given by

A = diag



















cos 2u − sin 2u 0
sin 2u cos 2u 0
0 0 1



 ,









cosu 0 0 sinu
0 cosu − sinu 0
0 sinu cosu 0

− sinu 0 0 cosu






















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with u = −kθ/2. The adjoint action AdA on m1 +m2 under the basis
{E1, . . . , E4, F1, . . . , F4} has the matrix form M = (M1|M2), with

M1 =

























cos3 u 0 0 sin3 u
0 cos3 u − sin3 u 0
0 sin3 u cos3 u 0

− sin3 u 0 0 cos3 u√
3 cosu sin2 u 0 0

√
3 cos2 u sinu

0
√
3 cosu sin2 u −

√
3 cos2 u sinu 0

0
√
3 cos2 u sinu

√
3 cosu sin2 u 0

−
√
3 cos2 u sinu 0 0

√
3 cosu sin2 u

























and

M2 =

























√
3 cosu sin2 u 0 0

√
3 cos2 u sinu

0
√
3 cosu sin2 u −

√
3 cos2 u sinu 0

0
√
3 cos2 u sinu

√
3 cosu sin2 u 0

−
√
3 cos2 u sinu 0 0

√
3 cosu sin2 u

(cosu+ 3 cos 3u)/4 0 0 (sinu− 3 sin 3u)/4
0 (cosu+ 3 cos 3u)/4 (− sinu+ 3 sin 3u)/4 0
0 (sinu− 3 sin 3u)/4 (cosu+ 3 cos 3u)/4 0

(− sinu+ 3 sin 3u)/4 0 0 (cosu+ 3 cos 3u)/4

























.

Using the same basis of m1 +m2, the endomorphism P (t) has the following
matrix form:

P (t) =

(

a21(t)I4 P12(t)
P12(t) a22(t)I4

)

with

P12(t) =









a12(t) 0 0 b12(t)
0 a12(t) −b12(t) 0
0 b12(t) a12(t) 0

−b12(t) 0 0 a12(t)









where I4 is the identity matrix. So the K− invariance of P (0), i.e., MP (0) =
P (0)M , implies that

b12(0) = 0 and a12(0) =

√
3

2

(

a21(0)− a22(0)
)

.

Note that on the circle R(θ)(0 ≤ θ ≤ 2π), we have R(π) ∈ H. So we have
ϕ′(0) = 2, with ϕ(t) the length of Killing vector field generated by d

dθ . By
our choice of X1, we have f1(t) =

2
k
√
6
ϕ(t) so that f ′

1(0) =
4

k
√
6
. Since Adw−

fixes X1 and X2, we have gt(X
∗
1 , X

∗
2 ) is invariant under the reflection of

the 2-disk slice generated by Adw−
that changes t to −t. It follows that
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f ′
12(0) = 0. Similarly we also have f ′

2(0) = 0. The other derivatives vanish
at t = 0 follows from the fact that B− is totally geodesic and the second
fundamental form is −1

2P
−1
t P ′

t .
Next we consider the singular orbit at t = L. The slice at p+ is V = R6,

and the action by the connected component K+
0 = SU(3) is given by [µ3]R.

Restricted to the subspaceW = spanR {U0, U2} ⊕m2 ⊂ Tc(L)B+, the adjoint
representation by K+

0 is given by [µ3]R. So we have h2(L) = a2(L). The
second fundamental form II at c(L) restricted onW ×W is a K+

0 -equivariant
map

II : Sym2(W )× V → R.

However the symmetric square of [µ3]R is given by [2, 0]R ⊕ [1, 1]⊕ 1 in
terms of highest weight notions, and it does not contain [µ3]R = [1, 0]R.
It follows that II restricted on W ×W vanishes at c(L) and so we have
a′2(L) = h′2(L) = 0. The equations a1(L) = h1(L) = 0 follow from the fact
that Y1 and m1 collapse at c(L). This finishes the proof □

5. Rigidities of non-negatively curved metrics

In this section, we derive a few rigidity results when the invariant metric is
assumed to be non-negatively curved, see Propositions 5.2 and 5.3.

Recall the following rigidity result on Jacobi vector fields in [VZ].

Proposition 5.1 ([VZ, Proposition 3.2]). Let Mn+1 be a manifold with
non-negative sectional curvature, and V a self adjoint family of Jacobi fields
along the geodesic c : [t0, t1] → M . Assume there exists an X ∈ V such that
the following conditions hold.

(a) ∥X∥t ̸= 0, ∥X∥′t = 0 for t = t0 and t = t1.

(b) If Y ∈ V and ⟨X(t1), Y (t1)⟩ = 0, then ⟨X(t0), Y (t0)⟩ = 0.

(c) If Y ∈ V and Y (t) = 0 for some t ∈ (t0, t1), then ⟨X(t0), Y (t0)⟩ = 0.

(d) If Y (t0) = 0, then ⟨X ′(t0), Y ′(t0)⟩ = 0.

Then X is a parallel Jacobi vector field along c.

We consider the case where V is given by a family of Killing vector
fields. Recall that for any X ∈ g, X∗ is the Killing vector field generated
by X along the geodesic c(t), and denote X(t) = X∗(t). Since the paral-
lel transport along c(t) is AdH-invariant, we may choose V = {X∗ : X ∈ n}
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for the subspace n ⊂ p such that it is the sum of all equivalent irreducible
representations in p.

We show that such V is a self adjoint family of Jacobi fields along the
geodesic c(t). Let T = ∂

∂t be the unit tangent vector along c(t). For any
X∗, Y ∗ ∈ V we have

g(∇TX
∗, Y ∗) = −g(∇Y ∗X∗, T ) = −g(∇X∗Y ∗, T )

= g(∇X∗T, Y ∗),

and

g(X ′(t), Y (t)) = g(∇TX(t), Y (t)) = g(∇X(t)T, Y (t)) = g(∇Y (t)T,X(t))

= g(Y ′(t), X(t)).

So V is self-adjoint. We also have

g(X ′(t), Y (t)) =
1

2
DT g(X(t), Y (t)) =

1

2
Q(P ′(t)X,Y )

and thus

(5.1) X ′(t) =
1

2
P (t)−1P ′(t)X.

Proposition 5.2. Suppose that (M13
k , g) has non-negative curvature with

g an invariant metric and k ≥ 3 odd. The Killing vector fields X∗ generated
by the following vectors X ∈ p are parallel Jacobi fields along c(t)(t ∈ [0, L]):

X = Y2

and

X = βEi + Fi (i = 1, 2, 3, 4) with β = −a12(0)

a21(0)
.

Moreover for all t ∈ [0, L], we have h12(t) = b12(t) = 0 and

h2(t) = h2(L) > 0, a12(t) = −βa21(t), a22(t) = β2a21(t) + h22(L).

Proof. We first consider the case X = Y2. By AdH-invariance take

V = {Y ∗ : Y ∈ spanR {Y1, Y2}} .

In Proposition 5.1, condition (a) holds as h2(t) ̸= 0 and h′2(t) = 0 at t = 0
and L. For condition (b), if g(Y2(L), Y (L)) = 0, then Y = λY1 for some
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constant λ. So (b) holds as

g(Y2(0), λY1(0)) = λh12(0) = 0.

Condition (c) and (d) hold as such Y is zero in V . It follows that Y ∗
2 is a

parallel Jacobi field for t ∈ [0, L], h2(t) is a constant function and h12(t) = 0
for t ∈ [0, L].

Next for the case X = Fi + βEi, we take V = {Y ∗ : Y ∈ m1 +m2}. We
may assume that i = 1. We have

∥X(t)∥2 = a22(t) + β2a21(t) + 2βa12(t)

∥X(t)∥ ∥X(t)∥′ = a′2(t) + β2a′1(t) + βa′12(t).

It follows that

∥X(0)∥2 = a22(0) + β2a21(0) + 2βa12(0)

= a22(0) +
a212(0)

a21(0)
− 2

a212(0)

a21(0)

= a22(0)−
a212(0)

a21(0)

= a22(0)−
3

4
a21(0)

(

1− a22(0)

a21(0)

)2

.

If ∥X(0)∥ = 0, then we have

a22(0)

a21(0)
=

3

4

(

1− a22(0)

a21(0)

)2

.

It follows that either a21(0) = 3a22(0) or a22(0) = 3a21(0). Say a21(0) = 3a22(0),
then Lemma 4.6 implies that a12(0) =

√
3a22(0) and then the Killing vector

fields E1(0) and F1(0) are parallel which shows a contradiction. Similarly the
second case cannot happen either and so we have ∥X(0)∥ ≠ 0. From Lemma
4.6 again we have ∥X(0)∥′ = 0. At t = L since E1(L) = 0 we have ∥X(L)∥ =
a2(L) > 0, and ∥X(L)∥′ = a′2(L) = 0 from Lemma 4.6. So Condition (a) in
Proposition 5.1 holds for X.

For Condition (b) in Proposition 5.1, we may assume that Y = y1E1 +
y2F1. It follows that

⟨X(L), Y (L)⟩ = y2a
2
2(L)
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and ⟨X(L), Y (L)⟩ = 0 implies that y2 = 0. By normalization we assume that
Y = E1, and then

⟨X(0), Y (0)⟩ = ⟨F1(0) + βE1(0), E1(0)⟩ = a12(0) + βa21(0) = 0

by our choice of β. So Condition (b) holds for X. Condition (c) and (d) also
hold as such Y is zero in V . It follows that the Killing vector field X∗ is a
parallel Jacobi field for t ∈ [0, L]. Note that equation (5.1) yields

2X ′(t) = P (t)−1P ′(t)X

and the block in P (t) corresponding to {E1, F1, E4, F4} is given by

P1(t) =









a21(t) a12(t) 0 b12(t)
a12(t) a22(t) −b12(t) 0
0 −b12(t) a21(t) a12(t)

b12(t) 0 a12(t) a22(t)









.

It follows that P1(t)
−1P ′

1(t)X = 0 and then P ′
1(t)X = 0, i..e, we have b′12(t) =

0 and

d

dt

(

βa21(t) + a12(t)
)

= 0

d

dt

(

βa12(t) + a22(t)
)

= 0

for any t ∈ (0, L). So we have b12(t) = b12(0) = 0 and

a12(t) + βa21(t) = a12(0) + βa21(0) = 0

a22(t) + βa12(t) = a22(L)− βa21(L) = a22(L).

Note that a2(L) = h2(L) and it finishes the proof. □

In the following we assume that h2(L) = 1 by rescaling the metric g if
necessary. From Proposition 5.2 and Lemma 4.6 we have

β = −a12(0)

a21(0)
, a22(0) = β2a21(0) + 1

and

a12(0) =

√
3

2

(

a21(0)− a22(0)
)

.
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Solving a21(0) yields

(5.2) a21(0) =

√
3√

3(1− β2) + 2β
.

In particular we have β ∈
(

− 1√
3
,
√
3
)

.

Proposition 5.3. Suppose that (M13
k , g) has non-negative curvature with

g an invariant metric and k ≥ 3 odd. Assume that h2(L) = 1. Then we have

(5.3)
3

4
≤ a21(0) ≤

7

12
+

√
13

6
≈ 1.184.

Proof. The lower bound of a21(0) follows from the minimum value of the
function a21(0) in equation (5.2). To obtain the upper bound, we consider
the sectional curvature of the 2-plane spanned by Y1 and E1 + rF1 on the
singular orbit B−. Note that B− is totally geodesic and a computation (see
the details in Appendix A.1) yields

R(Y1, E1, E1, Y1) =
6
√
3β5 + 9β4 − 32

√
3β3 + 10β2 + 18

√
3β + 9

4
(√

3β2 − 2β −
√
3
)2

R(Y1, F1, F1, Y1) =
27β4 + 12

√
3β3 + 22β2 + 4

√
3β + 3

12
(√

3β2 − 2β −
√
3
)2

and

R(Y1, E1, F1, Y1) = −β
(

9β4 + 12
√
3β3 − 54β2 + 20

√
3β + 57

)

12
(√

3β2 − 2β −
√
3
)2 .

A necessary condition that R(Y1, E1 + rF1, E1 + rF1, Y1) ≥ 0 for all r is that

p(β) = R(Y1, E1, E1, Y1)R(Y1, F1, F1, Y1)− (R(Y1, E1, F1, Y1))
2 ≥ 0.

From the formulas of the Riemann tensors we have

p(β) =
(
√
3β2+2β−

√
3)(−9β6+30

√
3β5+183β4−4

√
3β3−183β2+30

√
3β+9)

48(
√
3β2−2β−

√
3)

3 .

Note that p(0) > 0. On the interval (−1/
√
3,
√
3), the numerator of p(β) has

a simple root β1 < 0 and a triple root β2 > 0 given by

β1 =
7

3

√
3− 2

3

√
39 and β2 =

1√
3
.
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So we have β ∈ [β1, β2]. Over this interval the function a21(0) is monotone
decreasing with

a21(0)
∣

∣

∣

β=β1
=

7

12
+

√
13

6
≈ 1.184 and a21(0)

∣

∣

∣

β=β2
=

3

4
.

This finishes the proof. □

6. Proofs of Theorems 1.2, 1.3 and 1.10

In this section we first prove Theorem 1.10. Then Theorems 1.2 and 1.3
are corollaries of Theorem 1.10, see the proof at the end of this section.
Note that there is a shorter proof of Theorem 1.10 that works for k ≥ 5, see
Remark 6.6.

Throughout this section we assume that k ≥ 3 is an odd integer, and
that M13

k admits an invariant metric g with non-negative curvature. We
assume that h2(L) = 1 by rescaling the metric g if necessary. It follows from
Lemma 4.6, Propositions 5.2 and 5.3, we have

b12(t) = h12(t) = 0, h2(t) = 1,

a12(t) = −βa21(t), a22(t) = β2a21(t) + 1,

for some constant β, and

f1(0) = 0, f12(0) = 0, h1(0) = 1, a21(0) =

√
3√

3(1− β2) + 2β
;

f ′
1(0) =

4

k
√
6
, f ′

12(0) = 0, f ′
2(0) = 0, h′1(0) = 0, a′1(0) = 0;

h1(L) = a1(L) = 0.

The endomorphism has the following block-diagonal form

P

(

X1

X2

)

=

(

f2
1 f12

f12 f2
2

)(

X1

X2

)

P

(

Y1
Y2

)

=

(

h21 0
0 1

)(

Y1
Y2

)

and

P

(

Ei

Fi

)

=

(

a21 −βa21
−βa21 β2a21 + 1

)(

Ei

Fi

)

for i = 1, 2, 3, 4.
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Lemma 6.1. We have a′′1(t) ≤ 0 and h′′1(t) ≤ 0 for t ∈ [0, L].

Proof. We know that V = spanR {E1, F1} is an invariant space of P (t) with
the following matrix form

P

(

E1

F1

)

=

(

a21 −βa21
−βa21 β2a21 + 1

)(

E1

F1

)

and the inverse is given by

P−1
∣

∣

∣

V
=

(

β2 + 1
a2
1

β

β 1

)

.

So the sectional curvature K(E1, T ) of the plane spanned by E1 and T = ∂
∂t

has the same sign as

R(E1, T, T, E1) = −a1(t)a
′′
1(t).

The non-negativity of K(E1, T ) implies that a′′1(t) ≤ 0. The inequality of
h′′1(t) follows similarly from K(Y1, T ) ≥ 0. □

Let

(6.1) ξ(t) = a21(0)− a21(t)

and from Lemma 6.1, we have

0 ≤ ξ(t) ≤ a21(0) for t ∈ [0, L]

and ξ(0) = ξ′(0) = 0.

Lemma 6.2. The sectional curvature of the plane spanned by X and Y
with

X = E1 −
√
3F1 and Y =

√
3E4 + F4

is given by

K(X,Y ) =
R(X,Y, Y,X)

|X ∧ Y |2

with

(6.2)
4a41(0)

3
R(X,Y, Y,X) =

8

3

f2
1 + f2

2 + 2f12
f2
1 f

2
2 − f2

12

(ξ(t))2 −
(

ξ′(t)
)2

.
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Moreover K(X,Y ) ≥ 0 implies that

(6.3)
f1ξ

′

ξ
≤ (1 + η(t))

2
√
6

3
for t ∈ (0, L),

where η(t) is a positive function with limt→0 η(t) = 0.

Proof. The formula of R(X,Y, Y,X) in equation (6.2) is derived in Ap-
pendix A.2. To get inequality (6.3), one can apply the initial conditions
f1(0) = f12(0) = 0 and f2(0) > 0. □

Remark 6.3. The choice of such vectors X and Y is motivated by Lemma
1.1(b) in [WZ]. Here X and Y are eigenvectors of P (0). The sectional cur-
vature of the 2-plane is zero at t = 0, and the contribution to the sectional
curvature from the second fundamental form for t > 0 involves the func-
tion f1.

In the proof of Theorem 1.10, the following algebraic fact of certain
quartic functions is also needed. Denote

(6.4) α = a21(0) and γ =
√

α(4α− 3)

and we introduce the following two quartic functions

Ψ1(x) =
5α+ 2γ

48α2
x4 +

2α− γ

24
√
3α2

x3 − α+ γ

8α2
x2 +

2α+ γ

8
√
3α2

x− 1

16α

Ψ2(x) =
3α2 − α− 2γ

48α2
x4 +

2α2 − 3α+ γ

8
√
3α2

x3 +
9− 2α

48α
x2 − 1

4
√
3
x+

1

16
.

Lemma 6.4. Assume α ≥ 3
4 . Then we have

3Ψ1(x) + 4Ψ2(x) ≥ 0

for any x ∈ R. Moreover the minimum can be achieved by a unique x = xα
such that Ψ2(xα) > 0.

Proof. Denote Ψ(x) = 3Ψ1(x) + 4Ψ2(x). First we show that Ψ(x) = 0 has a
double real root. One may see the fact from the vanishing of the discriminant.
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In the following we solve this double root explicitly. A calculation yields

Ψ(x) =
11α+ 12α2 − 2γ

48α2
x4 +

−10α+ 8α2 + 3γ

8
√
3α2

x3 +
9α− 4α2 − 9γ

24α2
x2

+
6α− 8α2 + 3γ

8
√
3α2

x+
4α− 3

16α

Ψ′(x) =
11α+ 12α2 − 2γ

12α2
x3 +

√
3
(

−10α+ 8α2 + 3γ
)

8α2
x2

+
9α− 4α2 − 9γ

12α2
x+

6α− 8α2 + 3γ

8
√
3α2

Ψ′′(x) =
11α+ 12α2 − 2γ

4α2
x2 +

√
3
(

−10α+ 8α2 + 3γ
)

4α2
x+

9α− 4α2 − 9γ

12α2
.

One can check that the following xα is a common real root of Ψ(x) =
Ψ′(x) = 0:

(6.5) xα =

√
3 (3− 4α− 4γ)

3 + 12α

and Ψ′′(x) = 8
3 − 3

2α > 0. It follows that xα is a local minimum of Ψ(x).
Write

Ψ(x) =
11α+ 12α2 − 2γ

48α2
(x− xα)

2p(x)

and then we have

p(x) = x2 − 2
√
3 (2− α+ γ)

4 + 3α
x+

3α

5α+ 2γ
.

The discriminant ∆ of p(x) is given by

∆ =
36

12− 41α− 20γ
< 0

that implies that Ψ(x) = 0 has no other real roots.
To finish the proof we only need to check that Ψ2(xα) > 0. An explicit

computation shows that

Ψ2(xα) =
(16α− 9)

(

9− 312α+ 656α2 − 48γ + 320αγ
)

36α(1 + 4α)4
> 0

as α ≥ 3
4 . □



✐

✐

“5-He” — 2021/5/7 — 15:45 — page 747 — #41
✐

✐

✐

✐

✐

✐

Fake RP13 with cohomogeneity one actions 747

We will use the sectional curvature of the plane spanned by Ar = X1 +
rX2 and Bq = E1 + qF1. Let

R1 = R(X1, E1, E1, X1) R2 = R(X1, E1, F1, X1)

R3 = R(X1, F1, F1, X1) R4 = R(X2, E1, E1, X2)

R5 = R(X2, E1, F1, X2) R6 = R(X2, F1, F1, X2)

R7 = R(X1, E1, E1, X2) R8 = R(X1, F1, E1, X2)

R9 = R(X1, E1, F1, X2) R10 = R(X1, F1, F1, X2).

The formulas of Ri’s are listed in Appendix A.3. In the following, we group
the terms in Ri’s into three different parts: one with the factor ξ, with the
factor ξ′, and without the factor ξ or ξ′.

Lemma 6.5. The Ri’s have the following forms:

R1 = − ξ

2α
(1 + η1) +

1

2
f1f

′
1ξ

′ +
1

8

(

f2
1 − f12

)2

R2 =
ξ

2
√
3α

(1 + η2) +
1

2
√
3

(γ

α
− 1
)

f1f
′
1ξ

′

− 1

8
√
3

(

1 +
γ

α

)

(

f2
1 − f12

)2

(α− ξ)R3 =
ξ

2
(1 + η3) +

5α− 2γ − 3

6
f1f

′
1ξ

′ +
5α+ 2γ

24

(

f2
1 − f12

)2

R4 =
−2 + f2

2 (0)

4α
ξ (1 + η4) +

1

2
f2f

′
2ξ

′ +
1

8

(

f2
2 − f12

)2

R5 =
2− f2

2 (0)

4
√
3α

ξ (1 + η5) +
1

2
√
3

(γ

α
− 1
)

f2f
′
2ξ

′

− 1

8
√
3

(

1 +
γ

α

)

(

f2
2 − f12

)2

(α− ξ)R6 =

(

1

2
− f2

2 (0)

4
− 5α+ 2γ − 3

24α
f4
2 (0)

)

ξ (1 + η6)

+
5α− 2γ − 3

6
f2f

′
2ξ

′ +
5α+ 2γ

24

(

f2
2 − f12

)2

R7 =
4− f2

2 (0)

8α
ξ (1 + η7) +

1

4
f ′
12ξ

′ − 1

8

(

f2
1 − f12

) (

f2
2 − f12

)

R8 = −4α− (α+ γ)f2
2 (0)

8
√
3α2

ξ(1 + η8)−
1

4
√
3

(

1− γ

α

)

f ′
12ξ

′

+
1

8
√
3

(

1 +
γ

α

)

(

f2
1 − f12

) (

f2
2 − f12

)
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R9 = −4α− (α− γ)f2
2 (0)

8
√
3α2

ξ(1 + η9)−
1

4
√
3

(

1− γ

α

)

f ′
12ξ

′

+
1

8
√
3

(

1 +
γ

α

)

(

f2
1 − f12

) (

f2
2 − f12

)

(α− ξ)R10 = −4− f2
2 (0)

8
ξ (1 + η10) +

5α− 2γ − 3

12
f ′
12ξ

′

− 5α+ 2γ

24

(

f2
1 − f12

) (

f2
2 − f12

)

where ηi = ηi(t) are functions in t(i = 1, . . . , 10), with ηi(t) → 0 as t → 0+.

Next we prove Theorem 1.10 in the Introduction.

Proof of Theorem 1.10. We argue by contradiction. Assume that M13
k ad-

mits a non-negatively curved invariant metric g with k ≥ 3. The constant β
in Proposition 5.2 and thus α in equation (6.4) are determined by the metric
g. Furthermore, from Proposition 5.3, we have 3

4 ≤ α ≤ 7
12 + 1

6

√
13.

First, note that ξ(t) > 0 for t > 0 by a similar argument as in [GVWZ,
Section 2] and the inequality (6.3). From Lemma 6.1, we have a′′1(t) ≤ 0 for
all t ∈ [0, L], and it follows that ξ′(t) = −2a1(t)a

′
1(t) ≥ 0 for all t ∈ [0, L] as

a′1(0) = 0. From the inequality (6.3) we have

0 ≤ f1ξ
′

ξ
≤ 2

√
6

3
(1 + η(t))

for all t ∈ (0, L). So the limit superior exists, and we denote

(6.6) ℓ = lim sup
t→0+

f1ξ
′

ξ
≤ 2

√
6

3
.

Next we will derive a lower bound of ℓ from the non-negativity of the curva-
tures of certain 2-planes, such that the two bounds contradict to each other
if k > 2.

Consider the sectional curvature of the plane spanned by Ar = X1 + rX2

and Bq = E1 + qF1:

K(Ar, Bq) =
R(Ar, Bq, Bq, Ar)

|Ar ∧Bq|2
.
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Note that a necessary condition for K(Ar, Bq) ≥ 0 for all r, is that the
following inequality

Iq =
1

f4
2 (0)

(

R(X1, Bq, Bq, X1)R(X2, Bq, Bq, X2)−R(X1, Bq, Bq, X2)
2
)

≥ 0

holds for all q. Using the Ri’s, we have

R(X1, Bq, Bq, X1) = R1 + 2qR2 + q2R3

R(X2, Bq, Bq, X2) = R4 + 2qR5 + q2R6

R(X1, Bq, Bq, X2) = R7 + q (R8 +R9) + q2R10;

and thus

f4
2 (0)Iq =

(

R3R6 −R2
10

)

q4 + 2 (R2R6 +R3R5 −R8R10 −R9R10) q
3

+
[

−(R8 +R9)
2 − 2R7R10 + 4R2R5 +R1R6 +R3R4

]

q2

+ 2 (R2R4 +R1R5 −R7R8 −R7R9) q +
(

R1R4 −R2
7

)

.

Write

Iq = c4q
4 + c3q

3 + c2q
2 + c1q + c0

with

c0 = f−4
2 (0)

(

R1R4 −R2
7

)

c1 = 2f−4
2 (0) (R2R4 +R1R5 −R7R8 −R7R9)

c2 = f−4
2 (0)

(

−(R8 +R9)
2 − 2R7R10 + 4R2R5 +R1R6 +R3R4

)

c3 = 2f−4
2 (0) (R2R6 +R3R5 −R8R10 −R9R10)

c4 = f−4
2 (0)

(

R3R6 −R2
10

)

.

From the forms of Ri’s in Lemma 6.5, we have

c0 = − 1

16α
(1 + η11)ξ +

1

16
(1 + η12)f1f

′
1ξ

′

c1 =
2α+ γ

8
√
3α2

(1 + η13)ξ −
1

4
√
3
(1 + η14)f1f

′
1ξ

′

c2 = −α+ γ

8α2
(1 + η15)ξ +

9− 2α

48α
(1 + η16)f1f

′
1ξ

′

c3 =
2α− γ

24
√
3α2

(1 + η17)ξ +
2α2 − 3α+ γ

8
√
3α2

(1 + η18)f1f
′
1ξ

′

c4 =
5α+ 2γ

48α2
(1 + η19)ξ +

3α2 − α− 2γ

48α2
(1 + η20)f1f

′
1ξ

′.
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Here η11, . . . η20 are functions in t, with ηi(t) → 0 as t → 0+ for i = 11, . . . , 20.
One can verify the forms of c0, . . . , c4 above in the following two steps:

(i) Check the fact that the term without the factor ξ or ξ′ in each ci
vanishes.

(ii) Calculate the leading term with factor ξ or ξ′ in each ci.

Take the sequence {tn} ⊂ (0, L) with limn→∞ tn = 0 and

ℓ = lim
n→∞

f1(tn)ξ
′(tn)

ξ(tn)
.

Note that the coefficients in ci’s appear in the quartic functions Ψ1 and Ψ2

in Lemma 6.4. For any fixed q we take the limit of ξ−1Iq along the sequence
{tn} and it follows that

(6.7) 0 ≤ Ψ1(q) + Ψ2(q)f
′
1(0)ℓ = Ψ1(q) + Ψ2(q)

4

k
√
6
ℓ.

From Lemma 6.4, there is a real number qα such that

Ψ1(qα) = −4

3
Ψ2(qα) and Ψ2(qα) > 0.

Letting q = qα in the inequality (6.7) yields

0 ≤ −4

3
Ψ2(qα) + Ψ2(qα)

4

k
√
6

2
√
6

3

≤
(

8

3k
− 4

3

)

Ψ2(qα)

and so we have k ≤ 2. It contradicts to the assumption that k ≥ 3, and we
finish the proof. □

Remark 6.6. There is a relatively shorter proof that works for k ≥ 5:
Instead we consider the sectional curvature of the 2-plane spanned by Ar =
X1 + rX2 and B = E1, i.e., fix q = 0. Then K(Ar, B) ≥ 0 implies that I0 ≥
0, i.e.,

c0 = − 1

16α
(1 + η11) ξ +

1

16
(1 + η12) f1f

′
1ξ

′ ≥ 0.

It follows that
f1ξ

′

ξ
≥ 1 + η11

1 + η12

1

αf ′
1
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when t > 0 small. Taking the limit tn → 0 yields

ℓ ≥ 1

α

k
√
6

4
.

Combine with the inequality (6.2), and we obtain

2
√
6

3
≥ ℓ ≥ 1

α

k
√
6

4
.

From Proposition 5.3, we have the following estimate:

k ≤ 8

3
α ≤ 8

3

(

7

12
+

√
13

6

)

≈ 3.16.

However this short proof does not rule out the case k = 3.

Finally we prove Theorems 1.2 and 1.3 in the Introduction.

Proof of Theorems 1.2 and 1.3. Denote G = SO(2)× G2. From Theorem 1.5,
the G-manifold P 13

k is equivariantly diffeomorphic to N13
k , and the 2-fold

cover of N13
k is the Brieskorn variety M13

k . So Theorem 1.2 follows directly
from Theorem 1.10 as any non-negatively curved invariant metric on P 13

k

would lift to one on M13
k .

Theorem 1.3 follows from Theorem 1.10, the classification of cohomo-
geneity one actions on homotopy spheres by E. Straume in [St], the non-
negatively curved Grove-Ziller metrics on P 5s in [GZ1] which is observed
by Dearicott, and the obstruction result by Grove-Verdiani-Wilking-Ziller
in [GVWZ]. Straume showed that a non-linear cohomogeneity one action
on a homotopy sphere is given either by SO(2)× SO(n) on the Brieskorn
variety M2n−1

d (d ≥ 3 odd), SO(2)× Spin(7) (a subgroup of SO(2)× SO(8))
on M15

d (d ≥ 3 odd), or SO(2)× G2 on M13
k . In the first case, when n ≥ 4,

the obstruction to a non-negatively curved invariant metric was proved in
[GVWZ]. In the second case, using representation theory one can see that
the family of SO(2)× Spin(7)-invariant metrics on M15

d is the same as the
one for SO(2)× SO(8). So the obstruction follows from the first case with
n = 8. Theorem 1.10 shows the obstruction in the third case of M13

k . This
finishes the proof. □
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Appendix A. The computations of Riemann curvature
tensors

In this section we collect the detailed computations of Riemann curva-
ture tensors which are used in Section 5 and 6: Proposition 5.3, Lemmas
6.2 and 6.5. The formulas of Riemann curvature tensors on a cohomo-
geneity one manifold have been derived in [GZ2]. Write R(X,Y, Z,W ) =
g(R(X,Y )Z,W ), and the convention of the sectional curvature is given by

K(X,Y ) =
R(X,Y, Y,X)

|X ∧ Y |2

for a 2-plane spanned by X and Y . Recall that Q is a fixed bi-invariant
inner product on g = so(2) + g2, and p = h⊥ where h is the Lie algebra of
the principal isotropy subgroup H. The invariant metric is g = dt2 + gt, and

gt(X
∗, Y ∗) = Q(PX, Y )

where X∗ and Y ∗ are Killing vector field generated by X,Y ∈ p along the
normal geodesic c(t), and P = P (t) : p → p is a family of positive definite
AdH-invariant endomorphisms for t ∈ (0, L). In terms of the Q-orthonormal
basis

{X1, X2, Y1, Y2, E1, . . . , E4, F1, . . . , F4}
we have

PX1 = f2
1 (t)X1 + f12(t)X2

PX2 = f12(t)X1 + f2
2 (t)X2

PY1 = h21(t)Y1

PY2 = Y2

PEi = a21(t)Ei − βa21(t)Fi

PFi = −βa21(t)Ei + (β2a21(t) + 1)Fi

with 1 ≤ i ≤ 4. The following two bilinear maps are defined in [Pu]:

(A.1) B± =
1

2
([X,PY ]∓ [PX, Y ]) .

Here B+ is symmetric with B+(X,Y ) ∈ p for any X,Y ∈ p, and B− is skew-
symmetric. The formulas of Riemann curvature tensors in terms of Q, Pt and
B± are given in Proposition 1.9 and Corollary 1.10 in [GZ2]. The following
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special case of formula 1.9(a) in [GZ2] is also useful. For any X,Y, Z ∈ p we
have

R(X,Y, Z,X) =
1

2
Q (B−(X,Y ), [X,Z]) +

1

2
Q ([X,Y ], B−(X,Z))

− 1

2
Q (P [X,Y ]p, [X,Z]p)−

1

4
Q (P [X,Z]p, [X,Y ]p)

+Q
(

B+(X,Z), P−1B+(X,Y )
)

−Q
(

B+(X,X), P−1B+(Y, Z)
)

+
1

4
Q
(

P ′(t)X,Z
)

Q
(

P ′(t)X,Y
)

− 1

4
Q
(

P ′(t)X,X
)

Q
(

P ′(t)Y, Z
)

.

Recall the constants

α = a21(0) =

√
3√

3 (1− β2) + 2β

and γ =
√

α(4α− 3) in equations (5.2) and (6.4).

A.1. The Riemann curvature tensors in Proposition 5.3

First we have

[Y1, E1] =
√
3E2 and [Y1, F1] = − 1√

3
F2.

Then the bilinear maps are given by

2B−(Y1, E1) = [Y1, P (0)E1] + [P (0)Y1, E1]

= [Y1, αE1 − αβF1] + [Y1, E1]

=
√
3(α+ 1)E2 +

αβ√
3
F2

2B+(Y1, E1) = [Y1, P (0)E1]− [P (0)Y1, E1]

=
√
3(α− 1)E2 +

αβ√
3
F2
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and

2B−(Y1, F1) = [Y1, P (0)F1] + [P (0)Y1, F1]

= [Y1,−αβE1 + (αβ2 + 1)F1] + [Y1, F1]

= −
√
3αβE2 −

αβ2 + 2√
3

F2

2B+(Y1, F1) = [Y1, P (0)F1]− [P (0)Y1, F1]

= −
√
3αβE2 −

αβ2

√
3
F2.

It follows that

P−1(0)B+(Y1, E1) =

√
3(α− 1)

2
P−1(0)E2 +

αβ

2
√
3
P−1(0)F2

=

√
3(α− 1)

2

((

β2 +
1

α

)

E2 + βF2

)

+
αβ

2
√
3
(βE2 + F2)

=

√
3β
(

−1 + β2
)

√
3(1− β2) + 2β

E2 +
(−3 + 4α)β

2
√
3

F2,

and

P−1(0)B+(Y1, F1) = −
√
3αβ

2
P−1(0)E2 −

αβ2

2
√
3
P−1(0)F2

= −
√
3αβ

2

((

β2 +
1

α

)

E2 + βF2

)

− αβ2

2
√
3
(βE2 + F2)

=
β(β +

√
3)2

−2
√
3(1− β2)− 4β

E2 −
2αβ2

√
3

F2.

Note that B+(Y1, Y1) = [Y1, P (0)Y1] = 0. So one can compute the three
Riemann curvature tensors as follows:
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R(Y1, E1, E1, Y1) =
3(1 + α)

2
− 3

4
Q
(√

3αE2 −
√
3αβF2,

√
3E2

)

+Q

(√
3(α− 1)

2
E2 +

αβ

2
√
3
F2,

√
3β
(

−1 + β2
)

√
3(1− β2) + 2β

E2 +
(−3 + 4α)β

2
√
3

F2

)

=
3(1 + α)

2
− 9α

4
+

√
3(α− 1)

2

√
3β
(

−1 + β2
)

√
3(1− β2) + 2β

+
αβ

2
√
3

(−3 + 4α)β

2
√
3

=
6
√
3β5 + 9β4 − 32

√
3β3 + 10β2 + 18

√
3β + 9

4
(√

3β2 − 2β −
√
3
)2 ,

R(Y1, F1, F1, Y1) =
αβ2 + 2

6
− 3

4
· 1
3
Q (P (0)F2, F2)

+Q

(

−
√
3αβ

2
E2 −

αβ2

2
√
3
F2,

β(β +
√
3)2

−2
√
3(1− β2)− 4β

E2 −
2αβ2

√
3

F2

)

=
αβ2 + 2

6
− αβ2 + 1

4
+

√
3αβ2(β +

√
3)2

4
√
3(1− β2) + 8β

+
α2β4

3

=
27β4 + 12

√
3β3 + 22β2 + 4

√
3β + 3

12
(√

3β2 − 2β −
√
3
)2 ,

and

R(Y1, E1, F1, Y1) =
1

2
Q (B−(Y1, E1), [Y1, F1]) +

1

2
Q ([Y1, E1], B−(Y1, F1))

− 1

2
Q (P (0)[Y1, E1]p, [Y1, F1]p)

− 1

4
Q (P (0)[Y1, F1]p, [Y1, E1]p)

+Q
(

B+(Y1, F1), P
−1(0)B+(Y1, E1)

)

−Q
(

B+(Y1, Y1), P
−1(0)B+(E1, F1)

)
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=
1

4
Q

(√
3(α+ 1)E2 +

αβ√
3
F2,−

1√
3
F2

)

+
1

4
Q

(√
3E2,−

√
3αβE2 −

αβ2 + 2√
3

F2

)

− 1

2
Q

(√
3P (0)E2,−

1√
3
F2

)

− 1

4
Q

(

− 1√
3
P (0)F2,

√
3E2

)

+
1

2
Q

(

−
√
3αβE2 −

αβ2

√
3
F2,

√
3β
(

−1 + β2
)

√
3(1− β2) + 2β

E2 +
(−3 + 4α)β

2
√
3

F2

)

= − 1

12
αβ − 3

2
αβ +

1

2

(−3αβ2(−1 + β2)√
3(1− β2) + 2β

− (−3 + 4α)αβ3

6

)

= −β
(

9β4 + 12
√
3β3 − 54β2 + 20

√
3β + 57

)

12
(√

3β2 − 2β −
√
3
)2 .

A.2. The curvature formula in Lemma 6.2

Recall thatX = E1 −
√
3F1 and Y =

√
3E4 + F4. First note that [X,Y ] = 0.

The images under P = P (t) are given by

PX = PE1 −
√
3PF1

= a21E1 − βa21F1 −
√
3
(

−βa21E1 + (β2a21 + 1)F1

)

= a21(1 +
√
3β)E1 −

(

βa21 +
√
3β2a21 +

√
3
)

F1

PY =
√
3PE4 + PF4

=
√
3
(

a21E4 − βa21F4

)

+
(

−βa21E4 + (β2a21 + 1)F4

)

= a21(
√
3− β)E4 +

(

β2a21 −
√
3βa21 + 1

)

F4.

Note that [E1, F1] = [E4, F4] = [E1, E4]p = 0, and

[E1, F4] = − 1√
2
(X1 −X2), [E4, F1] =

1√
2
(X1 −X2),

[F1, F4]p =

√
6

3
(X1 −X2) .

It follows that the bilinear maps are B+(X,X) = B+(Y, Y ) = 0, and

B+(X,Y ) = [X,PY ]− [PX, Y ]

=

√
2
(

−3 +
(

−3β2 + 2
√
3β + 3

)

a21
)

3
(X1 −X2) .
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So there are only two non-vanishing terms in R(X,Y, Y,X) that yield

R(X,Y, Y,X) = Q
(

B+(X,Y ), P−1B+(X,Y )
)

− 1

4
Q
(

P ′(t)X,X
)

Q
(

P ′(t)Y, Y
)

=
2
(

−3 +
(

−3β2 + 2
√
3β + 3

)

a21
)2

9

f2
1 + f2

2 + 2f12
f2
1 f

2
2 − f2

12

+
(

−3 + 2
√
3β − β2

)(

1 + 2
√
3β + 3β2

)

a21
(

a′1
)2

.

After the substitutions ξ = α− a21 and β in terms of α, we have

R(X,Y, Y,X) =
2

α2

f2
1 + f2

2 + 2f12
f2
1 f

2
2 − f2

12

ξ2 − 3

4α2

(

ξ′
)2

that gives the formula in equation (6.2).

A.3. The Riemann curvature tensors R1, . . . , R10 in Lemma 6.5

Similar to the previous sections A.1 and A.2, a straightforward but te-
dious computation shows the following formulas, which are used to derive
Lemma 6.5.

Proposition A.1. We have

R1 = − ξ

2α
+

ξ2

8α2
+

ξf2
1

4α
+

1

8
f4
1 − ξf12

4α
− 1

4
f2
1 f12 +

1

8
f2
12 +

1

2
f1f

′
1ξ

′

√
3R2 =

ξ

2α
− ξ2

8α2
+

γ

8α3
ξ2 − f2

1

4α
ξ − f4

1

8
− γf4

1

8α
+

f12
4α

ξ +
f2
1 f12
4

+
γf2

1 f12
4α

− f2
12

8
− γf2

12

8α
− f1

2
f ′
1ξ

′ +
γf1
2α

f ′
1ξ

′

(α− ξ)R3 =
ξ

2
− 7

24α
ξ2 − γ

12α2
ξ2 +

1

8α3
ξ3 − 5

24α2
ξ3 +

γ

12α3
ξ3 − f2

1

4
ξ

− f2
1

4α2
ξ2 +

f2
1

4α
ξ2 +

5α

24
f4
1 +

γ

12
f4
1 − 5f4

1

24
ξ +

f4
1

8α
ξ − γf4

1

12α
ξ

+
f12
4

ξ +
f12
4α2

ξ2 − f12
4α

ξ2 − 5αf2
1 f12
12

− γf2
1 f12
6

+
5f2

1 f12
12

ξ

− f2
1 f12
4α

ξ +
γf2

1 f12
6α

ξ +
5αf2

12

24
+

γf2
12

12
− 5f2

12

24
ξ +

f2
12

8α
ξ

− γf2
12

12α
ξ − f1

2
f ′
1ξ

′ +
5αf1
6

f ′
1ξ

′ − γf1
3

f ′
1ξ

′ − 5

6
f1ξf

′
1ξ

′

+
1

2α
f1ξf

′
1ξ

′ +
γ

3α
f1ξf

′
1ξ

′.
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R4, R5 and R6 can be obtained from R1, R2 and R3 respectively by switching
f1 and f2.

R7 =
1

2α
ξ − 1

8α2
ξ2 − f2

1

8α
ξ − f2

2

8α
ξ − 1

8
f2
1 f

2
2 +

f12
4α

ξ +
1

8
f2
1 f12

+
1

8
f2
2 f12 −

1

8
f2
12 +

1

4
f ′
12ξ

′

√
3R8 = − 1

2α
ξ +

1

8α2
ξ2 − γ

8α3
ξ2 +

f2
1

8α
ξ − γf2

1

8α2
ξ +

f2
2

8α
ξ +

γf2
2

8α2
ξ

+
f2
1 f

2
2

8
+

γf2
1 f

2
2

8α
− f12

4α
ξ − f2

1 f12
8

− γf2
1 f12
8α

− f2
2 f12
8

− γf2
2 f12
8α

+
f2
12

8
+

γf2
12

8α
− 1

4
f ′
12ξ

′ +
γ

4α
f ′
12ξ

′

√
3R9 =

√
3R8 +

γf2
1

4α2
ξ − γf2

2

4α2
ξ

and

(α− ξ)R10 = −1

2
ξ +

7

24α
ξ2 +

γ

12α2
ξ2 − 1

8α3
ξ3 +

5

24α2
ξ3 − γ

12α3
ξ3

+
f2
1

8
ξ +

f2
1

8α2
ξ2 − f2

1

8α
ξ2 +

f2
2

8
ξ +

f2
2

8α2
ξ2 − f2

2

8α
ξ2 − 5αf2

1 f
2
2

24

− γf2
1 f

2
2

12
+

5f2
1 f

2
2

24
ξ − f2

1 f
2
2

8α
ξ +

γf2
1 f

2
2

12α
ξ − f12

4
ξ − f12

4α2
ξ2

+
f12
4α

ξ2 +
5αf2

1 f12
24

+
γf2

1 f12
12

− 5f2
1 f12
24

ξ +
f2
1 f12
8α

ξ

− γf2
1 f12
12α

ξ +
5αf2

2 f12
24

+
γf2

2 f12
12

− 5f2
2 f12
24

ξ +
f2
2 f12
8α

ξ

− γf2
2 f12
12α

ξ − 5αf2
12

24
− γf2

12

12
+

5f2
12

24
ξ − f2

12

8α
ξ +

γf2
12

12α
ξ − 1

4
f ′
12ξ

′

+
5α

12
f ′
12ξ

′ − γ

6
f ′
12ξ

′ − 5

12
ξf ′

12ξ
′ +

1

4α
ξf ′

12ξ
′ +

γ

6α
ξf ′

12ξ
′.
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