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Fake 13-projective spaces with
cohomogeneity one actions

CHENXU HE AND PRIYANKA RAJAN

We show that some embedded standard 13-spheres in Shimada’s
exotic 15-spheres have Zs quotient spaces, P13s, that are fake real
13-dimensional projective spaces, i.e., they are homotopy equiv-
alent, but not diffeomorphic to the standard RP'. As observed
by F. Wilhelm and the second named author in [RW], the Davis
SO(2) x Gy actions on Shimada’s exotic 15-spheres descend to the
cohomogeneity one actions on the P'3s. We prove that the P3s are
diffeomorphic to well-known Zs quotients of certain Brieskorn vari-
eties, and that the Davis SO(2) x Gg actions on the P13s are equiv-
ariantly diffeomorphic to well-known actions on these Brieskorn
quotients. The P'3s are octonionic analogues of the Hirsch-Milnor
fake 5-dimensional projective spaces, P°s. K. Grove and W. Ziller
showed that the P°s admit metrics of non-negative curvature
that are invariant with respect to the Davis SO(2) x SO(3)-
cohomogeneity one actions. In contrast, we show that the P*3s do
not support SO(2) x Ga-invariant metrics with non-negative sec-
tional curvature.
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1. Introduction

A fake real projective space is a manifold homotopy equivalent, but not
diffeomorphic, to the standard real projective space. The first examples were
constructed by Hirsch and Milnor in dimensions 5 and 6, see [HM]|. They are
quotients of the images of embedded standard 5- and 6-spheres in Milnor’s
exotic spheres [Mi] under certain free involutions.

The analogous exotic 15-spheres ¥1'°s were constructed by N. Shimada
in [Sh] as certain 7-sphere bundles over the 8-sphere. The antipodal map on
the 7-sphere fiber defines a natural involution 7' on the %!%s. In [RW], F.
Wilhelm and the second named author observed that the images of certain
embedded standard 13- and 14-spheres in $!5s are invariant under the invo-
lution, and thus the quotient spaces are homotopy equivalent to the standard
13- and 14-real projective spaces. Following the Hirsch-Milnor’s argument,
they showed that the quotients of the embedded 14-spheres in some X1%s are
not diffeomorphic to the standard RP'. They also observed that because
there are exotic 14-spheres, the Hirsch-Milnor’s argument breaks down in
the case of the homotopy RP3s. Our first result resolves this issue.

Theorem 1.1. The quotient spaces of the embedded 13-spheres in certain
Shimada’s spheres s are fake real projective spaces, i.e., they are homo-
topy equivalent, but not diffeomorphic to the standard 13-projective space.

Via a construction by M. Davis [Dal, the Hirsch-Milnor fake P°s ad-
mit cohomogeneity one actions by SO(2) x SO(3). Similarly, the fake P'3s
in Theorem admit cohomogeneity one actions by SO(2) x Gg. From
K. Grove and W. Ziller’s results in [GZ1], O. Dearricott observed that all
fake P5s carry SO(2) x SO(3) invariant metrics with non-negative sectional
curvature, see [GZI) p.334]. As these P'3s are octonionic analogue of P%s,
one may suspect that they also admit such invariant metrics. We show that
this is not the case.

Theorem 1.2. None of the fake Ps support an SO(2) x Go invariant
metric with non-negative sectional curvature.
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The Davis actions on the fake projective spaces come from actions on
their 2-fold covers. The lifted actions are non-linear ones, in the sense that
they are not sub-actions of the standard action of SO(n+ 1) on S™. We
will show that, these non-linear SO(2) x SO(3) actions on the 5-sphere are
very special: they are the only non-linear cohomogeneity one actions on the
homotopy spheres that can be by isometries with respect to a non-negatively
curved metric.

Theorem 1.3. For n > 2, let X™ be a homotopy sphere. Suppose that
X" admits a non-negatively curved metric that is invariant under a coho-
mogeneity one action. Then either

1) X" is equivariantly diffeomorphic to the standard sphere and the action
is linear, or

2) n =5, X% is the standard 5-sphere and the non-linear actions is given

by SO(2) x SO(3).
In particular, Theorem implies

Any exotic sphere with an invariant non-negatively curved metric
has cohomogeneity at least two.

Remark 1.4. (a) In Theorem [I.2] when the symmetry group is enlarged
to SO(2) x SO(7), the obstruction was already proved in [GVWZ] by K.
Grove, L. Verdiani, B. Wilking and W. Ziller. Since G, is a proper subgroup
in SO(7), there are more invariant metrics in the case of SO(2) x Gg, and
our result does not follow from theirs directly.

(b) In Theorem (1.3} the non-linear SO(2) x SO(3) actions on the 5-sphere
are equivariantly diffeomorphic to certain actions on the Brieskorn varieties
M5s, see, e.g., Section 2.2.

The starting point of our proofs is the study of the Davis actions of
G =S0O(2) x Gy on Shimada’s exotic 15-spheres, where Gg is the simple ex-
ceptional Lie group as the automorphism group of the octonions Q. For each
odd integer k, denote Z}CS the total space of the 7-sphere bundle over the
8-sphere, with the Euler class [S®] and the second Pontrjagin class 6k[S®]
where [S®] is the standard generator of the cohomology group H®(S®). Shi-
mada showed that each Z}f’ is homeomorphic to the standard 15-sphere,
but not diffeomorphic if k% 1 mod 127, see [Sh]. In [Da](or see Section
2.1), using the octonion algebra, Davis introduced the actions of G on E}f’s
such that Go acts diagonally on the 7-sphere fiber and the 8-sphere base,
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whereas SO(2) acts via Mobius transformation. It is observed in [RW], that
the Davis action on 2%5 leaves the image S};’ of the embedded 13-sphere
invariant and commutes with the involution 7'. Thus the restricted action
on S}f descends to the quotient space Pk13 = S,lf?’ /T. They also observed that
the G-actions on S}f and Pk13 are cohomogeneity one, i.e., the orbit space
is one dimensional. On the other hand, for the cohomogeneity one actions
on the homotopy spheres, aside from linear actions on the standard spheres,
there are families of non-linear actions [St]. They are examples given by
the 2n — 1 dimensional Brieskorn varieties Mi"_l, which are defined by the
equations

W4 +22=0 and |zl + |+ + |l =1

The Brieskorn varieties carry cohomogeneity one actions by SO(2) x SO(n)
via

(eie, A) (20,21, -y 2n) = (eQiezo, e_ideA(zl, ol zn)t>

with A € SO(n). A natural involution, denoted by I, is defined by
I(z0,21,...,2n) = (20, —21,...,—2p). It is clear that the involution has no
fixed point and commutes with the SO(2) x SO(n)-action; and thus the
quotient space Nsnfl = Mg"fl /I admits a cohomogeneity one action by
SO(2) x SO(n). Note that when n =7, the actions on M} and N}3 re-
stricted to the group G = SO(2) x Gy are also cohomogeneity one. We have
the following

Theorem 1.5. For each odd integer k, the G-manifolds: the 13-sphere S,lg?’
and the Brieskorn variety M2, with G = SO(2) x Go are equivariantly dif-
feomorphic, and so are the quotient spaces PE’ = S,lf’/T and N,%3 = ME/I.

Remark 1.6. Theorem [1.] follows from Theorem [L.5 above and the dif-
feomorphism classification of N7" "' in [AB] and [Gi] (or see Section 2.2).

Remark 1.7. The universal cover of Pkl3 is the standard 13—sphere for all
odd integers k. The space P[3, i.e., k = 1, is diffeomorphic to the standard
RP!? from the construction in [Sh] and [RW]. From Theorem above,
the known diffeomorphism classification of N}? implies that there are 64
different oriented diffeomorphism types of Pkl?’s.

Remark 1.8. (a) The Davis actions of SO(2) x Gy on Shimada’s exotic
spheres X}5s can be viewed as the octonionic analogs of the SO(2) x SO(3)
actions on Milnor’s exotic spheres %7s found in the same paper [Da]. Note
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that SO(3) is the automorphism group of the quaternions, and a special case
of the SO(2) x SO(3) actions on a certain X7 was found in [GM].

(b) The Davis actions of SO(2) x SO(3) on Milnor’s exotic spheres also
leave the images of the embedded 5-sphere invariant, and hence induce co-
homogeneity one actions on the Hirsch-Milnor’s fake 5-projective spaces as
observed in [RW]. These actions are equivariantly diffeomorphic to those
on the Brieskorn varieties Nd5’s, which was first discovered by E. Calabi
(unpublished, cf. [HH, p. 368])

Remark 1.9. In [ADPR], U. Abresch, C. Duran, T. Plittmann and A. Rigas
gave a geometric construction of free exotic involutions on the Euclidean
sphere S'® using the wiedersehen metric on the Euclidean sphere S™. Thus
the quotient spaces are fake 13-projective spaces. Moreover, in [DP], Duran
and Pilittmann provided an explicit nonlinear action of O(2) x Gz on the
Euclidean sphere S'3, and showed that it is equivariantly diffeomorphic to
the Brieskorn variety M313.

In the second part of this paper, we study of the curvature properties
of the invariant metrics on S} and P!® with G = SO(2) x Gy. Since any
invariant metric on the quotient space Pk13 can be lifted to an invariant
metric on SI3, we restrict ourselves to the spheres S}C?’s, or equivalently M ,%SS.
Note that M ,%3 and M}?{: are equivariantly diffeomorphic, and so we assume
that £ > 1.

On a Riemannian manifold with cohomogeneity one action, the princi-
pal orbits are hypersurfaces, and there are precisely two non-principal orbits
that have codimensions strictly bigger than one if the manifold is simply-
connected. They are called singular orbits. In [GZ1], Grove and Ziller con-
structed invariant metrics with non-negative sectional curvature on coho-
mogeneity one manifolds for which both singular orbits have codimension
two. Particularly, their construction yields non-negatively curved metrics
on 10 of 14 (unoriented) 7 dimensional Milnor’s spheres and all Hirsch-
Milnor’s fake 5-projective spaces. Their metrics on the Milnor’s spheres are
of cohomogeneity 4. They arise from a cohomogeneity one construction as
associated bundles to principal bundles which in turn have (cohomogeneity
one) Grove-Ziller metrics. However, not every cohomogeneity one manifold
admits an invariant metric with non-negative curvature. The first examples
were found in [GVWZ], and then generalized to a larger class in [He] by the
first named author. The most interesting class in [GVWZ] is the Brieskorn
varieties MdQ"_l. It is showed that for n >4 and d > 3, Ma,?"_1 does not
support an SO(2) x SO(n) invariant metric with non-negative curvature. In
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our case, the group G is a proper subgroup of SO(2) x SO(7) and, hence the
family of G invariant metrics is strictly larger. We extend their obstruction
to our case.

Theorem 1.10. For any odd integer d > 3, the Brieskorn variety MUF’ does
not support an SO(2) x Gy invariant metric with non-negative curvature.

Remark 1.11. The techniques used to prove Theorem [1.10[ are similar to
those in [GVWZ] and [He|]. However the special feature of the Lie group Go
and the strictly larger class of invariant metrics make the argument more
involved.

Remark 1.12. For the Brieskorn variety M 53 with d > 4 an even integer,
the principal isotropy subgroup has a simpler form than the one in the odd
case, see Remark [2.T1] This leads to a much more complicated form of the
invariant metrics in the even case, see Remark [£.4] which is not covered by
our proof. So for an even integer d > 4, the question whether M (}3 admits
an SO(2) x Gg-invariant metric with non-negative curvature remains open.

Remark 1.13. Asobserved in [ST], all P}3s and S}?s support even SO(2) x
SO(7) invariant metrics that simultaneously have positive Ricci curvature
and almost non-negative sectional curvature. For the invariant metrics with
positive Ricci curvature alone, it also follows from the result in [GZ2]. A
Riemannian manifold admits an almost non-negative sectional curvature if
it collapses to a point with a uniform lower curvature bound.

We refer to the Table of Contents for the organization of the paper.
Theorem is proved in Section 3, and Theorems and are

proved in Section 6.
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cussions with him on this paper. We thank Wolfgang Ziller for useful commu-
nications, and Karsten Grove for his interest. We also thank the anonymous
referees for their careful reading and critical comments.

2. Preliminaries

In this section, we recall the Davis action on the exotic 15-spheres Z,lf’s, and
the Brieskorn varieties with cohomogeneity one action. We refer to [Ba] and
[Mu] for the basics of the algebra of the Cayley numbers (i.e., the octonions)
and the Lie group Go.



Fake RP'® with cohomogeneity one actions 713

2.1. Shimada’s exotic 15-spheres E,ﬁss, the embedded 13- and
14-spheres and the Davis action

Consider the Cayley numbers O and let u +— @ be the standard conjuga-
tion. A real inner product on O is defined by u-v =1/2(uv 4+ va). Let
{ep,e1,...,er} be an orthonormal basis of @ over R with ¢y = 1. We follow
the multiplications of elements in @ given by [Mul, for example, ejes = e3,
ereqs = e5 and ejer = eg. Any v € Q has the following form

v = vpeg + vie1 + - -+ vrer.

Denote v = v the real part and Sv = vie; + - - - + vrey the imaginary part.
We have

U = vpeg — V1€1 — -+ — vrey

and

> =08 + v} 4 + v =vb.

The unit 7-sphere consists of all unit octonions:
ST={vec0: v =1}.

We write S® = O Uy O as the union of two copies of @ which are glued
together along @ — {0} via the following map

(2.1) $»:0-{0} — O-{0}
u ¢(u):|uu’2.

For any two integers m and n, let E, ,, be the manifold formed by gluing the
two copies of O x S” via the following diffeomorphism on (O — {0}) x S

u o um o u”
2.2 iiJ : = (W)= — ——u— ).
( ) m,n (U7U) (U ,’U) <”U,‘2, ’umv|u’n>

The natural projection pp,y : Empn — S® sends (u,v) to u and (u/,v') to
u'. It gives E,, , the structure of an S7-bundle over S® with the transition
map P,,,. The total space E,,, is homeomorphic to S15, if and only if,
m +n = +1; see [Shl Section 2].
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Using the fact that Gy is the automorphism group of O, in [Dal, Davis
observed that Gy acts on E,, ,, as follows:

g(ua U) = (g(u),g(v))

and
g(u',v") = (g(u), g(v')).

From [Dal Remark 1.13], the Gy-manifolds E,,, and E,, , are equivari-
antly diffeomorphic, whenever (m,n) = +(m,n) or £(n,m). Furthermore,
the bundles E,,, admit another SO(2) symmetry via Mobius transforma-
tions that commutes with the Gg-action. Write an element v € SO(2) as

a

(2.3) v =~(a,b) = (—b Z) and a® +b* = 1.

In terms of the coordinate charts, the action on the sphere bundle E,, , is
defined by

(2.4) yoku = (au+b)(—bu—|—a)_1
yxu' = (=b+au')(a+ bu')!

and
(—=bu + a)"v(—bu + a)"
2.5 * UV =
( ) Y |—bu + a|m+n
o — (a+ba")™' (a + bu')"
Y ’a+ bﬁ,‘m—‘rn

The formulas above are compatible with the transition map ®,,,. Davis
showed the following

Lemma 2.1 (Davis). The formulas and gwe a well-defined
action of SO(2) on Ey, . Furthermore the action is Go-equivariant, and for
any v € O(not necessarily unit) we have

yxv[=v| and |yxo| = |v].
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Suppose now that m+n =1 and k =m —n. So k is an odd number
and

k+1 —-k+1
=—— and n= .

(2.6) m 5 5

We set 211; = Ep, n, and note that it is homeomorphic to the 15-sphere. A
Morse function on X}° in [Sh] is given by

Ro R (V)1
fie) = - .
1 \/1+ |ul? \/1—1— |/ (v) 1)

Here Rv denotes the real part of v. Note that f; has only two critical points
as (u,v) = (0,%£1). Set

(2.7)

(2.8) Sit = 71 0) = {z e Y5 R =R (V)7 = 0}

and it is diffeomorphic to the standard S for all k. Consider the following
function on S}f:

folz) = R(uv) _ Ro ‘
\/1+\u|2 \/1+yu’|2

It is straightforward to verify that on S,lf, the function fo has precisely two
non-degenerate critical points as (u/,v") = (0,£1). It follows that

(2.9)

S~ 0 nsl
(2.10) ={z €Ty R(w) = Rv =R’ =R/ (V') ") =0} C 2P

is diffeomorphic to the standard 13-sphere for all k. Let

(2.11) T: Emn— Emn
(u,v) =~ (u,—v) and (u/,v") — (u/, =)

be the antipodal map on the fiber S7. The two spheres Si,‘l and S,lf’ are
invariant under this involution 7. Denote

P =Si/T and PP =S}3/T

the quotient spaces.
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Remark 2.2. Note that Milnor’s exotic 7-spheres X7s are diffeomorphic to
3-sphere bundles over the 4-sphere. The involution 7" on %'°s is the analogue
of the natural involution on X7s given by the antipodal map of the 3-sphere
fiber, see [Mi] and [HM].

In [RW], Wilhelm and the second named author observed that the Davis
action of G =S0(2) x Gy on ¥;° leaves both S}* and S}? invariant and
commutes with the involution 7.

Lemma 2.3. The SO(2) x Gy action on X}° restricts to an action on the
spheres S14 813 and descends to the quotient spaces P4, Pkl?’.

Proof. It is easy to see that the action commutes with the involution T'. So
it is sufficient to show that the defining conditions of S,lf’ and 8,164 in E}f are
preserved by the SO(2) x Gz action. In the following we give a proof for S}3,
and the argument for S}f is similar.

Since G is the automorphism group of @, it is easy to see that the
defining conditions are preserved. Next we consider the action by SO(2).
Let v = v(a, b) in equation (2.3)). Note that R(zy) = R(yz) for any z,y € O.
We have

R(yxo) = oy R {(o - u)ola — b))
1 _ U m-+n
|a ;bu!éﬁ{ a—bu)"*"w}
= @ = bl (aRv — bR(uv))
=0,
and
R((y*u)(y*xv)) = |a—1bul§R {(au+b)(a — bu) " (a — bu)™v(a — bu)"}
= @bl R(au + b)v
=0.
For the coordinates (v, v'), since v/ (v/) " = w/¥/ |v/|* and R (W () =

0; it follows that R (@'v") = 0. Similar to the case of (u,v), we have
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R(y*v') = ———R{(a+b@)™ (a + bu)"}

la + bu’|
=R {(a+bTW

PR G
—0

and

R((y ) (yx2')7)
= ‘aﬂ—bﬂ/‘§R{(—b—|—au')(a+bu')_1(a+bﬂ/)_”( ') (a+bu')™™}

= la+ 0@/ | R{(=b+av)(a+bu) " (a+ba) ' (v)7'}
= |a + bi/| (a2+b2 |u’}2+ab(u’+a’)) R {( —b+au)(v )t}
=0.

This shows that S}3 is invariant under the SO(2) action, which finishes the
proof. O

Remark 2.4. In [RW], following the Hirsch-Milnor argument in [HM], they
also showed that P,i‘l and Pk13 are homotopy equivalent to the standard RP
and RP'3 for all k; and Pk14 is not diffeomorphic to RP', when k = 3,5
mod 8.

2.2. Brieskorn varieties, Kervaire spheres and homotopy
projective spaces

For any integers n > 3 and d > 1, the Brieskorn variety Mgn_l is the smooth
(2n — 1)-dimensional submanifold of C"*!, defined by the equations

A4+ +22=0
20> + |21)* + -+ + |2al” =

Whend =1, M 12"_1 is diffeomorphic to the standard sphere S?”~!; and when
d=2, M22"_1 is diffeomorphic to the unit tangent bundle of S™.

Theorem 2.5 (Brieskorn). Supposen>3 and d>2. The manifold M7"
is homeomorphic to the standard sphere S?~1, if and only if, both n and d
are odd numbers. Assume that n and d are odd numbers, it is the Kervaire
sphere, if and only if, d = +£3 mod 8.
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Remark 2.6. The Kervaire sphere is known to be exotic if n =1 mod 4.
Denote I the following involution on Mj”_lz
(20, 215+ y2n) = (20, — 215 -+, —2n)-

Clearly it is fixed-point free. Atiyah and Bott showed the following result,
see also [Gi, Corollary 4.2].

Theorem 2.7 ([AB|, Theorem 9.8]). If the involution I on the topological
spheres M;mfg and M,i‘mfg are isomorphic, then

d=+k mod 22™.

— S4m—3

In particular the involution I acting on M§m_3 18 not isomorphic

to the standard antipodal map whenever m > 2.

Corollary 2.8. There are 64 smoothly distinct real projective spaces M, ,{1:3 /I
with k =1,3,...,127.

The group G = SO(2) x SO(n) acts on M7 by
(ew,A) (20, 7) = (e%ez(),e_idGAZ) , for (20,Z) e CopC".

Note that our convention is different from the one in [GVWZ], as we have
e~ for the action of € on Z = (z1,...,2,)". The norm |z| is invariant
under this action, and two points belong to the same orbit if and only if
they have the same value of |zy|. Let ¢ty be the unique positive solution of
td +¢2 =1, and then we have 0 < |z| < to. It follows that the orbit space
is [0,%p]. The orbit types and isotropy subgroups of this action have been
well-studied, see for example, [HH], [BH] and [GVWZ].

In our case, we assume that d is odd. When n = 7, the embedding G, C
SO(7) induces the action of G = SO(2) x G2 on M13. To describe the isotropy
subgroups of the G-action we introduce the following subgroups in Gs:

e Denote O(6), the subgroup in SO(7) that maps e; to +ej, SO(6) the
subgroup that fixes e, and SU(3) = SO(6) N Ga.

e The other subgroup in Gy that fixes es is denoted by SU(3)s, and the
complex structure on C3 = spang {e1, ez, €4, 7, €6, €5} is given by the
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left multiplication of e3. Note that
(SO(2) x SO(5)) NGy = U(2) € SU(3)3

where SO(2) x SO(5) € SO(7) has the block-diagonal form, and the
embedding U(2) C SU(3)3 is given by h — diag {(det h)~*, h}. To see
this, take A = diag {A1, A2} € (SO(2) x SO(5)) N Gy with

A = cqst sint
—sint cost

for some t. Since e3 = ejey, we have

A(eg) = A(el)A(eg)
= (ej cost + egsint) (—ej sint + ez cost)

:eg

and thus A € SU(3)s. Using the complex structure of SU(3)s, A; acts
on C = spang {e1,e2} by e, and Ay acts invariantly on C? =
spang {e4, €7, €6, e5}. So the element A embeds diagonally in SU(3)3
with (1,1)-entry e’

e The common subgroup SU(2) = SU(3) N SU(3)3 and it is also given by
SU(2) = SO(4) N Gg where SO(4) C SO(7) as A — diag {I3, A} and I3
is the identity matrix.

Since Gg acts transitively on S ={v € O: Rv =0 and |v| = 1} with
SU(3) and SU(3)3 as isotropy subgroups at e; and esg respectively, these
two groups are conjugate by an element in Go.

We follow the notions in [GVWZ] to determine the isotropy subgroups.
Denote B_ the singular orbit with |zg| = 0, and choose p_ = (0, 1,4,0,...,0)
€ B_ with isotropy subgroup K~. We also denote B, the singular orbit with
|z0] = to, and choose py = (to,i\/%,o, ...,0) with isotropy subgroup KT.
Note that B_ and B, have codimensions 2 and n — 1 = 6 respectively. Let
¢(t) be a normal minimal geodesic connecting p— = ¢(0) and p4 = ¢(L). The
isotropy subgroup at ¢(t)(0 < t < L) stays unchanged that is the principal
isotropy subgroup H. We have

Theorem 2.9. The cohomogeneity one action of G = SO(2) x Gy on Mc}?’
with d odd has the following isotropy subgroups:
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1) The principal isotropy subgroup is
H=Zs-SU(2) = (e,diag {g,¢,1, A})

where e = £1 and A is a 4 X 4-matrix.

2) At p_, the isotropy subgroup is

K~ = SO(2)SU(2) = <ei",diag { <C‘;fnd§9 Zg;%) 1, A})

where A is a 4 X 4-matriz.

3) At p,, the isotropy subgroup is
Kt = 0(6) N Gy = (det B, diag {det B, B})
where B € O(6) N Ga.
Remark 2.10. Denote j, the complex structure given by the left multipli-

cation of eg. For the group H, we have diag {¢,¢,1, A} € (SO(2) x SO(5)) N
Gy and A € U(2) C SU(3)3 with det A = . For the group K—, we have

. cosdf sindf
diag { (_ sin do cosd6> ,1,A} € (S0(2) x SO(5)) N Gy

and A € U(2) C SU(3)3 with det A = =79,

Remark 2.11. If d is an even integer, then the isotropy subgroup K~ is
the same as in the case d odd. The other two isotropy subgroups are

H = Zy x SU(2) = (e,diag {I3, A})
Kt = Zy x SU(3) = (e,diag {1, B})
where e = +1, A € SO(4) N G2 = SU(2) and B € SO(6) N Gy = SU(3).
Clearly the G-action commutes with the involution I and hence induces
an action on Na}g = MéS/I. Write (20, 21, . ..,27] € Né3, the equivalence class

under the involution I.

Corollary 2.12. The cohomogeneity one action of G =S0(2) x Gg
on Né?’ = Mf’/[ with d odd, has the following isotropy subgroups.
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1) The principal isotropy subgroup is
H = Zs x (Z2 - SU(2)) = (e1,diag {e2, €2, 1, A})

where 12 = £1 and A is a 4 x 4-matriz.

2) The singular isotropy subgroup at [0,1,4,0,...,0] is

I (e cosdf  sindf
K —ZZ SO(Z)SU(?)—(e ,dlag{e (—sindﬁ cos df ’LA

where ¢ = £1 and A is a 4 X 4-matrix.

8) The singular isotropy subgroup at [to,i/td,0,...,0] is
Kt = Zy x (0(6) N G2) = (¢, diag {det B, BY})
where € = £1 and B € O(6) N Ga.

Remark 2.13. Similar to Remark for the group H we have A €
U(2) € SU(3)3 with det A = &3, and for the group K~ we have A € U(2) C
SU(3)3 with det A = ee=74.

3. The cohomogeneity one actions of G = SO(2) X G, on S;?
and P!3

In this section we determine the cohomogeneity one action of G on S,lc?’ and
Pk}3 , see Theorem and Corollary (3.5 Then we prove Theorem in the
Introduction. At the end of this section, we determine the Weyl group of
the cohomogeneity one action on M}3, see Proposition

Throughout this section, we assume that k£ is an odd integer. For the
basics of cohomogeneity one manifolds, we refer to [GWZ, Section 1].

Since the actions of SO(2) and Gz commute, we determine the orbit
space B of S} under the Gy action, and then consider the SO(2)-action on

B.
Proposition 3.1. The orbit space of S}f’ under the Go-action is
B? = By Us By

with By = By 2 R x [0,00), where the two charts are determined as follows:
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1) the point [x1 + x2e3,e1] in By is identified with the Go-orbit at (z1 +
x9es,e1) in the chart with coordinates (u,v);

2) the point [x) + xhes, e1] in Ba is identified with the Ga-orbit at () +
xhes, e1) in the chart with coordinates (u',v"),

and the gluing map ® : Bi\ {0} — B2\ {0} is given by
O ([z,e1]) = [x/ |x\2,el} for any x = x1 + x2e3 # 0.

Proof. On the chart with coordinates (u,v) we have Rv =0 and |v| =1,
ie, veStcI0. Write u=ug+ u; with u; € SO. Then the condition
R(uv) = 0 is equivalent to (u1,v) = 0. Since Gy acts transitively on S8, there
exists some o1 € Gg such that e; = o;(v), and then oj(u) = up + o1 (u1)
with o1(u;) € SO. The left multiplication of e; induces a complex struc-
ture on the space C3 = spang {es, ..., er}. The isotropy subgroup at e; € S8
is SU(3). Note that we also have (e;,o1(u1)) = 0. Since SU(3) acts transi-
tively on S5 C C3, there is o5 € SU(3) C Ga such that oo(oq(u1)) = |ui es.
Let 0 = 0201 € Ga, then we have o(u,v) = (up + |Su|es, e1).

Next we consider the chart with coordinates (u',v’). First, we have
v €S8 C 30O, Write o =uf +u) with ) € SO. Then the condition
R(u'(v")~1) = 0 is equivalent to R(@'v') = 0, i.e., (u},v’) = 0. Similar to the
argument for (u,v), thereis a 71 € Gg such that e; = 71(v') and (e, 71 (u})) =
0. Then there is a 79 € SU(3), the isotropy subgroup of e; in Gg, such
that (71 (u})) = |[u}|es. It follows that 7(u/,v") = (uy + |Su/| e, e1) with
7 =171 € Go.

Now we consider the transition map ®,, . Let (u,v) = o(z1 + z2e3,€1)
with (z1,z2) € R X [0,00), i.e., u = o(z1 + x2e3) and v = o(e1). Write

x1 + x2e3 = r (cos + sin fes)
for some 6 € [0, 7]. Then the image (u/,v") = @y, 5 (u,v) is given by

, r1 + Tae3 cos 6 + sin feg
] + x5 r

+ " + n )
=g <(x1 xQTji —i—ejn(:e;| 72¢3) > = o {(cos(kf) + sin(kB)e3) e1 },

v

i.e., (u',v) is in the orbit of (r~1(cos® + sinfes), (cos(kf) + sin(kf)es)e1).
Since all orbits have a point with (y; + ye2es, e1) with yo > 0, it follows that
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there exists a 7 € Gy such that

1 .
- (cosf + sinfes) = 7(y1 + y2€3)
cos(k@)ey + sin(kf)es = T(e1).
In fact we may choose 7 such that it fixes eg, and rotates in {e1, e2}-plane
by the second equation above and the space spanned by {ey,...,er}. Such
7 exists in another copy of SU(3), which is the isotropy subgroup of es.

Denote [u,v] and [v/,v'], the Ga-orbits in coordinate charts (u,v) and (u/,v")
respectively. In a summary, under the transition map ®,, ,, we have

1
D@y ([r(cos @ + sinbes), eq]) = [(COS 0 + sin fes), 61:|
r

which defines the map ®. This finishes the proof. O

Next, we consider the SO(2)-action on the orbit space B2. Recall

a b
(3. =)= (" )
with a? 4+ b% = 1.

Proposition 3.2. Let vy be an element in SO(2) as in . Then v acts
on the Go-orbit space B> = B Ug By as follows.
(1) If b= 0, then we have
v (u,v) = (u,sgn(a)v
v (u, ) = (v, sgn(a)v’)
on the (u,v)- and (u',v")-coordinate charts.

(2) If b # 0, then we have

v * [u1 + uges, e1]

a a—bu1 u9
=|—7+ + €3,€1|,

b b((a—bup)?+b%u3)  (a—buy)?+ b*uj

v * [uh + ues, 1]

_fa a + bu} N ub on e
T b b((a+buh)2+2(uh)?) | (a+ bul)? + b2(uh)?

where [uy + uges, e1] € By and [u} + ubes, e1] € Bo.
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Proof. Take (u,v) € S}f’ through the orbit [u; + uges, e1] € By and write a —
b = r(cos O + sin fes), i.e.,

{abul =rcosb

bug = rsinf.

then
1
ulzg(a—rcosﬁ)
(3.2)
T ng
uz = 3 sin
Claim. We have
*u = a+i( 0 + sin fes)
Yru=— + - (cos +sinfes

v *v = ej (cos(kf) + sin(kf)es) .
It follows from a straightforward computation. We have

yxu = (au+b)(a —bu)~*
a—bu
la — bul?
(a® 4 b?) cos O — ar + (a® + b?) sin fes

rb
—ra + cos 8§ + sin feg

rb

= (au1 + b+ auges)

This gives the first formula. Then we have

(a —bu)"ei(a — bu)"

yKRv =

la — bul
(a —bu)™(a — bu)t—™
r
(a —bu)™(a — ba)™ !
=a F2m—1

= e (cos(2m — 1)0 + essin(2m — 1)6) .

This gives the second formula, as 2m — 1 = k. This finishes the proof of the
claim.
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Next we derive the action of v on chart with coordinates (u’,v’). Take
(u',v") € S}, through the orbit [u] + ubes, e1] € By with u) > 0. Write a +
b’ = r(cost + sintes), i.e.,

a+ buj =rcost
—buly = rsint.

A straightforward computation shows the following:

p__ @ 1 .
vy*u = — — — (cost + e3sint)

b rb
v % v = ey (cos(kt) — sin(kt)es) .

From a similar argument in Proposition both (v * u,y *v) and (y * u, 1)
are in the same Gy-orbit. This also holds for (v/,v’) and thus we finish the
proof. O

Remark 3.3. (a) One can see that the action of v on B = B Ug By is
compatible with the map ®. Restrict ® to the first component. Take u =
uy + uges and v’ = ®(u) = u} + uhes with

up = 2u1 2
uy + uj
wy = 2
uy + uj

Then a direct calculation shows that ®(y*u) =y xu'.
(b) Restricted to the u and u'-component, the action of v is the Mdbius
transformation of the upper half plane with the identification

Ul + ugesz ~ Ui + tuo.

The unique fixed point is e3 with (u,u2) = (0, 1). The action of SO(2) is by
isometries with respect to the hyperbolic metric

_ du? + du3

ds® 3
Uuj

)

so that we can identify the orbit spaces as the line segment {uges : 0 <ug <1}.

Theorem 3.4. The cohomogeneity one action of G =S0(2) x Gy on S}f’
has the following isotropy subgroups:
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(1) At (es,e1) in the (u,v)-coordinate chart, the isotropy subgroup is

0 kO  sink6
K =s0()su(2) = (g { (0, ) 14l

where A is a 4 X 4-matriz.

(2) At (u1,e1) in the (u,v)-coordinate chart with u; € R, or (0,e1) in the
(u',v")-coordinate chart, the isotropy subgroup is

L=0(6)NGy = (det B, (445 )

where B € O(6) N Ga.

(8) At (uj + uges,ey) in the (u,v)-coordinate chart with (uy,us) € R x
(0,00) — (0, 1), the isotropy subgroup is

H =175 -SU(2) = (¢,diag {e,e,1, A})
where € = 1 and A is a 4 X 4-matriz.

Proof. Suppose g = g(p) for some g € Gy. Then the isotropy subgroups have
the following relation:

Gy ={(7,h) €S0(2) x G : (v,9 'hg) € Gy},

i.e., g71Gyg = G,. So it is sufficient to just consider the isotropy subgroups
on B2. From Proposition we only need to consider the (u,v)-coordinate
chart, and the point (0, e1) in the (u’,v)-coordinate chart.

We first consider the isotropy subgroup at (u,v) = (u1 + uges, e1) € Si>.
Choose an element (y~1, h), with v = y(a, b) € SO(2) given by equation
and h € Gy. Suppose that (v~ 1, h) € G(u,v), We have

h(u,v) =~ * (u,v).

In the first case we assume that the isotropy subgroup contains an element
(y~1, h) with b # 0. Write (u1,us) in terms of (r,0) as in equations (3.2)).
Following Proposition we have

_a
b
e1 cos(kf) — easin(kf) = h(ey).

1 . a T ro.
+ %(COSQ + sinfeg) = 5 ECOSG + h(@g)g sin 0
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Since Rh(ez) = 0, these two equations above are equivalent to the following

equations:
1
2a = (r+ — | cosf
r

inf
(rsinf)h(es) = SH; es

h(e1) = eq cos(kB) — eq sin(kh).

If sinf = 0, then cosd = +1. From the first equation above we have, ei-
ther a > 1 or a < —1. In either case, we have b = 0 that contradicts our
assumption that b # 0. So we have sinf # 0, and thus the second equa-
tion implies that h(e3) = r~2es. It follows that r = 1 and a = cos § from the
first equation. From equations we have u; =0, ueo =1 and b =sinf.
In this case h is the rotation in the plane spang {e1,e2} while fixing es.
The left multiplication of e3 defines a complex structure on the vector space
spang {e1, €2, €4, ...,e7} and

L er)  [cosk® —sinkf\ (e
es)  \sinkf coskf ey )’
So we have (u,v) = (e3, e1), v = R(f) and hye, ¢,3 = R(—k0). It follows that
(v~ h) € K in Case (1).

In the second case we assume that b = 0. Suppose that a = 1, then we
have v % (u,v) = (u,v). It follows that h(u,v) = (u,v), i.e.,

h(ur + uze3) = ug + uzes
h(el) =e1.

It follows that h € SU(3) if ug = 0. If ug # 0, then we have h(e3) = e3, and
so h € SU(2). Now suppose that a = —1 and we have v x (u,v) = (u, —v). It
follows that h(u,v) = (u, —v), i.e.,

h(ui + uze3) = ug + uges
h(el) = —eq.

If ug = 0, then we have h(e;) = —ey. If ug # 0, then we have h(e3) = es and
h(e1) = —ey. It follows that the isotropy subgroup at (u1,e1) is L as in Case



728 C.-X. He and P. Rajan

(2), and the identity component is
Lo={(1,A): AcSU(3) C Ga}.

The isotropy subgroup at (u; + uges, e1) with ug > 0 and (u1,us) # (0,1) is
H as in Case (3).

Next we consider the isotropy subgroup at (u/,v") = (0, e1). Suppose that
(v~4h) € G(o,e,) With 7 being given by . If b # 0, then from Proposi-

tion we have
o= 1
b ab
i.e., a> =1 and thus b = 0. So we have b =0 and v x (0, 1) = (0,sgn(a)e;).
It follows that h(e1) = sgn(a)er. So we have (y~!, h) € L as in Case (2). This
finishes the proof. O

Corollary 3.5. The cohomogeneity one action of G = SO(2) x Gy on P}?
has the following isotropy subgroups

- (e coskf sink0
K =175 -50(2)SU(2) = (e ; diag {E (— sinkf cos k6 1,4

where ¢ = 1 and A is a 4 X 4-matriz,

L =7y x (0(6) N Gy) = (g, diag {det B, B})
where e = 1 and B € O(6) N Ga,

H = Zs x (Zs - SU(2)) = (1, diag {e2, 2,1, A})

where €12 = £1 and A is a 4 x 4-matriz.

Now we show the equivariant diffeomorphisms between SE’ and ME’,
and between Pkl?’ and N ,}:3.

Proof of Theorem[1.5. From the general structure result, see for example
[GWZ], Section 1], two cohomogeneity one manifolds with the same isotropy
subgroups are equivariantly diffeomorphic. In our case, let D? and D° be
disks with OD? = S' = K= /H and D% = S° = K¥/H with K* and H being
given in Theorem Then M ,iS is equivariantly diffeomorphic to the union
of the two disk bundles glued together along the boundary G/H:

BB =G XK- D? Ug/H G xk+ D,

From Theorem the sphere S}f is also equivariantly diffeomorphic to the
B above. It follows that S};’ is equivariantly diffeomorphic to ME’. The
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equivariant diffeomorphism between Pk13 and N,ig' follows from a similar
argument and Corollaries This finishes the proof. O

In the last part of this section we determine the Weyl group W, which
will be used to determine the invariant metrics on M, ,13.

Proposition 3.6. The Weyl group of the cohomogeneity one action of G =
SO(2) x Gg on M,}:?’ is W ~ Zoy X Zy, which is generated by w_ € K~ and
w4 € K+.'

w_ = (i,A) with A= diag (_05 8) 1,

n O O O
O O = O
O = OO
o O O

Wy = (Ldlag{la _17 _17 17 17 _17 _1})7
wheree =1 fork=1,5,..., ande = =1 fork=3,7,....

Proof. First, it is easy to check that w, € KT and neither of w4 is in H.
We show that w_ € K~. It is sufficient to prove that A € Gy. Since ¥ = 3,
we may assume that 6 = 5. It follows that € = sin k6. Let j be the complex
structure induced by the left multiplication of e3. So we have

-k -k
A‘spanR{el,EQ} =7, A|spanR{e4,e7} =—J and A|spanR{eG,es} =1,

i.e., A embeds in U(2) C SU(3)3 with the image diag {j*, —j* 1} and so
A€ Gs.
We check that each w4 is of order 2:

w? = (—1,diag {—1,-1,1,-1,1,1,—1}) € H

and
wi = (1,I7) € H.

This shows that wy are generators of the Weyl group. Next we determine
the order of w_wy. Write w_w; = (i, B), and we have

00 0 e

. 0 —e 01 0 0

B = diag <—g 0)’_1’ 00 -1 0
e 0 0 0
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It follows that B2 = I7, the identity matrix. So we have (wyw_)? = (=1,1I7) &
H, but (w,w_)* = (1,I7) € H,i.e., W = (w_,w; ) ~ Zo x Z4 (is just the di-
hedral group Dg) which finishes the proof. O

4. The G-invariant metrics on M,?

In this section we determine all G invariant metric on M,'* with G = SO(2) x
Gs. See Proposition for the invariant metrics on the regular part, and
Lemma [4.6] for the conditions to ensure the smoothness of the metrics at the
singular orbits.

Throughout this section, we assume that k is an odd integer. We refer
to |[GZ2, Section 1] for the description of invariant metrics on a general
cohomogeneity one manifold.

Recall that ¢(t) is a normal minimal geodesic between two singular orbits
B_ and B4 ; with ¢(0) = p_ € B_, and ¢(L) = p4 € By. On the regular part
of M é3, the metric is determined by

ety = dt* + gy

where g; is a family of homogeneous metrics on G/H. By means of Killing
vector fields, we identify the tangent space of G/H at ¢(t), t € (0, L) with an
Ady-invariant complement p of the isotropy subalgebra h of H in g, and the
metric g; is identified with an Ady-invariant inner product on p.

In the following, we introduce a few subspaces in p such that the invariant
metric has a block-diagonal form. The Lie algebra go of Gy has the following
embedding in s0(7):

(4.1)
0 T1—Y1 Tat+Y2 —Tz+Ys —Te—Ye T3+Ys T4a— Y4
—x1 + Y1 0 b Ya Y3 Y6 Ys
—T9 — Yo —b 0 T3 T4 T5 Te
X=1| 25—y —Ya —x3 0 a Y2 Y1
Te + Yo -3 —X4 —a 0 X1 T2
—T3—Ys  —Ye —T5 —Y2 -1 0 a+b
—T4+Ys Y5 —Ig —Y1 —T2 —a—b 0
for a,b,x1,...,26,Y1,---,Ys € R. We choose the following bi-invariant inner

product on go:

6
1
Qo(X,X) = —ZtrX2 = a2+ab+b2+z (3:12 —I-yf)
i=1
— 21Y1 + XT2y2 + T3Y3 — T4Ys — T5Ys5 + TeYs-
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The Lie algebra b of H = Zy - SU(2) has the following form

0 a —T9 X1

_ J [(O3x3 Osxa . | —=a 0 r1 X9

(42) b= <O4><3 Agxy with - 4 = o —x1 0 a
—x1 —x9 —a O

where Oy is the zero matrix. The Q)p-orthogonal complement m of b is
given by

m={X€gy:b+2a=0,21 +y; =0, and z9 — y2 = 0} .

Note that, h C s0(4) is the standard embedding of su(2) C so(4):

. A —Ay
A1+ZA2r—><A2 A1>'
Denote the following matrices in m:
;o (000!
Uy = diag 2 0 0], ,
0 0 0 0 1 0 O
-1 0 0 0
00 0 (1) g
U, = diag 0o 0 2], ,
0 -2 0 0 0 0 1
\ 0 0 -1 0
and
AN R
U, = diag 0 0 0],
9 0 0 -1 0 0 0
0 -1 0 0

Then we have

Qo(Us,U;) =3 and Qo(U;,U;) =0 for 0<i#j<2.
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Denote m’s subspaces

0 0 0 0 0 0 0
0 0 0 ry —I3 —Teg s
0 0 0 T3 T4 xIs Te
m; = 0 —x4 —23 O 0 0 0 | =a3FE1 +24FEs + x5FE3 + x6Fy p,
0 T3 —XT4 0 0 0 0
0 T6 —I5 0 0 0 0
0 —x5 —xz¢ O 0 0 0
and
0 0 0 —2z5 —2w¢ 213 214
0 0 0 —x4 T3 T —Ts
0 0 0 T3 Ty 5 Tg
mo = % 2xs5 T4 —x3 0 0 0 0 =a3F + x4 Fo + x5F3 + x6Fy .
2xg —x3 —I4 0 0 0 0
—2r3 —Tg —Ts 0 0 0 0
—21’4 s —Tg 0 0 0 0
Note that our matrices of Eq,...FE4 and FY, ..., Fy are different from those

in [GVWZ]. We have Qo(E,, Fy) =0 for 1 <p,q <4, and

Qo(E;, E;) =1 Qo(Ei, Ej) =0
Qo(E,F)=1  Qo(F;,F;)=0

for 1 <i#j<4.
Next, we consider the Lie algebra g = s0(2) @ go with the following bi-
invariant inner product

3k?
(4.3) Q(sE12 + X,5F10 + X) = 732 +Qo(X, X)

where sE19 € $0(2), and E19 is the skew-symmetric 2 x 2-matrix with (2,1)-
entry 1. So we have

(4.4) p=s50(2) +m.
Let
(45) X1 = <2E12 + UO) /\/6, X2 = (]iE12 - U()> /\/6

(4.6) Yi=U/V3,  Yo=Uy/V3.
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It follows that {Xl,XQ,Yl,YQ,El,..

basis of p, and

t =b+spangp { X1},
tF = b+ my + spang {Y1},

L EuFy, .

733

., F4} is a Q-orthonormal

TC(O)B, ~ mj + my + spang {Xg, Y1, Y2}
Tc(L)B+ ~ my + Spang {Xl, XQ, 1/2} .

From the explicit forms of the generators of the Weyl group W in Propo-
sition we determine the action of W on each subspace in p.

Lemma 4.1. The action of the Weyl group W is given by the following:

1) Ady_ acts on p via

X10—>X1, XQ'—>X2,

and

3
B — %Ez; + \ggl’%

1 3
Ey — §E2 + {Fg,

1 3
E3— §E3 + \2[F3,

€ 3e
Ei— ——F — —F
4 2 1 9 1,

2) Ad,, acts on p via
X1 — XQ,
and

i~ —El,
F1 — —Fl,

X2 i—)Xl,

FEy — —EQ,
F2 — —FQ,

Y1 — z’fYQ, }/2 — —€Y1

\/gs £
F —F, - -F
1 5 4 24

V3 1
Fo— —Fy — - I
2 5 2 5 2

V3 1
F: —F3 — - F:
3 = 5 3 23

3

F4+—>\gEE1+;F1.

YimY, Yo -V,

E3 — Eg,
F3 — F3,

Ey— E4;
F4 — F4.

We determine the irreducible summands of the Ady representation on p

in the following

Lemma 4.2. The adjoint representation of H on the space p is determined

by the following:
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1) For the connected component Hy = SU(2) C H, the representation of
Ady, on

p = spang {X1, X, V1, Yo} @ my & my
s given by
16181016 [uo]r @ [po]r

where 1 is the trivial representation, and [us]r is the standard repre-
sentation of SU(2) on C% = R%.

2) The element
T=(-1,diag{-1,-1,1,-1,1,1,—-1}) € H

acts trivially on spang { X1, Xo, Fa, E3, F5, F3}, and maps v to —v on
sSpang {Y].7Y27 El)E47 Flu F4}

Proof. First note that the adjoint representation of H is trivial on the line
spanned by Fjs € s0(2). Recall that from the embedding (4.2]) of the Lie
algebras, the identification between SU(2) and Hyp = SU(2) C SU(3) € SO(7)

is given by
(6% B BRPT h1 —hg
(5 D) n=aing{n (3 )}

ho= (" b and hy = —by 4y
—b1 ay a2 ba

where a = aq + iag, 8 = by + iby and the complex structure is induced by
the left multiplication of e3. It is straightforward to check that Ad,U; = U;
for 7 =0, 1,2 and the following relations

with

E, F; E, Fi
Ey Fr| r|E F
Ady Es F3| h E3 Fj
Ey Fy Ey, Fy

This shows the first part. The statement in the second part follows by a
straightforward computation. O

Denote X*, the Killing vector field generated by X € p along ¢(t). Using
the fixed background inner product @ on p, the invariant metric g, t € (0, L)
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can be written as
(X" Y") =Q(P(t)X,Y)

for any X,Y € p, where P(t) is a family of positive definite Ady-invariant
endomorphisms of p. From Lemma [4.2]and Schur’s Lemma in representation
theory, we have

Proposition 4.3. Restricted to the reqular part M} — (B UB_), a G-
invariant metric g = dt*> + g; is determined by the following inner products
on the tangent space of T,;)G/H=p (0 <t < L):

9:(X1, X1) = fi(t),  9:(Xa, Xo) = f5(t),  g1(X1, X2) = fra(t)
9:(Y1,Y1) = Bi(t), (Y2, Y2) = h3(t), gi(Y1,Y2) = hua(t)
9i(Ei, B)) = ai(t),  gi(Fi, ;) = a5(t), gi(Ei, Fy) = axa(t)
gt(Er, Fy) = gi(E3, Fo) = bia(t),  gi(E2, F3) = gi(Ey, F1) = —b1a(2),

with i =1,...,4, and the other components vanish. Here the 10 functions
are smooth on (0,L) and g; is positive definite for any t € (0,L).

Remark 4.4. If k is an even integer, from Remark the principal
isotropy subgroup is H = Zy x SU(2), and the adjoint representation of H
on p is given by Case (1) in Lemma It follows that for an invariant
metric on the regular part, we need 10 smooth functions to describe the
inner products on spany { X1, Xo,Y7, Ya}, other 6 smooth functions for the
inner products on m; ¢ mo.

Remark 4.5. If the group is SO(2) x SO(7), there are 6 functions involved
for an invariant metric on M}3, see [BH] and [GVWZ].

There are further conditions required such that the metric dt? + g; can
be extended smoothly to singular orbits at t = 0 and L. These conditions
are given in [BH] and [GVWZ] when the group is SO(2) x SO(7). For our
case with G = SO(2) x Gg, we have

Lemma 4.6. Assume k>3 odd. To ensure the metric g = dt> + g; can
be smoothly extended to the singular orbits at t =0 and L, the following
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conditions hold.

, h1(0) = he(0) > 0, h12(0) =0,
a12(0) = % (a7(0) — a3(0)) ,  b12(0) =0,
10) =25, fl2(0) =0, f3(0) =0, hj(0) = hy(0) = h,(0) =0,
a1(0) = a5(0) = aj5(0) = b15(0) = 0;

and
ho(L) = ao(L) > 0, L) =day(L)=0, hi(L)=ai(L)=0.

Proof. We first consider the singular orbit at ¢ =0. Note that o=
(e27/k 1d) € K~ acts trivially on B_ = G/K~, and the slice representation
on the 2-disk bundle of B_ is given by R(20) for R(6) € SO(2). Here R(¢)
for ¢ € [0,2m) is the counterclockwise rotation with the matrix form

R(¢):<cos¢ sin¢>.

—sing cos¢

It follows that the singular orbit B_ is the fixed points set of o and hence
totally geodesic, see also [GVWZ, p. 162].

Since X collapses on B_, we have f1(0) = 0 and f12(0) = 0. The isotropy
representation of K~ = SO(2)SU(2) on the tangent space of

T,0)B- = spang { Xa} + spang {Y1, Y2} +m; +my

is given by
14+ p2 @1+ p2® [pe]r

where py is the standard action of SO(2) on R? via R(kf). Note that the
third component above is not irreducible as a real representation. That the
second component is irreducible as a real representation, implies that

h1 (0) = hQ(O) > 0, h12(0) =0.

In the following we consider the representation on mj; + ms. An explicit

matrix form of the SO(2) action on SO = spang {ey,...,e7} is given by
cos2u —sin2u 0 cosu 0 0 S
. . 0 cosu —sinu 0
A = diag sin2u  cos2u 0|, .
0 0 1 0 sinu  cosu 0

—sinu 0 0 Ccos U
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with v = —k6€/2. The adjoint action Adg on mj + my under the basis
{E1,...,Ey, F1,..., Fy} has the matrix form M = (M;|Mz), with

cos®u 0 0 sin® u
0 cos® u —sin®u 0
0 sin® u cos? u 0
M —sindu 0 0 cos® u
L= V3cosusin?u 0 0 V3 cos? usinu
0 V3cosusin?u —+v3cos?usinu 0
0 \/3 cos? usinu \/3 cos u sin? u 0
—v/3cosusinu 0 0 V3 cosusin?u
and
V3 cosusin® u 0 0 V3cos?usinu
0 V3 cosusin® u —v/3cos? usinu 0
0 V3cos?usinu V3 cosusin®u 0
]\42 — —V3cos?usinu 0 0 V3 cosusin®u
(cosu + 3cos 3u)/4 0 0 (sinu — 3sin3u)/4
0 (cosu+ 3cos3u)/4 (—sinu+ 3sin3u)/4 0
0 (sinu — 3sin3u)/4  (cosu + 3cos3u)/4 0
(—sinu + 3sin3u)/4 0 0 (cosu + 3cos3u)/4

Using the same basis of m; + mg, the endomorphism P(t) has the following
matrix form:

Plg(t) a%(t)Ll
a2 (t) 0 0 blg(t)
0 a19 (t) —blg(t) 0
0 blg(t) alg(t) 0
_b12(t) 0 0 a12(t)

P(t) — (a%(t)l4 P12(t)> with
Pio(t) =

where I is the identity matrix. So the K™ invariance of P(0), i.e., M P(0) =
P(0)M, implies that

b12(0) =0 and a12(0) = @

5 (a7(0) = a3(0)).

Note that on the circle R(0)(0 < 6 < 27), we have R(7) € H. So we have
¢'(0) = 2, with ¢(t) the length of Killing vector field generated by d%. By
our choice of X7, we have f1(t) = k%/ggb(t) so that f1(0) = %\/6. Since Ad,,_
fixes X; and Xz, we have g;(X7, X5) is invariant under the reflection of
the 2-disk slice generated by Ad,,_ that changes t to —t. It follows that
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f15(0) = 0. Similarly we also have f5(0) = 0. The other derivatives vanish
at t = 0 follows from the fact that B_ is totally geodesic and the second
fundamental form is —%Pt_lPt’ .

Next we consider the singular orbit at ¢ = L. The slice at p is V = RS,
and the action by the connected component KI = SU(3) is given by [u3]r.
Restricted to the subspace W = spang {Uy, Ua} @ my C T(1)B+, the adjoint
representation by K{ is given by [us]gr. So we have ho(L) = az(L). The
second fundamental form IT at ¢(L) restricted on W x W is a K -equivariant
map

IT: Sym*(W) x V — R.
However the symmetric square of [ug]g is given by [2,0]g @ [1,1] &1 in
terms of highest weight notions, and it does not contain [uslg = [1,0]r.
It follows that II restricted on W x W vanishes at ¢(L) and so we have

ah(L) = h,(L) = 0. The equations a;(L) = h1(L) = 0 follow from the fact
that Y7 and my collapse at ¢(L). This finishes the proof O

5. Rigidities of non-negatively curved metrics

In this section, we derive a few rigidity results when the invariant metric is
assumed to be non-negatively curved, see Propositions and

Recall the following rigidity result on Jacobi vector fields in [VZ].

Proposition 5.1 ([VZ, Proposition 3.2]). Let M"*! be a manifold with
non-negative sectional curvature, and V' a self adjoint family of Jacobi fields
along the geodesic c : [to,t1] — M. Assume there exists an X € V such that
the following conditions hold.

(a) || X||, #0, | X||; =0 fort=tg and t = t;.

(b) If Y € V and (X (t1),Y (t1)) =0, then (X (to),Y (to)) = 0.

(c) If Y € V and Y (t) = 0 for some t € (to,t1), then (X(to9),Y (t9)) = 0.
(d) If Y (to) = 0, then (X'(to),Y"(t9)) = 0.

Then X is a parallel Jacobi vector field along c.

We consider the case where V is given by a family of Killing vector
fields. Recall that for any X € g, X* is the Killing vector field generated
by X along the geodesic ¢(t), and denote X (t) = X*(¢). Since the paral-
lel transport along c(t) is Ady-invariant, we may choose V' = {X* : X € n}
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for the subspace n C p such that it is the sum of all equivalent irreducible
representations in p.

We show that such V' is a self adjoint family of Jacobi fields along the
geodesic c¢(t). Let T = % be the unit tangent vector along c(t). For any
X*Y* € V we have

g(vTX*7Y*) = —g(Vy*X*,T> = —g(VX*Y*,T)
ZQ(VX*T,Y*)y

and

g(X'(1), Y (1)) = g(VrX(t),Y () = g(Vx (T, Y (t)) = 9(Vy T, X (1))
= g(Y'(t), X(t))-

So V is self-adjoint. We also have

9(X' (), Y (1)) = 3 Drg(X (1), Y (1)) = JQ(P ()X, )
and thus
(5.1) X'(t) = %P(t)_lP’(t)X.

Proposition 5.2. Suppose that (Mg?’,g) has non-negative curvature with
g an invariant metric and k > 3 odd. The Killing vector fields X* generated
by the following vectors X € p are parallel Jacobi fields along c(t) (t € [0, L] ):

X=Y

and
a12(0)

az(0)
Moreover for all t € [0, L], we have h1a(t) = b12(t) = 0 and

X =BEi+F;(i=1,2,3,4) with B=—

ha(t) = ha(L) > 0, ar2(t) = —Bai(t), a3(t) = Bai(t) + h3(L).
Proof. We first consider the case X = Y;. By Ady-invariance take
V={Y":Y e€spang {Y1,Y>2}}.

In Proposition condition (a) holds as ha(t) # 0 and hh(t) =0 at t =0
and L. For condition (b), if g(Y2(L),Y (L)) =0, then Y = \Y; for some
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constant A. So (b) holds as
g(YQ(O), )\Yl (0)) = )\h12 (O) =0.

Condition (c) and (d) hold as such Y is zero in V. It follows that Y5 is a
parallel Jacobi field for ¢ € [0, L], ho(t) is a constant function and hj2(t) = 0
for t € [0, L].

Next for the case X = F; + SE;, we take V ={Y*:Y € m; + ma}. We
may assume that ¢ = 1. We have

X1

* = a3(t) + Fai(t) + 2Bara(t)
IX@OI X @) = a

ah(t) + Ba) (t) + Bayy(t).

It follows that

1X(0)|1 = a3(0) + B2%a3(0) + 2Ba12(0)
B @25(0) . a%y(0)
=0+ 20 20
CL2
=0 - S5

3 a2(0)\
— a3(0) - 2a3(0) (1 - ) .
1
If | X (0)|| = 0, then we have

300) 3 a3(0)\
a§<o>‘4<1‘ 2 ) |

)

It follows that either a2(0) = 3a3(0) or a2(0) = 3a2(0). Say a3(0) = 3a3(0),
then Lemma implies that a12(0) = v/3a3(0) and then the Killing vector
fields £1(0) and F;(0) are parallel which shows a contradiction. Similarly the
second case cannot happen either and so we have ||X (0)|| # 0. From Lemma
again we have || X (0)||" = 0. At t = L since E1(L) = 0 we have || X (L)|| =
az(L) >0, and || X (L)|" = a4(L) = 0 from Lemma So Condition (a) in
Proposition holds for X.

For Condition (b) in Proposition we may assume that ¥ =y F1 +
yo F1. It follows that

(X(L),Y (L)) = yaa3(L)
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and (X (L),Y (L)) = 0 implies that y2 = 0. By normalization we assume that
Y = Ei, and then

(X(0),Y(0)) = (F1(0) + BE1(0), E1(0)) = a12(0) + fai(0) = 0
by our choice of 5. So Condition (b) holds for X. Condition (c) and (d) also
hold as such Y is zero in V. It follows that the Killing vector field X* is a
parallel Jacobi field for ¢ € [0, L]. Note that equation (5.1]) yields
2X'(t) = P(t)'P'(H) X

and the block in P(t) corresponding to {E1, F1, Ey, F4} is given by

az (t) a122(t) 0 bia(t)
_ a2 a3(t)  —bia(?) 0
Pi(t) = % —b212(t) a%’l(2t) aa(?)

b12 (t) 0 alQ(t) a% (t)

It follows that P; ()1 P{(t)X = 0 and then P{(t)X = 0, i..e, we have b}, (t) =
0 and

4 (Ba3t) + matt) =0

% (Baia(t) + a3(t))

0

for any ¢t € (0, L). So we have bya(t) = b12(0) = 0 and

alg(t) + Ba%(t) = a12(0) + ﬂa%(O) 0
a3(t) + Baia(t) = a3(L) — Bai(L) = a3(L).

Note that ag(L) = ho(L) and it finishes the proof. O

In the following we assume that ha(L) = 1 by rescaling the metric g if
necessary. From Proposition [5.2] and Lemma [4.6] we have

gl d0) = Fai(0) 41

and

| S

a12(0) = (a%(()) - a%(O)) .
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Solving a?(0) yields

V3
V3(1—B2) 428

(5.2) ai(0) =

In particular we have 3 € <—%, \/§>

Proposition 5.3. Suppose that (M,iS,g) has non-negative curvature with
g an invariant metric and k > 3 odd. Assume that ho(L) = 1. Then we have

1
< a2(0) < - + \/;3 ~ 1.184.

(5.3) <2

>~ w

Proof. The lower bound of a?(0) follows from the minimum value of the
function a%(O) in equation (5.2). To obtain the upper bound, we consider
the sectional curvature of the 2-plane spanned by Y; and E; + rFj on the
singular orbit B_. Note that B_ is totally geodesic and a computation (see
the details in Appendix A.1) yields

6v/36° + 964 — 32383 + 1082 + 18V33 + 9
4(V3p2 - 25 - V3)’
2764 +12/36% + 228% + 4/35 + 3
12 (V362 — 26 — V3)"

R(YlaElaEhYl) —

R(}/bFl)Fl’Yl) —

and
B (98" +12V/383 — 545% 4+ 20v/38 + 57)
12 (V362 — 26 — v/3)”

A necessary condition that R(Y1, Eq + rFy, E1 + rFy,Yy) > 0 for all r is that

R(Y17E17F17Y1) - -

p(B) = R(Y1, By, E1,Y1)R(Y1, F1, F1, Y1) — (R(Y1, E1, F1,Y1))? > 0.

From the formulas of the Riemann tensors we have

(8) = (V382+28—+/3) (—9B°+301/35°+18334—41/33°—1833%+30v/35+9)
P 18(V/3p2—26—V/3)" |

Note that p(0) > 0. On the interval (—1/+/3,/3), the numerator of p(3) has
a simple root 51 < 0 and a triple root 85 > 0 given by

ﬁlzg\ffg\/@ and 52:\}3,
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So we have 3 € [B1,32]. Over this interval the function a?(0) is monotone

decreasing with

7 VI3
2 2
a0, =1+ and i), _, =3

This finishes the proof. O

6. Proofs of Theorems [1.2], [1.3]| and [1.10

In this section we first prove Theorem [I.10] Then Theorems [I.2] and [I.3]
are corollaries of Theorem [1.10, see the proof at the end of thls section.
Note that there is a shorter proof of Theorem that works for k > 5, see
Remark [6.6]

Throughout this section we assume that & > 3 is an odd integer, and
that M,%3 admits an invariant metric ¢ with non-negative curvature. We
assume that ho(L) = 1 by rescaling the metric g if necessary. It follows from
Lemma [4.6] Propositions [5.2] and [5.3] we have

bi2(t) = hia(t) =0, ha(t ) =1,
arp(t) = —Bai(t), a3(t) = B%ai(t) +

for some constant 3, and

_ _ V3 .
[1(0) =0, f12(0) =0, h(0)=1, a%<0>—\/§(1_ﬁ2)+25,
{<o>=kj6, Fl2(0) =0, f50) =0, Bj(0)=0, d}(0)=0:

hl(L) - al(L) =0.

The endomorphism has the following block-diagonal form
() (1 5
- 2
Xo Sz f5 ) \Xo
p (V) _ (1 0 (m
Ys 0 1)\Y,

E\ _( af —fai E; .

and
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Lemma 6.1. We have a{(t) <0 and h//(t) <0 fort € [0, L].

Proof. We know that V' = spang { E1, F1} is an invariant space of P(t) with
the following matrix form

p E1 _ a% —ﬁa% E1
F —fai BPai+1) \Fi

and the inverse is given by

L _ (Pt a B
P ‘V_< B 1)’

So the sectional curvature K (E7,T) of the plane spanned by E; and T' = %
has the same sign as

R(Ela T7 T7 El) = —ax (t)alll(t)

The non-negativity of K(FE1,T) implies that af(t) < 0. The inequality of

R (t) follows similarly from K (Y1,T) > 0. O
Let
(6.1) £(t) = ai(0) — ai(t)

and from Lemma we have
0 <&(t) <a2(0) for tel0,L]
and £(0) = ¢'(0) = 0.

Lemma 6.2. The sectional curvature of the plane spanned by X and Y

with
X=E —V3F, and Y =V3E,+ F,
s given by
XYV, X
K(X,y)= BNV X)
I X ANY]
with
4a3(0 8 f2 4+ 249 9
(6.2) 1) px vy, x) = ST 200 (g0 (o))

3 i1
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Moreover K(X,Y) > 0 implies that

(6.3)

where n(t) is a positive function with lim;—on(t) = 0.

Proof. The formula of R(X,Y,Y,X) in equation (6.2)) is derived in Ap-
pendix A.2. To get inequality (6.3)), one can apply the initial conditions
f1(0) = f12(0) = 0 and f2(0) > 0. O

Remark 6.3. The choice of such vectors X and Y is motivated by Lemma
1.1(b) in [WZ]. Here X and Y are eigenvectors of P(0). The sectional cur-
vature of the 2-plane is zero at ¢ = 0, and the contribution to the sectional
curvature from the second fundamental form for ¢ > 0 involves the func-
tion fl-

In the proof of Theorem the following algebraic fact of certain
quartic functions is also needed. Denote

(6.4) a=a?0) and v=+/a(da—3)

and we introduce the following two quartic functions

dSa+2y 4 2a—7v 3 a+7v 4 20+ 1
v = — —
1) = e ¥ T Bt T 82 ® T 33" Toa
302 —a—2v 4 2042—304—1—73 9—-2a 5 1 1
v = — -
2(z) Bzt WP T 4\/§$+16

Lemma 6.4. Assume o > %. Then we have
3Uy(x) +4%s(z) >0

for any x € R. Moreover the minimum can be achieved by a unique T = x4
such that ¥a(x,) > 0.

Proof. Denote ¥(x) = 3W;(z) + 4Uy(z). First we show that U(z) = 0 has a
double real root. One may see the fact from the vanishing of the discriminant.
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In the following we solve this double root explicitly. A calculation yields

 lla+12a% =2y 4, —10a+8a*+3y 5 9a—4a? -9y ,

] =
() 4802 v 8302 2402
6 — 8a? + 3y da—3
T+
8\/§a2 16
) la+120% -2y 5 V3 (=100 + 822 +37) ,
Viz) = 1202 * 8a? v
904—4a2—979ch 6 — 8a + 3y
1202 8v/3a2
" la+1202 -2y , V3 (-10a+8a*+3y)  9a —4a? — 9y
Vi) = 402 v 4a? AT

One can check that the following x, is a common real root of ¥(z) =
U'(z) =0:

V33— 4a—4y)
34+ 12a

(6.5) To =

and U (z) = § — 3= > 0. It follows that z, is a local minimum of ¥(z).

Write

1la + 1202 — 2y
¥(z) = 4802

(z — za)’p(z)
and then we have

2_2\/§(2—a+’y)x 3a
44 3« Sa+ 2y

p(z) =2z

The discriminant A of p(x) is given by

36

= 0
12— 4la—207 °

A

that implies that U(z) = 0 has no other real roots.
To finish the proof we only need to check that ¥a(x,) > 0. An explicit
computation shows that

(16 — 9) (9 — 312a + 6560* — 487 + 320ary)

Uy(za) =
2(Za) 360(1 + 4ar)? >0

NI

as

v
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We will use the sectional curvature of the plane spanned by A, = X7 +

rXo and By = E1 + qF. Let

Rl = R(Xy, E1, Eq, X71)
R(Xy, F1, F1, X1)
R(Xs, Eq, F1, X5)
R(X1,Ey, Eq, X9)
R(Xy, By, F1, X5)

R(X4, By, F1, X))
R(Xs, Er, Eq, X9)
R(Xy, F, F1, X5)
Rg = R(X1, F1, E1, X2)
Rio = R(Xy, F1, F1, X2).

Ry
Ry
Rg

The formulas of R;’s are listed in Appendix A.3. In the following, we group
the terms in R;’s into three different parts: one with the factor &, with the
factor ¢, and without the factor & or &'.

Lemma 6.5. The R;’s have the following forms:

Ry = —25 (14 m)+ ShAE+ 5 (7~ f)’
Ro= S (ttm)+ 5o (2 1) fiste
- 8\1/5 (1 + —) (ff = f12)”
(0 &Ry = S (L) + 2 2 gt P02 (g2
Re= 25Oy e ] (f2 - o)’
Ro= ey L (20 e
-5 () (- )
@-ops= (5~ 20 2R o)) e
$ 20 g e 22 (73 )
Ry = 4‘8@”5 (1) + 3 1€’ = 5 (77 = f12) (53 — fr)
e o= ;ci/g;)fi(O)g(l ) — 4\1/§ (1- 9 1.

+8\1/§(1

+ %) (ff = f12) (f3 — f12)
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da — (o — 1) f3(0)

B 1 Y Y
Ry = — W 5(1+U9)—m<1_5)f12£
1
+ 573 (1 + g) (f7 = fr12) (3 — f12)
C 2
(= &Ry = —iﬂo)f (1 +m0) + wﬁ?g
5(1—1—27

(ff = fi2) (f5 — fr2)

where n; = n;(t) are functions in t(i =1,...,10), with n;(t) — 0 ast — 0.
Next we prove Theorem [1.10[in the Introduction.

Proof of Theorem[I.10. We argue by contradiction. Assume that M3 ad-
mits a non-negatively curved invariant metric g with k£ > 3. The constant 8
in Proposition 5.2 E 2|and thus « in equation are determined by the metric
g. Furthermore, from Proposition we have 1<ac< 7 %\/ﬁ

First, note that £(¢t) > 0 for ¢ > 0 by a similar argument as in [GVWZ,
Section 2] and the inequality (6.3). From Lemma [6.1] we have af(t) < 0 for
all t € [0, L], and it follows that £'(t) = —2a1(t)a}(t) > 0 for all t € [0, L] as
ay(0) = 0. From the inequality we have

< he 2‘3/6(1 +n(t))

§

for all t € (0, L). So the limit superior exists, and we denote

!
2
(6.6) ¢ = limsup 115 < 26,
t—0+ 5 3

Next we will derive a lower bound of £ from the non-negativity of the curva-
tures of certain 2-planes, such that the two bounds contradict to each other
if k> 2.

Consider the sectional curvature of the plane spanned by A, = X7 + rXs
and Bq = k1 4+ qFy:

R(Ar7 Bq7 qu Ar)

K(ATaBQ) = |Ar/\Bq|2
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Note that a necessary condition for K(A,,By) >0 for all r, is that the
following inequality

1
£3(0)
holds for all ¢. Using the R;’s, we have

I, = (R(Xl,Bq,Bq,Xl)R(Xg,Bq,Bq,Xg) — R(Xl,Bq,Bq,X2)2) >0

R(X1,By, By, X1) = R1 + 2qRs + ¢*R3
R(X27 qu Bqa XQ) = Ry + 2qR5 + q2R6
R(X1, By, By, X2) = R7 + q(Rs + Ry) + ¢*Rio;

and thus

f3(0)I; = (RsRs — RYy) ¢* + 2 (R2Rg + R3Rs — RsR1g — RoRio) ¢°
+ [~(Rs + Rg)? — 2R7R1g + 4Ry Rs5 + RiRg + R3R4) ¢°
+2(RoRy + RiRs — RrRs — R7Ry) g + (R1Ry — R}) .

Write
I, = caq* + c3¢® + e2q® + c1q + o
with

co = f5"(0) (RiRs — R3)
cl = 2f2 (0) (R2R4+ R1R5 — R7Rg — R7Ry)
(0) (—(Rs + Rg)® — 2R7R10 + 4RsR5 + R1Rg + R3Ry)
c3 = 2f2 4(0) (R2Rg + R3Rs5 — RsRio — RoRio)
C4 = f2 0) (R3R6 - Rlo)

From the forms of R;’s in Lemma we have

1( +mﬂ£+1(l+mﬁﬁﬁ€

O T6a
200 4+ v 1 1t
o =200 4y — ——(1+
1= 530 5 (L+ms)¢ 4\/3( ma)f1fi€
a+y 9 —
C2=——g o L1+ ms)e+ o 1+ me) 1€
200 — vy 202 — 3o+ /ot
5 = 1+ + ="'+
3 24\/3042( mr)é WP (1 +ms)f1f1€
da + 2y 302 —a — 2y o
= 1 — (1 .
1= —oy (Lt mo)e+ —— s (1 +1m0) fLfi€
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Here 111, . . . 20 are functions in ¢, with ;(t) — 0ast — 0% fori = 11,. .., 20.
One can verify the forms of ¢, ..., cs above in the following two steps:

(i) Check the fact that the term without the factor £ or & in each ¢;
vanishes.

ii) Calculate the leading term with factor £ or £ in each ¢;.
g

Take the sequence {t,} C (0, L) with lim,_,~ ¢, = 0 and

— lim fl(tn)fl(tn)

Note that the coefficients in ¢;’s appear in the quartic functions Wi and W,
in Lemma For any fixed g we take the limit of 5_1Iq along the sequence
{tn} and it follows that

(6.7) 0 < Wy (g) + Walg) f{(0)0 = Uy (q) + w2<q>kjge.

From Lemma there is a real number ¢, such that

4
Ui(ga) = —g\llg(qa) and Wa(qe) > 0.

Letting ¢ = g4 in the inequality (6.7)) yields

4
0< _3\112(%1) + Us(qa)—=——

< (;; - g) V2 (qa)

and so we have k < 2. It contradicts to the assumption that k > 3, and we
finish the proof. U

Remark 6.6. There is a relatively shorter proof that works for k& > b5:
Instead we consider the sectional curvature of the 2-plane spanned by A, =
X1 +rXs and B = Ey, ie., fix ¢ = 0. Then K(A,, B) > 0 implies that Iy >
0, i.e.,
1 1 o
0= —qe (L+m) &+ 1 (1+mz) fifi€ 2 0.

It follows that

fi€ S 1t 1

& T l+meaf]
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when ¢ > 0 small. Taking the limit ¢,, — 0 yields

0> ——.
o

1 kvV6
4

Combine with the inequality (6.2, and we obtain

[N}
|
(@)
ol
1<
(@)

> (>

Q|+

From Proposition [5.3] we have the following estimate:

8 8/ 7 V13
k<-a<-|—4—-—] =3.16.
_3a_3<12+ 6) 3.16

However this short proof does not rule out the case k = 3.

Finally we prove Theorems [1.2] and [1.3] in the Introduction.

Proof of Theorems[I.3 and[I.3 Denote G = SO(2) x Ga. From Theorem|[1.5
the G-manifold Pk13 is equivariantly diffeomorphic to Nl?’7 and the 2-fold
cover of N, ,%3 is the Brieskorn variety M ,}3. So Theorem follows directly
from Theorem as any non-negatively curved invariant metric on P,J;?’
would lift to one on M, ,}33.

Theorem follows from Theorem the classification of cohomo-
geneity one actions on homotopy spheres by E. Straume in [St], the non-
negatively curved Grove-Ziller metrics on P%s in [GZI] which is observed
by Dearicott, and the obstruction result by Grove-Verdiani-Wilking-Ziller
in [GVWZ]. Straume showed that a non-linear cohomogeneity one action
on a homotopy sphere is given either by SO(2) x SO(n) on the Brieskorn
variety M3"~(d > 3 odd), SO(2) x Spin(7) (a subgroup of SO(2) x SO(8))
on MJ}° (d> 3 odd), or SO(2) x Gz on M}3. In the first case, when n > 4,
the obstruction to a non-negatively curved invariant metric was proved in
IGVWZ]. In the second case, using representation theory one can see that
the family of SO(2) x Spin(7)-invariant metrics on MJ° is the same as the
one for SO(2) x SO(8). So the obstruction follows from the first case with
n = 8. Theorem shows the obstruction in the third case of M 23. This
finishes the proof. O
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Appendix A. The computations of Riemann curvature
tensors

In this section we collect the detailed computations of Riemann curva-
ture tensors which are used in Section 5 and 6: Proposition Lemmas
[6.2] and 6.5l The formulas of Riemann curvature tensors on a cohomo-
geneity one manifold have been derived in [GZ2]. Write R(X,Y,Z, W) =
g(R(X,Y)Z, W), and the convention of the sectional curvature is given by

R(X,Y,Y, X)

MXXFZ|XM$

for a 2-plane spanned by X and Y. Recall that @ is a fixed bi-invariant
inner product on g = s0(2) + g2, and p = b where b is the Lie algebra of
the principal isotropy subgroup H. The invariant metric is ¢ = dt* + g;, and

(X" V") =Q(PX,Y)

where X* and Y* are Killing vector field generated by X,Y € p along the
normal geodesic ¢(t), and P = P(t) : p — p is a family of positive definite
Ady-invariant endomorphisms for ¢ € (0, L). In terms of the Q-orthonormal
basis

{XlaX2>Y17}/é7E17"'7E47F17"'7F4}

we have

PX) = fA(t) X1 + fr2(t) Xo

PXy = fio(t) X1 + f3(t) X
PY; = B3 (t);

PY; =Y,

PE; = aj(t)E; — Bai(t)F,

PF; = —Bd}(t)E; + (B*ai(t) + 1)F;

with 1 <4 < 4. The following two bilinear maps are defined in [Pul:
1
(A1) B. = L ((X.PY]% [PX.Y]).
Here B is symmetric with By (X,Y) € p for any X,Y € p, and B_ is skew-

symmetric. The formulas of Riemann curvature tensors in terms of @, P; and
By are given in Proposition 1.9 and Corollary 1.10 in [GZ2]. The following
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special case of formula 1.9(a) in [GZ2] is also useful. For any X,Y,Z € p we
have

R(X,Y,Z,X) = %Q(Bf(X, Y),[X, Z]) +

_l’_

+ |
N L A S

Recall the constants

200 _ V3
V3(1-p%) +28

and v = y/a(4a — 3) in equations and .

A.1. The Riemann curvature tensors in Proposition

First we have

Vi, E1] =V3E; and [Vi,F]=——F.

8-

Then the bilinear maps are given by

2B_ (Yl, El) = [Yl, P(O)El] + [P(O)Yl, El]
= [Yi, OéEl — OéﬂFl] —+ [Yl, El]

= \/§(a +1)Es + f[/gFQ

9B, (Y1, E1) = [Y1, P(0)Ey] — [P(0)Y1, B4

= \/g(Oé — 1)E2 + fv/gFg
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and

2B (Vi i) = Vi, PO)F] + [PO)Yi, Fi]
= [Yi, —Oé,BEl + (0462 + 1)F1] + [Yl,Fl]

2
— —\3aBE, — O‘B\/; 2

2B (Y1, 1) = [Y1, P(0)F1] — [P(0)Y1, F1]

Fy

2
= —V3aBE, — 2R,
BE> 3

It follows that

V3(a —1) af

2V3
B (o))

+;%W&+&>

V3B (=145 (=3 +4a)p
- \/3(1752)+25E2+ Vel

P7Y0)Ey +

P7H0)F

and

(0)E —O‘—ﬂzP—l(o)F
2 2\/3 2

2
=—V?ﬁ(0?+;>&+5&>—aﬂ(m&+&)

2V/3
__ BBHVE? L 2087
T 2B1-p)—4p T VBT

PH0)B, (Y1, F) = —\/520‘519—1

Note that B4 (Y1,Y1) = [Y1, P(0)Y1] = 0. So one can compute the three
Riemann curvature tensors as follows:
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R(Y1,E,E, Y1) = 31 ;_ @) _ §Q (\/gaEQ —V3afF,, \/§E2>

+Q<\/§(O;_ Vg, + ;iﬁ

V35 (-1+6%) (=3 +4a)8
BU-p) 25t 2 F2>
_3(+a) 9o VBla-1) V3F(=1+F7)

2 4 2 VB(1-p)+28
aﬂ (=3 +4a)B
2{ 2v/3
:6\f65+954 32fﬁ3+1062+18f5+9
4(V3p2—28— f)
2
R B R = P28 g (o), )
2
+Q<— “320‘5132—;@5,

2V3(1-p%) 45~ V3
_af?+2 B aB?+1  3ap?(B+V3)?
6 4 4v/3(1 — B2) + 88 3
278 + 12383 +228% + 438+ 3
- 12 (V362 — 26 — V3)°

BBV 2a62F2>

and

R(Y:, By, Fi, V) = 5Q (B(Vi, By, Vi, Fi]) + @ (¥, i), B-(Vi, F)

- SQUPO, Eily [¥1, Fiy)
- Lo (PO, Ay, i E1)
+Q (B4 (Y1, F1), P71 (0)By (Y1, E1))
—Q (B+(Y1,Y1), P71(0) By (B, F))
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%Q < (a+1)E, +2 f \}3 )
a(n o3
fo(nom ) oo )

B Cap? VBB(-1+5°) (=3 + 4a)B
+2Q< V3aBE; \[Fm ﬁ(1—52)+25E2+ W Fy

_ L o 3ap?(—1+ B?) (=34 404)0453)
=% 5+ <f(1—52)+25 6
B (98 + 12[53 — 5442 + 20V/353 + 57)

12 (V352 — 26 — V3)* '

A.2. The curvature formula in Lemma [6.2]

Recall that X = By — v/3F; and Y = /3E, + F}. First note that [X,Y] = 0.
The images under P = P(t) are given by

PX = PE,; —V/3PF,
= aiE) — BaiFy — V3 (—BalEr + (B%a] + 1)F))
=al(1+V3B)E; — (mﬁ +/36%3 + \/§> F
PY =+/3PE, + PF}
= V3 (a}1Es — BaiFy) + (—BalEs + (8%} + 1)Fy)
= a}(V3 - B)Es + (%} - V3Bad +1) F.
Note that [Eq, F1] = [E4, Fy] = [E1, E4]p, = 0, and
1
V2
[F1, Fulp =

(X1 —X2), [Ey 1] = L(Xl - Xa),

V2
\f(Xl—Xz).

It follows that the bilinear maps are B (X, X) = B,(Y,Y) =0, and

[En, Fy] =

B,(X,Y) = [X,PY] - [PX,Y]

_ _ 9732 a2
_ V(=34 ( 363+2\/§ﬂ+3) 7 (X1 - Xo).




Fake RP'® with cohomogeneity one actions 757

So there are only two non-vanishing terms in R(X,Y,Y, X) that yield
R(Xa Y7 Y7X) = Q (BJr(Xa Y),P_IB+(X,Y))
1
- Q(P()X.X)Q (P®Y.Y)

_2(=3+ (=382 +2V38+3)ad)” ;7 + f3 + 2f1o
9 1213 = 1
+ (—3 +2V/38 — 62) (1 +2V/38 + 362> a? (ay)?.

After the substitutions £ = o — a? and 8 in terms of «, we have

2 fi4f3+2f2 N2
RX,) VY, X)= S22 — (¢
&R )
that gives the formula in equation (6.2)).
A.3. The Riemann curvature tensors Rj,..., R19 in Lemma

Similar to the previous sections A.1 and A.2, a straightforward but te-
dious computation shows the following formulas, which are used to derive

Lemma [6.5

Proposition A.1. We have

£ & &R £f12

Rl:_% @‘1‘7 *f1—7a—*f1f12+ f12+ f1f1f

2
VT . B ﬁ_m+@£+fljlz

%0 S
L 2fthe _@_@_ﬁflg +7f1f
§

2

4oy 8 8 i€

7

T 2o 1 3 3L s [P
24a€ 120425 + 8a3§ 240[25 12a3g f
5f1

e L e g M A —ﬁs

4a?
fia,  f2 .o fiz, 5afffie _’Yf1f12_|_5f1f12
12 6 12

* € 425 4
o o
f1f12 ’Yf1f12 5af12 ’Yf12 5f12 f12
6o ST 21 T2 o tteat

gﬁf g W e f1€f{§/

+ %flfflf + ?Taflfflf .

(a—=&Rs =

T -

§

§+
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R4, R5 and Rg can be obtained from Ry, Ry and Rg respectively by switching
J1 and fo.

1 1
R7:% —Wfa flf f2§—*f1f2+f12§+ f1f12
+éf22f12—1f12+1f12£
1 2 2 2
VaR = e L ey Mo e Jig 0k

n fifs N VfRfs @5_ f1f12 fthe  f3he  f3hoe
28 S8« S8a 8 S8a
+%+%—*fuf + afizf/
\ng—ngjLWcl ’Yf2£
and
(0O =36+ 54 et - g Do L

+ﬁ§+ f1 52 f1 52 f2§+ f2 §2 f2 52 5af1f2

A A e

da
+ Tgflzf - 6f12£ - E§f12§ + nglzf + 67a§f12§ .
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