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We show that the conformal structure for the Riemannian ana-
logues of Kerr black-hole metrics can be given an ambitoric struc-
ture. We then discuss the properties of the moment maps. In partic-
ular, we observe that the moment map image is not locally convex
near the singularity corresponding to the ring singularity in the
interior of the black hole. We then proceed to classify regular am-
bitoric 4-orbifolds with some completeness assumptions. The tools
developed also allow us to prove a partial classification of compact
Riemannian 4-manifolds which admit a Killing 2-form.
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1. Introduction

The motivating examples for this paper are the Kerr metrics [Ker63], which
have Lorentzian signature and are used to model isolated rotating black

629
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holes. In a process called Wick rotation, the Kerr metric can be transformed
to have Riemannian signature by allowing time and angular momentum
to take imaginary values [GH79]. One of the interesting properties of the
Kerr metrics is that their Weyl curvature is algebraically special of type D.
The Riemannian analogue of this type D condition is that the self-dual and
anti-self-dual Weyl curvature tensors W± both have a unique 1-dimensional
eigenspace. By the Riemannian analogue of the Goldberg-Sachs theorem
[Apo98], when the metric is additionally Einstein, this condition is equiva-
lent to the local existence of two integrable complex structures, J±, which
induce opposite orientations, are compatible with the metric, and are unique
up to sign. We say that (g, J+, J−) is an ambihermitian structure. If an am-
bihermitian manifold (or more generally orbifold) (M, g, J+, J−) admits the
action of a 2-torus T and metrics g± in the conformal class [g] such that
(M, g±, J±,T) are both Kähler toric orbifolds, then (M, [g], J+, J−,T) has
the structure of an ambitoric manifold as introduced in [ACG13a]. We show
that the Riemannian Kerr metrics admit a regular ambitoric structure in
the sense of Definition 1.9.

Another feature of the Kerr metrics is the ring singularity, which is a
circle in the interior of the black hole at each time slice where the curva-
ture blows up to infinity. After Wick rotating, the ring singularity forms
two components which act differently for each of the Kähler metrics. One of
the components forms a point singularity, while the other one is infinitely
distant, meaning that it’s not part of the Cauchy completion. From the per-
spective of one of the Kähler forms, the component which the corresponding
Kähler metric treats as a point singularity is a hypersurface where the form
becomes degenerate. In the language introduced in [CDSGP11], the Kähler
form extends as a folded symplectic form to this hypersurface, which be-
comes a folding hypersurface.

One of the tools for studying toric manifolds is the moment map, which in
the case of compact toric manifolds identifies the space of torus orbits with a
convex polytope in the dual Lie algebra of the torus [AB84]. However, in the
case of the Kerr ambitoric structure, we find that the moment map images
are not convex (even locally) near the folding hypersurface. This result can
be understood in the context of Example 3.11 in [CDSGP11], which shows
that there is no reason for the moment map to be locally convex near a
folding hypersurface.

Motivated by the role that these folding hypersurfaces play in the Kerr
ambitoric structure, we investigate their role in the more general setting of
regular ambitoric orbifolds. Folding hypersurfaces occur as one of essentially
two types of boundary that occur when taking completions. We call this type
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of boundary a fold. We call the other type edges, because they occur as the
boundary edges of the moment polygon for a compact toric surface. Our
study of the geometry near these boundaries leads us to a classification of
complete regular ambitoric orbifolds. The rest of the introduction is dedi-
cated to presenting a precise statement of this result.

We find it convenient to work with slight generalizations of regular am-
bitoric orbifolds which we call regular ambitoric orbifold completions, for
which the full ambitoric structure need only be defined on a dense open
subset. More precisely, we call a Riemannian manifold (M, g) completable
if its Cauchy completion Mg

C is an orbifold. A regular ambitoric orbifold
completion is defined to be the Cauchy completion of a completable regular
ambitoric manifold equipped with a free torus action. Thus every complete
regular ambitoric orbifold (M, [g], J±,T) is a regular ambitoric orbifold com-
pletion, since the set of its free torus orbits, denoted by M̊ , is an open dense
submanifold.

Regular ambitoric 4-orbifolds have been locally classified on the set of
orbits where the torus action is free [ACG13a]. We use this local classification
to generate a set of examples of regular ambitoric 4-manifolds with free torus
action, which we call ambitoric ansatz spaces. These examples include the
free orbits of the Riemannian Kerr examples. These ambitoric ansatz spaces
depend on a symmetric quadratic polynomial q(x, y) and two functions of
one variable A(x) and B(y), with the manifold given by

A(q, A,B,T)

:=

{

(

x, y, t⃗
)

∈ R
2 × T : A(x) > 0, B(y) > 0, q(x, y)(x− y) ̸= 0

}

,

equipped with the ambitoric structure given in Theorem 1.11.
Note that an ambitoric structure gives a conformal class of metrics. We

will want to study metric properties, so we need to make a choice of metric in
this conformal class. We pick out some distinguished metrics to study, which
are unique up to homothety: the Kähler metrics g±, and the barycentric
metric g0, which is an average of g+ and g−. We also study compatible
metrics whose Ricci tensor is diagonal, meaning that it is invariant under
both J+ and J−. These include the Einstein metrics, and they come in
a family {gp}p⊥q, indexed by quadratic polynomials p orthogonal to the
quadratic polynomial q with respect to the inner product induced by the
discriminant.

The first step in our classification is to classify ambitoric ansatz spaces
which are completable with respect to our chosen metric g ∈ {g0, g±} ∪
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{gp}p⊥q. The strategy taken is to first compare the g-Cauchy completion
to the Cauchy completion with respect to a more convenient metric where
the Cauchy completion is easy to compute. This comparison is done using
the tools of Busemann completions, the details of which are provided in an
appendix. We then decompose the convenient boundary into components
which are folds, edges, or corners where the closures of multiple compo-
nents meet. When studying gp, we also have to study the vanishing locus of
p(x, y), which we denote by P . We further define a component of the con-
venient boundary to be infinitely distant if it does not lie in the g-Cauchy
completion, and a fold to be proper if it is not an edge or a corner. We
distinguish between folds being positive/negative in such a way that proper
positive/negative folds are folding hypersurfaces for suitable extensions of
the positive/negative Kähler forms. By studying the g-Cauchy completions,
we get the following classification result:

Theorem 1.1. Let A be an ambitoric ansatz space and g ∈ {g±, g0} ∪
{gp}p⊥q. Then A is g-completable if and only if the following conditions
hold on Ag

C :

• There are no proper folds.

• Every edge is either infinitely distant or has a compatible normal.

• If an edge is a fold but not infinitely distant, then g ∈ {g−, gp}.
• Every corner is infinitely distant unless it is at the intersection of two
edges which are not infinitely distant. If such a corner is a positive (re-
spectively negative) fold, then g ∈ {g+, gp} (respectively g ∈ {g−, gp}).
If g = gp, then such a corner is not part of P .

Moreover, if A is g-completable, then its ambitoric structure extends to Ag
C

if and only if every fold is infinitely distant.

To classify regular ambitoric orbifold completions, we first extend the
local classification on the set of free torus orbits to a local classification on
the Cauchy completions. This allows us to describe the boundary of the
set of free orbits in terms of folds/edges/corners as was done in the case of
ambitoric ansatz spaces. We find that in the case where there are no proper
folds, we can apply a slight modification of the Lokal-global-Prinzip for
convexity theorems [HNP94], which is a tool that can be used to prove that
the moment map of a convex toric orbifold is a convex polytope. This gives us
the following partial classification of regular ambitoric orbifold completions:
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Theorem 1.2. Let (M, M̊, g, J+, J−,T) be a connected regular ambitoric
orbifold completion, where g ∈ {g0, g±} ∪ {gp}p⊥q. Then there exists an am-

bitoric embedding of (M̊, [g], J+, J−,T) into some ambitoric ansatz space
which is completable with respect to the metric induced by g and whose mo-
ment map images are affine convex polygons.

We combine this classification with our classification of completable am-
bitoric ansatz spaces to obtain an explicit classification of g0-complete reg-
ular ambitoric 4-orbifolds:

Corollary 1.3. A regular ambitoric 4-orbifold which is complete with re-
spect to the barycentric metric g0 is given (uniquely up to gauge transfor-
mation) by the data of a symmetric quadratic polynomial q(x, y), a pair
of intervals (x−, x+), (y−, y+) ⊂ R such that (x− y)q(x, y) does not van-
ish on (x−, x+)× (y−, y+), a lattice Λ ⊂ R2 and two smooth positive func-
tions A : (x−, x+) → [0,∞) and B : (y−, y+) → [0,∞) satisfying for all ϵ > 0
small enough:

• If
∫ x±∓ϵ
x±

dx√
A(x)

converges, then −2 p(x±)

A′(x±) ∈ Λ,

• If
∫ y±∓ϵ
y±

dy√
B(y)

converges, then −2 p(y±)

B′(y±) ∈ Λ,

• For each α, β ∈ {±}, if the integrals from the previous conditions corre-
sponding to xα and yβ are both convergent, then (xα − yβ)q(xα, yβ) ̸=
0,

where p(γ) ∈ t is a convenient choice of normal to the moment map image
of the level sets {x = γ} and {y = γ}. See Definition 4.24. Note that similar
results can be obtained for g±, but the third condition which tests the corners
would be more complicated.

As an application for our classification results, we consider compact
Riemannian 4-manifolds which admit ∗-Killing 2-forms. These are Rieman-
nian signature analogues of the Killing-Yano tensor in Lorentzian signature,
which describes the so-called hidden symmetries of the Kerr metric. We build
on the work of [GM17], who divide Riemannian 4-manifolds admitting non-
parallel ∗-Killing 2-forms into 3 types. They show that one of these types
is consists of regular ambitoric orbifold completions, identifying the metric
with what we’ve been calling gp with p = 1. We classify compact 4-manifolds
of this type:
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Theorem 1.4. Let (M, g) be a compact connected oriented regular am-
bitoric orbifold completion which is a manifold admitting a non-parallel ∗-
Killing 2-form. Then M is diffeomorphic to either S4,CP2, or a Hirzebruch
surface. Conversely, each of these manifolds admit a metric with a non-
parallel ∗-Killing 2-form.

1.1. Ambitoric structures and ambitoric ansatz spaces

In this section, we introduce the basic definitions of ambitoric manifolds, as
well as the local classification in four dimensions from [ACG13a].

Definition 1.5. A Hermitian manifold (M, g, J) is a manifoldM equipped
with a metric g and a compatible complex structure J . ie. g(J ·, J ·) = g(·, ·).
An ambihermitian manifold (M, g, J+, J−) is a manifold M equipped with
a metric g and complex structures J± such that (M, g, J±) are both Hermi-
tian, and the orientations induced by J± are opposite. If the conformal class
[g] of an ambihermitian manifold (M, g, J+, J−) admits metrics g± ∈ [g]
such that (M, g±, J±) are both Kähler manifolds, then (M, [g], J+, J−) is
ambikähler. If there is a 2-torus T which acts on an ambikähler manifold
(M, [g], J+, J−) by Hamiltonian isometries (with respect to both Kähler met-
rics), then (M, [g], J+, J−,T) is an ambitoric manifold. Note that all of these
definitions extend naturally to the case of orbifolds.

We denote the Lie algebra of T by t. The kernel of the exponential map
on t is the lattice of circle subgroup Λ ⊂ t, so that T ∼= t/Λ.

For an ambitoric manifold, (M, [g], J+, J−,T), we denote by ω± :=
g±(J±·, ·) the Kähler forms of (M, g±, J±). Since g± are in the same confor-
mal class, there exists a positive function f such that g− = f2g+.

Definition 1.6. The barycentric metric on an ambiKähler manifold is
given by g0 := fg+ = f−1g−.

Note that the metrics g± are uniquely chosen within their conformal class
up to homothety, so that f is well-defined up to a multiplicative constant,
and g0 is well-defined up to homothety.

Since eachK ∈ t is Hamiltonian with respect to ω±, there exist functions
f±K ∈ C∞(M) such that K⌟ω± = −df±K . The map K 7→ f±K is linear, so it
gives an element of t

∗ ⊗ C∞(M). This gives a smooth map µ± :M → t
∗,

which is the moment map for the toric manifold (M,ω±,T).
Ambitoric 4-manifolds come in three families [ACG13a], which we will

describe in the rest of the section.



✐

✐

“3-Dixon” — 2021/5/7 — 15:41 — page 635 — #7
✐

✐

✐

✐

✐

✐

Regular ambitoric 4-manifolds 635

Example 1.7. Let (Σ1, g1, J1) and (Σ2, g2, J2) be two (Kähler) Riemann
surfaces with non-vanishing Hamiltonian Killing vector fields K1 and K2

respectively. Then Σ1 × Σ2 can be given ambitoric structure

g := g1 ⊕ g2,

J± := J1 ⊕±J2,
t := Span{K1,K2}.

Example 1.8. Let (M, g, J) be a Kähler surface. For any non-vanishing
hamiltonian Killing vector field K, we can define an almost complex struc-
ture J− by

J− :=

{

J on Span{K, JK}
−J on Span{K, JK}⊥

J− has opposite orientation to J . If (M, g, J) is conformally Kähler, then
(M, [g], J+ := J, J−) is ambikähler. Such an ambikähler manifold is said to be
of Calabi type. In [ACG03], it is shown that the Kähler quotient of (M, g, J)
using the moment map z of K is a Riemann surface (Σ, (az − b)gΣ, JΣ),
where a, b are constants, gΣ and JΣ are a metric and complex structure
respectively on Σ. An ambikähler surface of Calabi type (M, [g], J, J−) is
ambitoric if and only if (Σ, (az − b)gΣ, JΣ) admits a Hamiltonian Killing
vector field.

For an ambitoric 4-manifold (M, [g], J+, J−,T), we define tM to be the
subset TM spanned by the Killing vector fields t. On an open dense subset
M̊ ⊆M , tM̊ := tM |M̊ is a two dimensional distribution in TM̊ . Since the
Killing vector fields t are ω±-Hamiltonian, tM̊ is ω±-Lagrangian, so that
J+tM̊ = J−tM̊ = t

⊥
M̊
.

Since J+ and J− have opposite orientations, they commute. This implies
that the endomorphism −J+J− of TM is an involution. Thus TM decom-
poses into ±1 eigenbundles of −J+J−. Let ξM̊ and ηM̊ be the intersections
of tM̊ with the +1 and −1 (respectively) eigenbundles of −J+J−. Since the
eigenbundles are J± invariant, while tM̊ is not, ξM̊ and ηM̊ must be line
bundles.

Let K : t → Γ(tM ) be the function which maps a vector X ∈ t to the
associated Killing vector field on M . Let θ ∈ Ω1(M, t) be the t-valued one-
form defined by the relations θ ◦K = Idt and θ|t⊥

M̊

= 0. Let

ξ : M̊ → Pt : p 7→ θ((ξM̊ )p),

η : M̊ → Pt : p 7→ θ((ηM̊ )p).
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If ξ or η is constant, then its image is the span of some Killing vector field
K which realizes the ambitoric structure as being Calabi type. If neither is
constant, then dξ ∧ dη is non-vanishing [ACG13a].

Definition 1.9. An ambitoric 4-manifold (M, [g], J+, J−,T) is regular if
dξ ∧ dη is non-vanishing on an open dense set.

It is clear that every ambitoric structure is either regular or of Calabi
type. We will find it convenient to fix some notation for quadratic polyno-
mials:

Definition 1.10. Let p(z) = p0 z
2 + 2p1 z + p2 be a quadratic polynomial.

We call p(x, y) = p0 xy + p1 (x+ y) + p2 the polarization of p(z). We define
a (2, 1)-signature inner product on the space of quadratic polynomials by

⟨q, p⟩ := 2q1p1 − q2p0 − q0p2.

We will use extensively this local classification of regular ambitoric sur-
faces:

Theorem 1.11 (Theorem 3 from [ACG13a]). Let (M, [g0], J+, J−,T)
be a regular ambitoric 4-manifold with barycentric metric g0 and Kähler
metrics (g+, ω+) and (g−, ω−). Then, about any point in an open dense
subset of M , there are t-invariant functions x, y, a quadratic polynomial
q(z), a Λ1(M)-valued quadratic polynomial dτ(z) orthogonal to q(z), and
functions A(z) and B(z) of one variable with respect to which:

g0 =
dx2

A(x)
+

dy2

B(y)
+A(x)

(

dτ(y)

(x− y)q(x, y)

)2

+B(y)

(

dτ(x)

(x− y)q(x, y)

)2

,

ω+ =
dx ∧ dτ(y) + dy ∧ dτ(x)

q(x, y)2
, ω− =

dx ∧ dτ(y)− dy ∧ dτ(x)
(x− y)2

.

(1)

Conversely, for any data as above, the above metric and Kähler forms
do define an ambitoric Kähler structure on any simply connected open set
where ω± are nondegenerate and g0 is positive definite.

The open dense subset of M where this theorem applies is the maximal
open set M̊ where the Killing vector fields t have maximal rank. The follow-
ing theorem describes how various curvature conditions relate to the ansatz
parameters:
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Theorem 1.12 ([ACG13a]). Let ([g], J±, t) be a regular ambitoric struc-
ture. Then for any quadratic polynomial p(z) orthogonal to q(z), the metric
(x−y)q(x,y)
p(x,y)2 g0 has diagonal Ricci tensor. Any t-invariant metric in [g] with

diagonal Ricci tensor arises in this way. Such a metric has constant scalar
curvature if and only if

A(z) =p(z)ρ(z) +R(z),

B(z) =p(z)ρ(z)−R(z),

where ρ(z) is a quadratic polynomial orthogonal to p(z) and R(z) is a quar-
tic polynomial orthogonal to q(z)p(z) (equivalently (q,R)(2) ⊥ p or, equally,
(p,R)(2) ⊥ q). The metric is Einstein when ρ(z) is a multiple of q(z). Here
the transvectant (p,R)(2) is the quadratic polynomial defined by

(p,R)(2) := p(z)R′′(z)− 3p′(z)R′(z) + 6p′′(z)R(z).

Theorem 1.11 motivates us to define a family of examples which we will
call ambitoric ansatz spaces :

A(q, A,B,T)

:=

{

(

x, y, t⃗
)

∈ R
2 × T : A(x) > 0, B(y) > 0, q(x, y)(x− y) ̸= 0

}

,

which we equip with the ambitoric structure given by (1) while identifying
t with the infinitesimal vector fields of the action of T.

Definition 1.13. A map between ambitoric oribifolds is ambitoric if it
preserves all of the ambitoric structure. In particular, it is equivariant under
the torus action, holomorphic with respect to both complex structures, and
preserves both the conformal structure and the orientation.

We will use these to rephrase the above theorem in the case that the
toric structure comes from a Lie group.

Corollary 1.14. Let (M, [g0], J+, J−,T) be a regular ambitoric 4-manifold
freely acted on by a 2-torus T. Then for any point p ∈M , there exists a
quadratic polynomial q(z), functions A(z) and B(z), a T-invariant neigh-
bourhood U of p, and an ambitoric embedding ϕ : U →֒ A(q, A,B,T).

Proof. Since the action of T is free, t has maximal rank at each point in
M . Thus we can apply the previous theorem to find local coordinates on
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a neighbourhood U ′ of p which is naturally identified as a subset of some
A(q, A,B,T). Since the ambikähler structure of M is T-equivariant, these
coordinates can naturally be extended to the orbit U := T · U ′. □

1.2. Normal forms

The results in this section are taken directly from [ACG13a]. The classifica-
tion from Theorem 1.11 can be further refined into 3 cases, called parabolic,
hyperbolic and elliptic respectively if the discriminant of q(z) is zero, neg-
ative, or positive respectively. Up to homothety, we can assume that the
discriminant is 0 or ±1, which leads to the normal forms described below.

1.2.1. Parabolic type. The parabolic type is characterized by q(z) = 1
and dτ0 = 0. This allows us to write the ambitoric structure as

g0 =
dx2

A(x)
+

dy2

B(y)
+
A(x)(dt1 + y dt2)

2

(x− y)2
+
B(y)(dt1 + x dt2)

2

(x− y)2
,

ω+ = dx ∧ (dt1 + y dt2) + dy ∧ (dt1 + x dt2),

ω− =
dx ∧ (dt1 + y dt2)

(x− y)2
− dy ∧ (dt1 + x dt2)

(x− y)2
.

The moment maps µ± = (µ±1 , µ
±
2 ) : A → t

∗ are given by

µ+1 = x+ y,

µ+2 = xy,

µ−1 = − 1

x− y
,

µ−2 = − x+ y

2(x− y)
.

1.2.2. Hyperbolic type. The hyperbolic type is characterized by q(z) =
2z and dτ1 = 0. This allows us to write the ambitoric structure as

g0 =
dx2

A(x)
+

dy2

B(y)
+
A(x)(dt1 + y2 dt2)

2

(x2 − y2)2
+
B(y)(dt1 + x2 dt2)

2

(x2 − y2)2
,

ω± =
dx ∧ (dt1 + y2 dt2)

(x± y)2
± dy ∧ (dt1 + x2 dt2)

(x± y)2
.
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The moment map µ± = (µ±1 , µ
±
2 ) : A → t

∗ is given by

µ±1 = − 1

x± y
,

µ±2 = ± xy

x± y
.

1.2.3. Elliptic type. The elliptic type is characterized by q(z) = 1 + z2

and dτ0 + dτ2 = 0. This allows us to write the ambitoric structure as

g0 =
dx2

A(x)
+

dy2

B(y)
+
A(x)(2y dt1 + (y2 − 1) dt2)

2

(x− y)2(1 + xy)2

+
B(y)(2x dt1 + (x2 − 1) dt2)

2

(x− y)2(1 + xy)2
,

ω+ =
dx ∧ (2y dt1 + (y2 − 1) dt2)

(1 + xy)2
+
dy ∧ (2x dt1 + (x2 − 1) dt2)

(1 + xy)2
,

ω− =
dx ∧ (2y dt1 + (y2 − 1) dt2)

(x− y)2
− dy ∧ (2x dt1 + (x2 − 1) dt2)

(x− y)2
.

The moment maps µ± = (µ±1 , µ
±
2 ) : A → t

∗ are given by

µ+1 = −1− xy

1 + xy
,

µ+2 = − x+ y

1 + xy
,

µ−1 = −x+ y

x− y
,

µ−2 =
1− xy

x− y
.

2. Moment maps and folded symplectic structures

In this section, we will extend the symplectic structures on ambtoric ansatz
spaces to folded symplectic manifolds, and describe their moment map im-
ages.

Definition 2.1. [CDSGP11] A closed 2-form ω on a 2n-dimensional man-
ifold M is a folded symplectic structure if there exists an embedded hyper-
surface Z of M such that ω is non-degenerate on M\Z and ωn = 0 ̸= ωn−1

on Z. Z is called the folding hypersurface or fold.
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Let

F(q, A,B,T) := {(x, y, t1, t2) ∈ R
2 × T

2 : A(x) > 0, B(y) > 0}
⊇ A(q, A,B,T).

To simplify notation the arguments for F will be tacit. Let Z± := {f∓1 =
0} ⊆ F and F± = F\Z∓.

Proposition 2.2. (F±, ω±) is a folded symplectic manifold with fold Z±|F±
,

where ω± is the 2-form defined in (1).

Proof. By (23) of [ACG13a], f = q(x,y)
x−y . It is a routine computation to show

that ω± is a closed non-vanishing 2-form on F±. Also one can compute

ω2
± =

f∓2

A(x)B(y)
dx ∧ dc±x ∧ dy ∧ dc±y,

so that the vanishing locus of ω2
± is Z±. Noting that ω± does not vanish

along Z± then tells us that Z± is a folding hypersurface for ω±. □

Proposition 2.3. µ±(Z±) is a (possibly degenerate) conic in t
∗, which we

will denote by C±.

Proof. This can be done by an easy direct computation using the normal
forms given in Section 1.2. In the hyperbolic case, one finds that

µ±(Z±) = {µ±1 µ±2 = −1
4}.

In the elliptic case, one finds that

µ±(Z±) = {(µ±1 )2 + (µ±2 )
2 = 1}.

In the parabolic case, one finds that

µ+(Z+) = {(µ+1 )2 = 4µ+2 },
µ−(Z−) = {(0, 12), (0,−1

2)}.
□

Note that the type of the conic matches the type of the ambitoric struc-
ture (aside from the degenerate conic µ−(Z−) in the parabolic case), so that
for example a hyperbolic ambitoric structure gives a hyperbola as the image
of the fold.
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C
Z

µ

M/T t
∗

x

y

Figure 1: The moment map near a fold Z which intersects level sets of x
and y where A(x) and B(y) (shown in blue and red respectively).

The conic (or more precisely, its dual) is used in [ACG13b] to study
ambitoric compactifications. The key use made in [ACG13b] of the conic is
the fact that the moment map sends level sets of x or y to (subsets of) lines
tangent to the conic. If the conic is non-degenerate, this leads to moment
map images near the fold that look like the example shown in Figure 1. The
moment map is a 2− 1 cover near the conic, with the image folding along
the conic and remaining in the exterior of the conic. This behaviour was
noted at the end of appendix A in [ACG13b], so the previous proposition is
not essentially new.

Z+

Z−

t
∗

µ±

{x = ∞} = {y = ∞}x

y

A/T

Figure 2: The moment maps of the hyperbolic normal form.

We will need the following lemma later:

Lemma 2.4. If p(z) is a quadratic polynomial orthogonal to q(z), then the
moment maps µ± map the vanishing locus of p(x, y) to either lines in t

∗ or
the empty set (in the case when p(x, y) is non-vanishing).
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Proof. t is identified with the space of quadratic polynomials orthogonal to
q, so p ∈ t. The moment maps are computed in [ACG13a], which we use to
deduce

µ−(x, y) · p = −p(x, y)
x− y

, µ+(x, y) · {q, p} = −p(x, y)
q(x, y)

,

where · is used to denote the natural pairing between t
∗ and t. Since these

vanish along {p(x, y) = 0}, we find that the vectors p, {q, p} ∈ t are normals
to the curves µ−

(

{p(x, y) = 0}
)

and µ+
(

{p(x, y) = 0}
)

respectively. This
implies that these curves are lines as claimed. □

Note that in the previous proof, the difference in the formulas for µ±

comes from the fact that for µ+, t is more naturally identified with the
space of quadratic polynomials modulo q. The map {q, ·} is an isomorphism
between this identification and the one that we use. See [ACG13b] for details.

We conclude this section with diagrams indicating the behaviour of the
moment maps of the three normal forms in the case where A(x) and B(y)
are strictly positive functions.

Z+

t
∗

µ+

t
∗

x = y = ∞

µ−

y = ∞

x = ∞

x

y

A/T

Figure 3: The moment maps of the parabolic normal form.
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Z+
Z−

t
∗

µ+

{x = ∞} = {y = ∞}

t
∗

µ−

y = ∞x = ∞

x

y

A/T

Figure 4: The moment maps of the elliptic normal form.

3. Riemannian Kerr metrics are ambitoric

The Kerr family of metrics are 4-dimensional Lorentzian space-times which
are stationary, axis-symmetric, and type D.

The stationary and axis-symmetric condition means that there are com-
muting Killing vector fields corresponding to the time direction and a ro-
tation around a fixed axis. The span of these vector fields will be our Lie
algebra t.

The type D condition tells us that the Weyl curvature tensor has two
repeated principal null directions. In his work on Hermitian geometry in the
Lorentzian setting, Flaherty [Fla76] shows that a metric admits compatible
integrable almost complex structures J± with both orientations if and only
if the metric is of type D. Note that in order for an almost complex structure
to be compatible with a Lorentzian metric, it must be complex valued (ie,
a section of End(TM)⊗ C).

Another feature of Kerr that will be useful for us is that it admits a
Wick rotation. It is well known in the physics community (see for example
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Z+

Z−

y = α

y = −α

x = x− x = x+

ExteriorInterior

+

+

-

-

-

-
x

y

A/T

Figure 5: The domain of A/T in (x, y) coordinates. The regions which we
call interior and exterior are labelled, and have positive Riemannian signa-
ture. The other regions with ± Riemannian signature are labelled ±. The
remaining regions have signature (2, 2).

[GH79]) that if one allows the time and angular momentum variables to take
imaginary values instead of real ones, then the metric will still take real val-
ues. Moreover, the signature of this Wick-rotated Kerr metric is no longer
Lorentzian, but either Riemannian or signature (2, 2) depending on the re-
gion. We will only consider the regions which have a Riemannian signature,
and call the metric in these regions Riemannian Kerr. The complex struc-
tures J± become real valued after the Wick rotation, so that the Riemannian
Kerr metrics are ambihermitian.

Since Einstein ambihermitian spaces are ambikähler [ACG13a], and t is
the set of infinitesimal generators of a torus action, we see that the Rieman-
nian Kerr metrics are ambitoric. The Kähler forms are given in [AS06]. They
present the more general Kerr-Taub-bolt instanton, where the construction
above will also hold, but for simplicity we only present the Kerr case. The
more general case will correspond to adding a parameter that translates the
y variable.

After a change of variables from this form, one finds that the Riemannian
Kerr fits into the normal form for a hyperbolic type ambitoric manifold, with

A(x) = x2 − 2Mx− α2,(2)

B(y) = α2 − y2,(3)
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whereM and α are real parameters corresponding to the mass and imaginary
angular momentum of the Wick rotated black hole. The Ricci-flat metric is
given by (x2 − y2)g0.

The roots of A(x) are given by

x± =M ±
√

M2 + α2.

Since α < M , the domain in x− y coordinates looks like the following:
The region corresponding to x > x+ corresponds to the exterior of the

black hole. The boundary components of this region correspond to roots of
A(x) orB(y) or x→ ∞. The region at x = ∞ is infinitely distant, so we don’t
need to extend the structure there. Extending the ambitoric structure to the
other boundary regions is well understood, as discussed in Lemma 4.26. In
particular, this region is completable to a smooth manifold given certain
periods for the angular variables (in other words, choice of lattice Λ ⊂ t) as
discussed in [GH79].

x = x+

y = ±α

y = ∓α
x = x−

t
∗

Figure 6: The moment image of Riemannian Kerr. The conic C is drawn in
red, and {x = ∞} is drawn in blue. The exterior region is shaded with level
sets of x, while the interior region is shaded with level sets of y.

The region corresponding to x < x− corresponds to the interior of the
black hole. In Lorentzian signature, there is a ring singularity in the interior
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region where the curvature diverges to infinity. This singularity transforms
under Wick rotation to the folding hypersurfaces Z± := {x∓ y = 0} of Rie-
mannian Kerr. This motivates the work later in this paper where we study
the geometry near these hypersurfaces. Since the curvature diverges to in-
finity along these hypersurfaces, this region is not completable.

The moment map image is roughly the same for both ω±. The main
component is drawn in Figure 6. There are two triangular domains with
edges given by {x = x−}, {y = ±α} and Z±. One of these regions is near
the fold, so has the behaviour depicted in Figure 1, although it is hard to
see in Figure 6. The other region (not drawn) gets mapped to a cone with
edges given by {x = x−} and {y = ∓α} oriented away from the component
which was drawn.

4. Classification of complete regular ambitoric 4-orbifolds

In this section, we prove the main classification results, Theorems 1.1 and 1.2.
The first goal is to prove Theorem 1.2 modulo replacing the completeness
assumption with local convexity of the moment map. The idea is to focus on
the open dense set where the local classification, Theorem 1.11, holds. We
will first study the gauge group of regular ambitoric structures in order to
understand how to glue together the local charts given by the local classifi-
cation theorem. Next we discuss the asymptotics of ambitoric ansatz spaces
and regular ambitoric orbifold completions. The final tool to prove our mod-
ification of Theorem 1.2 is a local-global principal for convexity, which is a
slight modification of the work of [HNP94]. Finally, we classify completable
ambitoric ansatz spaces, giving Theorem 1.1. The local convexity that we
find from this result then combines with the other results of this section to
give Theorem 1.2.

4.1. Gauge group for ambitoric ansatz spaces

The local form of a regular ambitoric 4-manifold given in Theorem 1.11 is not
unique. To study the flexibility in the local form, let U be a neighbourhood of
a point in a regular ambitoric 4-manifold (M, [g0], J+, J−,T) which is small
enough so that the theorem applies to find the data

{x, y, q(z), dτ0, dτ1, dτ2, A(z), B(z)}.
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Another application of the theorem could give a different set of data

{x̃, ỹ, q̃(z), dτ̃0, dτ̃1, dτ̃2, Ã(z), B̃(z)}

over U .

Lemma 4.1. x̃ is a rational-linear function of x and ỹ is a rational-linear
function of y.

Proof. From the way that the coordinates are constructed in Theorem 1.11,
dx and dx̃ are sections of the line bundle ξ∗, so that x̃ is a function of x.
Similarly ỹ is a function of y. From [ACG13a], we know that f(x, y) = q(x,y)

x−y .
Seeing how f is represented in these two different coordinates gives

q(x, y)

x− y
=
q̃(x̃, ỹ)

x̃− ỹ
.

Fix a real number y0. Then we have that

q(x, y0)

x− y0
=
q̃(x̃, ỹ(y0))

x̃− ỹ(y0)
.

The left hand side of this equality is a rational-linear function of x, since
q(x, y0) is a linear function of x. Similarly, the right hand side is a rational-
linear function of x̃. Thus we can solve the equation to find that x̃ is a
rational-linear function of x. A similar argument shows that ỹ is rational-
linear function of y. □

Lemma 4.2.

(x̃− ỹ)2

(x− y)2
=
dx̃

dx

dỹ

dy
,

dx̃

dx
=
q̃(x̃)

q(x)
,

dỹ

dy
=
q̃(ỹ)

q(y)
.

Proof. One can compute

df =
dx

(

(x− y)(q0y + q1)− q(x, y)
)

+ dy
(

(x− y)(q0x+ q1) + q(x, y)
)

(x− y)2

=
−q(y)dx+ q(x)dy

(x− y)2
=

−q̃(ỹ)dx̃+ q̃(x̃)dỹ

(x̃− ỹ)2

Since dx ∧ dx̃ = 0 = dy ∧ dỹ, the above equation can be rearranged to form

(x̃− ỹ)2

(x− y)2
=
dx̃

dx

q̃(ỹ)

q(y)
=
dỹ

dy

q̃(x̃)

q(x)
.
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Note that the terms in this equation are expressible as the product of func-
tions of x and y. Thus

0 =
∂2

∂x∂y
log

(

(x̃− ỹ)2

(x− y)2

)

=
2

(x̃− ỹ)2
dx̃

dx

dỹ

dy
− 2

(x− y)2
.

The two above equations can be combined to find

dx

q(x)
=

dx̃

q̃(x̃)
,

dy

q(y)
=

dỹ

q̃(ỹ)
.

□

Lemma 4.3. The rational-linear transformations x̃(x) and ỹ(y) are the
same, in the sense that if x̃ = ax+b

cx+d , then ỹ = ay+b
cy+d .

Proof. Let x̃ = ax+b
cx+d and ỹ = a′y+b′

c′y+d′ . We compute

dx̃

dx
=

ad− bc

(cx+ d)2
,

dỹ

dy
=
a′d′ − b′c′

(c′y + d′)2
.

From Lemma 4.2, (x̃−ỹ)2
(x−y)2 = dx̃

dx
dỹ
dy . Plugging in the expressions for x̃(x), ỹ(x)

and their derivatives yields

(

(ax+ b)(c′y + d′)− (cx+ d)(a′y + b′)
(x− y)(cx+ d)(c′y + d′)

)2

=
(ad− bc)(a′d′ − b′c′)
(cx+ d)2(c′y + d′)2

.

Without loss of generality, we may assume that ad− bc and a′d′ − b′c′ are
±1. The above equation then yields

ad− bc = a′d′ − b′c′,

(ax+ b)(c′y + d′)− (cx+ d)(a′y + b′) = ±(x− y),

which implies

ac′ = a′c, ad′ − a′d = b′c− bc′, bd′ = bd′.

These relations imply that

(

a′ b′

c′ d′

)

= ±
(

a b
c d

)

, so that ỹ = a′y+b′

c′y+d′ =
ay+b
cy+d .

□

The above lemmas allow us to identify the gauge group of coordinate
transformations which preserve the regular ambitoric structure on the set
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of generic torus orbits with P SL2R, where an element

[(

a b
c d

)]

∈ P SL2R

induces the coordinate transformation x̃ = ax+b
cx+d , ỹ = ay+b

cy+d . Note that the
gauge group was already known in [ACG13a] to be P SL2R by construction,
but there it is not expressed in local coordinates.

Example 4.4. Consider the ambitoric ansatz space

A := A(q, x4 + 1, y4 + 1,T).

Consider the change of gauge x̃ = − 1
x , ỹ = − 1

y which transforms A to

Ã := A(q̃, Ã(x̃), B̃(ỹ)).

Since ∂
∂x and ∂

∂x̃ span the same line bundle in TA (namely ξ), we can write
g0 restricted to this line bundle in both gauges as

g0|ξ =
dx2

A(x)
=

dx̃2

Ã(x̃)
.

This allows us to compute

Ã(x̃) = A(x)

(

dx̃

dx

)2

= (x4 + 1)

(−1

x2

)2

= x̃4 + 1.

Similarly, one can compute B̃(ỹ) = ỹ4 + 1. The image of this gauge trans-
formation is {x̃ỹ ̸= 0} ∩ Ã, but our computations show that Ã(x̃) and B̃(ỹ)
extend to smooth positive functions on {x̃ỹ = 0}. Thus the ambitoric struc-
ture extends to the points in {x̃ỹ = 0} where (x̃− ỹ)q̃(x̃, ỹ) does not vanish.
In terms of the original gauge, we find that {x = ∞} and {x = −∞} (respec-
tively {y = ∞} and {y = ∞}) glue together, with the ambitoric structure
induced by the inverse gauge transformation from {x̃ỹ = 0}.

Now we will apply this understanding of the gauge group to get a gluing
result. We can use the following lemma to glue together the locally defined
embeddings from Corollary 1.14 into an immersion:

Lemma 4.5. Let (M, [g0], J+, J−,T) be a regular ambitoric 4-manifold
with a free T-action such that M/T is contractible. Then there exists a T-
equivariant immersion ϕ :M → (RP1)2 × T such that for any p ∈M , there
exists an ambitoric embedding ϕp : Up →֒ Ap of a neighbourhood Up of p into
an ambitoric ansatz space Ap such that the following diagram commutes:
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M (RP1)2 × T

Up Ap

φ

φp

Moreover, if ϕ is injective and for each z ∈ RP
1, ϕ(M) ∩

(

{z} × RP
1 × T

)

and ϕ(M) ∩
(

RP
1 × {z} × T

)

are connected or empty, then ϕ is an ambitoric
embedding into some ambitoric ansatz space A.

Proof. From Corollary 1.14, M is covered by T-invariant charts {ϕα : Uα →
Aα}α from M into ambitoric ansatz spaces {Aα}α. From Section 4.1, if
Uα ∩ Uβ ̸= ∅, then

ϕβ ◦ ϕ−1
α : ϕα(Uα ∩ Uβ) → ϕβ(Uα ∩ Uβ)

is given by some element of P SL2R. Thus the maps {ϕα}α induce a C̆ech co-
cycle C in H1(M,P SL2R). Since the ϕα are T-equivariant, C is T invariant.
Thus C is equivalent to a C̆ech co-cycle C̄ in H1(M/T,P SL2R). SinceM/T
is contractible, C̄, and hence C, must be trivial. This means that the gauge
can be chosen globally, so that the ϕαs can be glued to form a map ϕ :M →
(RP1)2 × T.

Now let p ∈M . Then p ∈ Uα for some alpha. Transforming the gauge
of Uα →֒ Aα to match the global gauge used to construct ϕ results in an
embedding Up →֒ Ap which has the desired properties by construction.

To prove the moreover, assume that ϕ has the required properties. We
need to show that there exist functions A(x), B(y) and q(x, y) on the image
of ϕ which agree with those given by the local embeddings {ϕp}p∈M . For
each x0 ∈ RP

1, since ϕ(M) ∩
(

{x0} × RP
1 × T

)

is connected, the {ϕp}p∈M
must agree on the value of A(x0). Since x0 was arbitrary, it follows that A(x)
is uniquely determined on ϕ(M). Similarly B(y) is uniquely determined on
ϕ(M). The fact that q(x, y) is uniquely determined follows from the fact
that it is a quadratic function, thus determined on a connected set by its
value on any open subset. □

4.2. Local asymptotics

We will first describe the asymptotics for an ambitoric ansatz space A with
respect to a given metric g. We will use the appendix to relate Ag

C to the
Cauchy completion with respect to a more convenient metric. In particular,
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consider the embedding A →֒ (RP1)2 × T formed by identifying RP
1 with

R ∪ {∞} for both the x and y coordinate axes of A. Let gf be a flat metric
on (RP1)2 × T. Since

A =

{

(

x, y, t⃗
)

∈ (R)2 × T : A(x) > 0, B(y) > 0, q(x, y)(x− y) ̸= 0

}

,

we find that

Agf
C = {x ∈ RP 1 : A(x) > 0} × {y ∈ RP 1 : B(y) > 0} × T,

where · is the closure in RP
1 with the flat topology. Note that since (x−

y)q(x, y) is a rational function on A, it naturally extends to Agf
C . We see that

∂gfA := Agf
C \A can be decomposed into components of two types: level sets

of x or y, or components of the vanishing locus of (x− y)q(x, y). Since the
moment map sends level sets of x or y to lines, we call these components
edges. We call components of the vanishing locus of (x− y)q(x, y) folds.

We will call a fold negative if f = q(x,y)
x−y vanishes on it, and positive if 1

f
vanishes on it, analogous to the folding hypersurfaces Z± from Section 2. A
T-orbit where a pair of edges or folds meet is called a corner. A fold which is
not an edge or a corner is called a proper fold. Since we are treating corners
separately, when we refer to an edge or a proper fold we will mean its interior
and not include the adjacent corners.

Since Agf
C is compact, by Proposition A.4 in the appendix, every point

p1 in Ag
C can be represented by a point p2 in Agf

C , in the sense that there
exists a curve in A which converges to p1 in Ag

C and p2 in Agf
C . Note that

this correspondence between p1 ∈ Ag
C and p2 ∈ Agf

C is not bijective. For ex-
ample, let’s consider the case where U = A. If p2 lies on x = ∞, then p2 may
be represented by two curves c±(t), with limt→∞ x ◦ c±(t) = ±∞. Then c±
could not both represent the same point in Ag

C , where x = ∞ and x = −∞
are not identified. As another example, if T does not act freely at p1, then
there are multiple choices for p2, since T acts freely on Agf

C . We will use this
correspondence to describe points in UgC by the coordinates on Agf

C , keep-
ing in mind that on UgC these may not be coordinate functions and may be
multi-valued.

The correspondence between Ag
C and Agf

C allows us to decompose ∂gA
into components corresponding to the components of ∂gfA, and we will use
the same language to refer to them: folds, edges, and corners. Note that
there may be components of Agf

C which are not represented in Ag
C . We will

refer to these components as infinitely distant with respect to g. Formally
these lie in the Busemann completion (see Lemma A.7), but we will not
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dwell on this fact. In the case where g = gp, the vanishing locus of p(x, y)
forms an additional boundary component, which we will refer to as P . The
proper part of P is the largest subset of P which does not intersect with any
folds or edges.

Let (M, [g0], J+, J−,T) be a regular ambitoric 4-manifold with free T-
orbits. We will now show that the asymptotic behaviour of M is essentially
local. Let {λ1, λ2} be a set of generators of Λ.

λ21 + λ22 ∈ Sym2(t) ∼= Sym2(t∗)∗

is a Riemannian metric on t
∗, identifying t

∗ with Euclidean space. The mo-
ment map µ+ :M → t

∗ is T-invariant, so it descends to an orbital moment
map µ̄+ :M/T → t

∗, which is an immersion. Thus ḡE := (µ̄+)∗(λ21 + λ22) is
a Riemannian metric onM/T. Since t is the tangent space to T, (λ21 + λ22)

−1

is a Riemannian metric on T. Thus

gE := (µ+)∗(λ21 + λ22) + (λ21 + λ22)
−1

is a T-invariant metric on M which descends to the metric ḡE on M/T.
Note that in the case of an ambitoric ansatz space A, AgE

C can be naturally
identified with the points in Agf

C which are not contained in positive folds:
since µ+ sends such points to infinity, they are infinitely distant with respect
to gE .

Lemma 4.6. Let (M, M̊, g, J+, J−,T) be a regular ambitoric orbifold com-
pletion, where g ∈ {g0, g±, gE} ∪ {gp}p⊥q. Then every point a in ∂gEM̊ has

a neighbourhood in M̊gE
C which can be identified with an open set in Agf

C for
some ambitoric ansatz space A such that a is identified with a point in ∂gfA.

Proof. We first treat the case when T · a admits a neighbourhood U in
M̊gE
C /T such that U ∩ (M̊/T) is contractible. Let Û ⊆ M̊ be the union of

the orbits U ∩ (M̊/T). By Lemma 4.5, by shrinking U if necessary, we can
find an ambitoric embedding ϕ : Û → A of Û into some ambitoric ansatz
space A. It is easy to see that ϕ∗gf induces the same topology as gE on ÛgEC .

Thus we find that ϕ naturally extends to an injection ϕ̄ : ÛgEC → Agf
C . Since

a ∈ ∂gE Û , we have ϕ̄(a) ∈ ∂gfϕ(Û).
If ϕ̄(a) /∈ ∂gfA, then ϕ̄(a) ∈ A. Without loss of generality, by shrinking

U , we may assume that ϕ̄(ÛgEC ) ⊂ A. Since g|M̊ is one of the special metrics

{g0, g±, gp} of the ambitoric structure on M̊ , ϕ∗
(

g|M̊
)

must be homothetic to

one of the special metrics of the ambitoric structure on ϕ(Û) ⊆ A. Since this
metric induces the same topology as gf on A, we can identify ∂ϕ∗(g|M̊ )ϕ(Û)
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with ∂gfϕ(Û) = ϕ̄(∂gE Û) ⊂ A, so that ϕ̄(a) ∈ ∂ϕ∗(g|M̊ )ϕ(Û). Moreover, since
Û is T-invariant, so is ϕ(Û), and thus ∂ϕ∗(g|M̊ )ϕ(Û). Thus the free orbit T ·
ϕ̄(a) lies in ∂ϕ∗(g|M̊ )ϕ(Û). Since ϕ̄ is injective, this shows that there is a free
T-orbit O ⊂ ∂gÛ corresponding to the orbit T · a ⊂ ∂gE Û via Lemma A.4.
Since O is a free orbit, it must lie in M̊ by definition. But on M̊ , the
topologies induced by gE and g are equivalent. Thus a ∈ M̊ . This contradicts
a ∈ ∂gEM̊ , so that ϕ̄(a) ∈ ∂gfA as claimed.

We now treat the case where every neighbourhood U of T · a satisfies
the condition that U ∩ (M̊/T) is not contractible. We will show that this
case is not possible, essentially because for an ambitoric ansatz space A,
∂gfA does not have isolated T-orbits. Since MgE

C /T is 2-dimensional, we

can find a neighbourhood U of T · a such that U ∩ (M̊/T) is homeomorphic
to a punctured disc. Let V ⊂ U ∩ (M̊/T) be a contractible set obtained by
cutting a line L between the two boundary components of the puctured
disc U ∩ (M̊/T). Let V̂ ⊆ M̊ be the union of T-orbits V . We can then use
Lemma 4.5 to get an immersion ϕ : V̂ → (RP1)2 × T. Arguing as in the
previous case, ϕ extends to an immersion ϕ̄ : V̂ gE

C → (RP1)2 × T. Still using

Lemma 4.5, since V̂ gE
C is compact, we can cover V̂ with finitely many {V̂α}α

such that each ϕ|V̂α
is an embedding into some ambitoric ansatz space Aα ⊂

(RP1)2 × T. Let S be the set of α such that a ∈ ∂gE V̂α. We can repeat the
argument from the previous case for each α to deduce that ϕ̄(a) ∈ ∂gfAα for
each α ∈ S. But the {∂gfAα}α are (possibly singular) hypersurfaces which
must locally agree, so there must be some neighbourhood W of ϕ̄(a) and
some hypersurface H in W passing through ϕ̄(a) which such that ∂gfAα ∩
W = H. We treat the case where H is not singular at ϕ̄(a) for clarity. By
shrinking V small enough so that ϕ̄(V ) ⊂W we find that ϕ(V̂ ) lies on one
side of H inW . It follows that the ray in TT·a(V

ḡE
C ) corresponding to L must

cover the line (Tϕ̄(a)H)/t ⊂ T
T·ϕ̄(a)(RP

1)2 by the map induced by ϕ̄. This is
impossible, since a linear map cannot send a ray to a line. □

We use the previous lemma to decompose ∂gEM̊ into components cor-
responding to the decomposition of ∂gfA into folds, edges, P , and corners.
We will use this language to discuss the components of ∂gEM̊ . As in the
discussion at the beginning of this sub-section, we will use Proposition A.4
to decompose ∂gM̊ into components, which we will call folds, edges, P ,
and corners likewise. We call components of ∂gEM̊ which are not in ∂gM̊
infinitely distant.

The following example is a variation on example 2.8 from [KL15], and
shows that the orbital moment map is not always a global embedding:
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Example 4.7. Consider the elliptic type ambitoric ansatz space

A := A
(

xy + 1, x4 + 1, y4 + 1,T
)

.

Consider the space Ā obtained by gluing the edges {x = ∞} and {x = −∞}
together, as well as the edges {y = ∞} and {y = −∞} together. As in Ex-
ample 4.4, the ambitoric structure from A extends to Ā. Since the functions
A(x) and B(y) are positive on Ā, Ā has no edges. It follows that Ā has two
connected components. Let Ā0 be one of the connected components of Ā.

From Section 2, we find that the moment map µ+ : Ā0 → t
∗ has an image

∆+ which is the exterior of a conic C+. Since A is elliptic type, C+ is an
ellipse. Moreover, the µ+-fibre over any point in ∆+ is a single T-orbit in
Ā0, allowing us to identify Ā0/T ∼= ∆+. Since ∆+ is not simply connected,
its universal cover π : ∆̃+ → ∆+ is not injective. Since µ+ : Ā0 → ∆+ is a
principal T-bundle, we can use π to construct the pull-back bundle Ã :=
π∗Ā0 over ∆̃+. Since π is a covering map, it extends to a covering map from
Ã to Ā0, which can be used to induce the ambitoric structure from Ā0 to Ã.

We find that Ã is an ambitoric manifold with orbit space Ã/T ∼= ∆̃+

and orbital moment map π : ∆̃+ → ∆+ ⊂ t
∗ which is not injective.

The main feature of the previous example was the existence of a proper
fold. This motivates us to consider only regular ambitoric orbifold comple-
tions without proper folds, since we want to rule out the possibility that
the orbital moment map is not injective. If (M, M̊, g, J+, J−,T) is a regu-
lar ambitoric orbifold completion without proper folds, then the boundary
∂gEM̊ consists of only edges and the corners where they meet. The orbital
moment map naturally extends to a map (M̊/T)ḡEC → t

∗, which is locally

convex since ∂gEM̊ consists of only edges and corners, which each get lo-
cally sent to lines and convex cones respectively. As in the case of compact
toric orbifolds, we wish to use this local convexity to prove global convexity,
which will give us control over the topology of M . The tool to do this is the
Lokal-global-Prinzip for convexity theorems [HNP94], although it requires
that the moment map is proper. Since (M̊/T)ḡEC may not be compact a priori,
we have to consider the case that the moment map is not proper. However,
in the next section we will see that completeness is actually enough for the
proof of Lokal-global-Prinzip to hold.
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4.3. Lokal-global-Prinzip

We begin this section by recalling some definitions from [HNP94], and then
stating their version of the Lokal-global-Prinzip. We will then state and
prove the slight modification of this result which we will need. Note that it
is likely that what we prove here is only a case of the general treatment of the
Lokal-global-Prinzip in [RS12] (where we got the idea to use Hopf-Rinow),
but for our purposes we find it convenient to prove the result.

Definition 4.8. A continuous map Ψ : X → V from a connected Hausdorff
topological space X to a finite dimensional vector space V is locally fibre
connected if every point in X admits an arbitrarily small neighbourhood U
such that Ψ−1(Ψ(u)) ∩ U is connected for each u ∈ U .

Definition 4.9. A locally fibre connected map Ψ : X → V has local con-
vexity data if every x ∈ X admits an arbitrarily small neighbourhood Ux
and a closed convex cone Cx ⊆ V with vertex Ψ(x) satisfying:

• Ψ(Ux) is a neighbourhood of Ψ(x) in Cx,

• Ψ|Ux
: Ux → Cx is open,

• Ψ−1(Ψ(u)) ∩ Ux is connected for each u ∈ Ux,

where the topology on Cx is the subspace topology induced from V .

These definitions allow us to state the theorem:

Theorem 4.10 (Lokal-global-Prinzip for Convexity Theorems
[HNP94]). Let Ψ : X → V be a proper locally fibre connected map with
local convexity data. Then Ψ(X) is a closed locally polyhedral convex sub-
set of V , the fibres Ψ−1(v) are all connected, and Ψ : X → Ψ(X) is a open
mapping.

Since we are essentially reproducing this theorem, we need to continue
defining the constructions used in the proof.

Consider the equivalence relation on X defined by x ∼ y if and only if x
and y are both contained in the same connected component of a fibre of Ψ.
The quotient space X̃ := X/ ∼ is called the Ψ-quotient ofX. Let Ψ̃ : X̃ → V
be the map induced by Ψ on X̃.
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Let dV be the usual Euclidean distance on V with respect to some fixed
basis. We can use this to define a distance on X̃ as follows:

d : X̃ × X̃ → [0,∞) : (x̃, ỹ) 7→ inf
γ∈Γ(x̃,ỹ)

lengthdV (Ψ̃ ◦ γ),

where Γ(x̃, ỹ) is the set of curves γ connecting x̃ to ỹ such that Ψ ◦ γ is
piecewise differentiable. d is called the metric induced on X̃ by Ψ̃.

Now we can prove our version of the Lokal-global-Prinzip for convexity
theorems. Note that the proof is the same as the relevant parts of the pre-
vious theorem aside from the replacement of the use of properness with an
appeal to the Hopf-Rinow theorem.

Theorem 4.11. Let Ψ : X → V be a locally fibre connected map with local
convexity data. Moreover, assume that X̃ is a complete locally compact length
space with respect to the metric induced by Ψ̃. Then ϕ(X) is a convex subset
of V and the fibres Ψ−1(v) are all connected.

Proof. Let x̃0, x̃1 ∈ X̃ with c := d(x̃0, x̃1). For each n ∈ N, we can find some

γn ∈ Γ(x̃0, x̃1) such that lengthdV (Ψ̃ ◦ γ) ≤ c+ 1
n . For each n ∈ N, let x̃

(n)
1

2

be

the midpoint of γn. Then
(

x̃
(n)
1

2

)∞

n=1
is a sequence in the closed ball Bc+1(x̃0)

of radius c+ 1 about x̃0. Since X̃ is a complete locally compact length space,
the Hopf-Rinow theorem [BH99] tells us that Bc+1(x̃0) is compact. Thus
(

x̃
(n)
1

2

)∞

n=1
admits a subsequence which converges to some x̃ 1

2
∈ Bc+1(x̃0),

which must satisfy

d
(

x̃0, x̃ 1

2

)

= d
(

x̃ 1

2
, x̃1

)

=
c

2
.

Repeating the argument for the pairs of points (x̃0, x̃ 1

2
) and (x̃ 1

2
, x̃1), we

construct points x̃ 1

4
and x̃ 3

4
satisfying

(4) d
(

x̃ n

2m
, x̃ p

2q

)

= c
∣

∣

∣

n

2m
− p

2q

∣

∣

∣

for all suitable n,m, p, q. Inductively we can repeat the argument to con-
struct points x̃ n

2m
for n,m ∈ N with 0 ≤ n ≤ 2m satisfying (4). We can then

extend the function n
2m 7→ x̃ n

2m
to a continuous function γ : [0, 1] → X̃ sat-

isfying d
(

γ(t), γ(t′)
)

= c|t− t′| for all t, t′ ∈ [0, 1]. This means that locally

dV
(

Ψ̃ ◦ γ(t), Ψ̃ ◦ γ(t′)
)

= c|t− t′|,
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which can only happen if Ψ̃ ◦ γ is a straight line segment. This line segment
connects Ψ̃(x̃0) and Ψ̃(x̃1). Varying x̃0 and x̃1, we find that Ψ(X) = Ψ̃(X̃)
is convex.

To prove that the fibres are all connected, let x̃0, x̃1 ∈ X̃ such that
Ψ̃(x̃0) = Ψ̃(x̃1) =: v. Let γ : [0, 1] → X̃ be the curve constructed above. Then
Ψ̃ ◦ γ is a line segment containing v. Assume that Ψ̃ ◦ γ is not the con-
stant function v. Then Ψ̃ ◦ γ is a loop through v as well as a straight
line segment. Thus there exists a turning point v0 = Ψ̃ ◦ γ(t0) such that
Ψ̃ ◦ γ

(

[t0 − ϵ, t0]
)

= Ψ̃ ◦ γ
(

[t0, t0 + ϵ]
)

for all ϵ > 0 sufficiently small. Thus

Ψ̃ is not locally injective near γ(t0). This contradicts Ψ being locally fi-
bre connected. Thus Ψ̃ ◦ γ is the constant function v. This implies that
d(x̃0, x̃1) = 0, so that x̃0 = x̃1 as required. □

We recall proposition 3.25 from [BH99]:

Proposition 4.12. Let X be a length space and X̃ be a Hausdorff topolog-
ical space. Let p : X̃ → X be a continuous local homeomorphism, and d be
the metric induced on X̃ by p.

1) If one endows X̃ with the metric d, then p becomes a local isometry.

2) d is a length metric.

3) d is the unique metric on X̃ that satisfies properties (1) and (2).

Combining this proposition with the previous theorem gives:

Corollary 4.13. Let Ψ : X → V be a locally fibre connected map with local
convexity data. Moreover, assume that Ψ̃ is a local homeomorphism, and
that X̃ is complete with respect to the metric d̃ given by the pull-back with
respect to Ψ̃ of the Euclidean metric on V . Then ϕ(X) is a convex subset of
V and the fibres Ψ−1(v) are all connected.

Proof. By the previous theorem, it suffices to show that (X̃, d) is a complete
locally compact length space. Since Ψ̃ : X̃ → V is a local homeomorphism
and V is locally compact (being a vector space), X̃ is locally compact. By the
previous proposition, (X̃, d) is a length space. Note that d̃ and d both satisfy
properties (1) and (2) in the previous proposition. Thus by uniqueness, we
have that d = d̃. Since (X̃, d̃) is complete, (X̃, d) is complete. □

Now we can start applying the Lokal-global-Prinzip to our setting.



✐

✐

“3-Dixon” — 2021/5/7 — 15:41 — page 658 — #30
✐

✐

✐

✐

✐

✐

658 Kael Dixon

Lemma 4.14. Let A0 be a connected component of some ambitoric ansatz
space without proper folds. Then the orbital moment map µ̄+ : A0/T → t

∗

extends to (A0/T)
ḡE
C as a local homeomorphism with local convexity data.

Proof. µ̄+ is a rational map from A0/T ⊂ (RP1)2 to t
∗. Thus µ̄+ extends

naturally to a map on (RP1)2, and hence on (A0/T)
ḡE
C ⊂ (RP1)2, which we

will also denote by µ̄+. Since A0/T is connected and µ̄+|A0/T is a homeo-
morphism, so is µ̄+|(A0/T)

ḡE
C
.

Since there are no proper folds, ∂ ḡE(A0/T) consists of finitely many edges
and components of P , which µ̄+ sends to lines tangent to the conic C+. We
find that for every corner c ∈ ∂ ḡE(A0/T), arbitrarily small neighbourhoods
of c get mapped by µ̄+ to neighbourhoods of µ̄+(c) in the convex cone
with vertex µ̄+(c) formed by the rays passing through C+. By similarly
describing neighbourhoods of points on edges, on P , and in A0, we find that
µ̄+ : (A0/T)

ḡE
C → t

∗ has local convexity data. □

We can now prove our weakened classification of regular ambitoric orb-
ifold completions:

Theorem 4.15. Let (M, M̊, [g], J+, J−,T) be a connected regular ambitoric
orbifold completion without proper folds. Then there exists an ambitoric em-
bedding of (M̊, [g], J+, J−,T) into some ambitoric ansatz space whose mo-
ment map images are (possibly unbounded) polygons.

Proof. By Lemma 4.6, (M̊/T)ḡEC is locally covered by charts which each
have an image of the form (A/T)ḡEC for some ambitoric ansatz space A. By
assumption, these charts cannot have proper folds. Applying the previous
lemma to these local charts, we find that µ̄+ naturally extends to a local
homeomorphism µ̄+ : (M̊/T)ḡEC → t

∗ with local convexity data.
Since ḡE is the pull-back of a Euclidean metric on t

∗ by µ̄+, we can apply
Corollary 4.13 with X = X̃ = (M̊/T)ḡEC , V = t

∗ and Ψ = Ψ̃ = µ̄+. This tells

us that µ̄+ is injective with convex image. In particular M̊/T is contractible.
We can then apply Lemma 4.5 to construct a T-equivariant immersion ϕ :
M̊ → (RP1)2 × T. Let ϕ̄ : M̊/T → (RP1)2 be the map induced by ϕ. We have
the following commutative diagram:

(

RP
1
)2 × T

(

RP
1
)2

M̊ M̊/T

t
∗

φ φ̄

µ̄+

µ̄+
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Since µ̄+ : M̊/T → t
∗ is injective, ϕ̄ must be injective. Thus ϕ is injective. It

also follows that since µ+(M̊) is convex, ϕ(M̊) intersects each level set of x
or y in at most one connected component. We are now able to apply the full
force of Lemma 4.5 to deduce that the image of ϕ can be given the structure
of an ambitoric ansatz space. Since M̊ has no proper folds, its boundary
components are all either edges or parts of P . Since the moment maps µ±

send each of these boundary components to edges, the moment maps of M
must be polygons. □

4.4. Asymptotic analysis of ambitoric ansatz spaces

Let A be an ambitoric ansatz space, equipped with one of its distinguished
metrics g ∈ {g0, g±, gp}. We will now see what we can deduce from the as-
sumption that A is g-completable, discussing each type of boundary com-
ponent in turn.

4.4.1. Folds.

Lemma 4.16. If A is g-completable, then every proper fold is infinitely
distant.

Proof. Let F be a proper fold which is not infinitely distant. The T-orbits
in F must have well-defined g-volume. In [ACG13b], the g+ volume of the

fibre at (x, y) is shown to be proportional to A(x)B(y)
q(x,y)4 . The volumes (up to

a constant) of such a fibre with respect to each of the candidate metrics for
g are given in the following table:

g g+ g0 g− gp

Volg
(

T(x,y)

) A(x)B(y)
q(x,y)4

A(x)B(y)
(x−y)2q(x,y)2

A(x)B(y)
(x−y)4

A(x)B(y)
p(x,y)4

If g is g0, we find that A(x)B(y)
(x−y)2q(x,y)2 must be well-defined on F . But F is

not a corner or an edge, so A(x) and B(y) are positive functions on F . Thus
we must have that (x− y)2q(x, y)2 is non-vanishing on F . This contradicts
F being a fold, so that g cannot be g0. Similar arguments show that if F
is positive, then g ̸= g−, and if F is negative, then g ̸= g+. It follows that if
one writes g = ϕ(x, y)g0, then ϕ(x, y) vanishes on F .

Now we will show that the g-distance between T-orbits in F is zero.
To see this, let (x1, y1, t⃗0) and (x2, y2, t⃗0) be two different points in Agf

C ∩ F .
Consider the curve γ with image in Agf

C ∩ F ∩ {t⃗ = t⃗0} connecting (x1, y1, t⃗0)
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to (x2, y2, t⃗0). Let Ix and Iy be the ranges of the functions x and y respec-
tively restricted to the image of γ. Since F is not a corner or an edge, we can
find a δ > 0 small enough such that A(x) and B(y) are positive functions
on the δ-neighbourhoods (with respect to the metrics induced by gf ) I

δ
x and

Iδy of Ix and Iy respectively. We will also choose δ small enough such that

neither Iδx nor Iδy are dense subsets of RP1. Consider the set

V := {(x, y, t⃗) ∈ A : x ∈ Iδx, y ∈ Iδy , t⃗ = t⃗0}.

Since neither Iδx nor Iδy are dense subsets of RP1, the metric induced by gf
on V is uniformly equivalent to dx2 + dy2. The metric induced by g0 on V
is dx2

A(x) +
dy2

B(y) . Since A(x) and B(y) are both positive on V , g0 is uniformly

equivalent to dx2 + dy2, and hence gf , on V . Thus there exists some C > 0
such that g0 < Cgf on V .

Let ϵ > 0. Since ϕ(x, y) vanishes on F , we can approximate γ with a
curve γϵ connecting (x1, y1, t⃗0) to (x2, y2, t⃗0) with the interior of the image

contained in V satisfying
∣

∣

∣
lengthgf (γ)− lengthgf (γϵ)

∣

∣

∣
< ϵ and ϕ(x, y) ◦ γϵ <

ϵ. Since g = ϕ(x, y)g0, we find

dg
(

T(x1,y1),T(x2,y2)

)

≤ lengthg(γϵ) < ϵ lengthg0(γϵ)

< Cϵ lengthgf (γϵ) < Cϵ
(

lengthgf (γ) + ϵ
)

.

Taking ϵ→ 0, we find that the g-distance between the T-fibres T(x1,y1) and
T(x2,y2) is zero. This means that F represents only one T-orbit inAg

C . In order
for the g-volume of this orbit to be well-defined, we must have Volg(T(x,y))
constant. In the case when g = g+, this means that q(x, y)4 ∝ A(x)B(y).
But it is only possible to write q(x, y)4 as a product of a function of x and
a function of y in the parabolic case, where F is an edge. Similarly, we rule
out the case where g = g− and g = gp unless p is a constant.

If g = gp for a constant p, then A(x) and B(y) are constants, say A and
B. We will rule out this case by a curvature computation. Since (A, g−, ω−)
is Kähler, we have that the anti-self-dual part of the Weyl curvature tensor
of [g−] is given by

W− ∝ s−(ω− ⊗ ω−)
♯−
0 ,

where (·)0 is the projection onto the trace-free part of Sym2(Λ2A) and s−
is the scalar curvature of s−. Using gp = (x− y)2g−, we estimate

∥Rmgp ∥gp ≥ ∥W−∥gp =
p2∥W−∥g−
(x− y)2

∝ |s−|
(x− y)2

.
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In [ACG13a], s− is computed to be

s− = −((x− y)2, A(x))(2) + ((x− y)2, B(y))(2)

(x− y)q(x, y)
,

where for arbitrary functions f1(z, w) and f2(z),

(f1(z, w), f2(z))
(2) = f21

∂

∂z

(

f1
∂

∂z

(

f2
f21

))

= f1
d2f2
dz2

− 3
∂f1
∂z

df2
dz

+ 6
∂2f1
∂z2

f2.

In particular, since A(x) and B(y) are constants, we find that s− =
−2 A+B

(x−y)q(x,y) , so that ∥Rmgp ∥gp ≳ A+B
(x−y)q(x,y) on A. Since ∥Rmgp ∥gp must

be well-defined at the fold F , where (x− y)q(x, y) vanishes, we must have
A+B = 0. This contradicts A(x) and B(y) being positive functions. □

We can use the following lemma to test the infinitely distant criterion
on proper folds.

Lemma 4.17. Let g be a metric on a dense set of A. Let F be the vanish-
ing locus of some function ϕ on Agf

C . Assume that there exists some r ∈ R

such that each point of F has a neighbourhood where ∥dϕ∥g ≍ ϕr. In other
words, there exists some C > 0 such that 1

Cϕ
r < ∥dϕ∥g < Cϕr on the neigh-

bourhood. Then F is infinitely distant with respect to g if and only if r ≥ 1.

Proof. Let γ : [0, 1) → A be a curve limiting to F . Since limt→1 ϕ ◦ γ(t) = 0,
we can find some T ∈ [0, 1) such that γ|[T,1) is transverse to the level sets of ϕ.
Thus the function ϕ ◦ γ|[T,1) : [T, 1) → R is invertible with image (0, ϵ], where
ϵ = ϕ ◦ γ(T ). Then γ̃ := γ ◦ (ϕ ◦ γ)−1 : (0, ϵ] → A is a reparametrization of
a tail of γ which satisfies ϕ ◦ γ̃(τ) = τ . Taking the derivative of this relation,
we find that dϕ ◦ ˙̃γ = 1. We can choose ϵ small enough such that the 1

Cϕ
r <

∥dϕ∥g < Cϕr holds. We compute

lengthg(γ) ≥ lengthg(γ̃) =

∫ ϵ

0
∥ ˙̃γ(τ)∥gdτ ≥

∫ ϵ

0
g

( ∇gϕ

∥∇gϕ∥g
, ˙̃γ

)

γ̃(τ)

dτ(5)

=

∫ ϵ

0

(

dϕ ◦ ˙̃γ

∥dϕ∥g

)

γ̃(τ)

dτ ≍
∫ ϵ

0

dτ

ϕr ◦ γ̃(τ) =

∫ ϵ

0

dτ

τ r
.

In the case when r ≥ 1, this integral is infinite, so that the g-length of g
is infinite. Since γ is an arbitrary curve limiting to F , we find that F is
g-infinitely distant as claimed.

Conversely, consider the case when r < 1. One can use the g-gradient flow
of the function ϕ to construct a curve γ limiting to F which satisfies γ̇ =
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(∇gϕ). Clearly γ admits a parametrization by some parameter τ satisfying
ϕ ◦ γ(τ) = τ . Let γ̃ be the restriction of γ to a neighbourhood of limτ→0 γ(τ)
such that ∥dϕ∥g ≍ ϕr. Without loss of generality, we can assume that γ = γ̃.
Then (5) holds after replacing the inequalities with equalities. Since r < 1,
we find that the g-length of γ is finite, so that F is not g-infinitely distant.

□

Lemma 4.18. If g ∈ {g0, g±} ∪ {gp}p⊥q, then all proper folds are not in-
finitely distant with respect to g.

Proof. First we consider the case of a negative fold F . This is the vanishing
locus of f = q(x,y)

x−y . Up to a change of gauge, we may assume that q(x, y) is
not a constant function. This allows us to identify F as the vanishing locus
of q(x, y). It is a simple computation with the normal forms to verify that
dq(x, y) and q(x, y) do not share any vanishing points. This, combined with
the form of g0 from (1) allow us to deduce that ∥dq(x, y)∥g0 extends to a
positive function on F . This allows us to apply the previous lemma with
ϕ = q(x, y) and r = 0 to deduce that F is not infinitely distant with respect
to g0. Since g± = f∓1g0, ∥dq(x, y)∥g± = f±

1

2 ∥dq(x, y)∥g0 . Since (x− y) does
not vanish on F , we can then apply the previous lemma with r = ±1

2 to
deduce that F is not infinitely distant with respect to g±.

Similarly, if p ̸= q, then applying the previous lemma with r = 0 gives
the analogous result for gp. If p = q, then gp = g+, so we’ve already seen that
F is not gp-infinitely distant. The case of positive folds follows similarly by
switching the roles of q(x, y) and (x− y). □

Lemma 4.19. The proper part of P is infinitely distant with respect to gp.

Proof. If p is constant, then P is empty, so there is nothing to show. As
we saw in Lemma 2.4, dp(x, y) = 1

2p
′(y)dx+ 1

2p
′(x)dy, which only vanishes

along P in the case when < p, p >= 0. In this case, there is some γ ∈ R

so that p(z) = (z − γ)2, and {dp(x, y) = 0} ∩ P = {x = y = γ}. This is a T-
orbit in Agf

C which is a corner where P meets the fold {x = y}. Since we
are treating corners separately, we find that dp(x, y) is well-defined and
non-vanishing on the proper part of P . It follows that ∥dp(x, y)∥g0 ex-
tends to a positive function on the proper part of P . Since ∥dp(x, y)∥gp =
p(x, y)∥dp(x, y)∥g0 , the result follows by applying Lemma 4.17 with ϕ =
p(x, y) and r = 1. □

4.4.2. Edges. We start our investigation of the edges by building criteria
to test the infinitely distance condition. The following lemma lies at the
heart of the argument:
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Lemma 4.20. Let N be a manifold and T > 0. Consider the Riemannian
manifold

(N̂ , g) :=
(

(0, T )×N, a(t)2dt2 + gN (t)
)

,

where a(t) is a smooth positive function on (0, T ) and {gN (t)}t∈(0,T ) is a

smooth family of metrics on N . Then any smooth curve γ : [0, 1) → N̂ sat-
isfying limτ→1 t ◦ γ(τ) = 0 has finite g-length if and only if there exist some
ϵ > 0 such that

∫ ϵ
0 a(t)dt converges.

Proof. First assume that any curve γ : (0, 1) → M̃ with limτ→0 t ◦ γ(τ) = 0
has infinite length. In particular, for any p ∈ N and ϵ ∈ (0, T ), the curve
γ(τ) := (ϵτ, p) has infinite length. But this length is

∫ 1

0

√

g(γ̇(τ), γ̇(τ))dτ =

∫ 1

0
ϵa(ϵτ)dτ =

∫ ϵ

0
a(t)dt,

so that this integral cannot converge as claimed.
Conversely, suppose that any curve γ : (0, 1) → M̃ with limτ→0 t ◦ γ(τ) =

0 has infinite length. Fix such a gamma. We may reparametrize γ so that
for some ϵ > 0, t ◦ γ(τ) = τ for all τ ∈ (0, ϵ). We then have

∞ >

∫ 1

0

√

g(γ̇(τ), γ̇(τ))dτ ≥
∫ ϵ

0

√

g(γ̇(τ), γ̇(τ))dτ

≥
∫ ϵ

0

√

a(t)2dt2(γ̇(τ), γ̇(τ))dτ =

∫ ϵ

0
a(τ)dτ.

This proves our claim. □

We now move on to consider the case g = g0:

Lemma 4.21. If an edge E is given by {x = x0} (respectively {y = y0}),
then E is infinitely distant with respect to g0 if and only if there does not
exist an ϵ > 0 such that

∫ x0+σϵ
x0

dx√
A(x)

(respectively
∫ y0+σϵ
y0

dy√
B(y)

) converges.

Here σ ∈ {±1} is chosen so that x0 + σϵ or y0 + σϵ lies in the range of x
or y on A. Also x0 and y0 are assumed to be finite, which can be arranged
after a gauge transformation.

Proof. We will prove the case for x0 with σ = 1. Consider a T-orbit O on E.
It has coordinates (x0, y0) for some y0 ∈ R. We can find a neighbourhood Iy
of y0 and some T > 0 such that (x0, x0 + T )× Iy × T ⊂ A. Let N = Iy × T.
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Consider the following coordinate transformation

ϕ :M → (0, T )×N : (x, y, t⃗) 7→ (x− x−, (y, t⃗)).

It is easy to see that ϕ∗g0 is of the form a(t)2dt2 + gN (t), where ϕ
∗a(t) =

1√
A(x)

. By the previous lemma, we find that O is in the g0-Cauchy comple-

tion of M if and only if there exists some ϵ > 0 such that the integral

∫ ϵ

0
a(t)dt =

∫ x−+ϵ

x−

dx
√

A(x)

converges. Since O was an arbitrary T-orbit on E, this gives the desired
result. □

To understand how the condition of g-completable applies to the edges,
we will borrow from the work of [ACG13b]. They define:

Definition 4.22. An ambitoric compactification is a compact connected
oriented 4-orbifold M with an effective action of 2-torus T such that on
the (dense) union M̊ of the free T-orbits, there is an ambitoric structure
(g±, J±,T) for which at least one of the Kähler metrics extends smoothly
to a toric Kähler metric on (M,T). An ambitoric compactification is regular
if the ambitoric structure on M̊ is regular with (x, y)-coordinates that are
globally defined.

We will add some definitions:

Definition 4.23. A connected component U of an ambitoric ansatz space
A is box-type if all of its folds are also edges or corners. It’s clear that such
a U must be of the form (x−, x+)× (y−, y+)× T ⊆ A, for some intervals
(x−, x+), (y−, y+) ⊂ R.

Definition 4.24. Let E be an edge given by {x = x0} (respectively {y =
y0}). We say E has a compatible normal if A(x0) = 0 (respectively B(y0) =

0) and the normal vector to µ±(E) given by −2 p(x0)

A′(x0)
(respectively 2 p(y0)

B′(y0)
)

lies in the lattice Λ ⊂ t, where for each γ ∈ R, p(γ) ∈ t corresponds to the
polynomial pγ(x, y) := 1

2(x− γ)q(y, γ) + 1
2q(x, γ)(y − γ) under the identifi-

cation of t with symmetric quadratic polynomials orthogonal to q(x, y). See
[ACG13a] for details on this identification.
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Note that the above definition is given for the case when x0 or y0 is
finite. In the infinite case, one can reduce to the finite case by performing a
gauge transformation (for example z 7→ −1

z ).
We can then paraphrase the classification of ambitoric compactifications

(proposition 3 in [ACG13b]):

Proposition 4.25. A box-type component of an ambitoric ansatz space is
the interior of an ambitoric compactification if and only if each of its edges
has a compatible normal.

This will allow us to prove:

Lemma 4.26. Let g ∈ {g0, g±} ∪ {gp}p⊥q. If A is g-completable, then each
edge is either infinitely distant, a fold, part of P , or has compatible normal.

Proof. Let E be an edge which is neither a fold nor infinitely distant nor
part of P . Since A is is g-completable, E lies in Ag

C as a set of points with
at worst orbifold singularities, and g extends to E as a smooth metric. Let
ϕ(x, y) be the function such that g+ = ϕ(x, y)g. Since E is not a fold, ϕ(x, y)
is a positive function along E. This implies that g+ also extends to E as a
smooth metric.

We want to apply the previous proposition here. The proof of that propo-
sition is local in nature, so we can apply it locally. More explicitly, if both
g+ and ω+ extend to E, then E looks like a piece of an ambitoric com-
pactification, so we can deduce that E has a compatible normal. We have
shown that g+ extends, but not yet ω+. However, the proof of the previous
proposition does not actually require that ω+ extends, although it certainly
is necessary by the converse. To see this, let p be a point on E. With-
out loss of generality, by switching the roles of x and y if necessary, E is
of the form {x = x0} and the T-orbit T · p is given by {x = x0, y = y0}. Let
Ay=y0 = {(x, y, t⃗) ∈ A : y = y0}. Then the normal bundle to T · p in TpAy=y0

is a vector space which coincides with the space Vp in the proof of proposition
1 of [ACGTF04]. The construction of Vp was the only part of that direction
of that proof which used the symplectic structure, so we can use it to deduce
boundary conditions which are shown in [ACG13b] to be equivalent to the
condition that E has a compatible normal. □

Lemma 4.27. Let g ∈ {g0, g±} ∪ {gp}p⊥q. If A is g-completable, then every
edge which is also a fold but neither infinitely distant nor part of P must
have a compatible normal and g ∈ {g−, gp}.
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Proof. Let E be such an edge. An edge can only be a fold in the parabolic
case, and the fold must be negative. We will change the gauge so that
q(x, y) = xy. We consider the case when E is given by {x = 0}, while the
case {y = 0} can be treated similarly.

To rule out g ∈ {g0, g+}, we use the fact that the volume of a T-fibre on
E must be well-defined, as in Lemma 4.16. First consider the case g = g0.
We saw in Lemma 4.16 that the g0 volume of the T-fibre at (x, y) is given

by A(x)B(y)
(x−y)2x2y2 . For this to be defined at x = 0, A(x) must vanish to at least

second order at 0. By Lemma 4.21, this implies that E is infinitely distant
with respect to g0, contradicting the definition of E.

Similarly for g = g+, we find that A(x)B(y)
x4y4 must be well-defined, implying

that A(x) vanishes to order 4 at 0. A similar argument to Lemma 4.21
shows that if q(x, y) = xy, then E is infinitely distant with respect to g+
if and only if there does not exist an ϵ > 0 such that the integral

∫ ϵ
0

xdx√
A(x)

converges. This is the case when A(x) vanishes to order 4 at 0, contradicting
the definition of E as not infinitely distant with respect to g+.

The fact that Ee must have a compatible normal follows the same ar-
gument as the previous lemma, replacing g+ and ω+ with g− and ω−. □

Lemma 4.28. If A is gp-completable, then every edge which is a part of P
is infinitely distant with respect to gp.

Proof. Let E be an edge which is part of P which is not infinitely distant with
respect to gp. We will treat the case where E is given by {x = γ} for some γ ∈
R. The case where E = {y = γ} can be treated similarly, and the case when
γ = ∞ can be reduced to the finite case by a gauge transformation. Since
E is part of P , there exist some c ∈ R such that p(x, y) = c(x− γ)(y − γ).
Since A is gp-completable and E is not infinitely distant, we know that the
volume of a T-fibre on E must be well defined. Again referring to the table
from Lemma 4.16, this volume is A(x)B(y)

p(x,y)4 . In order for this to be well-defined,

A(x) must vanish to order at least 4 at γ.
Now consider the function ϕ = x− γ on A. We compute

∥dϕ∥gp =
p(x, y)

√

A(x)
√

q(x, y)(x− y)
.

Since p(x, y) vanishes to order 1 on E and A(x) vanishes to order at least
4, while q(x, y) vanishes to order 1 or 0 (if q = p or q ̸= p respectively), we
find that ∥dϕ∥gp ≳ ϕ

3

2 . We now apply Lemma 4.17 to deduce the result. □

4.4.3. Corners.
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Lemma 4.29. If A is g-completable, then every corner where an infinitely
distant edge or fold meets another edge or fold must be infinitely distant.

Proof. Assume that two infinitely distant edges or folds meet at a corner C
which is not infinitely distant. We can find a small neighbourhood of this
corner of the form

((C\{0})× (C\{0})) ∪ C,
where C is glued into (0, 0) as a subgroup of T. This is never an orbifold,
contradicting A being g-completable.

Similarly, let C ′ be a corner where an infinitely distant edge or fold E∞
meets an edge or fold Ef which is not infinitely distant. By Lemmas 4.16,
4.26 and 4.27, Ef must be an edge with a compatible normal. It follows
that points of Ef have neighbourhoods of the form C/Γ× C, where Γ is the
orbifold covering group. It follows that C has a neighbourhood of the form

((C/Γ)× (C\{0})) ∪ C,

where C is glued into (0, 0) as a subgroup of T. This is never an orbifold,
contradicting A being g-completable. □

Lemma 4.30. Let g ∈ {g0, g±} ∪ {gp}p⊥q. If A is g-completable and C is a
corner at the intersection of two edges which are not infinitely distant, then
if C is a positive fold, then g ∈ {g+, gp}, while if C is a negative fold, then
g ∈ {g−, gp}. If g = gp, then C cannot be part of P .

Proof. We will prove the case that C is a positive fold. The case when C is a
negative fold or part of P is treated similarly. By Lemmas 4.26 and 4.27, the
edges adjacent to C must have compatible normals. This implies that A(x)
and B(y) both vanish to order 1 at C. For topological reasons, C cannot be
a free T fibre with respect to g. In particular, the volume of the fibre at C
must vanish. Again we refer to the table of fibre volumes in Lemma 4.16 to
deduce that g ∈ {g+, gp}. □

4.5. Classification results

Now we can combine all of our asymptotic analysis of the previous section
to prove our classification of completable ambitoric ansatz spaces. This then
combines with Theorem 4.15 to give our main classification results.

Proof of Theorem 1.1. First assume that A is g completable. By Lemma
4.16, every proper fold must be infinitely distant, but by Lemma 4.18 no
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proper fold is infinitely distant. Thus A can have no proper folds, which is
the first statement. The next two statements are the result of Lemmas 4.26
and 4.27.

By Lemma 4.30, every corner is infinitely distant unless it is at the
intersection of two folds or edges which are not infinitely distant. However,
we’ve seen that a fold or an edge which is not infinitely distant must be an
edge with a compatible normal. This added to Lemma 4.30 gives the last
condition.

Conversely, assume that the stated conditions hold. The first condition
combined with Lemma 4.19 allows us to decompose Ag

C into edges and
corners.

The second condition implies that each edge which is not infinitely dis-
tant has a compatible normal. Let E be such an edge. Since the proof of
Proposition 4.25 is local in nature, it allows us to deduce that for one of the
metrics g±, E lies in Ag±

C as a set of points with at worst orbifold singular-
ities, and g± extends to E as a smooth metric. In the case that E is not a
fold, then the conformal factor relating g to g± extends to a positive function
on E, so that g also extends to E as a smooth metric. If E is a fold, then the
choice of g± must have been g− by the third condition. The third condition

also ensures that g = η(x, y)g−, for some η(x, y) ∈ {1, (x−y)2p(x,y)2 }. Since η(x, y)
is positive on E, g extends to E as a smooth metric.

Finally, let C be a corner which is not infinitely distant. By the last
condition, C must lie at the intersection of two edges which are not infinitely
distant, and thus have compatible normals. As in the previous paragraph,
we can locally apply Proposition 4.25 to deduce that for one of g±, C lies
in Ag±

C as a point with at worst an orbifold singularity. The conditions that
we put on g if C is a fold ensures that the conformal factor relating g to g±
on A extends to C as a positive function, ensuring that g extends smoothly
to C.

We’ve shown that every point in Ag
C has at worst orbifold singularities,

and that g extends to a smooth metric on Ag
C . Thus A is g-completable as

claimed.
To prove the moreover, first note that if the ambitoric structure extends

to Ag
C , then the function f is a conformal factor between the metrics g+ and

g0 on Ag
C . In particular, f must be a smooth positive function on Ag

C . It
follows that Ag

C has no folds. In other words, every fold is infinitely distant.
Conversely, if every fold is infinitely distant, then the functions q(x, y)

and (x− y) extend to smooth positive functions on Ag
C . We can use these

functions to construct the conformal factor between g± and g− on Ag
C , so

that g± both extend as smooth metrics to Ag
C . Similarly, by considering the
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expressions for ω± in (1), these also extend to Ag
C , so that Ag

C is ambitoric.
□

Proof of Theorem 1.2. By Theorem 1.1, M has no proper folds. The result
then follows from Theorem 4.15. □

Proof of Corollary 1.3. A regular ambitoric 4-orbifold M which is complete
with respect to g0 is a regular ambitoric orbifold completion with respect
to g0. We can then apply Theorem 1.2 to embed the set of free orbits M̊
of M in the Cauchy completion (with respect g0) of an ambitoric ansatz
space A(q, A,B,T) which has polygonal moment map images. Moreover,
since A is completable, it has no proper folds by Theorem 1.1. Since g ∈
{g0, g±}, there is no P boundary component. Combining these facts, we
find that A is of box-type. In particular there exist x±, y± ∈ R such that
M̊ ∼= (x−, x+)× (y−, y+)× T ⊂ A(q, A,B,T), and that (x− y)q(x, y) does
not vanish on (x−, x+)× (y−, y+).

By Theorem 1.1, each edge is either infinitely distant or has compati-
ble normal, and each fold is infinitely distant. The condition on the edges
gives the constraints on A(x) and B(y), using Lemma 4.21. By an argument
similar to Lemma 4.21, each corner is infinitely distant with respect to g0
if and only if either of the adjacent edges is. This implies that if two edges
which are not infinitely distant meet at a corner, then that corner cannot
be a fold. This gives the last condition.

Conversely, given the data described in corollary, on can construct a
torus T = R2/Λ, and an ambitoric ansatz space A(q, A,B,T). We find that
A0 : (x−, x+)× (y−, y+)× T ⊂ A(q, A,B,T) is a connected component of an
ambitoric ansatz space with no proper folds and each of its four edges being
either infinitely distant or having compatible normals. Then Theorem 1.1
tells us that (A0)

g0
C is a regular ambitoric 4-orbifold which is complete with

respect to g0. □

5. Application: Compact 4-manifolds admitting Killing

2-forms

In this section, we apply our results to the setting of 4-manifolds admit-
ting Killing 2-forms. This will build on the work in [GM17], which we will
summarize now.
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Definition 5.1. A differential form ψ on a Riemannian manifold (M, g) is
conformally Killing if its covariant derivative ∇ψ is of the form

∇Xψ = α ∧X♭ +X⌟β, ∀X ∈ Γ(TM),

for some differential forms α and β. Moreover, ψ is Killing if α = 0 and
*-Killing if β = 0.

Note that if M is oriented and ∗ is the Hodge star operator, then ψ is
Killing if and only if ∗ψ is ∗-Killing.

Proposition 5.2 (2.1 in [GM17]). Let (M, g) be a connected oriented
Riemannian 4-manifold admitting a non-parallel ∗-Killing 2-form ψ. Then
on an open dense subset M0 of M , the pair (g, ψ) gives rise to an am-
biKähler structure (g+, J+, ω+), (g−, J−, ω−), where g± = f−2

± g. Here f± :=
|ψ±|√

2
, where ψ± are the self-dual and anti-self-dual parts of ψ.

Define vector fields K1 and K2 on such an M by

K1 := −1

2
α♯,

K2 :=
1

2
(∗ψ)♯(K1).

These can be used to form a rough classification:

Proposition 5.3 (3.3 in [GM17]). Any connected oriented 4-dimensional
Riemannian manifold (M, g) admitting a non-parallel ∗-Killing 2-from ψ fits
into one of the following three exclusive possible cases:

1) The vector fields K1 and K2 are Killing and independent on a dense
open set U of M .

2) The vector fields K1 and K2 are Killing and K2 = cK1 for some c ∈
R\0.

3) f+ = f− on all of M , K2 = 0, and K1 is not a Killing vector field in
general.

The authors go on to show that in the first case, U admits a regular
ambitoric structure (U , [g], J+, J−) of hyperbolic type, where g is identified
with the metric g1 (gp when p = 1). In the language that we have developed,
(M,U , g = g1, J+, J−) is a regular ambitoric manifold completion. We can
then apply our classification result to obtain our claimed result:
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Proof of Theorem 1.4. By Theorem 1.2, U can be embedded into some am-
bitoric ansatz space A whose moment map images are polygonal. Since
P = {1 = p(x, y) = 0} = ∅, we can argue as in the proof of Corollary 1.3 that
U is embedded as a box-type subset of A. It follows that the action of 2-torus
on U extends toM with at most 4 fixed points, corresponding to the corners
of the box. We can then apply the work of [OR70], which classifies oriented
4-manifolds equipped with a 2-torus action. Since the number of fixed points
t is at most 4, this classification tells us thatM is (up to orientation reversal)

diffeomorphic to one of {S4,CP2,CP2#CP
2, S2 × S2,CP2#CP

2}.
Each Hirzebruch surface is diffeomorphic to either S2 × S2 or CP2#CP

2,
so it suffices to rule out CP2#CP

2. To see this, we note that the convexity
of µ±(U) implies that we can ensure that the {ϵi}ti=1 used in [OR70] are all
equal to 1 by choosing the generators of the isotropy subgroups to corre-
spond to inward normals for the sides of µ±(U). This rules out the case of
CP

2#CP
2, since this case has t = 4 and ϵ1ϵ4 = −ϵ2ϵ3.

Conversely, we must show that S4, CP
2 and the Hirzebruch surfaces

all admit metrics which admit non-parallel ∗-Killing 2-forms. The case of
S4 with the usual constant scalar curvature metric is explored in detail in
[GM17]. For CP

2 and the Hirzebruch surfaces, we will show that they are
regular ambitoric orbifold completions of hyperbolic type. The converse of
Proposition 5.2 [GM17] then provides the claimed ∗-Killing 2-form. We will
use the hyperbolic normal form from Section 1.2.2, so that q(x, y) = x+ y
and the conic is given by C± = {4µ±1 µ±2 = −1}. We will take Λ to be the
standard basis for t in the coordinates given in the normal form.

We can construct lines tangent to C± with normals

(

1
0

)

,

(

0
−1

)

, and
(

−1
1

)

, as in Figure 7. Each pair of normals generates Λ, so that the mo-

ment map image is a Delzant triangle. It is well known that the Delzant
construction applied to a Delzant triangle is CP2.

We can construct lines tangent to C± with normals

(

1
0

)

,

(

−k − 1
k

)

,
(

1
−1

)

, and

(

−1
1

)

, as in Figure 8. As in the triangle case, it is easy to

check that the trapezoid ∆ formed by these lines is Delzant. Moreover the

equation

(

1
0

)

+

(

−k − 1
k

)

= k

(

−1
1

)

implies that ∆ is the moment-map

image of the kth Hirzebruch surface Hk (see [KKP07]). Note that to get all
of the diffeomorphism types, it suffices to only construct H1 and H2, since
the odd (respectively even) order Hirzebruch surfaces are all diffeomorphic
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t
∗

CP
2

Figure 7: The moment map image of CP2 with a hyperbolic ambitoric struc-
ture.

(see for example [KKP07]). Moreover, S2 × S2 is diffeomorphic to H2, so it
is covered by this construction as well.

t
∗

Hk

Figure 8: The moment map image of the kth Hirzebruch surface Hk with a
hyperbolic ambitoric structure.

□
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Appendix A. Busemann completions

The Busemann completion of a Riemannian manifold is a set which includes
the Cauchy completion as well as elements corresponding to directions at
infinity. Our goal is to relate the Busemann completions of different metrics
on the same manifold. We follow the work of [FHS13], although we make
some cosmetic changes of definitions to suit our goals.

Definition A.1. Let (M, g) be a Riemannian manifold. Let

C(M) :=
{

c : [0,∞) →M piece-wise smooth curve
}

/ ∼,

where ∼ is equivalence of curves by reparametrization. We will refer to a
class of curves [c] ∈ C(M) simply by c, thinking of it as an unparametrized
curve. For c ∈ C(M), we define the Busemann function

bgc :M → R ∪ {∞} : x 7→ lim
s→∞

(
∫ s

0
∥ċ(t)∥gdt− dg

(

x, c(s)
)

)

,

where dg is the distance with respect to g. bc is well defined, since it is clearly
invariant under reparametrization of c.

We reproduce some facts from [FHS13]:

Proposition A.2 (Proposition 4.15 in [FHS13]).

• If bgc(x) = ∞ for some x ∈M , then bgc ≡ ∞.

• If c ∈ C(M) has finite length, then there exists some x̄ in the Cauchy
completion Mg

C of M such that

(A.1) bgc(x) = lengthg(c)− dg(x, x̄).

Conversely, for every x̄ ∈Mg
C , there exists a c ∈ C(M) with finite

length satisfying (A.1).
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Definition A.3. Let B(M)g := {bc}c∈C(M)\{∞} be the set of finite Buse-
mann functions. The Busemann completion of (M, g) is given by Mg

B :=
B(M)g/R, where R acts by the addition of constant functions.

Note that the second part of Proposition A.2, we can identify the Cauchy
completion Mg

C as a subset of the Busemann completion Mg
B via the map

x̄ 7→ [−dg(x̄, ·)].
We define an equivalence relation on C(M) by

c1 ∼g c2 ⇐⇒ ∃r ∈ R : bgc2 = bgc1 + r.

The map [c] 7→ [bc] gives us an isomorphism

C(M)/∼g
∼=Mg

B ∪ {[c ∈ C(M) : bgc ≡ ∞]}.

This allows us to interpretMg
B as a set of equivalence classes of curves. This

will help us understand how MB depends on the metric since the curves are
independent of the metric; only the equivalence relation changes.

Let g1 and g2 be two Riemannian metrics onM . The rest of the appendix
will be dedicated to proving the following proposition:

Proposition A.4. If Mg2
C is compact, then every point x̄ ∈Mg1

C can be
represented by a point x̄′ ∈Mg2

C , in the sense that there is a curve c ∈ C(M)
such that [c]g1 = x̄ and [c]g2 = x̄′.

The following lemma will do most of the work for us:

Lemma A.5. Let (xn)
∞
n=1 be a sequence in M which g1-converges to some

x̄ ∈Mg1
C . Then there exists a g2-geodesic curve c such that x̄ lies in the

g1-closure of the image of c.

Proof. Let p ∈M . For each n ∈ N, let cn ∈ C(M) be a g2-geodesic ray start-
ing from x0 and passing through xn. Each cn is generated by the exponential
mapping from a direction un ∈ S(TpM) in the unit sphere bundle at p. Since
S(TpM) is compact, there exists a subsequence (unk

)∞k=1 of (un)
∞
n=1 converg-

ing to some u∞. Let c be the geodesic generated by u∞.
Let ϵ > 0. Since limk→∞ unk

= u∞, there exists a k0 ∈ N such that unk
∈

Bϵ(u∞) for all k > k0, where Bϵ(u∞) is the ϵ-ball around u∞ in S(TpM).
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Consider the set

Sϵ := {expg2p (tu) : t ∈ [0,∞), u ∈ Bϵ(N∞), tu ∈ domain(expg2p )} ⊆M.

For each k > k0,

Sϵ ⊃ Image(cnk
) ∋ xnk

.

Thus

Sϵ ⊃ {xnk
}k>k0 ∋ x̄,

where · indicates the closure in Mg1
C . Since ϵ > 0 was arbitrarily chosen, we

find that

x̄ ∈
⋂

ϵ>0

S̄ϵ = Image(c).

□

Lemma A.6. Let g3 be a third metric on M . Let (xn)
∞
n=1 be a sequence

in M which g1-converges to some x̄1 ∈Mg1
C and g3-converges to some x̄3 ∈

Mg3
C . Then there exists a g2-geodesic curve c such that x̄j lies in the gj-

closure of the image of c for each j ∈ {1, 3}.

Proof. This follows from applying the previous lemma twice (once using g3
in place of g1), and noting from the proof that resulting curve would be the
same, since it doesn’t depend on g1. □

We would like to build an equivalence relation which includes the infor-
mation of both ∼g1 and ∼g2 . We define the relation ∼g1

g2 by

c1 ∼g1
g2 c2 ⇐⇒ c1 ∼g1 c2 or c1 ∼g2 c2.

Note that ∼g1
g2 is not an equivalence relation in general, since it may not be

transitive. To see this, consider the following example. LetM = S1 × S1 × R.
Let g1 (respectively g2) be a metric which contracts the first (respectively
second) S1 factor to a point at the origin of R. For example, using coordinates
(θ1, θ2, r) ∈ S1 × S1 × R,

g1 = r2dθ21 + dθ22 + dr2,

g2 = dθ21 + r2dθ22 + dr2.
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Let {t1, t2, t3} be different points in S1. Consider the constant curves onM :

c1 = (t1, t2, 0),

c2 = (t3, t2, 0),

c3 = (t3, t1, 0).

We see that c1 ∼g1 c2 ∼g2 c3, but c1 ̸∼g1
g2 c3.

Consider the equivalence relation ≈ on C(M) defined by c1 ≈ c2 if and
only if there exists a finite set of curves {Ci}mi=1 ⊂ C(M) such that

c1 ∼g1
g2 C1 ∼g1

g2 C2 ∼g1
g2 · · · ∼g1

g2 Cm ∼g1
g2 c2.

In other words, ≈ is the transitive closure of ∼g1
g2 . Define

M≈
B := (C(M)/ ≈)\{[c ∈ C(M) : bg1c = gg2c ≡ ∞]}.

Let πi :M
gi
B →M≈

B be the natural quotient map for each i ∈ {1, 2}.

Lemma A.7. π1(M
g1
C ) ⊆ π2(M

g2
B ).

Proof. Assume that there exists x̄ ∈Mg1
C such that π1(x̄) /∈ π2(M

g2
B ). Unrav-

elling the definitions, this means that for each curve c ∈ C(M) g1-converging
to x̄, bg2c ≡ ∞. Fix c(t) a parametrized curve g1-converging to x̄. Since
bg2c ≡ ∞, c has infinite g2-length by Proposition A.2.

Claim: The image of c is unbounded with respect to g2.

Proof of claim. Assume that the claim is false. Then the image of c lies
in some closed set B ⊂Mg2

C which is bounded with respect to g2. Thus
there exists a sequence (tn)

∞
n=1 in R such that

(

c(tn)
)∞
n=1

converges in g2
to some x̄′ ∈ B. Applying Lemma A.6 we find a g2 geodesic curve c′ which
g1-converges to x̄ and g2 converges to x̄′. Since c′ g2-converges to x̄′ it has
finite g2-length. Thus b

g2
c′ ̸≡ ∞, contradicting the assumption on x̄ since c′

g1-converges to x̄. □

The claim allows us to find a sequence (tn)
∞
n=1 in R such that for any x0 ∈M ,

limn→∞ dg2
(

x0, c(tn)
)

= ∞. Applying Lemma A.5 to this sequence gives a
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g2-geodesic curve c′ which g1-converges to x̄. From [Sak96] the function

t : S(Tx0
M) → (0,∞] : u 7→ sup

{

t > 0 : dg2(x0, expx0
tu) = t

}

is continuous. Thus

t(u∞) = lim
k→∞

t(unk
) ≥ lim

k→∞
dg2

(

x0, c(tnk
)
)

= ∞,

so that t(u∞) = ∞, where (unk
)∞k=1 is the sequence constructed in Lemma

A.5. In other words, the geodesic c′ generated by u∞ is g2-distance minimiz-
ing. Thus

bg2c′ (x0) = lim
s→∞

(
∫ s

0
∥ċ∞(t)∥g2dt− dg2(x0, c∞(s))

)

= lim
s→∞

0 = 0,

so that bg2c′ ̸≡ ∞. This contradicts the assumption on x̄, since c′ g1-converges
to x̄. □

Lemma A.8. If Mg
C is compact, then Mg

C =Mg
B.

Proof. Let x0 ∈M . Since Mg
C is compact, the diameter of M is bounded, so

that the function dg(x0, ·) is bounded. This implies that bgc(x0) = ∞ for all
infinite length curves c. The result then follows from Proposition A.2. □

Combining the previous two lemmas produces a proof of Proposition A.4.
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