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1. Introduction

In the study of static or stationary Einstein-Maxwell solutions of Einstein’s
equations, including black hole solutions, it is frequently assumed that the
Maxwell field is also static or stationary, in the sense that the Lie derivative
of the Maxwell tensor Fj; along the time-translation Killing vector K* is
zero. Evidently one needs the energy-momentum tensor 7;; to be static or
stationary in this sense for the Einstein equations to be consistent, but this
does not actually require that F; be static or stationary — there could be a
duality rotation of the electromagnetic field as one moves along the Killing
vector, a transformation that is known to leave the energy-momentum tensor
invariant. It is customary (see e.g. [16]) to say that Fj; does not inherit the
symmetry if Tj; is static or stationary but Fj; is not, and then one can
consider non-inheriting solutions. Such solutions are well known, we review
them in Section 2 below.

979



580 Chrusciel, Nguyen, Tod, and Vasy

The question was raised in [30] whether non-inheriting, static or station-
ary Einstein-Maxwell solutions could be asymptotically—ﬂatﬂ Arguments
were presented that under stronger conditions (analyticity up to and in-
cluding the horizon) there could be no strictly non-inheriting static Einstein-
Maxwell black holes but it was left open whether this undesirable analytic-
ity requirement could be dispensed with. (It is known that analyticity holds
away from the horizon, as in the inheriting case [29].) We return to the ques-
tion in this paper and show that the Maxwell fields of asymptotically-flat
solutions of Einstein-Maxwell equations inherit the stationarity of the met-
ric. Hence, neither strictly stationary (“soliton”) solutions nor black hole
solutions which are asymptotically flat and non-inheriting exist. In fact, the
mere existence of an asymptotically flat end on a spacelike hypersurface
suffices to prove inheritance, without any further global conditions.

This paper is organised as follows: In Section [2| we review some non-
inheriting solutions. In Section [3| we outline the derivation of the equations
at hand. In Section [f] we show that the metrically-static solutions must be
inheriting using integration-by-parts arguments. In Section |5 we present a
proof which covers the metrically-strictly-stationary solutions, adapting and
extending the arguments in [31]. While the arguments in Section [4] are hand-
tailored for the problem at hand, the ones in Section [5| provide a general
result which applies to a wide class of equations.

It is conceivable that the results of [29] B0] together with the unique
continuation results of [I§] can be used to exclude inheriting solutions with
bifurcate Killing horizons, independently of asymptotic conditions, but we
have not explored further this line of thought.

2. Non-inheriting solutions

Given a Killing vector field K and a Maxwell tensor £ with dual F* and
energy-momentum tensor 7W) one says that the Maxwell field does not
inherit the symmetry determined by K if LxTM) =0 but LxF # 0. Here
the symmetry can be timelike or spacelike but the main interest lies with
timelike. It is straightforward to see that, in this setting, Lx F' = —a F™* for
some a which need not be constant. This is a duality rotation of the Maxwell
field along the Killing vector.

Some historical comments about the problem at hand are in order. Non-
inheritance of symmetry is discussed in [27, Section 11.1]. Another good
reference in the static case is [16]. These authors reference earlier literature

!Something close to this was also asked in [22].
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and reduce the static, cylindrically-symmetric Einstein-Maxwell equations,
when the staticity is not inherited by the Maxwell field, to a set of coupled
ordinary differential equations. They conclude that such solutions therefore
exist, at least locally, contradicting a conjecture then current. Among their
references is [19, Equation (5.2)], with the solution metric

g = —(dt — br?dp)® + €7 (d2? + dr?) + r?dy?,
with real constant b, while the Maxwell potential is
A = cos(2b2)(dt — bridy).

The metric has Killing vectors 9/0t,0/0¢ and 0/0z and the last of these
is not inherited by the Maxwell potential. The Maxwell field undergoes a
duality rotation when Lie-dragged along 9/0z, so that in this case a = —2b.
The metric is not asymptotically-flat, and in fact it is not orthogonally-
transitive with respective to either of the two isometry groups generated
respectively by (0/0t,0/0z) or (0/dp,d/0z).

A simple explicit solution given in [27], equation (24.46)], and discussed
in [29], which illustrates some other possibilities identified in [30], is provided
by the (conformally-flat) plane-wave metric

g = —2du(dv + b*¢{du) + 2d¢dC,
with real constant b and Maxwell field
F =be Wy A dC + c.c.,

with arbitrary real f(u) (which does not appear in the metric). Here the bar
denotes complex conjugation. This is Einstein-Maxwell for any f(u), and
the (timelike or null) Killing vector K = 9/0u is not inherited: one has

LxF = —aF* with a = f'(u),

where F* is the dual of F. (There are several more symmetries of this met-
ric.) In this example the Maxwell field is null, as it has to be if a is to be
non-constant, and the metric also admits a twist-free, shear-free null geodesic
congruence, here tangent to d/dv, which again is necessary for non-constant
a — see [30] for a proof. Choosing f(u) non-analytic, one obtains an example
of a stationary but non-analytic solution of the Einstein-Maxwell equations.
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3. The equations

For completeness we review the derivation of the key equations in both static
and stationary cases.

3.1. Static case

Following [30], we assume a static metric, which we write in the form
(3.1) g = —V2dt* + g;;(a¥)daida?,

where the Killing vector is K = d/0t, thus g(K,K) = —V?2. The non-
inheriting conditions on the Maxwell field tensor F}; and its dual Fi*j are

(3.2) ﬁKFZ'j = —CLFZ}, EKF;; = aFij.

In the static case one needs
Tz‘jKj = th

for some real, non-negative f, where T;; is the Maxwell stress tensor, since
the momentum constraint requires 7Ty; = 0 which implies this. This in turn
prevents Fj; from being null except where it vanishes (if it ever vanishes).
Now the source-free Maxwell equations impose, in form language:

da NF =0=daNF~,

and non-nullness of F' imposes da = 0 and so a is a real, nonzero constant.
In the region where V' > 0 the electric and magnetic field vectors are defined
by

E; =V 'K'Fj; B; =V 'KIF}.

It was shown in [30] that Fj; vanishes at the bifurcation surface of a bifurcate
horizon, so that F; and B; end up finite on such a horizon, but in any case
this will not be an issue since our proof proceeds by unique continuation
from infinity.
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Then non-inheriting can be shown to imply
(3.3) E; = W;sin(at), B; = —W, cos(at),

for some real W; orthogonal to K¢, and a as before. The Einstein-Maxwell
equations become

1 .
(3.4 —av = LWy
(3.5) &,V (VW) = —aWi,
1
(3.6) Rij — iRgij = Vﬁlvivj'v — Win,

where these are all 3-dimensional quantities: Rz;;, R are 3-dimensional Ricci
tensor and scalar, V; is 3-dimensional Levi-Civita covariant derivative, A =
—gijviv]' etc.

Simplify by redefining and rescaling;:

wi = VWi, Gij =V gy,

for then

~ o -3 ~ jk 7k
eijk =V €ijk7 €; = VEZ- s

and (3.5) becomes

~ gk _
€7 Ojwy = —aw;

indices raised by g, and in form language this is
(3.7) * dw 4+ aw = 0,

where * is the 3-dimensional Hodge dual. Trace (3.6) and use (3.4) to obtain

1

=5

gIWW;.

The hypothesis that the metric is asymptotically flat and has a well defined
and finite energy leads to the condition

(3.8) W € L*(Meyy).

where My denotes the asymptotically flat region {|x| > R}, which trans-
lates to the same requirement for w.
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3.2. Stationary case

We mostly follow [29], but with some different conventions. We still have
, but a does not have to be constant anymore: as we saw in the pre-
ceding section, non-trivial (and not asymptotically flat) solutions with a
non-constant a have been found. From the method of proof of Theorem 1.3
of [30] it also follows that:

Theorem 3.1. Let (M,g,F) be an FEinstein-Mazwell space-time with a
Killing vector field K; such that Lk F;j = aF7;. If a is not constant then F
is a null Mazwell field and the space-time admits a non-twisting, shear-free
null geodesic congruence.

The metric as in Theorem [3.1] lies in the Robinson-Trautman class if
the expansion is non-zero, or the Kundt class if the expansion is zero, or is
a pp-wave if the generator of the congruence can be chosen to be parallel.
Such solutions are unlikely to be asymptotically flat, and therefore will not
be considered any longer here. In fact, it is known that pp-waves cannot
be asymptotically flat by [2] (see also [13]), but it should be admitted that
the remaining cases are not entirely clear (compare [4] [I7]). For the sake of
completeness it would be of interest to settle this.

In our analysis below we will assume that a is a nonzero, real constant
and take the metric to be

g = —V?(dt + 0;dz")* + g;jda'da’.

Introduce F; and B; as before (these are not now closed). We find
E,+iB; = V_lcieiat,

where (;, the counterpart of w; considered in the static case, is now complex
but still with £x(; = 0. The relevant equation (unnumbered in [29] but just
before (32) there) turns out to be
(3.9) €,/ (0;¢k — a0 ) = —aV ¢,
or in form notation

(3.10) #(d¢ —iaf A ¢) = —aV (.
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This is similar in form to the static case (the V! factor on the right-hand
side can be absorbed into a conformal rescaling of the spatial metric) but
with the exterior derivative ‘twisted’ by 6;.

Equation (3.9) implies, away from the zeros of V,

(3.11) Vit = (InV),; +iV ¢;7%9,0), — 1a6;) (",

(3.12) (A +a®)¢ = a*(1 =V 2)( + ae” (Vi(VT) +16,)¢
+ 9 (1€7V3(0;¢) - V(v )
—1aV*(0eCr — OrCe).

Note that the second derivatives of ( appearing at the right-hand side of the
last equation can be replaced by lower-order ones using . This provides
a homogeneous second-order equation for ¢ with diagonal principal part to
which our uniqueness analysis of Section [5| applies, leading to the vanishing
of  for field configurations satisfying the asymptotic flatness conditions.

4. Static case

We return to , where the lapse function V' has been absorbed into a
redefinition of the metric. Henceforth we consider a complete three dimen-
sional Riemannian manifold (M3, g) with or without boundary and with a
one-form w satisfying

(4.1) * dw = aw,
where a € R\ {0}. Note that implies that
(4.2) dw = 0.
From and , the Hodge Laplacian of w is found to be
(4.3) Apw = ddw + déw = *d(xdw) = a’*w.
Thus, by the Weitzenbock formula,
(4.4) Viviwj = —-Apgwj + Rijwi = —azwj + Rijwi.

We will say that (M, g) contains an asymptotically flat end My =
{]z| > R} for some R, if it holds that

(4.5) 1963 (@) = i3] + [2[10g3 ()| + |2[?|0%gi; (2)] < ||~
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for some C, > 0 and § > 0, and where |z| denotes the Euclidean norm.
In the remainder of this section we will prove:

Theorem 4.1. If (M, g) contains an asymptotically flat end Moy with w €
L?(Mey) then w = 0.

In fact, we will prove a slightly stronger statement, see Proposition |4.10
The proof is a unique continuation argument which uses a suitable mono-
tone Almgren-type frequency function; see [1l [§], compare [3] for a recent
application of this method to geometric problems. See also [26, Sections 9-
10] for a systematic treatment of related integral quantities and ODEs in
the context of the closely related limiting absorption principle.

In a nutshell, our argument examines the decay rate of the normalized
L?-norm of w on large ‘spheres’ (i.e. the quantity X (r) defined below in ,
where 7 is a suitably defined distance function). The Almgren-type frequency
F(r) is then recognized as a perturbation of %(75;) We will show that F'
is non-increasing, which implies that the decay rate of X is not faster than
polynomial unless w = 0. A more quantitative estimate for the derivative of
F shows in fact that X cannot decay faster than »—3 unless w = 0. But then
the same estimate, together with the assumption that w € L?, implies that
X must decay at least as fast as 7—3, which concludes our argument.

4.1. Preliminaries about distance functions

We collect here some facts about the distance function which we will use
later on. For large R > 1, let Br(0) denote the coordinate ball of radius R
and define

dr(z) = dist(z, Bg(0)).
We first show that, for large R, dr is smooth outside of Br(0). We will use

the following weighted Poincaré inequality, whose proof is left to the readers:

Lemma 4.2. Fiz £ >0 and 7 > 0. For any ¢ € C([0,4]) with ¢(£) =0,
there holds

l 2 l
©*(t) 4 / P
dt < B[ dt.
/0 ®r 00 "= Tyserm ), 190

We also have:
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Lemma 4.3. Assume that the asymptotic flatness condition (4.5 holds.
There exists some large Ry > 0 such that, for any R > Ry, the distance
function dg is smooth on M \ Bgr(0).

Proof. By the asymptotic flatness condition (4.5)), we have for large R that
the shape operator Sg of 0BRr(0) satisfies

1
Sr(X) = £ X + O(R™'7°[X]y).

We hence assume in the proof that R is sufficiently large so that
9(Sr(X),X) >0 on 0Bg(0).

Arguing by contradiction, assume that there are a point p € dBg(0), a
normalized geodesic vy C M \ Bgr(0) emanating from p and perpendicular to
OBR(0), and some point ¢ = y(¢) € M \ Bg(0), £ > 0, which is the first focal
point of 9BR(0) along 7. Then there exists a non-trivial Jacobi field V' along
7 such that V(0) € T,,(0Br(0)), V'(0) = S,(V(0)) and V(¢) = 0, where S,
is the shape operator of 0Br(0) at p. Note that V' (0) # 0 by non-triviality.

By the asymptotic flatness condition , we have

¢
C
> n2 _ 2
V] _/0 Vs (R+t)2+5’wg] “

> / - =S e
“Jo ndt" ' (R4

where C' denotes some positive constant which depends only on the constant

in (4.5)). Thus, by Lemma there exists Ry > 0 such that if R > Ry, then
I[V] > 0. On the other hand, by the Jacobi equation, we have

l
1V]:= /0 V'3 = ROy, Vo', V)l dt = —g(S,(V(0)), V(0) <0,

which yields a contradiction. The proof is complete. U

We will also use the following Hessian estimate, which follows from a
standard ODE comparison argument, see e.g. [25, p. 175].

Lemma 4.4. Assume that the asymptotic flatness condition (4.5)) holds for
some § € (0,1). There exist C1 >0 and Ry > 0 such that, for all R > Ry,
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the Hessian of dgr satisfies

1 Cl 2 1 Cl
— h <V < h
<R+dR (R+dR)1+6> - R(x) - (R+dR + (R+dR)1+5> ’

where h is the metric induced by g on the level sets of dg.

4.2. Unique continuation

Recall that we aim to show that any solution of (4.1)) satisfying
(4.6) w e LA(M).

must be identically zero.

Without loss of generality, we may assume that the boundary of M is
some large coordinate sphere Sy of radius Ry near infinity. Let r denote the
g-distance function to Sy, which, by Lemma is a smooth function on the
exterior of Sp. For ¢ > 0, let S; and € o, denote respectively the set {r =t}
and {r > t}.

In the sequel, unless otherwise stated, C will denote some positive con-
stant which varies from line to line, but depends only on Ry and the constant
in the asymptotic flatness condition .

Note that, by applying elliptic estimates to the PDE (4.4) on any Eu-
clidean unit ball in the asymptotic region, it is readily seen that implies

(4.7) Vw(z)ly <C sup  |wly < Cllw|lr2(B(a,1)) for © € Q1 ,

B(z,1/2

where the constant C' depends only on a, Ry and the constant in (4.5)). This
implies in particular that

(4.8) Vw e LA(M).
Define
(49) X = / (w2 do,
(r+ Ro)? Js,
_ 1 2 2112 ma
(410)  E(r) = (r+Ro)2/ (V62 — a?[wf2 + Ric(wt, wf)] dv,.

,00
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Note that E is well defined thanks to (4.6) and (4.8)). Note also that, by

@9,

_ v i w2 B S
B0) = gy gt Y Vel o0 =~ [, 9

Bj = (T + Ro)Vir V,;wj.

In addition, there exists Cy > 0 depending only on Ry and the constant in

(4.5) such that

(4.11) 4 X0y +2B(r )' %

dr

Lemma 4.5. Assume that the asymptotic flatness condition (4.5) and the
L? condition (4.6) hold. There exist ko > 0 such that for k > ko one can find
some r1 > 0 so that for r > ry,

(4.12) dii [(7“ + Ro) exp <(7,+k:}%)5> E(?“)]

_k
2€Xp (T+Ro / |B|2 _ a exXp ((TJrRo)é) / |w|2 dv
7’—|—R (7’+R0)2 o g Vg-

7,00

In particular, E(r) >0 for r > rq.

Proof. For m > Ry, let (,;, be a cut-off function such that 0 < (,,, <1in M,
(n=1in{r<m}, {, =0in{r>2m}, and |V{nl, < € in M, where here
and below C' denotes some constant which is independent of m.

Keeping in mind the asymptotic flatness and the Hessian estimate
Lemma we compute for 0 < s < m,

/ ViViw; 7 (m dvg = / (r 4+ Ro) VViw; VFr Viw? ¢ du,
Qs 00

s,00

< - / Viwj [vi((r + Ro) V¥r) Viw? + (1 + Ro)VFr VIV | G duy
Qs 00

1 2 2
ST R /SS |B|gdag +C/Qmm |Vw|gdvg




590 Chrusciel, Nguyen, Tod, and Vasy

¢ 2
< — - -
=~ /QSOC |:1 (T+R0)6:| |vw‘g Cmdvg

1 o
—/Q (r+ Ro) {2Vkr Vk|Vw]3 — VFr Vi sz-jlwl} Cm dvg
1 2 2
d C Vwl? d
s+Rmé5mgU“+‘émw|wbvg
</ 1|V \Q—I-LUVUJ] + |wlg) | Vwlg| Cndv
= o, 12 Wig (r + Ro) g g g| Gmdvg
1 2 1 2 / 2
— d — R d C Vwlz dv,.
3+Ro/ss Plados + 505+ 0)/&%\9 N Vely dva

m,oco

On the other hand, by the PDE (4.4) and Lemma

/ V'Viwj B ¢m dvg
Qs,oo

1
= / [ ——ad*(r+ RO)VkTVk|w|3
Qe L2

+ (7’ + R())Rijwi V"”r kaj‘:| Cmdvg

3 C
> /Qs,m [QGQ\W@ - m’w‘g(wwb + Mg)] duyg

1
+ 5(8 + Ro)/ a2]w|§ dog — C/ |w\§ dvg.
S,

s m,co

In addition, we have

C
solwl oot 2
/SS Ric(w*,w*) dog > /S T 0)2+5|u}|gdag

i ¢ 2
_/Q V ((T+R0)2+5 ’w‘ngVﬂ"> dUg

C
> _/Qs,m m‘wbﬂvwb + |wlg) dvg.

Combining the last three estimates and sending m — oo (using (4.6) and
(4.8))), we can find some C; > 0 depending only on Ry and the constant
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in (4.5) such that
/ [|Vw\§ — az\w]?] + Ric(wu,wﬁ)} dog
S,
2 2
> dog, — Ry)E
> o s e s+ B

C
2 2 1 9 9
/Qm [Q‘L wlo = G Ry IVels + !w|g)] du,.

+
s+ Ry

It follows that, for all sufficiently large s,

(r + Ro) exp <_(T‘+kRo)5> £ [(r + Ro) exp (m"’%)&) E(r)]
= —(s+ Ro) <1 + (SféRo)‘5> E(s)

- /S [|Vw\?] — a2\w|§ + Ric(wﬁ,wﬁ)} dog

s

2 2
= _(3+R0)2/s lados
1 k 2 ok
- / {(55|le§+ (s + Ro) 5a2|w|§ dv,

s+ Ro s+ Ro) (s + Ro)°
1 1
——— [C1|VW|2 + (C + C1)|w|?] dv,.
S R i ARV AR
The conclusion is readily seen. O
Let
(r+ Rp) exp T27k5 E(r)
(4.13) F(r) = () ,

X(r)

wherever X (r) > 0. In view of (4.11)), F' is readily seen as a perturbation of

72"))(( ", and so bears some resemblance to the Almgren frequency function [1]

for harmonic functions. The following lemma establishes the monotonicity
of F.

Lemma 4.6. Assume that the asymptotic flatness condition (4.5) and the
L? condition (4.6) hold. There exist k >0 and r1 > 0 such that

2 2k
d arexp ((T+RU)5> 9
. — < —
(4.14) drF(r) > (r + Ro)2X (r) /Q |w‘g dvg

7,00
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for all v > ry satisfying X (r) > 0. In particular, we have the dichotomy
o cither w=0 in M,
e or X(r) >0 for all r >y and the Almgren-type frequency function

F(r) is non-increasing for r > ry.

Proof. Let kg be as in Lemma Fix some k > max(kg,C3). By -
and (4.11)), we have for large r that

X0 exp (~ )
7+ Ro dr (r)

1 9 ) )
(?"—I—R( / 1Bl dog +a (7“+Ro)/Q ]w|gdvg> /S |w|y dog

d ko -

1 2 2
T (/ymgdag+a(r+Ro)/Q yw\gdvg> /Sr|w]gdag

— E(r) <—2E(r) + %xm)

_ M{/ |B|2d0’g/ |w\ dog — (/Srg(ﬁ,(*))dvg)2}

W2X (r _
(r f}g())):a/g w3 dvg — 770/«5 < E(r) X(r).

7,00

As k> Cy and E(r) > 0 for large r (thanks to Lemma [4.5)), estimate
follows from Cauchy-Schwarz’ inequality.

We turn to the proof of the stated dichotomy. Assume by contradiction
that w #Z 0 in M but X (re) = 0 for some 72 > r;. By unique continuation,
X cannot be identically zero in a non-empty open subinterval of (rq,73).
Thus, the set {r € (r1,r2) : X(r) # 0} is a union of pairwise disjoint open
subintervals of (r1,r2). Let (r_, ;) be a connected component of this set, so
that X (ry) = 0. (X (r_) is also zero unless r_ = r, but we will not need this
fact.) In this interval, the function F' is well-defined and is non-increasing

thanks to (4.14)).
Define

F, = lim F(r) > 0.

r—=r4
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Then, for r € (r_,r4+), we have F(r) > F and so

F. 2%k F, 2%
EB(r) = r+ Ry P ((r + Ro)5> X(r) 2 r+ Ry (1 C(r+ Ro)‘s) X(r).

Recalling (4.11]), we have

d CoX (r) 9OF, O+ 4kF,
- < _ < |
o X = 2E0) + a e S [ TRy o] XU

which is equivalent to

d

a [(7’ + Ro)** exp <02 +AkFy
”

W) X(r)] <0forre (r_,ry),

But this is impossible as X(r;) =0 and X(r) >0 for r € (r_,r4). This
contradiction proves the desired dichotomy. O

Assume that w # 0. Then X (r) > 0 for large r. Let F' be the Almgren
frequency function defined by (4.13) and set

(4.15) F(o0) := lim F(r).

T—00

The next two statements show that, roughly speaking, X decays like r—2F(%0),
Corollary 4.7. Assume that the asymptotic flatness condition (4.5)) and
the L? condition (4.6) hold and that w # 0 in M. Then, there exists some
C > 0 such that

X(r)y<C(r+ R0)72F(°°) forr > 0.

Proof. By Lemma there exists some r; > 0 such that F(r) > F(oco) for
all » > r1. We can then follow the argument in the second half of the proof
of Lemma (with F; replaced by F(o0)) to show that

Cy + 4/€F(OO>

(5(7“ + R0>6

d
o |+ Rp)*F > exp (

>X(r)] <0 for r > ry.

The conclusion follows. O

Corollary 4.8. Assume that the asymptotic flatness condition (4.5)) and
the L* condition (.6]) hold and that w # 0 in M. Then, for any vy > 2F(c0),

liminf 7 X (r) = co.
r—00
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Proof. Assume by contradiction that liminf,_,. 77 X (r) < co. Replacing ~
by a smaller number, which is still larger than 2F'(c0), if necessary, we may
assume without loss of generality that liminf, . 7 X (r) = 0.

Let k and r1 be asin Lemmaand fix some s > 71 such that 2F(s) < 7.
Then F(r) < F(s) < 37 for all r > s. In view of (£.11), we have for r > s
that

k
X'(r) _ 2P (— (T-ERO)5>
X(’r‘) T+ Ro
2 Cy
_ F(s) — — 22
r+ Ro () (r + Ro)1t9’

&
(1" + R0)1+5

Y

F(r) -

v

and so

d C

— X Ry)*F) - | >0.

dt [ (r) (r+ Fo) ™ exp S(r+ Ro) )| =
As 2F(s) < 7y, we have by assumption that the function in the square bracket
tends to zero along a sequence r; — oo. It follows that X (r) = 0 for all r > s,

which contradicts the fact that X (r) > 0 for large r. O
We next show that, under the L? assumption on w, X decays faster
than r—3.

Corollary 4.9. Assume that the asymptotic flatness condition (4.5) and
the L? condition (4.6) hold and that w # 0 in M. Then F(co) > 3.

Proof. By Corollary for any € > 0, there exists r. such that
X(r) > (r+ Ro)"#')= for r > 1.
Thus, by (4.6]), we have

oo > / (r+ R0)2 X(r)ydr > / (r+ RO)Q_QF(OO)_E dr.

This implies that 2F'(c0) + ¢ > 3, from which the conclusion follows. O

We now wrap up the argument, by showing, using the estimate for F’
of Lemma, that X cannot decay faster than r—3, unless w = 0.

Proposition 4.10. Let (M3, g) be an asymptotically flat three dimensional
Riemannian manifold with or without boundary satisfying the asymptotic

flatness condition (E.5). If a one-form w € L*(Meyy) satisfies (4.4) on M
for some non-zero a € R\ {0}, then w = 0.
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Proof. Assume by contradiction that w # 0. By Lemma there exists
some 7y such that X (r) > 0 for all r > 7.

Let F(o0) be given by (4.15)). By Corollary F(o0) > %
Fix some ¢ > 0. By Corollaries[4.7] and [4.8] there exists some r. > 0 such
that

(r+ Ro)_2F(°°)_€ <X(r)<C(r+ Rg)_zF(oo) for r > re,
which implies that

L w2v:L OOT 2X(r)dr
ti | WBa = g [0+ R X ()

r,00

1
> 6(7“ + R)37¢ for r > re.

Returning to the estimate (4.14]) in Lemma we obtain

2
%F(r) < —%(r + Ro)' ¢ for 7 > max(ry,7.).
As F' is bounded, this is impossible for small €. This contradiction finishes
the proof. O

5. Stationary case

In this section we will prove non-existence of stationary non-inheriting solu-
tions. This will follow from a general result concerning L?-solutions of PDEs
arising from elliptic second order Laplacian-type operators, Corollary
below. As already mentioned, the results here also cover the static case of
Section [4] where, however, the result was obtained by a more elementary
argument. We believe that both proofs have interest in their own.

Similarly to , we assume that there exists a constant § > 0 such
that

(5.1) gij — (Sij = Ok(Tié), V-1= Ok(Tf(S), 0; = Ok(Tfé),

for some k large enough, which we leave unspecified. Here we write f =
Oy (r=9) if for all multi-indices o with 0 < |a| < k we have

rlelge f = O(r=?)

for large r.
Assuming (5.1) and V' > 0 one readily checks that the stationary inher-
iting equations (3.12]) satisfy the hypotheses of Corollary below. Indeed,
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expanding the right hand side of each term has a coefficient which
is either 6,1 —V or their derivative (which in the latter case means just
a derivative of V'), in front of metric, thus scattering (a notion discussed
below), derivatives of the unknown (. This leads to:

Theorem 5.1. There are no asymptotically flat solutions of the Mazxwell-

Einstein equations with a stationary metric and non-inheriting Maxwell
fields.

Remark 5.2. In fact, our proof applies to the more general class of metrics

* below.

We emphasise that no global hypotheses on the solution are imposed
other than the existence of an asymptotically flat end.

The operators covered by our analysis below include those of the form
Ay — X, A >0, where

(5.2) Ag = —gijViVj

is the Laplacian of an asymptotically Euclidean metric, and their modifi-
cations by decaying lower order terms. This includes operators acting on
sections of vector bundles which behave like the Laplacian both in terms of
the highest derivatives and in terms of the asymptotic behavior of the coef-
ficients at the boundary, i.e. at metric infinity. We show that such solutions
in fact vanish identically.

The methods are Carleman-type estimates, phrased in a way that was
used in [32] to analyze geometric N-body problems, showing unique contin-
uation at infinity for all second order perturbations of the Laplacian. These
in turn were motivated by the closely related works of Froese and Herbst
[6] and the unique continuation theorems at infinity discussed in [12] and
[11, Theorem 17.2.8]. The key estimates arise from a positive commutator
estimate for the exponentially conjugated Hamiltonian, which is closely re-
lated to Hormander’s solvability condition for PDE’s [5] [, [10]; see [35] for
a discussion, including the relationship to numerical computation

The operators H that we consider below will be acting on sections of
a vector bundle F which is equipped with a Hermitian metric. We assume
that

H=A®Ildg+W
where A = Ay is as in (5.2)), and recall that g satisfies

g—go€ SO(M; SCT*M@)?)
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for some § > 0, and W € Diff}? (M; E) = §~9 Diff},(M; F) is formally self-
adjoint; see Section for notation.

We prove the following results: The first theorem states that positive
energy (eigenvalue) eigenfunctions of H decay superexponentially. There is
a simple modification of the proof to show exponential decay for negative
energy eigenfunctions, at any rate o where a? < —\, A < 0 the eigenvalue;
this corresponds to the N-body result in which case the decay rate is given
by the square root of the distance to the next threshold above A, which is
0 if A < 0, and non-existent (can be considered as +o0) if A > 0. This fact
also explains why it is natural to consider the unique continuation theorem
separately, namely why super-exponential decay assumptions are natural
there; unique continuation, given superexponential decay, holds for arbitrary
eigenvalues.

In fact, we show a version of the aforementioned results by only assuming
that the equation holds on a collar neighborhood of the boundary at infin-
ity. So let My be a collar neighborhood {0 < x < 21}, for some x; > 0, of
the boundary at infinity &M = {x = 0}. In the case of asymptotically flat
metrics we have z = 1/r, and the interior of My, coincides with the asymp-
totically flat region {r > Ry := 1/x1}. We have (compare [32, Theorem 3.1],
[31L Proposition B.2] and [6, Theorem 2.1)):

Theorem 5.3. Let A > 0, and suppose that 1) € L?,(Mey) satisfies Hy =
M. Then /%) € L2, (Mey) for all o € R,

The unique continuation theorem at infinity is the following; note that
A is now arbitrary (see [32 Theorem 4.1], [31, Proposition B.3] and [6]
Theorem 3.1] for related results):

Theorem 5.4. Let A € R. If Hyp = M\, exp(a/x)y € L2.(Mey) for all a,
then ¢ = 0.

As an immediate corollary we deduce the absence of positive eigenvalues
for first order perturbations of A:

Corollary 5.5. Let A > 0. Suppose that H1p = M\, 1 € L2,(Meyi). Then
P =0.

5.1. Definitions

Recall from [20] the notion of a (short-range) scattering metric. Namely, with
M is a manifold with boundary and z is a boundary defining function on
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M, a (short-range) scattering metric gg is a Riemannian metric on M := M’
which is of the form

(5.3) go =z~ tdz® + z72h

near M, where h is a symmetric two-covariant tensor that restricts to a
metric on M. In this work we allow manifolds (M, g) which might have sev-
eral boundary components and asymptotic ends, with unspecified behaviour
there except for one end where the metric is asymptotically flat, cf. .
The discussion that follows applies only to such asymptotic regions.

As such, the metric gy as in is a smooth (on M) section of the sec-
ond symmetric power of the scattering cotangent bundle ¢T* M, with some
additional product structure. Indeed, near M, a general smooth section of
S¢T* M is a linear combination, with C°° (M )-coefficients, of & 5 di” , where y;
are local coordinates on M, thus a general smooth section of this bundle if
a linear combination of %~ dx , dxdeyJ , dyldyj ; these short range metrics thus have
1+ O(2?) for the coefﬁaent of Ci‘ﬁ ) and O(z) for the coefficient of %.

Let Ay, be the Laplacian of this metric. This is a typical element of
Diffs. (M), the algebra of scattering differential operators. Here “sc” stands
for “scattering”. The latter is generated, over C°°(M), by the vector fields
Vee(M) = 2V, (M); Vy,(M) being the Lie algebra of C* vector fields on M
that are tangent to M. Thus, in local coordinates, and over C®(M) (lo-
cally), Vsc(M) is spanned by :c28x and z0,,, while V,(M) is spanned by 20,
and 0,,. We work with what might be called a (very) long-range scattering
metrlc namely we assume that g is a conormal to M, or in other words

symbolic, real section of s AL , of order 0 with the extra property that
(5.4) g—goeSO(M M;T*M" ), for some 0 < § < 1.

Recall that, in this compactified notation, a symbol, a € S¢, of “symbolic
order” o, i.e. growth rate, is one satisfying that for all P € Diff,(M) (equiv-
alently, for all finite, possibly empty, products P of elements of V,(M)),
x“Pa € L>°(M); thus our very long range metrics in particular allow O(z9)
coefficients for 2% and 1+ O(x?) for the coefficients for dw—f. (The ‘long-
range’ metrics would have smooth 1 + O(x) dx—f terms, i.e. would only have a
product structure exactly at 0M , and would include metrics with asymptotic
behaviour similar to the Schwarzschild one; our ‘very long-range scattering
metrics’ satisfy even weaker conditions.) We write

S™ Diff® (M) = Diffk;™(M) = S™ @ Diff%. (M)

scc
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for scattering differential operators with such conormal/symbolic coefficients.
Classical symbols in S are symbols that have a one-step polyhomoge-
neous expansion, i.e., Z]EN e fj(y), considered as an asymptotic sum-
mation. See [20] for more details; we follow closely the notations there. In
particular we write L2.(M) for L?(M) with the measure induced from the
asymptotically flat metric.
The operator space S™ Diff® (M) form a filtered algebra, so

A € S™Difff (M), B € S™ Difff.(M) = AB ¢ S™™ Dift® ¥ (M),

which is in fact commutative to leading order both in terms of the differen-
tiability and the growth orders, so

(5.5) [A, B] € S™t™ 1 Diff kR =1(A).

It may help the reader if we explain why the Euclidean setting is a
particular example of this setup. There M is a vector space with a metric
go, which can hence by identified with R™. Moreover, M is the radial (or
geodesic) compactification of R™ to a ball. Explicitly, this arises by con-
sidering ‘inverse’ polar coordinates, and writing w € M as w = rw = z~'w,
w €S sox = |w|™!, e.g. in |w| > 1, and attaching z = 0, i.e. {0}, x S*!
to (0,1], x S™ by simply extending the range of x. In particular, OM is given
by = 0, i.e. it is just S*~!. The metric gy then has the form dr? + r—2hg =
x~4dx? 4+ 22hg, where hg is the standard metric on S"~!, so (M, go) fits
exactly into this framework. Then S¢T'M,5T*M are trivial vector bundles
over M; namely ST*M = M x M*, M* being the dual vector space of M.
Thus, in terms of the coordinates w;, dy, span Vs(M) over C*(M), i.e. with
classical symbolic coefficients of order 0 on M. This in particular shows that
the scattering differential operator algebra is the geometric generalization of
the algebras considered by Parenti [23] and Shubin [28]. On the other hand,
in the complement of the origin, say in the region where w, > €|w;|, j # n,
€ >0, wyOy,, i =1,...,n, span V,(M) in the similar sense, which shows
why the above description of symbolic regularity is exactly the standard one
on the vector space M.

5.2. Sketch of proofs

It might be helpful to the reader to provide an extended outline of proofs;
the details will follow. The rough idea is to conjugate by exponential weights
e’ where F is a symbol of growth order 1, for example F = a/z for small
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x. If 1 is an eigenfunction of H of eigenvalue \, then ¢p = ef'9) solves
Pip =0 where P = H(F) = A=el"He™ " — \.

Now let Re P := (P + P*)/2, where * denotes formal adjoint relative to L?
is given by H — o? — A, while Im P := (P — Re P)/i is given by —2a(22D,),
modulo z Diffs.(M); the notation is justified by the principal symbol of Re P
being the real part of the principal symbol of P, etc. Here, and throughout
this section,

1
Dy, = ~0k,
1

with i=+/—1. By elliptic regularity, using P¢Yr =0, [|[VF| 0yn an 18
bounded by Cpp ||t |l ;0 12 (37), S0 the order of various differential operators is
irrelevant for the purpose of norm estimates, while the weight is important.
Since

P*P = (Re P)? + (Im P)? +i(Re PIm P — Im P Re P),

SO

(5.6) 0= (¢p, P*Pip)
= |Re PYp||* + || Im Pyr||* + (¥F, i[Re P,Im Plyr).

Now, being a commutator, [Re P, Im P] € z Diffs.(M), i.e. has an extra order
of vanishing, which shows that

| Re Py < Ctl|lzt?¢pll, || Im Pyr|| < Cillz"/*yr].

Here, and elsewhere, || - || denotes the L?-norm with respect to the standard
measure associated with the metric g, and (-, -) the associated scalar product.
Due to the extra factor of z!/2, this can be interpreted roughly as saying
that ¢ is, in an asymptotic (decay) sense, ‘almost’ in the nullspace of both
Re P and of Im P, hence both of H — X\ — o2 and z2D,.

If, moreover, (¢ r,i[Re P,Im PliF) is positive, with a lower bound by
cl|z*/?yp||?, ¢ > 0, modulo terms which are multiples (of appropriate or-
ders) of Re P or Im P, see for instance , which can be absorbed in
the squares in (5.6)), and terms of the form (¢p, RYr), R € 2179 Diff%:) (M)
(with % showing that the differential order is irrelevant due to elliptic reg-
ularity), which are thus bounded by Cyl|z(*9)/24||?, then the presence of
the factor 2(119)/2 (which has an extra z%/? compared to ||z'/%¢r|, and
thus a small constant) yields easily a bound for ||z!/24p| in terms of |||
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This gives estimates for the norm ||z'/?¢g||, uniform both in F and in 1. A
regularization argument in F' then gives the exponential decay of .

The positivity of (¢¥r,i[Re P,Im PJir), in the sense described above,
is easy to see if we replace i[Re P,Im P] by i[H — A — a2, —2ax?D,]: this
commutator is a standard one considered in N-body scattermg, although the
even more usual one would be i[H — X\ — a2, —2zD,], whose local positivity
in the spectrum of H is the Mourre estlmate [7, 21} 24]. Indeed, the latter
commutator is the one considered by Froese and Herbst in Euclidean IN-
body potential scattering, and we could adapt their argument (though we
would need to deal with numerous error terms) to our setting. However, the
argument presented here is more robust, especially in the high energy sense
discussed below, in which their approach would not work in the generality
considered here. There is one exception: for « = 0, Im P degenerates, and
in this case we need to ‘rescale’ the commutator argument, and consider
i[H — A\ — o2, —2xD,] directly.

We next Want to let @ — oo. Since most of the related literature con-
siders “semiclassical problems”, we let h = a~!, and replace P above by

= h2P, which is a semiclassical differential operator, P, € D1ffbCC W(M).
Here Diffge (M M) is the algebra of semiclassical scattering differential opera-
tors discussed, for example, in [34] in this setting (see [36] for a general intro-
duction to semiclassical analysis), and Diffs.. (M) is its conormal/symbolic
coefficient version. The space Diffs. (M) is generated by hVs.(M) over
C>®(M x [0,1)3). In this semiclassical sense, the first and zeroth order terms
in H do not play a role in P: their contribution is in thffSC w(M), hence
their contribution to the commutator i[Re Py, Im P;] is in xh? Diffs. (M).
Moreover, at infinity i[Re Py, Im Py] is close to the corresponding commu-
tator with Py, replaced by h?(ef’Ag e — X). Since in the latter case the
commutator is positive, modulo terms than can be absorbed in the two
squares in , i[Re Py, Im P] is also positive for g near gy, which auto-
matically holds near infinity (where this is relevant). This gives an estimate
as above, from which the vanishing of ¥ near x = 0 follows easily.

We remark that the estimates we use are related to the usual proof of
unique continuation at infinity on R™ (i.e. not in the N-body setting), see
[11l, Theorem 17.2.8], and to Hérmander’s solvability condition for PDE’s in
terms of the real and imaginary parts of the principal symbol. Indeed, al-
though in [11l Theorem 17.2.8] various changes of coordinates are used first,
which change the nature of the PDE at infinity, ultimately the necessary
estimates also arise from a commutator of the kind i[Re P,Im P]. However,
even in that setting, the proof we present appears more natural from the
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point of view of scattering than the one presented there, which is motivated
by unique continuation at points in R"™. We remark that related estimates,
obtained by different techniques, form the backbone of the unique continu-
ation results of Jerison and Kenig [14] [15].

The true flavor of our arguments is most clear in the proof of the
unique continuation theorem, Theorem The reason is that on the one
hand there is no need for regularization of F', since we are assuming super-
exponential decay, on the other hand the positivity of i[Re Py, Im P,] is easy
to see.

There are a number of differences between [32] and Section 5 of the
present paper. The main one is that slower decay of the coefficients to their
limit at infinity is assumed; in [32] the decay rate used is 6 = 1. While
this slower decay does not ultimately affect the argument in a major way,
some details need to be revisited, especially since commutators (which give
the positivity here) in general gain an order of decay relative to products. In
addition, we replace the N-body type Mourre estimates, which involve spec-
tral cutoffs, by more elementary positive commutator computations, e.g. in
Proposition 5.8. Part of the point is to remove the overhead of N-body scat-
tering since it is irrelevant to this paper. A side effect of this more accessible
approach is that the very first step, demonstrating superpolynomial decay,
is also explicitly done, unlike in [32] where background microlocal analysis
results were used; we note that the work [6] of Froese and Herbst starts the
proof with an analogous discussion.

The structure of this part of our work is the following. In Section [5.3
we discuss various preliminaries, including the structure of the conjugated
Hamiltonian and a Mourre-type global positive commutator estimate. In
Section [5.4] we prove polynomial, and then in Section the exponential
decay of eigenfunctions with A > 0. In Section [5.6] we prove the unique
continuation theorem at infinity. We emphasize that the presence of bundles
such as E makes no difference in the discussion, hence they are ignored in
order to keep the notation manageable.

5.3. Preliminaries

We first remark that, for the metrics g under consideration, the Riemannian
measure density takes the form

_dxd _ — _
(5.7) dg = 1/det(gsj)drdy =g x:i*'i/’ n=dimM, §eC®(M)+ S~(M).



Inheriting Einstein-Maxwell fields 603

By our conditions ([5.4) on the form of g, the Laplacian takes the following
form

(5.8) Ag = (2"Dy)* + ) ba’P; +2°R
J

with b; € C*(M), P; € Diff*(9M), R € S° Diff2 (M), and with all sums over
finite sets of indices. (Recall that D, = %830) Hence, H = Ay +W takes the
form
H = (*D,)? + Z b;-xQP]{ +2°R/,
J

with b € C*°(M), P} € Diff*(0M), R’ € DiffZ,(M).

Below we consider the conjugated Hamiltonian H(F) = ef’ He™ ' where
F is a symbol of growth order 1. The exponential weights will facilitate
exponential decay estimates, and eventually the proof of unique continuation
at infinity. Let zg = supy;x. By altering x in a compact subset of M, we
may assume that zo < 1/2; we do this for the convenience of notation below.
We let S™([0,1),) be the space of all symbols F' of order (growth rate)
m on [0,1), which satisfy F' € C*>°((0,1)), vanish on (1/2,1), and for which
SUPge(0,1) |z *ROk F| < oo for all k. The topology of S™([0, 1)) is given by the
seminorms sup |2 *9% F|. Also, as already mentioned, the spaces S™ (M)
of symbols is defined similarly, i.e. it is given by seminorms supy; [™PF|,
P € Difff(M).

We have:

Lemma 5.6. Suppose A\ € R, Hy =\, ¢ € L2.(M). Then with F €
SI([0,1)), F < /i + Blloga| for some B, supp F C [0,1/2), pp = €7,

P=PF)=e'"(H-Ne ' =H(F)—\, HF)=H +e"'[H,e ],
we have
(5.9) P(F)yr =0,

(5.10) P(F) = H — 2(2*D,F)(2*Dy)
+ (2?D,F)? = XA+ 2°Ry, R, € Diff? (M),

Scc
with

Re P(F) = H + (#?D,F)* — A + 2° Ry,

(5.11) Im P(F) = 2(¢*0,F)(*Dy) + 2’ Rs,
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Ry, R € Diff2, (M), R; bounded as long as 2%0,.F is bounded in S°([0,1)),

scc

hence as long as F is bounded in S*([0,1)).

The coefficients of the terms x° Ry, x°Rs are in fact polynomials with
vanishing constant term, in (x20,)™ 1 F, 0 <m < 1.

Furthermore,

(5.12) i[Re P(F),Im P(F)] = i[H + (22D, F)? 2(2?0,F)(2>D,)] + 2" " Ry,

where Ry € Diff?

scc

(M) is bounded as long as x20,F is bounded in S°([0,1)).

Remark 5.7. The presence of bundles F leaves (5.11]) unaffected, hence
(5.12)) holds as well.

Proof. First note that
(5.13) (%D, e ] = —(2®D,F)e™ T, *D,F € 5°([0,1)),

so ef'[H,e~ ] € Diffl (M) and indeed expanding H in terms of (x2D,)?,

(22D5)(xDy,), etc., we have
(5.14) ef'H, e ) = —(#®?D,F)By — By(2>D,F),

with

Bj — (2°Dy) € 2° Diff}, (M).
The dependence of the terms of P(F) on F thus comes from 22D, F, and its
commutators via commuting it through other vector fields (as in rewriting

(22Dy) (2?2 D, F) as (22D, F) (22 D,) plus a commutator term), hence through
(22D,)™ " F, 0 < m < 1. Notice that writing H as

(#® Dy )ago(x* Dy ) + Z (2 Dy)aoj(wDy,) + (xDy,)ag;(z* Dy))

modulo terms without factors of #2D, and modulo z Diff (A7), where all

commutator terms end up after the rearrangements, we find
By = aoo(x2Dx) + agj(zDy,) + TR},

with R} bounded in Diff]

scc

(M), and thus with ago, ag; being real, with

(5.15) By — B} € xDiff}

ScC

(M),

and similarly for Bs.
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We use
(5.16) Im P(F) = %Z.(P(F) — P(F)")
— 2ii(eF[H, et + [H,eF]el)
=2 <($281F)§ + E*($28:1:F)) )
with

B - ?D, € 20 Diff!

1.(M), B - B*¢c zDiff}
with B = 1(By + Bj), and

SCC

(M),

Re P(F) = %(P(F) +P(F))=H - X+ %(eF[H, el — [H,e F]el)
1

=H-\+ §[eF, [H,e ]

to prove (5.11]) (note that only the (22D,)? terms in H gives a non-vanishing
contribution to the double commutator).

To prove ((5.12)), set
Q =Re P(F) — (H + (2*D,F)? — \) € 2’ Diff2 (M),
—Q:
Q' =Im P(F) - 2(z°0,F)(2*D,) € 2° Diff% (M).
=:Q]

We can write
[Re P(F),Im P(F)] = [Q1 + Q, Q) + Q']
= [le Qll] + [Q17 Q,] + [Qa Qll + Q/]

Equation (j5.5) shows that both last terms can be put in Ry. O

In light of (5.12)), we need a positivity result for i[x2D,, H]. Such a result
follows directly from a Poisson bracket computation. Let x € C2°([0,1)) be
supported near 0, identically 1 on a smaller neighborhood of 0, and let

(517) B = L (x(x)aD, + (\(x)*D.)")

be the symmetrization of the radial vector field. Here the formal adjoint
is taken with respect to the metric measure on M, which deserves some
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comments: Indeed, 22D, is formally self-adjoint with respect to the measure
dify, and if C is formally self-adjoint with respect to a density dg’ then
its adjoint with respect to adg’, o smooth real-valued, is o 'Ca = C +
o~ ![C, a]. In the notation of (5.7)), using zDy(z~"t1g) € 2= "+(C>(M) +
S=9(M)), we find

ib =2~ Y(B - x(x)2?D,) € C*(M) 4+ S~°(M)

and b is real-valued. It is easy to check that blgys = nT_l, where n = dim M.
For the next theorem we also introduce

(519 A= S (x(@)D, + ((()zDe)").

Recall from [20, Equation (4.2)] that the space Wi (M) of scatter-
ing pseudo-differential operators is locally defined using quantisations of

product-type symbols satisfying estimates
(5.09)  [020fa(=,0) < Ol AL+ |21 @ + 1]y,

where z is thought as a local coordinate on the manifold and ¢ the momen-
tum variable. Notice that we have the negative of the convention of [20] for
the growth order r, so for us r > 0 means growing coefficients. (Parenti [23]
and Shubin [28] introduced this class earlier on R".) Here ‘locally’ means
a coordinate identification of an open set on the manifold with boundary
with an open set on the radial compactification R™ of R™ discussed at the
end of Section Near OR™, since in that region R™ is identified with
[0,€)z x S*~1, the coordinate identification is thus with the closure of an
asymptotically conic subset of R".

On the other hand, W2 (M) is the subspace of W57 (M) consisting of
classical pseudodifferential operators, see [20, Equation (4.7)]. Here classical
means, in terms of the local description above, that the symbol a has a one-
step (i.e., with powers in the expansions stepping by one) polyhomogeneous
expansion both in terms of the defining function of spatial infinity, |z|7!,
and the defining function of momentum infinity, |¢|~!, cf. the discussion
at the end of Section [5.1] This joint behavior can again be encoded via
a compactification. We compactify the momentum variable ¢ similarly to
the position variable z, so the amplitude a is considered as a function on
the interior RY x R of R” x R™. For s = = 0, classicality means that a

extends (necessarily uniquely) as a smooth function to R” x R"; for general
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s, r, the statement is the analogous extendability for
(L4 =172+ [¢*)~*%a;

the expression (1 + | -|?)!/2 is used in place of 14 | - | to ensure smoothness
at the origin.

Taking into account that differential operators have amplitudes that are
polynomial, thus classical, in the momentum variable, these definitions are

consistent with those of Diff3, ™" (M) C W5 (M) (notice the change in sign!)

and S" Diffs (M) = Diffs,;" (M) C 5L (M), for s a non-negative integer.
Proposition 5.8. Let A and B be given by (5.17)~(5.18). There exist R €
e W00 (M) and K € 'O U0 (M) such that

(5.20) i[B, H] = 2\z — 2BaB + (H — \)R+ R*(H — \) + K.

In addition, there exist R € W90 (M), K € 2% W20(M), such that

(5.21) i[A,H] =2\+ (H — MR+ R*(H - \) + K.

Remark 5.9. Again, the presence of bundles makes no difference in this
proof.

Proof. We show ([5.20)); the proof of ([5.21) is entirely analogous.
Adding terms to H which differ from it by an element of

§~7 Diff2 (M) = Dift24 (M)

results in a term in the commutator in 2! Diff2 (M) that can be absorbed
into K, and similarly for adding a term in Diff}%(3) to B. Thus, all of the
terms arising from S—% terms in either g or V can be ignored. A straightfor-
ward principal symbol computation (which recall is modulo one order gain
both in derivatives and decay) then gives that (modulo these S™° terms
which give K-absorbable results) the principal symbol of the left hand side

is the same as that of tH + Hx — 2Bz B, so that of
2z\ —2BxB+x(H — \) + (H — Nz,
proving the proposition since the agreement of the principal symbols means

that the operators agree modulo 2 Diff%?(M), which again is absorbable
into K. g
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We also need a somewhat more general computation. For this, let £ > 0,
and we note first that, with ¢ € (0,1] a parameter, (1 +t/z)~% = (z/(x +
t))*, as a function of z, is a symbol of order —k for ¢ > 0, and is uniformly
bounded in symbols of order 0. Indeed, this follows from

20, (1+t/2) F =k(t/z)A +t/x) * L = k(1 +t/2) % — k(1 +t/x)F L,

so iterative regularity under derivatives is easy to check, and from (1+
t/z)F <1andfort >0, (1+t/x)~% <t=Fz* Thus, (1 +t/x) 22D, is in
S~k Diffl, (M) for ¢t > 0, and is uniformly bounded in S Diff!..(M), con-

verging to 22D, in S Diffl,.(M) for &' > 0. This proves the first part of the
following proposition:

Proposition 5.10. Fort € [0,1], let
1 —s - —s — *
By = 5((x(@)a™" (1 + t/2) @ Dy) + (x(2)2 ™ (1 +t/2) *2’ Dy)").

Then fort >0, By, € S*7F Diff (M), and {Bs s t €[0,1]} is uniformly
bounded in S* Diffl (M), with Byt — Bgsgo in S50 WLO(M), &' > 0 arbi-
trary, ast — 0.

Furthermore, with Rgvk’t uniformly bounded in S5 Diﬁ’g’co(ﬂ), I?s,k,t,
[?/,k,t uniformly bounded in S*~'170 Diff20(M1),

s

. s _ t/x ~
i[Bs k1, H) = 2175 (1 4+ t/2)7F ((s — kl —I—t/a:) (2D,)? + Ah> +K;,k,t

= 2 (1 t/x) PN+ 22 Dy) e (L - t/2) R
X |(s—1—k ta (z%D,)
1+t/x
(5.22) + (H = N Ry ot + RE g o(H = N) + Ky

Thus, if s—k > 1,
i[By s H) > 22" 51+ t/2) *A + (H — N Ry oy + REjoy(H — X) + Ky .

Remark 5.11. The main point of this computation is that on the one
hand s — ké (1 + %)71 > s — k, thus is positive with a positive lower bound
if k& < s, on the other hand converges to s in any growing symbol space, S%',
8 >0,ast— 0.
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Proof. It only remains to do the commutator calculation. Again, this is a
principal symbol computation in which all of the terms arising from S—9
terms in either g or V' can be ignored. g

5.4. Super-polynomial decay

As a starting point, we show that L? solutions decay superpolynomially.
From a microlocal analysis perspective, this follows from propagation results
in the framework of scattering pseudodifferential operators as in [20], cf.
also the arguments preceding [33] Proposition 4.13], but we give a more
elementary argument (under, however, stronger assumptions than those of
[20)). B B

We recall the scattering Sobolev spaces HE (M) = 2" H’(M), which
are modelled, via local coordinate identification much as for the scattering
pseudodifferential operators, on the standard weighted Sobolev spaces

Ho"(R™) = (2) "H*(R") = {u € S'(R") : (2)"u € H*(R")},

where (z) = (1 + |2|?)!/2. Correspondingly, the space H" (M) is the space of
tempered distributions u on M (dual of C*°(M), consisting of C* functions

vanishing with all derivatives at M) such that for all A € ¥ (M), Au €
L2.(M). This in turn _is equivalent to requiring Au € L2.(M) for a single

fully elliptic A € Wi (M); full ellipticity means that for the local coordinate
amplitude a, |a| has a lower bound ¢(1 + |z])"(1 + |¢])%, ¢ > 0, for |z| + [(]
sufficiently large. For instance, with A the positive Laplacian of a scattering
metric, (1+ A)%/2 is elliptic in U$0(M), and thus =" (1 4+ A)%/?2 is elliptic
in U3 (M). Elliptic regularity in the differential order sense, i.e. for an
operator A with principal symbol satisfying |a(z, ()| > ¢(1 + |z])"(1 + [(])?,
¢ > 0, for |(| sufficiently large (but not necessarily if |z| is large and ( is
in a bounded region), is the statement that Au € Hew *P~"(M) and u €
HEP for some k/ implies u € HEP (M), with a corresponding estimate on
u. In particular, there is a constant C' = C} i, such that if Au = 0 then
Ilu| HEP (D) S Ck,k@pHuHH:g‘p(M); note that there is an improvement in the
differentiable, but not in the decay order of the space.

As a first step it is useful to observe the following;:

Lemma 5.12. Suppose that Q € S1*28ULO(M) and (H — \)yp =0, 275 €
L2,(M). Then

(1Q, H], ¢) = 0.
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Here the commutator is understood to be defined on Schwartz functions;
the issue is the lack of sufficient decay of the individual products in terms
of applicability to, and pairability with, .

Proof. As (H — M)y = 0, by elliptic regularity

(5.23) ”w”po:c(ﬁ) < bk pllaPYl,

Thus, by elliptic regularity, the differential order of operators below never
matters.
Formally the lemma follows from

([Q Hlip, ) = ([Q, H = Ay, ¢) = ((H = N, Q") + (Qu, (H — N)¢p) =

but care needs to be taken as the pairing on left hand side is only defined (as
the dual pairing between = #L2.(M) and x°L2(M)) due to the fact that
[Q, H] € S?6 WZO(M), while

QH —X), (H-MNQ e S*¥ w30,

so the pairing ((H — A\)Q1, 1) is not a priori defined, with the lack of suffi-
cient decay being the issue.

To remedy this, one simply regularizes; here we use (1+t/x)~! = =
t > 0, as a regularizer since it also plays a role below, this is uniformly
bounded as t — 0 (by 1), and is O(x) for ¢t > 0, removing the pairing issue.
Namely, we have, with the pairing being the dual pairing,

(5:24)  ([Q H$, ) = lim((1 + /)71 [Q, H]¥, )

=lim((1+t/2)" (QH = X) = (H = N)Q)v,¥)

= lim (((1+t/2) 7 QUH = N, v) = (1L +t/2) 7 (H = \)Q¢, ¥))

=l (04 1/2) A (= 01172 @0,0)

= —Jim ([ + t/2) ™ H = NQu, ) + (H — N1+ t/2) " Qu, )
where the penultimate equality used that (H — \)y =

Now, [(1+t/z)~1, (H — \)] is uniformly bounded (as ¢t — 0) in the space

S~ DiffLO(M), and indeed converges to 0 in S™1+9 DiffL0(M), &' > 0, so
[(1+¢t/x)"L, (H — )\)]Q is uniformly bounded in S° lef ( ) and converges

to 0in S% Diffé&o (M). This implies that [(1 +¢/z)~? A)]Qv converges
to 0in Hee"*(M) as t — 0, as can be seen that if Y —> 1/1 in LSC(M) with ¢, €
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C>(M), then (1 + t/z)~1, (H — \)]Qv converges to 0 as t — 0 in C°(M)
thus in He'*(M), while given any e > 0, [(1+t/2)~1, (H — N)]Q(¢ — ;)
is < €in HgY (M) for sufficiently large j. Thus,

(1Q, H),w) = —lim (([(1+t/2)™" H = N Qv v)

F(H = N+ 1/2) Qv w)
= —lim((H — \)(1 + t/2) " Qu, )

t—0

= —lim((1 +t/2)"'Qy, (H — \)y) = 0,
t—0
proving the lemma. D

Proposition 5.13. Let A >0, and suppose that 1 € L?,(Meuy) satisfies
H1p = \ip. Then for all B € R, 278y € L2, (Meyy).

Remark 5.14. In the proof we will assume for clarity that (M, g) is com-
plete with ¢ € L2.(M). If we merely assume 29 € L2.(Mey), then all in-
tegrations by parts, such as e.g. those involved in the proof of Lemma [5.12
should be carried-out on M. This will introduce controlled boundary terms
at the inner boundary {z = z1} which will not affect the argument. Equiva-
lently, in the proof the eigenfunction ¢ can be multiplied by a cut-off function
which vanishes near {z = 1} and equals one near {z = 0}, leading to error
terms in the equations which can be estimated by C||¢||, and resulting in
the same conclusions.

Proof. Let
B =sup{f € [0,00) : ¢ € LI (M)},
and assume [ is finite. Let 8 € (81,01 +d/2) > 0. Take s =1+ 25 and
0 <k <min(1,0)=0 with 8 —k/2 € [0,61)if p1 > 0,5 —k/2=0if 51 =0.
Thus, s —k=1+2(5—k/2) > 1, and % = B — k/2 is either 0 or < i,
so in either case
w2y e L2 (M),

and S_Qﬂ < % as well, so
g~ (7102 e 12 (M),

Apply Proposition with this s, k, using that K s,k,+ uniformly bounded
in S*~1=9 Diff20(M), so in view of elliptic regularity, (5.23)),

(K 00, 9)| < Cs [l (179 2|2,
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and ]/%S,k’t is in S5~ Diff%° (M) for t > 0 (not uniformly bounded in ¢
though!), to conclude, using (H — \)y = 0, that

(i[By e, Htp,00) > 2X[(1 + t/2) 227 P92 + (H — )R g0, 0)
(R g (H = N, 9) + (B poth, )
> 2N||(1 + t/a) 2 Byp||2 — Cylla= (5717922,

On the other hand, by Lemma

([Bs k., H]tp, ¢) = 0.

Thus, we conclude that
A|[(1 + t/x) /22 Py |?

is uniformly bounded as t — 0, thus %1 € L?, contradicting the definition

of 5.

This shows that 1 is not finite, hence proves the proposition. O

5.5. Superexponential decay

Using the global positive commutator estimate, Proposition [5.8] we can now
prove a decay faster-than-any-exponential of non-threshold eigenfunctions.
For this part of the paper, we could adapt the proof of Froese and Herbst
[6] in Euclidean potential scattering, as was done in [31] in the geometric
potential scattering setting. However, we focus on the approach that will play
a crucial role in the proof of unique continuation at infinity. Nonetheless, a
modification of the Froese-Herbst commutator will play a role when o = 0
(in the notation of Lemma , where conjugated Hamiltonian is close to
being self-adjoint (in fact, it is, if F'=0), so we will use a modification of
x D, more precisely a rescaling of Im P, for a commutator estimate in place
of Im P.

Theorem 5.15. Let A > 0, and suppose that 1) € L?,(Mey) satisfies Hip =
M. Then for all a € R, e®/%yp € L2 (Meyy).

Proof. We start by pointing-out that Remark applies again.
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The proof is by contradiction. First note that
W € C(M)

by Proposition and the usual weighted elliptic estimates. (Recall that
C°°(M) denotes the space of smooth functions which decay to infinite order
at the boundary.)

Let
a1 = sup{a € [0,00) : exp(a/x)y € LE(M)}.

If a3 = 0, then let a = 0, otherwise suppose that o < «, and in either case
v € (0,1] will be a constant satisfying o + v > ;. These two cases will re-
quire separate treatment.

The a; > 0 case is more representative of the proof of the unique contin-
uation result, so we will start with that. We show in this case that for suf-
ficiently small v (depending only on a1) exp((a + )/x) € L2, (M), which
contradicts our assumption on «; if « is close enough to a;.

We start with a general discussion, so we do not yet make assumptions
on aj.

Below we use two positivity estimates, namely and the Mourre-
type estimate, Proposition at energy A + a? (i.e. with ) replaced by this
in the statement of the proposition), with B = x(z)z2D, + (x(x)x?D,)*.
That is, since A + a? > 0, there exists cg > 0, R € V2O(M), K € U20(M),
such that for ¢ € L2.(M),

(5.25)  (4,i[B, H])
> ol /2)|? — 2 Re(4h, 2(22Dy) *4))
+Re((H — A — ad)t, zRY) + Re(a1H9/24), K (149)/24)

We will apply this with 1; = ¢Yp, with F given by (5.26) below.
We first note that we certainly have for all g € R, exp(a/z)zPy €
L2.(M), due to our choice of a. We apply Lemma with 8 > 1 and with

o v
2 F=Fg:=— 1 1+ —
(5.26) y= 24 ptog (14 ).
and let
g = r = ey

The reason for the choice (5.26) is that on the one hand F(x) — (a4 7v)/x
as 3 — 0o, so in the limit we will obtain an estimate on e(®+7)/ T, and
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on the other hand F(z) < & + f]log x|, so e'# is bounded by zPe/*  for
all values of 3, i.e. ef® provides a ‘regularization’ (in terms of growth) of
elat1)/* g5 that Lemma [5.6/ can be applied.

Note that F' = Fz € S1([0,1)), and Fp is uniformly bounded in S1([0, 1))
for € [1,00), @ € [0,a1) (or a = a1 if a3 =0), v € [0,1]. Indeed,

-1
0§—$23xF=a+7<1+;> <a+7,
x

and in general (z0;)™(1+ ﬂla:)_l =(=ro)"(1+7r)" L r= 75+ so the uni-

form boundedness of F' follows from (1 +7)~! being a symbol in the usual

sense on [0, o). In particular, all symbol norms of —229,F — a are O(7).
Below, when a = 0, we will need to consider

(=220, F) Y (220,)™ (—220, F),
with m > 0. By the Leibniz rule, this can be written as

> ¢ (=20, F) " (20,) (—2°0, F).

Jj<m
In terms of r, (=220, F)~(20,)/ (—2%0,F) with a = 0 takes the form
(1+7)(=rd) (1 +7)7,
hence it is still bounded on [0, c0), so in fact
(5.27) (=220, F) " (220,)™ (—220,F), m >0,

is uniformly bounded on [0,00). In fact, (5.27)) is uniformly bounded in
S9([0,1)), since applying 20, to it gives rise to additional factors such as

(=220, F) 7 F(28,)* (=228, F),

which we have just seen to be uniformly bounded on [0, c0).
We remark first that P(F)yr = 0, so by elliptic regularity,

108l rzs imy < Brplle®rll

with by 1, independent of F' as long as « is bounded. This follows from the
fact that the estimates on the derivatives of F', as needed for controlling
b1k p, are uniform in o € [0, 1], v € [0,1] and v/B € [0,1]. In general, below
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b; denote positive constants that are independent of o, 3,7y in these intervals,
and R; denote operators which are uniformly bounded in Diff2 (M), or on

occasion in WO (M), for some m. (Note again that, by elliptic regularity,
the differential order never matters.)

As already pointed out, the proof is slightly different in the cases o > 0
and a = 0 since in the latter case the usually dominating term, —2ax?D,,
of Im P vanishes.

When a > 0, the key step in the proof of this theorem arises from con-

sidering, with P = Pg := H(F) — ,
P*P = (Re P)?> + (Im P)? +i(Re PIm P — Im P Re P),
SO

(5.28) 0= (¢F, P*Pwp)
= ||Re Pyp|]* + || Im Pyp|* + (¢Yr, i[Re P,Im Plp).

The first two terms on the right-hand side are non-negative, so the key issue
is the positivity of the commutator. Note that

ReP =H —o®> = AN+ Ry + 2°Ro,

(5.29) ) 5
Im P = =202 D, + ’YR3 + 2°Ry.

By (5.12),

(5.50) i[Re P, Tm P) =20i[2°D,., H] + 27 Rs + ' ** Ry,

Hence, from (5.28) and (5.25)), with the Re P and Im P terms in the scalar
products arising from (5.25)),

(5.31) 0> || Re Pyp|? + || Im Pyp|| + 2aco||a 2y p||> + y(vr, 2R11YF)
+ (¢Yp,xR12Re PYp) + (Y, Re PrRi3vp)
+ (Yp, tR14 Im Pypp) + (p, Im Pz Risthr) + (Vr, 2 O Rigtr).

Now, terms such as |(¢r, 2" Rig1r)| can be estimated by by||z(1+9)/24) (|2,
while v|(¢p, zR111F)| may be estimated by ~bs||lz/%¢x||?, while

(¥, 2Rz Re PYp)| < ballavp||| Re Pyl < ba(e H|zvr|? + | Revr[?),
|(¢r, 2 Ria T Pyop)| < bs|lap|[[| Tm Pyp|| < bs(e [lagp]* + ¢ Tmgp|),
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with similar estimates for the remaining terms. Putting this together, (5.31))
yields

(5.32) 0> (1 —bge)|| Re Py + (1 — bre)[| Tm Py
+ (200 — bs) ||z g2 — bo(e) | 2y p 2.

For 6 >0, in x > 0, z|p| = zel' || < bio(0)[¢], so

|2 2|2 = [0 2|2 s O 22

< g&HxlﬂwFHng + blo(é)WHizg

< 8|z 2pp|® + bro(9) %
Thus, (5.32)) yields that

(5.33) 0> (1 — bge)|| Re Pypp||* + (1 — bre)|| Im Pipp|?
+ (2acy — Ybs — by (€)0°) |z 2|2 — bio(d)[|v]%.

Hence, choosing € > 0 sufficiently small so that bge < 1, bye < 1, then choos-
ing o > 0 sufficiently small so that b;; = 2acg — yobg > 0, we deduce that
for Y <70,

(5.34) b1o(D)[|9]|? > (b1 — bed®)[|zyp .

But, for 6° € (0, %), this shows that |z'/?¢x|? is uniformly bounded as
B — oo. Noting that F' is an increasing function of § and ¥r converges to
elat1)/2y, pointwise, we deduce from the monotone convergence theorem
that

a2l € L3 (M),

so for v/ < v, elet¥)/zyp € L2 (M).
We pass now to the case @ = 0. Then ([5.30) becomes

(5.35) i[Re P,Im P] = vz Ris + = O Ry7.
The calculations so far lead instead to

| Re Py < biallz2¢r|, || Im Pyr|| < biollz"/?yp].
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This implies that

(5.36) I(H — Nr|| < vbisl[vop| + biallz®p,
(5.37) (220, F)a? Dy || < bis||°yr |-

To continue, instead of the degenerating commutator [Re P, Im P] (where
the term 120, F loses its leading order contribution from «), we recall from

(-16) that

Im P = 2(2%0,F)A + A*z(220,F),
A=2D, +2 "R = A+ 2 "Ry A— A* € Diff}

scc

(M)

with Rl, R2 uniformly bounded in Diff
that

1 (M), and consider P*A — AP. Note
Im P = (Im P)* = 22(2?0, F) A + [A, 2(220, F)] + (A* — A)a(2%0,F)
= 22(2%8,F)A* + 2yR3 = A*22(2?0,F) + 2Ry

with Rz, Ry uniformly bounded in Diffl (7).

Now,
(5.38) i(AP — P*A) =i[A,Re P] — (Im PA + AIm P)
—i[A, H — N + 2° Rig — A*22(220,F) A
— g2x($26xF)g* + vRo1.
Thus,

0= (p,i(AP — P*A)ypp)
> (Y, i[A, Hlpp) + 2|2 (—2?0, F) 2 Ay p||?
+ 2|22 (~220, F) 2 A pp |2 — bigl| 22 |* — bisyllvr|*

Using the Mourre estimate ([5.21]) in Proposition we deduce that, with
ch=21>0,

0> cpllvrl® = bigl(H = Noorlll¢rll = baolle®¢r | = bisyllvr|*.
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Using ((5.36])—(5.37]) we deduce, as above, that

0> &yllvpll* — Abarllvrl® — boollvr|ll2®br]| — bas)|z®/*vp|?
> (ch — Yba1 — e1ba2) ||V || — booey |2 Wp |2 — bas||z* 2y 2
> (cy — vbar — e1ban — (booey '0° + b230®/2))[Yp||* — baa(8)er )12,

Again, we fix first €; > 0 so that 06 — €1b22 > 0, then 7y > 0 so that
¢y — Yoba1 — €1ba2 > 0,
finally 5 > 0 so that
ch — Yob21 — €1bag — (b226f155 + b2355/2) > 0.

Now letting 3 — oo gives that /%4 € L2.(M) for v < o, as above. O

5.6. Absence of positive eigenvalues — high energy estimates

We next prove that faster than exponential decay of an eigenfunction of H
implies that it vanishes. This was also the approach taken by Froese and
Herbst. However, we use a different, more robust, approach to deal with our
much larger error terms. The proof is based on conjugation by exp(a/x)
and letting o — 400. Correspondingly, we require positive commutator es-
timates at high energies. In such a setting first order terms are irrelevant, i.e.
V does not play a significant role below. Indeed, we work “semiclassically”
(writing h = a~!), and the key fact we use is that the commutator of the
real and imaginary parts of the conjugated Hamiltonian has the correct sign
on its characteristic variety.

We start by recalling (see [36] for a general introduction to semiclassical
analysis, [34] for a specific discussion in the scattering setting) that semiclas-

sical scattering vector fields V' € Vs (M) are simply h-dependent families
of vector fields of the form hV’', V' € C*([0,1)p; Vsc(M)), i.e. h times scat-
tering vector fields smoothly depending on h. (Note that one may simply
choose to have bounded, not smooth, families of vector fields V' in Vy.(M),
analogously to how we define pseudodifferential operators — since h is a
parameter, differentiation in it is not an issue.) The corresponding differen-
tial operators, P € Diﬂ";’g’h(ﬂ) are finite sums of up to m-fold products of

these, with C>°(M x [0,1)) coefficients. Thus, in local coordinates, such an
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operator P is of the form

> ajalz,y,h)(ha’Dy)! (haDy).

jtlal<m

Ellipticity of such an operator in the usual, differential, sense is the statement
that

> ajale,y, I > (€l + )™ €+ nl > R
jlal=m

for some ¢ > 0 and R > 0. Note that the h factors appearing in front of the
derivatives are regarded as parts of the expression, i.e. it is hz?D, that is
turned into £, etc. One defines Diffy.. ; analogously, by allowing symbolic
(rather than just smooth) coefficients, smoothly depending on h. Note that
if A € Diff2), (M), B € Diff_’} (M) then

[A, B] S hDiﬂ‘izi/_l,r+r/_l(M)7

i.e. in addition to the gain in the two orders, there is also an extra h gained;
there is a similar statement for Diffe. .

If M is the radial compactification of R”, obtained by “adding a sphere at
r=o00" (cf., e.g., [20]; not to be confused with a one-point compactification
familiar to general relativists), as discussed in Section this means that
P is of the form

> bslz,h)(hD.)?,
[BI<m
where bg are classical symbols smoothly depending on h.
The semiclassical Sobolev norms ||.| e (W) for s > 0 integer, are, for

h-dependent families of functions in Hg' (M), supported in a coordinate
chart,
Hu“i[:éfh(ﬁ) = Z ”x_r(h$2D$)J (hmDy>auHigc(M)v
J+lel<s
and in general via a partition of unity. In the case of the radial compacti-
fication of R™, to which the general case locally reduces, this is equivalent
to
Hqu:é;fh(M) = Z ”(ZV(th)BuH%%
|BI<s
i.e. they are like standard weighted Sobolev spaces but with an h appearing
in front of each derivative.
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Similarly, recall that semiclassical scattering pseudodifferential operators
Ae Ul (M) reduce to semiclassical pseudodifferential operators on R”"
resulting from semiclassical quantizations

Au(z) = (27rh)"/ ! G2 g (2, ¢ h)u(Z) d2 d¢
R™xXR™

of symbols satisfying estimates of the kind
ID2Dfa(z,¢.h)| < Cla, B)(1+ [a) 1 1+ ¢,

i.e. uniform (in h) families of scattering symbols. Notice the factor 1/h ap-
pearing in the exponent; one could change variables to ¢’ = (/h in the inte-
gral, then a would be evaluated at (z,h(’, h), explaining the appearance of
h in front of derivatives in the differential operator discussion above when a
is a polynomial in . The standard results, in particular elliptic estimates,
hold, so if A is elliptic in the scattering sense in this semiclassical context,
meaning that |a| has a comparable positive lower bound for |z| + [(] large,
then elliptic estimates

”U“H:;gl(ﬁ) < Ck,k’,p.p’(HAUHHS’“C;;W*T(M) + ”uHch,,’f,(M))

hold. Again, there is a version when ellipticity only holds in the differential
order sense, namely if || is large; this assumes that u € HSk; P(M) (le.p=p)
and then is of the form

HUHH:C’};(M) < Ck,k’,p(HAUHHS’“CT;*P’T(M) + ”“HH:C/;;(M))?
cf. the discussion at the beginning of Section

Theorem 5.16. Let A € R. If HYp = M), exp(a/x)h € L2, (Mext) for all ,
then ¢ = 0.

Proof. As in the previous proofs, for clarity of the argument we assume first

that (M, g) is complete and ¢ € L2.(M). We will present the, essentially

notational, changes arising when v € L2,(Mey) at the end of the proof.
Let

e
F= FCV = (10(%’)77
x
where ¢ € C°(R) is supported near 0, identically 1 in a smaller neigh-

borhood of 0, and let ¥x := ef'yp. Then with h = o', Hy, = h?H(F) and
Py, := Hj, — h?\ are elliptic semiclassical differential operators, elliptic in the
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usual sense of differentiable order (i.e. the lower bound for the absolute value
of the principal symbol holds for |(] large, as discussed above), and

Pppp =0, Yy = ¢Yp,

so by elliptic regularity,

(5.39) 1Onllar rrr a7y < Cull$nller L2 a7);

C independent of h € (0, 1] (but depends on k and p). In general, below the
C; denote constants independent of h € (0,1] (and § > 0).
The key step in the proof of this theorem arises from considering

PP, = (Re P,)* 4 (Im P,)? + i(Re P, Im P, — Im P, Re P)
SO

(5.40) 0 = (vn, Py Patn)
= || Re Pytop||* + || Im Pyb ||* + (¢n, i[Re Py, Im Py Juy).

The first two terms on the right-hand side are non-negative, so the key issue
is the positivity of the commutator. More precisely, we need that there exist
operators R; bounded in Diﬂ“ioh(M ) such that

(541) (¢h7i[RethImPh]¢h)
> (¢p, (xh + Re PpxhRy + xhRy Re Py,
+ Im PyahR3 + xhRyIm Py, + 2h?Rs + 20 hRe)vy,).

The important point is that when ignoring both Re P, and Im Pp, in the
right-hand side, the commutator is estimated from below by a positive mul-
tiple of xh, plus terms O(zh?) and O(z'*+h).

We first prove , and then show how to use it to prove the theorem.
First, modulo terms that will give contributions that are in the error terms,
Re P, may be replaced by hQAg — 1 — A%\, and indeed thg — 1, while Im P,
may be replaced by —2h(22D,) (compare Lemma . Now, by a principal
symbol calculation, see Proposition

i[h?A,, — 1, —2h(2?Dy)] = i[h*A,,, —2h(2%D,)]
= zh(4h*Ay, — 4h*(2*D,)* + Ry), Ry € 2° Diff2, (M)
= zh(4+4Re P, — 4Im P} + R}), R} € 2° Diff, , (M)

which is of the desired form.
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We now show how to use (5.41]) to show unique continuation at infinity.
Let x¢ = supz; x. We first remark that

|(¥n, zh Ry Re Ppapp )| < Cohl||lzay|||| Re Prabn |

< Cohl|xypn]|* + Cahl| Re Puon?,
|(n, xhRaIm Ppapy )| < Csh||ziy]||] Tm Py |

< Cshl|zp||* + Cshl| Tm Py %,

with similar expressions for the R; and Rs terms in (5.41)). Next,

|(Yn, 2h? Rsy)| < Cah?||z 2,12,
|(n, 2 FORRep )| < Cshl|a1+9 24, 2.

For & > 0,in x> g, [n| = el/=Pap| < el/(gh)hﬂ], SO

22y |2 = (|20 2y |2 s 4 ([ P25

1—0—5 2/(6h HwH

x<(5

< &t P2

x<(5 x>g

< 55ch1/2¢ ||2+LU1+6 2/( 6h HTZJH2

Thus,
1(&on, 2P hReyon)| < Cshd? e/ 24n|? + Craktone?/ @0 |y 2.

Hence, we deduce from (j5.40)—(5.41)) that

(5.42) 0> (1— Cgh)|| Re Pytn|* + (1 — Crh) || Im Pyapy||?
+ h(1 — Cgh — Cod®) ||/ 24y |2 — Crohe® O ||y ||,

Hence, there exists hy > 0 such that for h € (0, ko),
~ 1 —~
(5.43) Crohe?/ M| > h(5; — Co0”) " 2|

Now suppose that 0 € (0, mln((4C )1/6, hlo)) and suppy N{z < g} is

non-empty. Since xe?/*" = h=1 f(xh) where f(t) = te*/, and f is decreas-
ing on (0,2) (its minimum on (0, c0) is assumed at 2), we deduce that for
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x < 5/2, ze2/wh > 264/(571)’ SO
22/ 245 |12 > C110e¥ M) Cyy > 0.

Thus, we conclude from ([5.43)) that
1 —~ ~ ~
(5.44) Croll¥|[* > (5 — Cod*)Crrde?/ M.

But letting h — 0, the right-hand side goes to 400, providing a contradic-
tion. B

Thus, 1 vanishes for z < §/4, hence vanishes identically on M by the
usual Carleman-type unique continuation theorem [I1, Theorem 17.2.1], and
when ¢ € L2.(M) we are done.

As already hinted at, the result for ¢ € L2, (Mey) follows by change of
notation. Namely, let now ¢, denote the original eigenfunction, thus we
have Py = 0. Let ¥y = xtp, where x = 1 on a neighborhood of supp ¢,
i.e. supp F', but still supported in a collar neighborhood of the Euclidean
end. We have

Puton = XPutbn + [Pa, XJ0n = [Ph, X0,

and by construction, namely on supp dy where the weight F' vanishes, we
have

Puibn = [P, X9

In particular all semiclassical Sobolev norms of P, are bounded by a
constant C' (independent of h € (0, 1], of course depending on the norm).

We repeat the argument above. The left hand side of is not zero
anymore, rather || P,i||?, which is bounded by C?. The rest of the computa-
tion is unchanged until , where the left-hand side becomes C? instead
of 0. Hence, also has a C? added to the left-hand side, and then ([5.44))
becomes

~ 1 — ~ -
(5.45) meW+C%1e%“2<z—@“)aﬁéww

Since the new term also goes to 0 as h — 0, the final step of the argument
is unchanged, whence v vanishes for small x. B

We conclude again that our original eigenfunction ¢ vanishes for small
x, and the usual elliptic unique continuation result finishes the proof. O
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