
✐

✐

“9-Viaclovsky” — 2021/1/7 — 1:07 — page 2019 — #1
✐

✐

✐

✐

✐

✐

Communications in

Analysis and Geometry

Volume 28, Number 8, 2019–2133, 2020

Collapsing Ricci-flat metrics on elliptic

K3 surfaces

Gao Chen, Jeff Viaclovsky, and Ruobing Zhang

For any elliptic K3 surface F : K → P1, we construct a family of
collapsing Ricci-flat Kähler metrics such that curvatures are uni-
formly bounded away from singular fibers, and which Gromov-
Hausdorff limit to P1 equipped with the McLean metric. There are
well-known examples of this type of collapsing, but the key point of
our construction is that we can additionally give a precise descrip-
tion of the metric degeneration near each type of singular fiber,
without any restriction on the types of singular fibers.

1 Introduction 2020

2 Semi-flat metric on a Jacobian K3 2024

3 Semi-flat metric on a general elliptic K3 2033

4 Singular fibers with infinite monodromy 2040

5 Singular fibers with finite monodromy 2052

6 Metric geometry and regularity of the
approximate solutions 2066

7 Liouville theorems 2094

8 Existence of collapsing hyperkähler metrics 2103

9 Remarks on moduli 2123

References 2129

The first author is supported by NSF Grant DMS-1638352 and a grant from S. S.
Chern Foundation for Mathematical Research. The second author is supported by
NSF Grant DMS-1811096. The third author is supported by NSF Grant DMS-
1906265.

2019



✐

✐

“9-Viaclovsky” — 2021/1/7 — 1:07 — page 2020 — #2
✐

✐

✐

✐

✐

✐

2020 G. Chen, J. Viaclovsky, and R. Zhang

1. Introduction

1.1. Background and main results

A K3 surface, by definition, is a compact complex surface with trivial fun-
damental group and zero first Chern class. Since all complex K3 surfaces are
Kähler [48], it is a consequence of Yau’s resolution to the Calabi conjecture
[51] that every K3 surface admits Ricci-flat Kähler metrics called Calabi-
Yau metrics. Our particular interest in this paper is to study an elliptic K3
surface F : K → P1. It is well-known that there are no exceptional curves on
K, and no fiber over the base is multiple [31, Section 11.1]. The generic fiber
is an elliptic curve, and there are singular fibers which can be of type I∗0, II,
III, IV, II∗, III∗, IV∗, Iν and I∗ν for ν ∈ Z+, over a finite set S ⊂ P1 [34].

For an elliptic K3 surface which has 24 singular fibers of Type I1 in
Kodaira’s list, Gross and Wilson in [24] constructed a family of Calabi-Yau
metrics with bounded diameters which are collapsing to the base P1 in the
Gromov-Hausdorff sense, that is,

(1.1) (K, gδ) GH−−→ (P1, dML), as δ → 0,

where dML is the McLean metric on P1, see Definition 2.3. Moreover, away
from 24 singular fibers, gδ are collapsing with uniformly bounded curvatures.
This is consistent with the general theory of the degeneration of Einstein
metrics in dimension four in that the sequence collapses with bounded cur-
vature away from finitely many singular points in the Gromov-Hausdorff
limit [7], and the limit is a Riemannian orbifold away from the singular
points [41]. However, the general theory does not provide a description of
the degeneration near the singular fibers.

The case of 24 fibers of type I1 is the generic case, but there are many
interesting K3 surfaces with non-generic configurations of singular fibers.
In [23], the construction of Gross-Wilson was extended to general elliptic
K3 surfaces, see also the recent work [43]. Namely, families of Calabi-Yau
metrics were constructed which Gromov-Hausdorff limit (P1, dML) with uni-
form curvature estimates away from finite singular points. Our primary goal
in this paper is to describe the precise nature of the degeneration near the
singular fibers, by describing all possible canonical bubble limits , see Defini-
tion 6.4.

We next recall some details regarding complete non-compact hyperkähler
four-manifolds. Under the curvature decay condition |Rm | ≤ Cr−2−ϵ for
some ϵ > 0, complete non-compact hyperkähler 4-manifolds were classified
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in a series of works [8–10, 35, 40]. Under this curvature decay condition, the
volume growth rates must be O(r4), O(r3), O(r2) or O(r). They are called
ALE (asymptotically locally Euclidean), ALF (asymptotically locally flat),
ALG, or ALH (“G” and “H” are the letters after “E” and “F”) respectively.
However, there are also complete non-compact hyperkähler 4-manifolds with
curvature decay rate exactly O(r−2) and volume growth rate O(r4/3) as
well as complete non-compact hyperkähler 4-manifolds with other curvature
decay rates [1, 27, 50]. The hyperkähler 4-manifolds with volume growth
rates O(r4), O(r3), O(r4/3) and O(r) have been realized as the bubbles of
degenerating Calabi-Yau metrics on the K3 surfaces [9, 13, 16, 28, 36]. The
deepest bubbles in our construction are ALE Eguchi-Hanson metrics (see
[14]), ALF Taub-NUT metrics (see [26]), as well as a certain class of ALG
hyperkähler metrics, which are isotrivial and are ALG of order at least 2,
see Subsection 5.2. The main result in this paper is the following.

Theorem 1.1. For any elliptic K3 surface F : K → P1, with singular fibers
over the finite set S ⊂ P1, there are a family of Ricci-flat Kähler metrics gδ
on K with Diamgδ(K) = 1 and Volgδ(K) ∼ δ2 such that

(1.2) (K, gδ) GH−−→ (P1, dML), as δ → 0,

where dML is the McLean metric. Moreover, the following properties hold:

1) For any p ∈ P1 \ S, the fiber F−1(p) is regular and homeomorphic to
T2 with Area(F−1(p)) ∼ δ2.

2) Curvatures are uniformly bounded away from singular fibers, while cur-
vature is unbounded in a neighborhood of any singular fiber.

3) Near singular fibers with finite monodromy, rescalings of the metrics
converge to ALG hyperkähler metrics.

4) Near singular fibers of type Iν , ν ≥ 1, there are ν copies of Taub-NUT
metrics which occur as rescaling limits.

5) Near singular fibers of type I∗ν , ν ≥ 1, ν copies of Taub-NUT metrics
plus 4 Eguchi-Hanson metrics occur as rescaling limits.

Remark 1.2. Theorem 1.1 partially answers [27, Problem 1.11]. We note
also that Theorem 1.1 only states the non-collapsing bubble limits; in this
case the pointed Gromov-Hausdorff convergence is equivalent to pointed
C∞-convergence. However, there are also numerous collapsing bubble limits,
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and we refer the reader to Section 6 for the complete description of all
possibilities.

1.2. Outline of the proof

We next give an outline of the main steps involved in the proof of Theo-
rem 1.1. For a general elliptic K3 surface F : K → P1, there does not exist a
global holomorphic section. However, Kodaira [34] proved that F : K → P1

determines an elliptic surface J : J → P1 with a global holomorphic sec-
tion, which is called the Jacobian of the original elliptic K3 surface. The
Jacobian J (called the basic member by Kodaira) has the same functional
and homological invariants as the original surface K. In Section 2, we will
briefly review a construction of Greene-Shapiro-Vafa-Yau ([21]) which gives
explicit hyperkähler metrics gsfδ on the regular region of J such that the area
of each T2-fiber equals δ2. These metrics are also known as semi-flat metrics,
and their construction relies on the existence of a holomorphic section. In
Section 3, we will use a global diffeomorphism between the original elliptic
K3 surface K and its Jacobian J so that the semi-flat metrics gsfδ can be
naturally translated to a hyperkähler metric gAδ on the regular region of the
original K3 surface K.

The above procedure yields collapsing hyperkähler metrics on the regular
region of the original elliptic K3 surface F : K → P1. These semi-flat metrics
are singular at the singular fibers; the next goal is to replace gAδ in the
singular regions with smooth metrics by a gluing procedure. In Section 4 we
will do this in the Iν and I∗ν cases. In the Iν case, this is done by gluing in a
generalization of the Ooguri-Vafa metric, which we call a multi-Ooguri-Vafa
metric. In the I∗ν case, we glue in a resolution of a Z2 quotient of a multi-
Ooguri-Vafa metric, which is inspired by Kodaria’s work [34, Section 8].
We note that the resolution of the infinite monodromy fibers can be done
with respect to a fixed complex structure; the resulting Kähler form will be
denoted by ωB

δ , with associated metric gBδ .
The metric gBδ will still have singularities near the fibers with finite mon-

odromy. In Section 5, near these singular fibers, we will glue in a certain class
of ALG hyperkähler 4-manifolds. Namely, we require that the ALG manifold
is isotrivial , that is, the functional invariant is constant, and furthermore,
that the metric is ALG of order at least 2. After this procedure, we will
obtain a family of “approximately” Calabi-Yau metrics on K which are col-
lapsing to the McLean metric on P1, and denoted by gCδ . An important note
is that this step cannot be done preserving the original complex structure
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(because K is not isotrivial), so in this step, the 2-form ωC
δ is only symplec-

tic, but not necessarily Kähler. Therefore, we have to use the definite triples
originated in [12], to find out the approximately hyperkähler metric gCδ . This
technique was also used, for instance, in [10, 15, 16, 28]. To explain this, let
(M4, dvol0) be an oriented 4-manifold with a fixed volume form dvol0. A
triple

ω = (ω1, ω2, ω3) ∈ Ω2(M4)⊗ R3(1.3)

is called a definite triple if the matrix Q = (Qij) defined by

(1.4)
1

2
ωi ∧ ωj = Qij dvol0

is positive definite. The triple is called closed if dωi = 0 for i = 1, 2, 3. For
a definite triple ω on (M4, dvol0), let us define the associated renormalized
volume form and coefficient matrix by

dvolω ≡ (det(Q))
1

3 dvol0,(1.5)

Qω ≡ (det(Q))−
1

3Q.(1.6)

Immediately, det(Qω) = 1 and Qω is independent of the choice of dvol0.

Definition 1.3. Given an oriented 4-manifold M4, a closed definite triple
ω = (ω1, ω2, ω3) ∈ Ω2(M4)⊗ R3 is called hyperkähler if Qω = Id. Equiva-
lently,

(1.7)
1

2
ωi ∧ ωj =

1

6
δij(ω

2
1 + ω2

2 + ω2
3),

for every 1 ≤ i ≤ j ≤ 3.

Remark 1.4. A definite triple ω induces a Riemannian metric gω such that
each ωj is self-dual with respect to gω and the volume form of gω is dvolω. By
[29, Lemma 6.8], the metric gω is hyperkähler if and only if ω = (ω1, ω2, ω3)
is a hyperkähler triple. In this case, ω2 +

√
−1ω3 is a holomorphic 2-form

with respect to the complex structure determined by ω1.

In our construction we will take ω2 +
√
−1ω3 = δΩK, where ΩK is a fixed

holomorphic 2-form on K. This together with ωC
δ is a definite triple and

determines a metric gCδ . Section 6 will then focus on the bubbling analysis
of gCδ . We will quantitatively analyze the regularity scales around each type
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of singular fibers, which will be achieved by explicitly classifying all possible
bubble limits on K. This leads us to canonically define a class of weighted
Hölder spaces, which will be the key to our perturbative analysis.

Section 7 will be devoted to the proof of vanishing theorems on various
bubble limits, which we will refer to as Liouville theorems . In Section 8, we
will carry out the perturbation of our family of approximately hyperkähler
metrics gCδ to a family of Calabi-Yau metrics gDδ , using the implicit function
theorem (Lemma 8.1). To carry out the perturbation, in Proposition 8.7
we will establish uniform estimates for the linearized operator in the geo-
metrically canonical weighted spaces defined in Section 6. The proof will be
based on contradiction arguments and bubbling analysis, which will reduce
the proof to the various Liouville theorems on each type of bubble limits.

We will end with some remarks in Section 9. First, we will count the
parameters involved in our construction, and show that they add up to
the expected dimension. Then we will also describe some other possible
bubbles which can arise by other choices of the parameters involved in our
construction.
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2. Semi-flat metric on a Jacobian K3

In this section, we describe the semi-flat metric on an elliptic K3 surface
with holomorphic section. It was originally constructed by Greene-Shapere-
Vafa-Yau in [21]. We begin with a brief review of elliptic K3 surfaces.

2.1. Elliptic K3 surfaces

To begin with, we review Kodaira’s work on elliptic surfaces in [34]. For each
elliptic curve C = C/(Zτ1 ⊕ Zτ2), we can view the number ϱ = τ2/τ1 as an
element of H/ SL(2,Z), where H ≡ {τ ∈ C| Im τ > 0} is the upper half plane.
Let F : K → P1 be an elliptic K3 surface with a finite singular set S ⊂ P1.
Then ϱ = τ2/τ1 is a multi-valued holomorphic function on P1 \ S. Recall
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that the j-invariant maps ϱ ∈ H/ SL(2,Z) to j(ϱ) ∈ C, so the j-invariant is
a holomorphic function on P1 \ S which extends to a meromorphic function
on P1, and is called the functional invariant , denoted by J : P1 → P1.

The sheaf R1F∗Z is the first direct image sheaf of the constant sheaf Z
on K, which is the sheaf on P1 associated to the presheaf with sections over
U ⊂ P1 being H1(F−1(U),Z). The sheaf R1F∗Z is called the homological in-
variant of K, and is locally constant over P1 \ S. The homological invariant is
equivalent to a representation ρ : π1(P

1 \ S) → SL(2,Z), which is called the
monodromy representation. There is a compatibility relation between these
invariants, see [34, Section 8]; the sheaf R1F∗Z belongs to the meromorphic
function J .

By [34], given an elliptic surface F : K → P1, there exists a unique elliptic
surface J : J → P1 with a holomorphic section σ0 which has same functional
and homological invariants as K. It was called the “basic member” by Ko-
daira [34] but was called “Jacobian” by other authors [24].

The space K# is obtained from K by replacing the singular fibers with
only the irreducible components with multiplicity 1 (minus the singular
points and intersection points with other components). A section of the
elliptic surface J : J → P1 is a holomorphic mapping σ : P1 → J such that
J ◦ σ = IdP1 , which is equivalent to a holomorphically embedded P1 ⊂ J#

which has intersection number 1 with fibers of J#. Therefore a section σ0
distinguishes a point in every fiber of J#. For p ∈ P1, the fiber of J# over
p, J#

p = σ−1
0 (p) ∩ J#, is an abelian group with identity σ0(p), see [34, Sec-

tion 9]. The subset J#
0 ⊂ J# is defined as the subset of J# consisting of

the identity component of each fiber group.
Let π : OP1(−2) → P1 be the line bundle of degree −2 over P1, which

can be identified with the cotangent bundle of P1.

Proposition 2.1. Given the global section σ0 : P
1 → J , there is an asso-

ciated holomorphic mapping

f0 : OP1(−2) → J#
0 ,(2.1)

satisfying J ◦ f0 = π such that restricted to a fiber, this mapping induces a
group homomorphism, with kernel equal to Z⊕ Z, Z, or {0}. Furthermore,

f∗0Ω = Ωcan(2.2)

where Ω is a nonzero holomorphic (2, 0)-form on J , and Ωcan is the canon-
ical holomorphic (2, 0)-form on OP1(−2) ∼= T ∗P1.
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Proof. The image of the section is a submanifold Σ = σ0(P
1) ⊂ J . To iden-

tify the normal bundle of Σ, use the adjunction formula

KΣ = (KJ )|Σ ⊗NΣ(2.3)

but the canonical bundle of J#
0 is trivial, so NΣ

∼= KΣ
∼= OP1(−2). Then we

get f0 : OP1(−2)Σ ∼= NΣ → J#
0 by the fiberwise Lie group exponential map.

The second statement is proved in [22, Proposition 7.2]. □

2.2. Construction of semi-flat metrics

By definition, f0 : OP1(−2) → J#
0 , maps the zero section of OP1(−2) to the

global holomorphic section σ0 : P
1 → J . By (2.2), we can write

(2.4) f∗0Ω = Ωcan = −dx ∧ dy,

where {x} is the canonical holomorphic fiber coordinate of the cotangent
bundle OP1(−2) and {y} is the holomorphic coordinate of the regular base
region P1 \ S ⊂ C. Note that our sign convention for Ω is opposite to that
of [24].

For each small constant δ > 0, Greene-Shapere-Vafa-Yau’s work in [21]
gives hyperkähler metrics gsfδ on the union of the regular fibers

(2.5) R ≡ J−1(P1 \ S) ⊂ J ,

which we can describe as follows.
The holomorphic periods are defined as τi(y) =

∫
γi
dx, where γi are a

basis of the first homology of the torus fiber, i = 1, 2. Note that this depends
on the choice of basis, so we will consider these as multi-valued functions.
After exchanging γ1 with γ2 if necessary, we assume that Im( τ2τ1 ) > 0. In the
above coordinates, the left action of (m,n) ∈ Γ ≡ Z⊕ Z on the regular part
is given by

(2.6) (m,n) · (y, x) ≡ (y, x+mτ1(y) + nτ2(y)).

For each δ > 0, let

W ≡ δ

Im(τ̄1τ2)
,(2.7)

b ≡ −W
δ

(
Im(τ2x̄)∂yτ1 + Im(τ̄1x)∂yτ2

)
,(2.8)
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then Greene-Shapere-Vafa-Yau’s semi-flat metric with bounded diameter is
the metric gsfδ associated to the Kähler form and holomorphic 2-form

ωsf
δ =

√
−1

2
· δ ·

(
W (dx+ bdy) ∧ dx+ bdy +W−1dy ∧ dȳ

)
,(2.9)

Ωδ = −δ · dx ∧ dy = δΩ.(2.10)

Remark 2.2. The semi-flat metric is independent of the choice of γ1, γ2,
and the choice of local holomorphic coordinate y.

Let x = x1τ1(y) + x2τ2(y) for x1, x2 ∈ R/Z, then the Kähler form can
be rewritten as follows. First, (2.8) can be simplified as

b = − 1

Im(τ̄1τ2)

(
x1 Im(τ2τ̄1)∂yτ1 + x2 Im(τ̄1τ2)∂yτ2

)
(2.11)

= −(x1 · ∂yτ1 + x2 · ∂yτ2),

which implies dx+ bdy = τ1(y)dx1 + τ2(y)dx2. So ω
sf
δ can be simplified as

ωsf
δ =

√
−1

2
· δ ·

(
W (τ1(y)dx1 + τ2(y)dx2) ∧ τ1(y)dx1 + τ2(y)dx2(2.12)

+W−1dy ∧ dȳ
)

= δ2 · dx1 ∧ dx2 +
√
−1

2
· Im(τ̄1τ2)dy ∧ dȳ.

The holomorphic volume form Ωδ is expressed as

Ωδ = −δ ·
(
τ1(y)dx1 + τ2(y)dx2

)
∧ dy.(2.13)

It is easy to verify that both ωsf
δ and Ωδ are Γ-invariant and hence they

descend to the region R. We will use the same notation for these descended
forms.

Notice that there are constants C0 > 0 independent of δ > 0 such that

1

C0
≤ Diamgsf

δ
(R) ≤ C0(2.14)

Area(C/Γ) = δ2,(2.15)

where C/Γ ∼= T2 is the regular torus fiber.
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Definition 2.3. The McLean metric is the Riemannian metric gML on
P1 \ S associated to the Kähler form

ωML =

√
−1

2
· Im(τ̄1τ2)dy ∧ dȳ.(2.16)

The induced distance function on P1 is denoted by dML.

We refer the reader to [22, 30, 38] for more details about the McLean
metric. Note that as δ → 0, (J \ J−1(S), gsfδ ) converges to (P1 \ S, gML) in
the Gromov-Hausdorff distance.

2.3. Rescaling and equivariant convergence

The semi-flat metrics gsfδ constructed in Section 2.2 are hyperkähler and
collapsing with bounded curvatures away from the singular fibers. For our
purpose, we need to take a closer look at the convergence of the metrics
and the lattices by unwrapping the collapsing torus fibers. To describe this,
we will use a standard notion, called equivariant Gromov-Hausdorff conver-
gence. We refer the readers to [19, Section 3] for other definitions and more
details.

For j ∈ Z+, let (M
n
j , gj , pj) be a sequence of Riemannian manifolds with

|Rmgj | ≤ 1 such that

(2.17) (Mn
j , gj , pj)

GH−−→ (Xk
∞, d∞, p∞),

where Xk
∞ is a k-dimensional Alexandrov space, then there exists some uni-

form constant s0 = s0(n, p∞) > 0 such that we have the following diagram

(2.18)
(
B̂s0(pj), ĝj ,Γj , p̂j

)
eqGH

//

prj
��

(
Y n
∞, ĝ∞,Γ∞, p̂∞

)

pr∞
��(

Bs0(pj), gj

)
GH

//

(
Bs0(p∞), d∞

)

and the local Riemannian universal covering map prj : (B̂s0(pj), ĝj)→Bs0(pj)
converges to the submetry pr∞ : Y n

∞ → Γ∞\Y n
∞ ≡ Bs0(p∞). In the above

diagram, Γj ≡ π1(Bs0(pj)), and the limiting group Γ∞ is a closed subgroup
in Isom(Y n

∞). The equivariant convergence means that the isometry actions

of Γj on B̂s0(pj) converge to the isometry action of Γ∞ on Y n
∞ with respect
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to their Gromov-Hausdorff convergence. Moreover, the local universal covers

(B̂s0(pj), ĝj , p̂j) are non-collapsing and hence C1,α-converge to the manifold
Y n
∞ for any α ∈ (0, 1).

Next, we will realize the above picture for the semi-flat metrics gsfδ under
the rescaled lattice Γδ ≡ (δZ)⊕ (δZ). First, let xδ,1 ≡ δx1 and xδ,2 ≡ δx2.
Then

(2.19) xδ ≡ δx = τ1(y)xδ,1 + τ2(y)xδ,2.

The lattice Γδ gives a left action on C× C as follows,

(2.20) (δm, δn) · (y, xδ) ≡
(
y, xδ + δm · τ1(y) + δn · τ2(y)

)
.

Let us recall that the semi-flat Kähler form and the corresponding holomor-
phic volume form are given by

ωsf
δ = dxδ,1 ∧ dxδ,2 +

√
−1

2
· Im(τ̄1τ2)dy ∧ dȳ,(2.21)

Ωδ = −
(
τ1(y)dxδ,1 + τ2(y)dxδ,2

)
∧ dy.(2.22)

One can check that both ωsf
δ and Ωδ are Γδ-invariant and they descend to

the regular region of the K3 surface R ≡ F−1(P1 \ S) ⊂ J , still denoted by
ωsf
δ and Ωδ for convenience.

Notice that the Kähler form ωsf
δ and the holomorphic 2-form Ωδ are

written in coordinates (xδ, y) on the cotangent bundle π : OP1(−2) → P1.
In the following, we will view ωsf

δ and Ωδ as 2-forms on the local universal
covering space of R ⊂ J . To see this, take a ball Bs(p) ⊂ P1 which is diffeo-
morphic to a 2-disc D ⊂ C. Using the holomorphic map f0 : OP1(−2) → J#

0 ,
there is an open subset Vs ≡ π−1(Bs(p)) ⊂ OP1(−2) which is biholomorphic
to Bs(p)× C and naturally gives a universal covering map

(2.23) prδ : Vs −→ J−1(Bs(p)).

Now the equivariant Gromov-Hausdorff convergence diagram in our context
reads as follows,

(2.24)
(
Vs, g

sf
δ ,Γδ

)
eqGH

//

prδ
��

(
Y, gY ,Γ0

)

pr0
��(

J−1(Bs(p)), g
sf
δ,J
)

δ→0

GH
//

(
Bs(p), dML

)
,
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where the limiting group Γ0 = R⊕ R acts isometrically and freely on the 4-
manifold Y. In the above diagram, due to the elliptic regularity for Einstein
equations in the non-collapsed context, the metrics gsfδ on the local universal
covers converge to the limiting metric gY in the Ck-topology for any k ∈ Z+.

To finish this section, we carry out some local computations for the
semi-flat metrics, which will be used for the weighted analysis in our later
arguments. Let η ∈ Ω1(J ) be a real differential 1-form such that η can be
written as

η = f (y)dy + f (ȳ)dȳ + f (3) · e3 + f (4) · e4(2.25)

in the regular region of J , where y = y1 +
√
−1y2,

e1 =
√

Im(τ̄1τ2)dy1,(2.26)

e2 =
√

Im(τ̄1τ2)dy2,(2.27)

e3 =
1√

Im(τ̄1τ2)
(Re(τ1)dxδ,1 +Re(τ2)dxδ,2),(2.28)

e4 =
1√

Im(τ̄1τ2)
(Im(τ1)dxδ,1 + Im(τ2)dxδ,2).(2.29)

Since η is a real 1-form, so it holds that f (ȳ) = f (y). Let us define

e(x) ≡ e3 +
√
−1e4 =

1√
Im(τ̄1τ2)

(τ1 · dxδ,1 + τ2 · dxδ,2),(2.30)

e(x) ≡ e3 −
√
−1e4 =

1√
Im(τ̄1τ2)

(τ̄1 · dxδ,1 + τ̄2 · dxδ,2)),(2.31)

so that η can be represented as

(2.32) η = f (y)dy + f (ȳ)dȳ +Re(F (x) · e(x)),

where F (x) ≡ f (3) −
√
−1f (4). Also it is straightforward that the coframe

{e1, e2, e3, e4} is a standard hyperkähler basis such that

ωsf
δ = e1 ∧ e2 + e3 ∧ e4,(2.33)

Ωδ = (e1 +
√
−1e2) ∧ (e3 +

√
−1e4).(2.34)

Lemma 2.4. Let the real differential 1-form η ∈ Ω1(J ) satisfy the repre-
sentation (2.25) in the regular region. If f (y), f (ȳ), f (3), f (4) are functions
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depending only on y, then the following local formulas of d+η and d∗η hold:

d+η = (∂yf
(ȳ) − ∂̄yf

(y))(dy ∧ dȳ)+(2.35)

+ Re

(
∂y(
√

Im(τ̄1τ2) · F (x))√
Im(τ̄1τ2)

dy ∧ e(x)
)
,

d∗η = − 2

Im(τ̄1τ2)
(∂̄yf

(y) + ∂yf
(ȳ)),(2.36)

where ξ+ ≡ (ξ + ∗ξ)/2 for any 2-form ξ, d+η ≡ (dη)+, d∗ is the L2-adjoint
of d, all computed with respect to the metric gsfδ .

Proof. First, we compute d+η. Notice that the coefficients of η depends only
on y so that we have

dη = (∂yf
(ȳ) − ∂̄yf

(y))(dy ∧ dȳ) + Re(d(F (x) · e(x)))(2.37)

= (∂yf
(ȳ) − ∂̄yf

(y))(dy ∧ dȳ)

+ Re

(
d

(
F (x)

√
Im(τ̄1τ2)

·
√

Im(τ̄1τ2) · e(x)
))

= (∂yf
(ȳ) − ∂̄yf

(y))(dy ∧ dȳ)

+ Re

(
F (x)

√
Im(τ̄1τ2)

· d(
√

Im(τ̄1τ2) · e(x))

+
√

Im(τ̄1τ2)∂y

(
F (x)

√
Im(τ̄1τ2)

)
dy ∧ e(x)

+
√

Im(τ̄1τ2)∂̄y

(
F (x)

√
Im(τ̄1τ2)

)
dȳ ∧ e(x)

)
.

Now we are ready to compute the self-dual part of dη. One can verifies that
dy ∧ e(x) is self-dual and dȳ ∧ e(x) is anti-self-dual, so it holds that

d+η = (∂yf
(ȳ) − ∂̄yf

(y))(dy ∧ dȳ)(2.38)

+ Re

(
√

Im(τ̄1τ2)∂y

(
F (x)

√
Im(τ̄1τ2)

)
dy ∧ e(x)

)

+Re

(
F (x)

√
Im(τ̄1τ2)

· d+(
√

Im(τ̄1τ2) · e(x))
)
.
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The next is to simplify the third term in (2.38). By (2.30), it follows that

d(
√

Im(τ̄1τ2) · e(x)) = ∂yτ1dy ∧ dxδ,1 + ∂yτ2dy ∧ dxδ,2.(2.39)

By (2.30) and (2.31)

dxδ,1 = − 1

2
√
−1 ·

√
Im(τ̄1τ2)

(τ̄2e
(x) − τ2e(x)),(2.40)

dxδ,2 =
1

2
√
−1 ·

√
Im(τ̄1τ2)

(τ̄1e
(x) − τ1e(x)).(2.41)

Therefore,

d(
√

Im(τ̄1τ2) · e(x))(2.42)

=
1

2
√
−1 ·

√
Im(τ̄1τ2)

(
(τ̄1∂yτ2 − τ̄2∂y τ̄1)dy ∧ e(x)

+ (τ2∂yτ1 − τ1∂yτ2)dy ∧ e(x)
)

=
∂y Im(τ̄1τ2)√

Im(τ̄1τ2)
dy ∧ e(x)

+
1

2
√
−1 ·

√
Im(τ̄1τ2)

(τ2∂yτ1 − τ1∂yτ2)dy ∧ e(x),

where we used the property that τ1 and τ2 are holomorphic in y. Since
dy ∧ e(x) is self-dual and dy ∧ e(x) is anti-self-dual, so we have

d+(
√

Im(τ̄1τ2) · e(x)) =
∂y Im(τ̄1τ2)√

Im(τ̄1τ2)
dy ∧ e(x).(2.43)

Finally, we have

d+η = (∂yf
(ȳ) − ∂̄yf

(y))(dy ∧ dȳ)+(2.44)

+ Re

(
(
√

Im(τ̄1τ2)∂y

(
F (x)

√
Im(τ̄1τ2)

)

+
F (x) · ∂y Im(τ̄1τ2)

Im(τ̄1τ2)
)dy ∧ e(x)

)

= (∂yf
(ȳ) − ∂̄yf

(y))(dy ∧ dȳ)+(2.45)

+ Re

(
∂y(
√

Im(τ̄1τ2) · F (x))√
Im(τ̄1τ2)

dy ∧ e(x)
)
.
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Next, we compute the term d∗η. To begin with, it is straightforward that

dvol = e1 ∧ e2 ∧ e3 ∧ e4 = Im(τ̄1τ2)dy1 ∧ dy2 ∧ dxδ,1 ∧ dxδ,2,(2.46)

∗ (dy) = −
√
−1dy ∧ e3 ∧ e4 = −

√
−1dy ∧ dxδ,1 ∧ dxδ,2,(2.47)

∗ (dȳ) =
√
−1dȳ ∧ e3 ∧ e4 =

√
−1dȳ ∧ e3 ∧ dxδ,1 ∧ dxδ,2,(2.48)

∗ (e3) = e1 ∧ e2 ∧ e4 =
√
−1

2
Im(τ̄1τ2) · dy ∧ dȳ ∧ e4,(2.49)

∗ (e4) = −e1 ∧ e2 ∧ e3 = −
√
−1

2
Im(τ̄1τ2) · dy ∧ dȳ ∧ e3.(2.50)

So it follows that

∗η =
√
−1 · (f (ȳ)dȳ − f (y)dy) ∧ dxδ,1 ∧ dxδ,2(2.51)

+

√
−1

2
f (3) · Im(τ̄1τ2) · dy ∧ dȳ ∧ e4

−
√
−1

2
f (4) · Im(τ̄1τ2) · dy ∧ dȳ ∧ e3,

and hence

d ∗ η =
√
−1 · (∂yf (ȳ) + ∂̄yf

(y)) · dy ∧ dȳ ∧ dxδ,1 ∧ dxδ,2
= 2 · (∂yf (ȳ) + ∂̄yf

(y)) · dy1 ∧ dy2 ∧ dxδ,1 ∧ dxδ,2.(2.52)

Therefore,

d∗η = − ∗ d ∗ η = − 2

Im(τ̄1τ2)
(∂̄yf

(y) + ∂yf
(ȳ)),(2.53)

and the proof is complete. □

3. Semi-flat metric on a general elliptic K3

In the previous section, we have described the Greene-Shapere-Vafa-Yau’s
semi-flat metric gsfδ on J . In this section, we translate ωsf

δ by local sections
to get a semi-flat Kähler form ωA

δ on K. In general, K does not have any
global holomorphic section. However, it always admits a smooth section.

Theorem 3.1. Consider an elliptic K3 surface F : K → P1, not necessarily
with a holomorphic section. Then there exists a C∞ section σ∞ : P1 → K#.

Proof. This theorem is essentially proved in [18]. By [18, Lemma I.5.11], [18,
Theorem I.5.1] and the paragraph before [18, Theorem I.5.13], we know that
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the elliptic K3 surfaces with the same Jacobian J form a single deformation
equivalence class, with base parametrized by H2(J ,OJ ) = C. Then by [18,
Remark II.1.4 ], we know that there exists a C∞ section σ∞ : P1 → K#. □

In the following, we will let J : J → P1 be the associated Jacobian K3
surface. Then there exists a unique diffeomorphism map Ψ : K → J which
maps σ∞ to σ0, satisfies J ◦Ψ = F and maps each fiber analytically to an-
other fiber. Define K#

0 by replacing the singular fiber with just the compo-
nent of K# intersecting the section σ∞. We have the following analogue to
Proposition 2.1.

Corollary 3.2. Let F : K → P1 be any elliptic K3 surface. Consider the
C∞ mapping f : OP1(−2) → K#

0 , defined by f ≡ Ψ−1 ◦ f0, where f0 is as in
Proposition 2.1. Then

f∗Ω = Ωcan + π∗α,(3.1)

where Ω is a non-zero holomorphic (2, 0)-form on K, α is a smooth 2-form on
P1, and Ωcan is the canonical holomorphic (2, 0)-form on T ∗P1 ∼= OP1(−2).

Proof. This is proved in [22, Proposition 7.2]. □

Recall that there is a group structure on J# such that σ0 is the identity
element of this group action [34]. We choose a good open cover Ui of P

1 such
that each Ui contains at most one p ∈ S. Notice that Ui ∩ Uj is contractible
because Ui is a good cover, so we can find two periods τ1 and τ2 on each
Ui ∩ Uj . The next goal in this section is, given B ∈ H1(P1, R1J∗R), to find

σi ∈ C∞(Ui,J#
0 ) such that σi − σj ∈ H1(J−1(Ui ∩ Uj),R) represents B. To

make sense of this goal, we lift σi to sections si of OP1(−2) over Ui, and we
would like to write the difference on any Ui ∩ Uj as

(3.2) si − sj = aijτ1 + bijτ2,

where aij , bij ∈ R are constants. To view this difference as a Čech cocycle
with coefficients in the sheaf R1J∗R, for constants a, b ∈ R, and

(3.3) x = x1τ1 + x2τ2,

we choose the identification

aτ1 + bτ2 7→ [−bdx1 + adx2],(3.4)

where the right hand side is an element of H1(J−1(Ui ∩ Uj),R).
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If we can find such local smooth sections si, then L(si − sj)
∗ωsf

δ = ωsf
δ on

J−1(Ui ∩ Uj) by (2.12), where L(si)(s) = si + s is the group action. It implies
that L(si)

∗ωsf
δ is a well defined form on J because L(si)

∗ωsf
δ = L(sj)

∗ωsf
δ on

J−1(Ui ∩ Uj). We will define ωA
δ using this form.

Theorem 3.3 (Leray-Serre). There is a spectral sequence whose second
page is

Epq
2 = Hp(P1, RqJ∗R)(3.5)

and which converges to

Epq
∞ = Hp+q(J ,R).(3.6)

Furthermore, we have an exact sequence

(3.7)

0 E10
2 H1(J ,R) E01

2

E20
2 Ker{H2(J ,R) 7→ E02

2 } E11
2 E30

2 .

d2

Proof. This is standard, see for example [37]. The exact sequence (3.7) is
also known as the “seven-term exact sequence” associated to a converging
spectral sequence. □

We next analyze this exact sequence. First, H1(J ,R) = 0 since J is simply
connected. Also

E30
2 = H3(P1, J∗R) = 0(3.8)

because P1 has a good cover with all 4-fold intersections vanishing. Next,

E01
2 = H0(P1, R1J∗R) = 0,(3.9)

because this is equal to (R⊕ R)ρ (the group of invariants) where we view
ρ as a 2-dimensional real representation of π1, and this is easily seen to
vanish [47, Proposition 2.1]. Note that J∗R = R (this is R with the discrete
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topology), so we have

E20
2 = H2(P1,R) = R.(3.10)

The first mapping E20
2 to H2(J ,R) is just the pull-back

(3.11) J∗ : H2(P1,R) → H2(J ,R).

Therefore, the seven-term sequence yields a short exact sequence
(3.12)

0 R Ker{H2(J ,R) 7→ E02
2 } H1(P1, R1J∗R) 0.

J∗

Next, we have

E02
2 = H0(P1, R2J∗R)(3.13)

and the mapping from H2(J ,R) → H0(P1, R2J∗R) is described as follows.
Fix a finite good cover {Ui} of P1. An element of h ∈ H0(P1, R2J∗R) is a
0-cycle hi ∈ H2(J−1(Ui),R) such that hi = hj in H2(J−1(Ui ∩ Uj),R). The
mapping from H2(J ,R) to H0(P1, R2J∗R) is just ω 7→ ω|J−1(Ui). So the mid-
dle term is

K ≡ {[ω] ∈ H2(J ,R) : ω|J−1(Ui) = 0 ∈ H2(J−1(Ui),R)}.(3.14)

So we have arrived at the following.

Corollary 3.4. There is a short exact sequence

(3.15) 0 E K H1(P1, R1J∗R) 0,
J∗

where E ≡ H2(P1,R). Consequently,

H1(P1, R1J∗R) ∼= K/E.(3.16)

Remark 3.5. Note that the natural mapping from K to H1(P1, R1J∗R) is
to write ωi = dαi on J−1(Ui), and then map to the 1-cycle given by αi − αj

on Ui ∩ Uj , which is clearly an element of H1(J−1(Ui ∩ Uj),R).

Now we are ready to describe the construction of ωB
δ . First, recall that

by Corollary 3.2, there exists a diffeomorphism Ψ : K → J and a 2-form
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α ∈ H2(P1) such that F = J ◦Ψ and

(3.17) ΩK = Ψ∗ΩJ + F∗α.

Define

B =
{
B ∈ K/E

∣∣∣
∫

J
B ∧ ΩJ = −

∫

P1

α
}
.(3.18)

Note that
∫
J B ∧ ΩJ is well defined because for any β ∈ E = H2(P1,R), we

necessarily have
∫
J J∗(β) ∧ ΩJ = 0.

Let k1 denote the number of fibers with finite monodromy, k2 denote the
number of Iν fibers, and k3 denote the number of I∗ν′ fibers.

Proposition 3.6. The space B has dimension

dim(B) = 2k1 + k2 + 2k3 − 5 > 0.(3.19)

Proof. The dimension of H2(J ,R) is 22. The quotient by E reduces the
dimension by 1. Then the restriction

(3.20)

∫

J
B ∧ ΩJ = −

∫

P1

α

reduces the dimension by 1 again. The integral of ω vanishes on each regular
fiber, which reduces the dimension by another 1. For each Ui, we have the
restriction

(3.21) ω|J−1(Ui) = 0 ∈ H2(J−1(Ui),R),

but the vanishing of the integral of ω vanishes on each regular fiber is already
counted, so there are dimH2(J−1(Ui),R)− 1 restrictions left on each Ui, and
we have

(3.22) dim(B) = 22−
∑

i

(
dimH2(J−1(Ui),R)− 1

)
− 3.

Since the sum of the Euler characteristics of the singular fibers must be 24,
it follows that

(3.23) 22−
∑

i

(
dimH2(J−1(Ui),R)− 1

)
− 3 = 2k1 + k2 + 2k3 − 5.
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To see the strict inequality in (3.19), the Shioda-Tate formula implies that

ρ(J ) = 26− 2k1 − k2 − 2k3 + rank(MW(J )),(3.24)

where MW(J ) is the Mordell-Weil group of J and ρ(J ) is the Picard num-
ber, see [31, Chapter 11]. Since ρ(J ) ≤ 20, and rank(MW(J )) ≥ 0, this im-
plies the inequality

2k1 + k2 + 2k3 ≥ 6,(3.25)

so dim(B) > 0. □

Consider the exact sequence of sheaves

(3.26) 0 R1J∗R C∞(OP1(−2)) F 0,

where R1J∗R is the first direct image sheaf of the constant sheaf R on
J , which is identified as a subsheaf of C∞(OP1(−2)) using (3.4), and F is
the quotient sheaf C∞(OP1(−2))/R1J∗R. Since H1(P1, C∞(OP1(−2))) = 0,
the mapping from H0(P1, F ) to H1(P1, R1J∗R) is surjective. Therefore any
element B ∈ B has a preimage {si} in H0(P1, F ). So as mentioned above,
we can define ωA

δ ≡ Ψ∗L(si)∗ωsf
δ , which is well-defined on K.

We next want to compute L(si)
∗ωsf

δ − ωsf
δ . Write a section si as

(3.27) si = si,1τ1 + si,2τ2

locally. Then the 1-form ηi defined as

(3.28) ηi = δ2
(
si,1dx2 − si,2dx1 +

1

2
(si,1dsi,2 − si,2dsi,1)

)

is SL(2,Z) invariant and is therefore well defined on J−1(Ui \ S). By (2.12),

(3.29) L(si)
∗ωsf

δ − ωsf
δ = δ2d(x1 + si,1) ∧ d(x2 + si,2)− δ2dx1 ∧ dx2 = dηi.

In general, L(si)
∗ωsf

δ − ωsf
δ is singular near the singular fibers. However, we

can choose a smooth cut-off function χi supported in Ui such that χi = 1
near points in S, if there is any such point in Ui, and χi = 0 on J−1(Uj) for
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all j ̸= i. Then the form

(3.30) ωB
δ ≡ L(si)

∗ωsf
δ − ωsf

δ − d(χiηi)

is well-defined and smooth on J . Note also that, on J−1(Ui), we have

ωB
δ = d((1− χi)ηi),(3.31)

so ωB
δ belongs to K because (1− χi)ηi is smooth on J−1(Ui). We want to

compute the projection of ωB
δ to K/E. As mentioned in Remark 3.5 above,

the natural map from K to H1(P1, R1J∗R) = K/E is defined by choosing 1-
forms on each Ui as (1− χi)ηi and then taking the difference between them.
On Ui ∩ Uj , using (3.2), we have

ηi − ηj ≡ δ2
(
(si,1 − sj,1)dx2 − (si,2 − sj,2)dx1

)
mod {dy, dȳ}(3.32)

≡ δ2
(
aijdx2 − bijdx1

)
mod {dy, dȳ}.

So the de Rham class of ηi − ηj is represented by δ2(−bijdx1 + aijdx2). Using
the identification (3.4), we see that ωB

δ projects to δ2B in K/E.
We can also define ΩA

J as L(si)
∗ΩJ . Then ΩA

J is well defined. There
exists a 2-form ξ on P1 such that we get ΩA

J = ΩJ + J∗ξ. We then have

0 =

∫

J
ΩA
J ∧ (Ψ−1)∗ωA

δ(3.33)

=

∫

J
(ΩJ + J∗ξ) ∧ (ωsf

δ + ωB
δ ) = δ2

(∫

J
ΩJ ∧ B+

∫

P1

ξ

)
.

To see this, the first equality in (3.33) is true because (Ψ−1)∗ωA
δ and ΩA

J are
locally the pull back of a hyperkähler triple using the same map L(si). The
second equality in (3.33) is true because

∫

J
(ΩJ + J∗ξ) ∧ d(χiηi) = lim

r→0

∫

J−1{|y|=r}
(ΩJ + J∗ξ) ∧ χiηi(3.34)

= lim
r→0

∫

J−1{|y|=r}
ΩJ ∧ δ2(si,1dx2 − si,2dx1)

= lim
r→0

∫

J−1{|y|=r}
δ2sidx1 ∧ dx2 ∧ dy

= lim
r→0

∫

|y|=r
δ2sidy = 0
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assuming that y = 0 at the point in S ∩ Ui, if such point exists. The third
equality in (3.33) is true because

∫

J
ΩJ ∧ ωsf

δ = 0,

∫

J
J∗ξ ∧ ωsf

δ = δ2
∫

P1

ξ,

∫

J
J∗ξ ∧ ωB

δ = 0,(3.35)

and ωB
δ is a representative of δ2B. We conclude that

∫
P1 ξ =

∫
P1 α. Since

H2(P1,R) = R, [ξ] = [α] ∈ H2(P1,R). So

(3.36) [ΩA
J ] = [ΩJ + J∗ξ] = [ΩJ + J∗α] = [(Ψ−1)∗ΩK] ∈ H2(J ,R).

By the Torelli theorem for K3 surfaces [5, 46], we can define a complex
structure on K using Ψ∗ΩA

J , which is biholomorphic to the original complex
structure on K. Without loss of generality we may therefore assume that
this biholomorphism is the identity map and Ψ∗ΩA

J = ΩK because we can
always pull back forms and metrics using this biholomorphism. Then it is
natural to define ωA

δ as Ψ∗(L(si)∗ωsf
δ ) on F−1(Ui).

Remark 3.7. The 2-form ωA
δ is Kähler with respect to the original complex

structure on K and therefore determines a Riemannian metric gAδ .

4. Singular fibers with infinite monodromy

In the previous section, we have described a process to get a (1, 1)-form ωA
δ

on K using the 2-form ωsf
δ on J by ωA

δ = Ψ∗(L(si)∗ωsf
δ ). In this section, we

will give the construction to resolve singular fibers with infinite monodromy
of type Iν and I∗ν for ν ∈ Z+. The gluing construction near the singular fibers
with finite monodromy will be done in Section 5.

4.1. Resolving fibers of type Iν

We begin with the following lemma regarding the Green’s function with
multiple poles on a product flat manifold R2 × S1, which will be the key
input for the Gibbons-Hawking ansatz.

Lemma 4.1. Let (Q3, gQ3) be a product space Q3 ≡ R2 × S1 = R2 × R/Z
with the flat product Riemannian metric gQ3 ≡ du21 + du22 + du23. Given a
finite set P ≡ {p1, . . . , pν} ⊂ {0} × S1, there exists a unique Green’s function
Gν on R2 × S1 such that

1) −∆gQ3Gν = 2π
ν∑

i=1
δpi

.
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2) There are constants R > 0 and C > 0 such that

(4.1)
∣∣∣Gν(u)− ν log |u1 +

√
−1u2|−1

∣∣∣ ≤ Ce−2π·|u1+
√−1u2|

for any u = (u1, u2, u3) ∈ R2 × S1 satisfying dgQ3 (u, P ) ≥ R.

3) For any (u1, u2) ∈ R2,

(4.2)

∫

{(u1,u2)}×S1

(
Gν(u1, u2, u3)− ν log |u1 +

√
−1u2|−1

)
du3 = 0.

Proof. This is obtained using superposition of the Green’s functions in [24,
Lemma 3.1]. □

Next, let F : K → P1 be an elliptic K3 surface. Near a singular fiber F−1(p)
of Type Iν , there exists a local holomorphic section σi. We can choose a local
coordinate y on the base P1 \ S and a local coordinate x on the universal
cover of the T2-fiber which gives the holomorphic 2-form Ωcan = −dx ∧ dy.
Assume that y = 0 at p ∈ S and x = 0 on σi. Let τ1(y) and τ2(y) be the
two functions of periods, which are holomorphic in y. Assume that τ1 is
single-valued and τ2 is multi-valued. After replacing y by

∫ y
0 τ1(z)dz, we can

without loss of generality assume that τ1(y) = 1. Then

(4.3) τ2(y) =
ν

2π
√
−1

log |y|+ h(y)

for some holomorphic function h(y).
Throughout this section, for fixed ν ∈ Z+, we always relate the param-

eters 0 < δ ≪ 1 and T ≫ 1 by

(4.4) T = −ν log δ.

The following is an obvious generalization of [24, Proposition 3.2] to the case
of several monopole points, and the construction is known as the Gibbons-
Hawking ansatz.

Proposition 4.2 (Gibbons-Hawking ansatz). Let Q3 ≡ R2 × S1 be the
product space equipped with the flat metric gQ3 ≡ gR2 ⊕ gS1 such that
DiamgQ3 (S

1) = 1. Given a set of finite poles P ≡ {p1, . . . , pν} ⊂ {02} × S1,
let GP be the Green’s function given by Lemma 4.1. For any sufficiently



✐

✐

“9-Viaclovsky” — 2021/1/7 — 1:07 — page 2042 — #24
✐

✐

✐

✐

✐

✐

2042 G. Chen, J. Viaclovsky, and R. Zhang

large constant T = −ν log δ (equivalently sufficiently small δ), let us define

(4.5) VT (u1, u2, u3) ≡ T +GP (u1, u2, u3) + 2π Imh
(
δ(u1 +

√
−1u2)

)
,

where h is the holomorphic function in (4.3). Fix a small constant δ0 > 0 of
definite size. Let O be the set

(4.6) O ≡
{
u ∈ Q3

∣∣∣|δ(u1 +
√
−1u2)| ≤ 2δ0

}
⊂ Q3.

Then the following holds:

1) VT > 1 on O \ P . Moreover, there is a principal S1-bundle map

(4.7) S1 → N̊ 4
ν

π−→ O \ P

with a S1-connection 1-form θ satisfying the monopole equation

(4.8) dθ = ∗Q3 ◦ dVT .

Recall that a 1-form θ on N̊ 4
ν is called a connection 1-form if it is

S1-invariant and

(4.9)

∫

π−1(u)
θ = 2π

for all u ∈ O \ P .
2) The above connection 1-form θ induces a hyperkähler triple

ωδ,ν ≡ 1

2π
(du3 ∧ θ + VTdu1 ∧ du2)(4.10)

ω2,δ,ν ≡ 1

2π
(du1 ∧ θ + VTdu2 ∧ du3)(4.11)

ω3,δ,ν ≡ 1

2π
(du2 ∧ θ + VTdu3 ∧ du1),(4.12)

with associated incomplete Riemannian metric

gδ,ν ≡ 1

2π
(VT · (du21 + du22 + du23) + V −1

T θ2)(4.13)

on the total space N̊ 4
ν .

3) The hyperkähler metric gδ,ν extends smoothly to the closure N 4
ν = N̊ 4

ν .
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Given a parameter 0 < δ ≪ 1, the hyperkähler metrics gδ,ν given in the
above proposition will be called the multi-Ooguri-Vafa metric in our discus-
sions throughout the paper. We also make the remark that there is some
constant C > 0 such that for sufficiently large T = −ν log δ,

(4.14)
1

Cν
· δ−1 ≤ Diamgδ,ν (N 4

ν ) ≤ Cν · δ−1.

Based on the above construction, we are ready to write down a family of
collapsing incomplete Gibbons-Hawking metrics with prescribed scales for
the collapsing T2-fibers. For sufficiently small δ, let us rescale the Gibbons-
Hawking metric gδ,ν by g♭δ,ν ≡ δ2 · gδ,ν . The hyperkähler triple is rescaled
by

(4.15) (ω♭
δ,ν , ω

♭
2,δ,ν , ω

♭
3,δ,ν) ≡ δ2(ωδ,ν , ω2,δ,ν , ω3,δ,ν).

Then with respect to the rescaled metric g♭δ,ν , there is some constant Cν > 0
such that for all δ > 0,

(4.16)
1

Cν
≤ Diamg♭

δ,ν
(N 4

ν ) ≤ Cν .

The function y = δ(u1 +
√
−1u2) describes a map from N 4

ν to a small neigh-
borhood of 0 in C, which is an elliptic fibration, and moreover, the area of
each fiber using the rescaled metric g♭δ,ν is

δ2

2π

∫

π−1({(u1,u2)}×S1)
(VTdu1 ∧ du2 + du3 ∧ θ)(4.17)

= δ2
∫

{(u1,u2)}×S1

du3 = δ2.

As in [24], after the choice of a local holomorphic section σN 4
ν
on N 4

ν , there
exists a local coordinate x such that

(4.18) − δdx ∧ dy = ω♭
2,δ,ν +

√
−1ω♭

3,δ,ν .

and x = 0 on the image of σN 4
ν
. By [24, Proposition 3.2], for a suitable choice

of θ, the two periods are 1 and τ2(y) =
ν

2π
√−1

log |y|+ h(y) because

(4.19)
1

2π

∫

{(u1,u2)}×S1

VTdu3 = Im τ2(y).
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So the periods on N 4
ν are the same as the periods on K, and the map

(xN 4
ν
, yN 4

ν
) 7→ (xK, yK) is biholomorphic from N 4

ν to an open subset of K
which maps σN 4

ν
to σi and maps the 2-form ω♭

2,δ,ν +
√
−1ω♭

3,δ,ν to the given
holomorphic 2-form Ω on K.

We remark that the choice of σN 4
ν
is not unique. By [24, Lemma 4.3],

there exists a choice of σN 4
ν
such that for the biholomorphic map induced

by σN 4
ν
,

(4.20) ωA
δ − ω♭

δ,ν =
√
−1∂∂̄φ♭

δ,ν

for some function φ♭
δ,ν on {0 < |y| < 2δ0} = F−1(B2δ0(p)) ⊂ K.

Now we return to the elliptic K3 surface F : K → P1 and assume that
there is singular point p ∈ S such that the singular fiber F−1(p) is of Type
Iν for some ν ∈ Z+. For each sufficiently small parameter 0 < δ ≪ 1, around
the above singular fiber F−1(p), we will glue the semi-flat Kähler forms
ωA
δ with the rescaled multi-Ooguri-Vafa Kähler forms ω♭

δ,ν constructed in
Proposition 4.2. This is analogous to the I1-case in [24].

Proposition 4.3 (Approximate metrics around Iν-fibers). Let F−1(p)
⊂ K be a singular fiber of Type Iν for ν ∈ Z+. For each sufficiently small
parameter 0 < δ ≪ 1 and δ0, around the singular fiber F−1(p), the semi-
flat Kähler form ωA

δ induced by F : K → P1 can be glued with an incomplete
multi-Ooguri-Vafa Kähler form ω♭

δ,ν ≡ δ2 · ωδ,ν on N 4
ν such that the glued

Kähler form ωB
δ on V4δ0 ≡ F−1(B4δ0(p)) ⊂ K is constructed as follows. Let

φ♭
δ,ν be the potential on F−1(B4δ0(p) \ {p}) satisfying

(4.21) ωA
δ = ω♭

δ,ν +
√
−1∂∂̄φ♭

δ,ν .

Then

ωB
δ ≡





ωA
δ in F−1(A2δ0,4δ0(p)),

ω♭
δ,ν +

√
−1∂∂̄(χ · φ♭

δ,ν) in F−1(Aδ0,2δ0(p)),

ω♭
δ,ν in F−1(Bδ0(p)),

(4.22)

where χ is a cutoff function satisfying

χ =

{
0, in F−1(Bδ0(p)),

1, in K \ F−1(B2δ0(p)).
(4.23)
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4.2. Resolving fibers of type I∗
ν

In this subsection, we will resolve the singular fibers of Type I∗ν (ν ∈ Z+).
Let F : K → P1 be an elliptic K3 surface such that the base P1 has a finite
singular set S. Let Ω be a fixed holomorphic 2-form on K and assume that
there is a singular fiber F−1(p) of Type I∗ν for some p ∈ S and ν ∈ Z+.

First, we describe the orbifold structure induced by the I∗ν-singular fiber
F−1(p). By [34], for some δ0 ≪ 1, there is an elliptic surface

F̃ : K̃ −→ B2δ0(p) ⊂ P1(4.24)

with a local section σ̃i : B2δ0(p) → K̃ such that K is locally biholomorphic
to Res(K̃/Z2), the resolution of K̃/Z2, near the singular fiber F−1(p). More
precisely, let (x̃, ỹ) be the local coordinates of K̃ such that ỹ is the local
coordinate on the base and x̃ is the local coordinate on the fiber. Assume
that {ỹ = 0} corresponds to the singular fiber and {x̃ = 0} gives the section
σ̃i. Then the Z2-action on K̃ is given by (x̃, ỹ) 7→ (−x̃,−ỹ) so that there are
four fixed points

Σ0 =
{
(0, 0),

(
τ̃1(0)/2, 0

)
,
(
τ̃2(0)/2, 0

)
,
(
(τ̃1(0) + τ̃2(0))/2, 0

)}
(4.25)

⊂ K̃.

Hence there is a biholomorphism

(4.26) R : Res(K̃/Z2) −→ V,

from the resolution of the four orbifold singular points on K̃/Z2 to some
neighborhood V of F−1(p).

We remark that given the holomorphic 2-form Ω on K, the pullback R∗Ω
on Res(K̃/Z2) naturally induces a holomorphic 2-form Ω̃ on the covering
space K̃. Indeed, denote by ΣZ2

the projection of the fixed point set Σ0

in (4.25) under the quotient K̃ → K̃/Z2. So there is map

(4.27) S : (K̃/Z2) \ ΣZ2
−→ Res(K̃/Z2)

such that the puncture (K̃/Z2) \ ΣZ2
is biholomorphic to its image under S.

Now the pullback holomorphic 2-form S∗R∗Ω on the puncture (K̃/Z2) \ ΣZ2

can be extended to a holomorphic 2-form Ω̃ on the Z2-lifting J̃ . Meanwhile,
using the above pullback operations, for each 0 < δ < 1, the semi-flat metric
gAδ on K induces a Z2-invariant semi-flat metric g̃Aδ on K̃ whose area of each
regular fiber is δ2.
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Now we are ready to describe the construction of the orbifold Gibbons-
Hawking metrics on K̃/Z2. Denote by Q3 = R2 × S1 the product space with
the flat product metric gQ3 = du21 + du22 + du23. Let ι : R

2 × S1 → R2 × S1

be the involution map given by

(4.28) ι : (u1, u2, u3) 7→ (−u1,−u2,−u3),

which has two fixed points q− = (0, 0, 0) and q+ = (0, 0, 12).
Choose a finite set of disjoint poles

P = {p1, p̂1, p2, p̂2, . . . , pν , p̂ν} ∈ ({02} × S1) \ {q−, q+}(4.29)

which satisfies ι(pi) = p̂i for any 1 ≤ i ≤ ν. By Proposition 4.2, we obtain a
multi-Ooguri-Vafa metric

(4.30) gδ,2ν =
1

2π
(VT (du

2
1 + du22 + du23) + (VT )

−1θ2)

on the completion N 4
2ν = N̊ 4

2ν as in the I2ν case, where

(4.31) S1 → N̊ 4
2ν

π−→ O \ P ⊂ Q3

is a principal U(1)-bundle. Then the two periods are 1 and τ̃2(δ(u1+
√
−1u2))

after replacing θ by θ + cdu3 if necessary (as in [24, Proposition 3.2]). The
group U(1) acts on N̊ 4

2ν from the right, so we will denote this action by Rγ

for γ ∈ U(1). Recall that a connection θ ∈ Ω1(N̊ 4
2ν) is a real 1-form on N̊ 4

2ν

such that
√
−1θ takes values in the Lie algebra u(1) ≡

√
−1 · R. Now the

connection satisfies the following properties:

1)
√
−1θ restricted to the fiber π−1(u) is

√
−1 · du4, where u4 is a local

coordinate on U(1) = R/2πZ.

2) R∗
γθ = θ. Since the group is abelian, the curvature 2-form of the con-

nection is given by Ωθ = dθ ∈
√
−1H2(N̊ 4

2ν ,R), and this forms de-
scends to O \ P .

Note that we have chosen the Green’s function VT to be invariant under ι.
Then

ι∗Ωθ = ι∗(∗Q3 ◦ dVT ) = − ∗Q3 ◦dVT = −Ωθ,(4.32)

since ι is orientation-reversing on O \ P .
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Since N̊ 4
2ν is a U(1)-bundle, it has a first Chern class c1(N̊ 4

2ν) in the
cohomology group H2(O \ P ;Z). It is well known that N̊ 4

2ν is determined up
to smooth bundle equivalence by c1(N̊ 4

2ν). By Chern-Weil theory, the image
of c1(N̊ 4

2ν) in
√
−1H2(O \ P ;R) is cohomologous to Ωθ, for any connection

θ on N̊ 4
2ν .

Consider the pull-back bundle ι∗N̊ 4
2ν . By naturality,

c1(ι
∗N̊ 4

2ν) = ι∗c1(N̊ 4
2ν) = ι∗[Ωθ] = −[Ωθ] = −c1(N̊ 4

2ν).(4.33)

Consequently, there exists a bundle equivalence A : ι∗N̊ 4
2ν → N̊ 4

2ν , which is

an equivariant map covering the identity map on O \ P , and N̊ 4
2ν is the con-

jugate bundle. Denote by π2 the natural map π2 : ι
∗N̊ 4

2ν → N̊ 4
2ν , and choose

an identification C : N̊ 4
2ν → N̊ 4

2ν , which is fiberwise complex conjugation.
This is summarized in the following diagram.

(4.34)

N̊ 4
2ν

C−−−−→ N̊ 4
2ν

A−1

−−−−→ ι∗N̊ 4
2ν

π2−−−−→ N̊ 4
2νy

y
y

yπ

O \ P Id−−−−→ O \ P Id−−−−→ O \ P ι−−−−→ O \ P,

The pull-back

θ′ = C∗(A−1)∗π∗2θ(4.35)

is a connection on π : N̊ 4
2ν → O \ P . Since π2 ◦A−1 ◦ C covers ι, we have

Ωθ′ = dθ′ = d
(
(π2 ◦A−1 ◦ C)∗θ

)
(4.36)

= (π2 ◦A−1 ◦ C)∗Ωθ = ι∗(Ωθ) = −Ωθ.

This shows that d(θ′ + θ) = 0. Since θ′ + θ descends to O \ P , we can write

θ′ = −θ −
√
−1 · π∗df + c

√
−1π∗(du3),(4.37)

for some constant c ∈ R, and f : O \ P → R, sinceH1(O \ P ;R) is generated
by du3.

Define a bundle map B : N̊ 4
2ν → N̊ 4

2ν by Bv = v · e
√−1f (right action).

Choosing a local fiber coordinate u4 and writing θ′ as θ′1 +
√
−1 · du4, we
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have

B∗θ′ = B∗(θ′1 +
√
−1 · du4)(4.38)

= θ′1 +
√
−1B∗du4

= θ′1 +
√
−1(du4 + π∗df)

= θ′ +
√
−1 · π∗df = −θ + c

√
−1π∗(du3)

Therefore, the mapping

Ψ = π2 ◦A−1 ◦ C ◦B(4.39)

is a mapping covering ι which satisfies

Ψ∗θ = −θ + c
√
−1π∗du3.(4.40)

Next, notice that Ψ2 : N̊ 4
2ν → N̊ 4

2ν is a bundle mapping covering the identity,
so we must have

Ψ2(v) = v · e
√−1h(4.41)

for some function h : O \ P → R. As above, this implies that

(Ψ2)∗θ = θ +
√
−1π∗dh.(4.42)

But from (4.40), we have

(Ψ2)∗θ = Ψ∗(Ψ∗θ) = Ψ∗(−θ + c
√
−1π∗du3)(4.43)

= θ − c
√
−1π∗du3 + c

√
−1Ψ∗(π∗du3)

= θ − c
√
−1π∗du3 + c

√
−1π∗ι∗du3

= θ − 2c
√
−1π∗du3.

We conclude that

π∗dh = −2cπ∗du3.(4.44)

Equivalently,

π∗(dh+ 2cdu3) = 0.(4.45)

Since π∗ is surjective at any point on N̊ 4
2ν , this implies that

dh+ 2cdu3 = 0(4.46)
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on O \ P , but since H1(O \ P ;R) is generated by du3, we conclude that
c = 0, and dh = 0, so h = h0 = constant, since O \ P is connected.

We have shown that

Ψ∗θ = −θ(4.47)

Ψ2(v) = v · e
√−1h0 .(4.48)

The first equation shows that Ψ is an isometry of gδ,2ν . Moreover, Ψ fixes
the complex structures I, J,K. We next show that h0 = 0, i.e., Ψ is an
involution.

Proposition 4.4. The lifting Ψ satisfies Ψ2 = Id.

Proof. Let u4 be a local coordinate on the S1 = R/2πZ fibration. Restrict
to the fiber over q− = (0, 0, 0). Then Ψ(0, 0, 0, u4) = (0, 0, 0, C − u4) for a
constant C. But then Ψ2(0, 0, 0, u4) = (0, 0, 0, u4), which means that the
constant h0 = 0. □

With the above involution Ψ on N 4
2ν , we are able to define the orbifold

Gibbons-Hawking metrics on the Z2-quotient. For simplicity, first we study
the metric gδ,2ν on N 4

2ν at large scales such that

(4.49) c0 · δ−1 ≤ Diamgδ,2ν (N 4
2ν) ≤ c̄0 · δ−1.

Notice that there are four fixed points {q1, q2, q3, q4} under Ψ ∈ Z2 such that

(4.50) π(q1) = π(q2) = q−, π(q3) = π(q4) = q+.

Let Z2 = {Id,Ψ}, and since the quotient N 4
2ν/Z2 is an elliptic fibration over

the orbifold B2δ0/δ(0
2)/Z2 (the radius is given in Proposition 4.2), by [34],

there exists a local holomorphic section. Its preimage is a Z2-invariant lo-
cal holomorphic section. By the proof of [24, Lemma 4.3], there exists an-
other Z2-invariant local holomorphic section such that if we identify K̃ with
N 4

2ν using this new holomorphic section, then ω̃A
δ − ωδ,2ν =

√
−1∂∂̄φδ,2ν for

some function φδ,2ν on {0 < |ỹ| < 2δ0}. After replacing φδ,2ν by the average
1
2(φδ,2ν +Ψ∗φδ,2ν), we can assume that φδ,2ν is Z2-invariant. So it descends

to a biholomorphic map between the orbifolds K̃/Z2 and N 4
2ν/Z2, then the

Ooguri-Vafa metric gδ,2ν descends to an orbifold hyperkäher metric ǧδ,ν on
N 4

2ν/Z2.
Now the hyperkähler orbifold (N 4

2ν/Z2, ǧδ,ν), as the Z2-quotient of the
smooth Gibbons-Hawking region (N 4

2ν , gδ,2ν), has 4 orbifold singularities
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with tangent cone isometric to R4/Z2. Correspondingly, the orbifold Kähler
form ω̌δ,ν is related to the semi-flat Kähler form ωA

δ by

(4.51) ωA
δ = ω̌δ,ν +

√
−1∂∂̄φ̌δ,ν .

In a small neighborhood of the singular fiber, K is obtained complex
analytically by the resolution of these orbifold singularities, In the next
subsection, we describe the resolution of N 4

2ν/Z2 and we will construct a
family of approximately hyperkähler metrics on it, by gluing on Eguchi-
Hanson metrics.

For carrying out the gluing construction, we need the following approx-
imation estimates for the orbifold metric and the Eguchi-Hanson metric.
Given an orbifold singularity qλ ∈ N 4

2ν/Z2 for λ ∈ {1, 2, 3, 4}, denote by
rλ(x) ≡ dǧδ,ν (x, qλ) the distance between x and qλ under the orbifold metric
ǧδ,ν . From now on, we fix sufficiently small parameters eλ ∈ (0, 1) for each
λ ∈ {1, 2, 3, 4} which will be eventually determined in Section 8.4.

Near qλ, the (1,1)-form ω̌δ,ν can be written as
√
−1∂∂̄ψ̌δ,ν locally. In the

local normal complex coordinates {ξl}2l=1,

∣∣∣∣∇k
gC2/Z2

(
ψ̌δ,ν −

|ξ1|2 + |ξ2|2
2

)∣∣∣∣
gC2/Z2

=

{
O(r4−k

λ ), k = 0, 1, 2, 3

O(1), k ≥ 4,
(4.52)

where rλ ∈ [0, eλ] and eλ ∈ (0, 1) satisfies

eλ ≤ η0

(ν log(1/δ))
1

2

(4.53)

for some sufficiently small constant η0 > 0 independent of δ > 0. Note that
the above upper bound of eλ comes from the length of the collapsing S1-fiber
at the orbifold singular point qλ which is comparable with (ν log(1/δ))−

1

2 .
Next we exhibit some estimates for the hyperkähler Eguchi-Hanson space

(X4, gEH). To begin with, let C2/Z2 be a flat cone so that we blow up the
origin to get the minimal resolution. Take the standard Euclidean coordi-
nates (z1, z2) of C

2 and let r(z1, z2) ≡
√

|z1|2 + |z2|2 be the distance to the
origin. Then the Kähler potential for the Eguchi-Hanson metric is explicitly
given by (see [4] for instance)

(4.54) φEH(z1, z2) ≡
1

2

(√
1 + r4 + 2 log r − log(1 +

√
1 + r4)

)

so that the Kähler form ωEH of the Eguchi-Hanson metric gEH is given by
ωEH ≡

√
−1∂∂̄φEH. Note that as r → +∞, ωEH is very close to the Euclidean



✐

✐

“9-Viaclovsky” — 2021/1/7 — 1:07 — page 2051 — #33
✐

✐

✐

✐

✐

✐

Collapsing Ricci-flat metrics 2051

Kähler form ωR4/Z2
=

√
−1∂∂̄( r

2

2 ) of the flat cone C2/Z2 ≡ R4/Z2 with the
asymptotic order

∣∣∣∣∇k
gC2/Z2

(
φEH − 1

2
r2
)∣∣∣∣

gC2/Z2

≤ Ck

rk+2
,(4.55)

for all k ∈ N = {0, 1, 2, 3, . . . . }, as r → ∞.
Let (X4, gEH) be the hyperkähler Eguchi-Hanson space.

X4 \ Φ
(
[2e−1

λ ,+∞)
)

be a large region in the Eguchi-Hanson space with diameter comparable with
e−1
λ . To glue this piece with the above Gibbons-Hawking region, we need to
rescale the metric as follows. Denote by Oeλ·δ(qλ) the rescaled region with
the rescaled Eguchi-Hanson metric g♭EH ≡ e4λ · δ2 · gEH. Then the diameter
has the scale

(4.56)
1

D0
· eλ · δ ≤ Diamg♭

EH
(Oeλ·δ(p)) ≤ D0 · eλ · δ

for some uniform constant D0 > 0 independent of δ and eλ.
Now we return to the elliptic K3 surface F : K → P1 and assume that

there is singular point p ∈ S such that the singular fiber F−1(p) is of Type
I∗ν for some ν ∈ Z+. In the following, we glue the semi-flat metric with an
orbifold Ooguri-Vafa metric, and further resolve the orbifold singularities by
gluing 4 copies of hyperkähler Eguchi-Hanson metrics.

Proposition 4.5 (Approximate metrics around I∗ν-fibers). Let F−1(p)
⊂ K be a singular fiber of Type I∗ν for ν ∈ Z+, then for each sufficiently small
parameters 0 < δ, δ0 ≪ 1, there is a Kähler form ωB

δ on V4δ0 ≡ F−1(B4δ0(p))
⊂ K around the singular fiber F−1(p) which can be constructed by gluing the
semi-flat Kähler form ωA

δ induced by F : K → P1, the rescaled orbifold multi-
Ooguri-Vafa Kähler form ω̌♭

δ,ν = δ2ω̌♭
δ,ν on N 4

2ν/Z2 and 4 copies of rescaled
Eguchi-Hanson Kähler forms

(4.57) ω♭
EH = δ2 · e4λ · ωEH

around the orbifold singularities on N 4
2ν/Z2. Let φ̌

♭
δ,ν be the Kähler potential

on F−1(B4δ0(p) \ {p}) such that the semi-flat Kähler form ωA
δ differs from
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the orbifold multi-Ooguri-Vafa Kähler form ω̌♭
δ,ν by

(4.58) ωA
δ = ω̌♭

δ,ν +
√
−1∂∂̄φ̌♭

δ,ν .

Then

ωB
δ =





ωA
δ in F−1

(
A2δ0,4δ0(p)

)
,

ω̌♭
δ,ν +

√
−1∂∂̄(χ · φ̌♭

δ,ν) in F−1(Aδ0,2δ0(p)),

ω̌♭
δ,ν in F−1(Bδ0(p)) \

4⋃
λ=1

B2eλδ(qλ),

√
−1∂∂̄

(
(1− χ̌) · ψ̌♭

δ,ν + χ̌ · φ♭
EH

)
in

4⋃
λ=1

B2eλδ(qλ),

(4.59)

where the function ψ̌♭
δ,ν = δ2 · ψ̌δ,ν is the rescaled Kähler potential of ω̌♭

δ,ν , the

function φ♭
EH = e4l · δ2 · φEH is the rescaled Kähler potential of the Eguchi-

Hanson metric, χ is a cutoff function satisfying

χ =

{
0, in F−1(Bδ0(p)),

1, in K \ F−1(B2δ0(p)),
(4.60)

and χ̌ is a cutoff function satisfying

χ̌ =





1, in
4⋃

λ=1

Beλδ(qλ),

0, in K \
4⋃

λ=1

Beλδ(qλ).

(4.61)

Remark 4.6. The 2-form ωB
δ is Kähler with respect to the original complex

structure on K and therefore determines a Riemannian metric gBδ , which is
hyperkähler outside the gluing transition regions or “damage zones.” In
Section 8.2, we will prove the uniform estimates in appropriate weighted
Hölder spaces for the deviation of gBδ from being hyperkähler in the damage
zones (see Proposition 8.2).

5. Singular fibers with finite monodromy

Given an elliptic K3 surface F : K → P1 with a fixed holomorphic 2-form Ω,
we have constructed a family of collapsing metrics gBδ which are defined away
from singular fibers with finite monodromy. Our main goal in this section is
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to construct a family of collapsing metrics gCδ associated to definition triples
(ωC

δ ,Re(δ · Ω), Im(δ · Ω)) on K which are also well-defined near the singular
fibers with finite monodromy. The main technical point is that, near the
singular fibers with finite monodromy, we will construct ωC

δ by gluing ωB
δ

with ALG Ricci-flat Kähler forms, so that some effective error estimates
hold in the gluing process and the metrics gCδ are collapsing to the McLean
metric dML on P1, that is,

(5.1) (K, gCδ )
GH−−→ (P1, dML).

5.1. Estimates on the semi-flat metric

In the following discussion, we will assume for example that the singular
fiber is of Type IV. The constructions and estimates in other cases are very
similar, so we do not include a detailed analysis of all cases here.

Near a singular fiber F−1(p) of Type IV, we use the local holomorphic
section σi from Section 3. We can choose a local coordinate y on the base
P1 \ S and a local coordinate x on the universal cover of the T2-fiber such
that −dx ∧ dy is the pull back of Ω, the given holomorphic 2-form on K.
Assume that y = 0 at p ∈ S and x = 0 on σi. We define new coordinates by

(u, v) =

(
y2/3,

3

2
xy1/3

)
,(5.2)

and note that Ω = du ∧ dv.
Recall that the periods are defined as τi(y) =

∫
γi
αy, where αy is holo-

morphic (1, 0)-form on the fiber, and γi are a basis of the first homology of
the torus fiber, i = 1, 2. In Section 2, we chose αy = dx to be the canonical
form to define the periods. However, in the following, we will instead choose
the holomorphic (1, 0) form by αy = 3

2y
1

3dx to define the periods.
The function ϱ = τ2/τ1 is a multi-valued holomorphic function in y. By

[34], we can make a new choice of y such that there exists h ≡ 2 (mod 3)
satisfying

ϱ(y) =
τ2
τ1

=
e
√−1 2π

3 − e−
√−1 2π

3 yh/3

1− yh/3
.(5.3)

Note that the notation used in [34] is slightly different from ours. In
[34], the coordinate ζ on the fiber is given as ζ ∈ C/(Z⊕ Zϱ) while in our
notation, the coordinate v on the fiber is given by v ∈ C/(Zτ1 ⊕ Zτ2). Then
relationship is simply v = τ1ζ.
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Letting ς = y1/3, then ϱ(y) = ϱ(ς3) is a single valued function of ς. So
we can define

F = {(ς, ζ) : ς ∈ C, ζ ∈ C/(Z⊕ Zϱ)},(5.4)

and consider the Z3-action on F given by

(5.5) (ς, ζ) →
(
e
√−1 2π

3 ς,
ζ

−ϱ− 1

)
.

Note that there are exactly three fixed points on F , given by

p0 = (0, 0), p1 =

(
0,

1

3
e
√−1 2π

3 +
2

3

)
, p2 =

(
0,

2

3
e
√−1 2π

3 +
1

3

)
.(5.6)

Let F̃/Z3 be the blow-up of F/Z3 at the three fixed points as in [34]. Letting
F0 denote the central fiber, then F0/Z3 induces an exceptional curve Θ on

F̃/Z3. Then K is locally the blow-down of F̃/Z3 at Θ. A computation shows
that there is a Z3 invariant holomorphic form

ΩF = 2ς(1− ςh)dς ∧ dζ(5.7)

on F . We claim that the ratio between the pull back of ΩK to F̃/Z3 and the

pull back of ΩF to F̃/Z3 is never 0 and never infinity. In fact, the vanishing
order of ΩF is 1 on Θ because Θ can be written as {ς = 0} locally. The
vanishing order of ΩK is also 1 on Θ because Θ is an exceptional curve.
As for the vanishing order of ΩF on the preimage of p0, we can define
ζ0 = (1− ςh)ζ as in [34], then ΩF = 2ςdς ∧ dζ0 and moreover, the Z3 action

maps (ς, ζ0) to (e
√−1 2π

3 ς, e
√−1 2π

3 ζ0). Note the resolution is locally called N+3

in [34, page 582]. It is easy to see that the vanishing order of ΩF = 2ςdς ∧ dζ0
is 0 on the preimage of p0. It is the same as the vanishing order of ΩK.

A similar calculation is also true on p1 and p2, Thus the ratio of these
2-forms is a non-zero holomorphic function k. It is invariant on the fiber
direction since a holomorphic function on compact manifold is a constant.
So k is in fact a holomorphic function in y, and we can write

(5.8) k(y) = k(0) +O(|y|),

as |y| → 0. Thus the given (2, 0)-form ΩK on K can be written as

(5.9) ΩK = 2k(y)ς(1− ςh)dς ∧ dζ,
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which implies that

(5.10) τ1 = k(y)(1− ςh) = k(u3/2)(1− uh/2)

and

(5.11) τ2 = k(u3/2)(e
√−1 2π

3 − e−
√−1 2π

3 uh/2).

After rescaling y as well as u = y2/3 and ς = y1/3, we can assume, without
loss of generality, that

(5.12) τ1 =
1√
Im τ

(1 +O(|u|))

then

(5.13) τ2 =
1√
Im τ

(τ +O(|u|)),

as |u| → 0, where τ = e
√−1 2π

3 in the IV case, and we have used h ≥ 2 in
the estimate. Note that this expansion is also given in [27, Table 1] which
includes analogous expansions for the other fiber types.

Definition 5.1. The distortion order λβ is the smallest constant so that

Im(τ̄1τ2)− 1 = O(|u|λβ)(5.14)

as |u| → 0, in the coordinates (u, v) = (yβ , 1βxy
1−β), and where the peri-

ods are computed with respect to αy = 1
β y

1−βdx. The list of the optimal
distortion orders is found in Table 5.1.

0 I∗0 II∗ II III∗ III IV∗ IV

β 1
2

1
6

5
6

1
4

3
4

1
3

2
3

λβ 2 4 2
5 2 2

3 1 1

Table 5.1: Distortion order.
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Our next goal is to estimate the difference between the 2-form ωB
δ and

the flat model 2-form ωflat
δ,K, in the flat model metric, which are defined as

ωflat
δ,K = δ2 · dv1 ∧ dv2 +

√
−1

2
· du ∧ dū(5.15)

gflatδ,K = δ2(dv21 + dv22) + du21 + du22.(5.16)

For the gluing construction, we also need the following refined estimate
in an annular region surrounding the singular fiber.

Lemma 5.2 (Annulus estimate). Given an elliptic K3 surface F : K →
P1 with a finite singular set S ⊂ P1. Let F−1(p) be a singular fiber with finite
monodromy for some p ∈ S. For any sufficiently small r0 > 0, we choose an
annulus

(5.17)
A r0

2
,4r0(p) ≡ F−1(A r0

2
,4r0(p)),

A r0
2
,4r0(p) ≡

{r0
2
< |u| < 4r0

}
⊂ P1 \ S.

There exists a 1-form ηB ∈ Ω1(Ar0,2r0(p)), independent of δ, such that

(5.18) ωB
δ − ωflat

δ,K = dηB,

and for any k ∈ N,

(5.19) sup
Ar0,2r0

(p)

∣∣∣∇k
gflat
δ,K

(ηB)
∣∣∣
gflat
δ,K

≤ Ck · rλβ+1−k
0 ,

where Ck > 0 is independent of δ.

Proof. Recall that in Section 2.2, using the real coordinates (v1, v2) along
the T2-fibers, the collapsing semi-flat Kähler forms ωB

δ are given by

ωB
δ = δ2 · dv1 ∧ dv2 +

√
−1

2
· Im(τ̄1τ2) · du ∧ dū(5.20)

= ωflat
δ,K +

√
−1

2
·
(
Im(τ̄1τ2)− 1

)
· du ∧ dū.

From Definition 5.1, we have

Im(τ̄1τ2)− 1 = O(|u|λβ),(5.21)
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as |u| → 0. Note that the difference

ωB
δ − ωflat

δ,K =

√
−1

2
·
(
Im(τ̄1τ2)− 1

)
du ∧ dū(5.22)

=
(
Im(τ̄1τ2)− 1

)
rdr ∧ dθ

is in fact the pullback of a closed 2-form on the base P1, where u = re
√−1θ

for θ ∈ [0, 2πβ]. Define

(5.23) η(re
√−1θ) ≡

(∫ r

r0

{Im(τ̄1(se
√−1θ)τ2(se

√−1θ))− 1}sds
)
dθ.

Then ηB ≡ F∗η satisfies the required estimate using the expansions of τ1, τ2
given in (5.10), (5.11). □

5.2. ALG hyperkähler 4-manifolds

In this subsection, we introduce some background material regarding ALG
spaces. To begin with, let us define the notion of standard ALG model.
Roughly, it is a singular flat space in dimension 4, which can be viewed as
a T2-bundle over a flat sector in R2.

Definition 5.3 (Standard ALG model). Given parameters β ∈ (0, 1]
and τ ∈ H ≡ {τ ∈ C| Im τ > 0} in Table 5.2. Let Cβ,τ be the manifold ob-

tained by identifying (U ,V ) with (e
√−1·2πβU , e−

√−1·2πβV ) in the space

(5.24) {(U ,V ) | argU ∈ [0, 2πβ]} ⊂ (C× C)/(Z⊕ Z),

where Z⊕ Z acts on C× C by

(5.25) (m,n) · (U ,V ) =

(
U ,V +

m+ nτ√
Im τ

)
, (m,n) ∈ Z⊕ Z.

Then there is a singular flat hyperkähler metric hflat on Cβ,τ with a Kähler
form and a holomorphic 2-form

ωflat =

√
−1

2
(dU ∧ dŪ + dV ∧ dV̄ ),(5.26)

Ωflat = dU ∧ dV .(5.27)

Each flat space (Cβ,τ , hflat) given as the above is called a standard ALG
model.



✐

✐

“9-Viaclovsky” — 2021/1/7 — 1:07 — page 2058 — #40
✐

✐

✐

✐

✐

✐

2058 G. Chen, J. Viaclovsky, and R. Zhang

0 I∗0 II∗ II III∗ III IV∗ IV

∞ I∗0 II II∗ III III∗ IV IV∗

β ∈ (0, 1] 1
2

1
6

5
6

1
4

3
4

1
3

2
3

τ ∈ H Any e
√−1· 2π

3 e
√−1· 2π

3

√
−1

√
−1 e

√−1· 2π
3 e

√−1· 2π
3

Intersection
D̃4 Ẽ8 Ã0 Ẽ7 Ã1 Ẽ6 Ã2

matrix

Table 5.2: Invariants of ALG spaces.

There is a holomorphic map Y : Cβ,τ → C defined as Y = U
1

β , which
provides a singular elliptic surface structure. We can resolve the singularity
in the central fiber as Kodaira has done in [34], to obtain a smooth elliptic
surface G called an isotrival ALG manifold. The types of the central fibers
are listed in the row 0 of the table. The pull back of dU ∧ dV provides a
holomorphic 2-form ΩG ≡ ωG

2 +
√
−1ωG

3 on the ALG manifold G outside the
central fiber. It can be extended to a nowhere vanishing holomorphic 2-form
on all of G, as we will see in Lemma 5.9

An isotrivial ALG manifold G has a complex analytic compactification.
For example, the isotrivial ALG manifold with central fiber of Type II is
the complement of a rational elliptic surface minus a fiber of Type II∗. The
type of the fiber at infinity is listed in the row ∞ of the Table 5.2

Any isotrivial ALG manifold deformation retracts to the central fiber.
By [34], the intersection form on H2(G) forms an extended Dynkin diagram
in the last row of Table 5.2. In particular, the rank of H2(G) is the subscript
of the extended Dynkin diagram plus 1. In other words, the rank of H2(G)
is 5, 9, 1, 8, 2, 7, 3 respectively.

Definition 5.4. A complete 4-manifold (G, gG) with a hyperkähler triple
(ωG , ωG

2 , ω
G
3 ), is called ALG hyperkähler of order n > 0 if there exist R > 0,

a compact subset K ⊂ G, and a diffeomorphism

(5.28) Φ : {(U ,V ) ∈ Cβ,τ
∣∣ |U | > R} → G \K
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such that

∣∣∇k
hflat(Φ∗gG − hflat)

∣∣
hflat = O(|U |−k−n),(5.29) ∣∣∇k

hflat(Φ∗ωG − ωflat)
∣∣
hflat = O(|U |−k−n),(5.30) ∣∣∇k

hflat(Φ∗ΩG − Ωflat)
∣∣
hflat = O(|U |−k−n),(5.31)

as |U | → ∞, for any k ∈ N, where ΩG ≡ ωG
2 +

√
−1ωG

3 , and h
flat, ωflat,Ωflat

are as in Definition 5.3 on Cβ,τ for some (β, τ) in Table 5.2.

Given any ALG flat model space Cβ,τ , there are many known examples
of complete non-compact hyperkähler ALG spaces (G, gG) with asymptotic
geometry given by Cβ,τ in the sense of Definition 5.4. For the developments
in this direction including the construction techniques, the analysis on ALG
spaces and related classification results, we refer the readers to [3, 4, 10, 11,
17, 27, 50] and also the references therein.

In the known constructions, when the fiber at infinity has Type II∗, III∗

or IV∗, the optimal asymptotic rate of convergence is given by

(5.32) n = 2− 1

β
,

see [9, Theorem 4.6]. However, in our gluing constructions in later sections,
we will see that, the slow convergence rate (5.32) gives a large error term
which is not enough for applying the implicit function theorem. Therefore
we will restrict to the following class of ALG hyperkähler metrics:

1) (G, g) is isotrivial,
2) (G, g) is ALG hyperkähler of order at least 2.

Note that there do exist examples in all cases which are ALG of order
at least 2 [27, Remark 1.7 (ii)].

In the gluing construction near a singular fiber with finite monodromy,
we also need an approximation estimate between a hyperkähler ALG metric
and its asymptotic model metric. In our case, the isotrivial ALG space (G, g)
has a central fiber of Type IV and singular fiber of Type IV∗ at infinity.
Therefore, the asymptotic cone T∞G is isometric to the 2-dimensional flat
cone C(S1

4π/3). Moreover, the standard ALG model of G is the singular flat

space Cβ,τ for β = 2
3 and τ = e

√−1· 2π
3 . We also identify the model space

Cβ,τ with the topological product space (0,+∞)× Σ3
β,τ , where Σ3

β,τ is a flat

manifold which is diffeomorphic to T3/Z3. So the definition of the ALG
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space gives a diffeomorphism

(5.33) Φ : (R,+∞)× Σ3
β,τ → G \K

for some R > 0 and compact subset K ⊂ G.
Now we are in a position to calculate the approximation order between

the 2-forms Φ∗ωG and ωflat on the model space Cβ,τ . To achieve this, we need
a general standard lemma for estimating the approximation between closed
2-forms.

Lemma 5.5. Consider a topological product space X = (r0,+∞)× Y with
a coordinate system x = (r,y) and a Riemannian metric g. Let ω0 and ω be
closed 2-forms on X satisfying the property that for some n > 1,

(5.34) |∇k
g(ω − ω0)|g ≤ Ck · r−n−k as r → +∞,

holds for all k ∈ N. Then there exists a 1-form η such that ω − ω0 = dη and
for any k ∈ N,

|∇k
gη|g ≤ Ck · r1−n−k as r → +∞.(5.35)

Proof. In terms of the coordinates (r,y), we can write

(5.36) ω − ω0 = φ+ dr ∧ ψ,

where φ is a 2-form and ψ is a 1-form satisfying ∂r⌟φ = ∂r⌟ψ = 0. Notice
that condition dω = dω0 = 0 implies

(5.37) dY φ = 0, drφ = dY ψ.

Moreover, by (5.34), for some n > 1 we have

(5.38) |∇k
gψ|g ≤ Ck · r−n−k as r → +∞

for any k ∈ N. Now we define a 1-form

(5.39) η ≡ −
∫ ∞

r
ψdr.

The asymptotic behavior of ψ gives the integrability of (5.39) and hence
η is well-defined. To verify dη = ω − ω0, it suffices to check

(5.40) dη = φ+ dr ∧ ψ,
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which follows directly from the definition of η and (5.37). Therefore, η is the
desired 1-form satisfying the asymptotic behavior

(5.41) |∇k
gη|g ≤ Ck · r1−n+k as r → +∞,

for any k ∈ N. □

Since we will glue rescaled ALG spaces with semi-flat metrics on K which
have bounded diameter, we need to work with the ALG space and prove the
approximation estimate at small scales. Based on Lemma 5.5, we have the
following.

Proposition 5.6. Let (G, gG) be a complete hyperkähler isotrivial ALG
manifold of order 2 with a corresponding Kähler form ωG such that for some
β ∈ (0, 1] and τ ∈ H there is an ALG coordinate system

(5.42) Φ : {(U ,V ) ∈ Cβ,τ
∣∣ |U | > R} → G \K,

outside a compact set K ⊂ G equipped with a model ALG Kähler form ωflat

on Cβ,τ . Let 0 < δ ≪ 1, we rescale the metrics and Kähler forms by

gGδ = δ2gG , ωG
δ = δ2ωG(5.43)

hflatδ = δ2hflat, ωflat
δ = δ2ωflat,(5.44)

then there exists a 1-form ηδ satisfying

(5.45) Φ∗ωG
δ − ωflat

δ = dηδ

with respect to the rescaled metric hflatδ

(5.46)
∣∣∇k

hflat
δ
ηδ
∣∣
hflat
δ

(U ,V ) ≤ Ck · δ2
(

1

δ · |U |

)1+k

, δ · |U | ≥ δ ·R

for any k ∈ N, where Ck is independent of δ.

Proof. Under the map Φ, the complement G \K is diffeomorphic to a topo-
logical product (R,+∞)× Σ3

β,τ , where Σ
3
β,τ is a compact flat 3-manifold. So

the coordinate r in Lemma 5.5 can be chosen as the distance function to
the origin. Now the asymptotics immediately follows from Lemma 5.5 and
standard rescaling computations. □



✐

✐

“9-Viaclovsky” — 2021/1/7 — 1:07 — page 2062 — #44
✐

✐

✐

✐

✐

✐

2062 G. Chen, J. Viaclovsky, and R. Zhang

5.3. Construction of approximate solutions

With the above technical preparations, we are ready to construct the ap-
proximate metrics around singular fiber with finite monodromy.

We first choose a diffeomorphism which identifies a large ball in the ALG
metric with a tubular neighborhood of the singular fiber in K. Define a local
diffeomorphism Ψ from Cβ,τ to F/Z3 by

Ψ :

(
U ,V =

1√
Im τ

v1 +
τ√
Im τ

e
√−1· 2π

3 v2

)
(5.47)

7→ (u, v) = (δU , τ1(δU )v1 + τ2(δU )v2)

for v1, v2 ∈ R/Z. Since Ψ maps the fixed points to the fixed points, it induces

a local diffeomorphism Ψ̃ from the resolution C̃β,τ to F̃/Z3. It maps ΘC̃β,τ

to ΘF̃/Z3

, so it induces a local diffeomorphism Ψ from the isotrivial ALG

manifold G to K which satisfies

Ψ∗(ωflat
δ,K) = ωflat

δ , Ψ∗(gflatδ,K) = hflatδ ,(5.48)

away from the singular fiber.
The initial step of constructing gluing metrics is to fix the size of the

gluing region. From now on, we fix a parameter ℓ ∈ (0, 1) which will be
determined later. Let F : K → P1 be the fixed elliptic K3 surface with a
singular fiber F−1(p) of Type IV. Let δ ∈ (0, 1) be sufficiently small, then
we work with a small neighborhood of the above singular fiber

(5.49) O2δℓ(p) ≡ F−1(B2δℓ(p)), B2δℓ(p) ⊂ P1,

such that for some c0, c̄0 > 0,

(5.50) c0 · δℓ ≤ DiamgB
δ

(
O2δℓ(p)

)
≤ c̄0 · δℓ.

Therefore, for fixed 0 < δ ≪ 1 and ℓ ∈ (0, 1), we choose a large cutoff region
in G as follows

(5.51) G(δℓ−1) ≡ G \ Φ
(
(δℓ−1,∞)× Σ3

β,τ

)

so that

Ψ : G(δℓ−1) −→ O2δℓ(p) ⊂ K,(5.52)

c0 · δℓ−1 ≤ DiamgG(G(δℓ−1)) ≤ c̄0 · δℓ−1.(5.53)
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To proceed with the gluing construction, we also need to make the scales
consistent. For this purpose, we rescale the complete ALGmetric by choosing
gGδ = δ2gG so that the T2-fiber at the infinity of G has diameter proportional
to δ. Also let us denote by ωG

δ the Kähler form with respect to the rescaled

ALG metric gGδ . Then the rescaled region (G̃(δℓ), gGδ )) ≡ (δ · G(δℓ−1), δ2 · gGδ )
satisfies

(5.54) c0 · δℓ ≤ DiamgG

δ
(G̃(δℓ)) ≤ c̄0 · δℓ.

Therefore, under the diffeomorphism

Ψ : G̃(δℓ) −→ O2δℓ(p)(5.55)

we obtain a metric Ψ∗gGδ and a Kähler form Ψ∗ωG
δ on the open set

O2δℓ(p) ⊂ K.
By Lemma 5.2 and Proposition 5.6, there are 1-forms ηGδ ≡ Φ∗ηδ and ηBδ

in the annulus region Aδℓ,2δℓ(p) ≡ F−1(Aδℓ,2δℓ(p)) ⊂ K such that the follow-
ing holds in Aδℓ,2δℓ(p):

ωG
δ = Φ∗ωflat

δ + dηGδ , ωB
δ = ωflat

δ,K + dηBδ ,(5.56)

and for any k ∈ N,

(5.57)

∣∣∣∇k
gflat
δ,K

(Ψ∗ηGδ )
∣∣∣
gflat
δ,K

≤ Ck · δ2−ℓ(k+1),

∣∣∣∇k
gflat
δ,K

(ηBδ )
∣∣∣
gflat
δ,K

≤ Ck · δℓ(λβ+1−k).

Then 2-form ωC
δ is then defined as follows.

Proposition 5.7. Let F : K → P1 be an elliptic K3 surface with a fixed
holomorphic volume 2-form Ω. For 0 < δ ≪ 1, there are a family of 2-forms

ωC
δ ≡





Ψ∗ωG
δ , on Oδℓ(p),

ωflat
δ,K + d

(
χ ·Ψ∗ηGδ + (1− χ) · ηBδ

)
, on Aδℓ,2δℓ(p),

ωB
δ , on K \ O2δℓ(p),

(5.58)

satisfying the error estimate in transition region Aδℓ,2δℓ(p)

sup
Aδℓ,2δℓ (p)

∣∣∣∇k
gflat
δ,K

(ωC
δ − ωflat

δ,K)
∣∣∣
gflat
δ,K

≤ Ck · (δ2−ℓ(k+2) + δℓ(λβ−k)),(5.59)
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for k ∈ N, for Ck independent of δ, and where the smooth cutoff function is
defined by

(5.60) χ =

{
1, on Oδℓ(p),

0, on K \ O2δℓ(p).

Remark 5.8. By Remark 1.4, since we have a holomorphic (2, 0)-form
Ωδ = δΩK, there is a Riemannian metric gCδ associated to ωC

δ .

For a rescaled ALG space (G, gGδ ) with an infinity model Cβ,τ , the push-
forward Ψ∗gGδ on Oδℓ(p) does not give a hyperkähler metric with respect
to the complex structure of K. Indeed, the error term is of polynomial rate
given by the above distortion order λβ . We next give some quantitative esti-
mates of this error term. To begin, note we can also do the above resolution
procedure as in Subsection 5.1 on the isotrivial ALG manifold G, which we
again illustrate in the case of type IV. Then F/Z3 is replaced by Cβ,τ for

β = 2
3 and τ = e

√−1 2π

3 and the blow up of G is C̃β,τ .

Lemma 5.9. The pull back of ΩG to C̃β,τ is the same as the pull back of
dU ∧ dV .

Proof. In this case, ϱG = τ , so all the terms involving h disappear, and

(5.61) Ωflat = 2ς̂dς̂ ∧ dζ̂ = dU ∧ dV ,

where ς̂ ≡ Y 1/3 = U 1/2 and ζ̂ = V . Then we see that the pull back Ω̃G of
ΩG satisfies

Ω̃G = kG(Y )Ω̃flat,(5.62)

where Ω̃flat is the pullback of Ωflat. We know that kG → 1 as Y → ∞, so by
the maximum principle, kG = 1. □

We end this section with the following proposition which give precise
error estimates in the ALG regions.

Proposition 5.10. Let R be the fixed constant in Definition 5.4 only de-
pending on gG, then for all k ∈ N, there exists a constant Ck, independent
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of δ, for δ sufficiently small such that on OδR(p), we have

|∇k
Ψ∗g

G

δ
(δΩK − δ2Ψ∗ΩG)|Ψ∗g

G

δ
≤ Ckδ

2

5
−k(5.63)

|∇k
gC
δ
(gCδ −Ψ∗gGδ )|gC

δ
≤ Ckδ

2

5
−k,(5.64)

and on AδR,2δℓ(p) = O2δℓ(p) \ OδR(p), we have

|∇k
Ψ∗g

G

δ
(δΩK − δ2Ψ∗ΩG)|Ψ∗g

G

δ
≤ Ck|u|

2

5
−k,(5.65)

|∇k
gC
δ
(gCδ −Ψ∗gGδ )|gC

δ
≤ Ck|u|

2

5
−k.(5.66)

Proof. We again use the type IV case as an example. First, we use the metric
Ψ∗gGδ in the deep region Oδℓ(p) given by the pushforward metric from the
rescaled ALG space.

We first consider the region |U | ≤ R. In this case, we can pull back

everything to C̃β,τ . Recall that C̃β,τ is the blow up of G and {ς̂ = 0} is the
exceptional divisor. A straightforward calculation shows that there exists a
constant C > 0 such that the pull back g̃Gδ of gGδ = δ2gG to C̃β,τ satisfies

g̃Gδ − C−1δ2
(
|ς̂|2(dv21 + dv22) + (dRe ς̂)2 + (d Im ς̂)2

)
(5.67)

is positive definite. By (2.13), we know that

(5.68) δΩK = δdy ∧ (τ1dv1 + τ2dv2) = 2δςdς ∧ (τ1dv1 + τ2dv2).

From Lemma 5.9, the pull back of δ2ΩG to C̃β,τ is

(5.69) 2δ2ς̂dς̂ ∧
(

1√
Im τ

dv1 +
τ√
Im τ

dv2

)
.

However, recall that ς2 = u = δU = δς̂2,

(5.70) τ1 =
1√
Im τ

+O(|u|),

and

(5.71) τ2 =
τ√
Im τ

+O(|u|).

So we see that

|δΩK − δ2Ψ∗ΩG |Ψ∗g
G

δ
= O(δ)(5.72)
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inside |U | < R in the IV case. Here the bounds may depend on R. In general,
we will have

|δΩK − δ2Ψ∗ΩG |Ψ∗g
G

δ
= O(δλβ)(5.73)

where λβ is the distortion order. Recall that from Table 5.1, the minimal
order λβ is equal to 2

5 .
Next, we look at the region R ≤ |U | ≤ δℓ−1. In this region, the ALG

metric gG is equivalent to the flat metric hflat. A similar calculation as above
shows that

|δΩK − δ2Ψ∗ΩG |Ψ∗g
G

δ
= O(|u|λβ).(5.74)

By a similar argument, we can obtain the bounds on higher order derivatives,
the detailed calculations are omitted.

To compare the metric gCδ with Ψ∗gGδ , recall that the metric gCδ is de-
fined as the metric associated to the triple

(
Ψ∗ωG

δ ,Re(δΩK), Im(δΩK)
)
in

the region Oδℓ(p) and the metric Ψ∗gGδ is associated to the triple

(
Ψ∗ωG

δ ,Re(δ
2Ψ∗ΩG), Im(δ2Ψ∗ΩG)

)
.

The metric error estimates then follow from the previous estimates.
Finally, by Lemma 5.2 and Proposition 5.6, we get the required estimates

in the damage zone region Aδℓ,2δℓ(p) = O2δℓ(p) \ Oδℓ(p). □

6. Metric geometry and regularity of the

approximate solutions

In this section, we will analyze the singularity behavior for the collapsing
Ricci almost-flat metrics constructed in Section 4 and Section 5 in a quan-
titative way. Specifically, in each of the above cases, we will give uniform
estimates for the regularity scales in terms of the collapsing parameters.
Based on these effective estimates, we will set up the package of the weighted
analysis which will be used for the perturbative analysis in Section 8.

6.1. Singularity behavior and decomposition of
the approximate metric

To begin with, we introduce some basic notions for discussing the singularity
behavior in a quantitative way. The following concept of regularity scale is
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commonly used and very convenient to study the singularity behavior for a
sequence of metrics in both non-collapsing and collapsing settings.

Definition 6.1 (Local regularity). Let (Mn, g) be a Riemannian mani-
fold. Given r, ϵ > 0, k ∈ N, α ∈ (0, 1), we say (Mn, g) is (r, k + α, ϵ)-regular
at x ∈Mn if the Riemannian metric g is at least Ck,α in B2r(x) such that

the following holds: let (B̂2r(x), x̂) be the Riemannian universal cover of
B2r(x), then Br(x̂) is diffeomorphic to a Euclidean disc Dn ⊂ Rn such that
the lifting metric ĝ in coordinates satisfies for each 1 ≤ i, j ≤ n,

|ĝij − δij |C0(Br(x̂)) +
∑

|m|≤k

r|m| · |∂mĝij |C0(Br(x̂))(6.1)

+ rk+α[ĝij ]Ck,α(Br(x̂)) < ϵ,

where m is a multi-index, and the last term is the Hölder semi-norm.

Definition 6.2 (Ck,α-regularity scale). Let (Mn, g) be a Riemannian
manifold with a smooth Riemannian metric g:

1) The Ck,α-regularity scale at x ∈Mn, denoted by rk,α(x), is defined as
the supremum of all r > 0 such that Mn is (r, k + α, 10−9)-regular at
x.

2) We can also define the ϵ curvature scale r|Rm |(x) at x as the supremum
of all r > 0 such that r2 · |Rm | of g in Br(x) is bounded by 10−9.

Remark 6.3. It is well known that there exists a constant C > 0 only
depending on n, k, α such that if g is Ricci-flat, then by taking local universal
covers and using standard Schauder estimate, it follows that

C−1 · r|Rm |(x) ≤ rk,α(x) ≤ C · r|Rm |(x),(6.2)

(see [44] or [45] for more discussions about this). Also note that the regularity
scale rk,α is 1-Lipschitz on a Riemannian manifold (Mn, g), i.e.,

|rk,α(x)− rk,α(y)| ≤ dg(x, y), ∀x, y ∈Mn,(6.3)

see [7, Section 1].

We will also need the following notion of canonical bubble.
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Definition 6.4 (Canonical bubble limit). Let (Mn
j , gj , xj) be a se-

quence of Riemannian manifolds, and let rj ≡ rk,α(xj) be the regularity
scale at xj . Then (X∞, d∞, x∞) is called a canonical bubble limit at xj if
passing to a subsequence, the following pointed Gromov-Hausdorff conver-
gence holds,

(6.4) (Mn
j , r

−2
j gj , xj)

GH−−→ (X∞, d∞, x∞).

Remark 6.5 (Noncollapsing bubble limits). Let gj be Einstein and
let the rescaled sequence be non-collapsing, i.e. Volg̃j (B1(xj)) ≥ v0 > 0 with
g̃j ≡ r−2

j gj . If X∞ is smooth, then the ϵ-regularity for non-collapsing Ein-
stein manifolds tells us that the Gromov-Hausdorff convergence (6.4) can be
improved to Ck-convergence for any k ∈ N. If gj satisfy the uniform Ricci
curvature bound |Ricgj | ≤ n− 1, then in the non-collapsing setting, (6.5)
can be improved to C1,α-convergence. For more details, see [6, Theorems 7.2
& 7.3].

Now, let us return to our context and consider a fixed elliptic K3 sur-
face F : K → P1 with a finite singular set S ⊂ P1. In the previous sections,
we have constructed a family of approximately hyperkähler metrics gCδ . Our
main goal in this section is to understand the quantitative singularity behav-
ior of gCδ by obtaining effective estimates of the regularity scale for each point
x ∈ K. This is a necessary technical part for implementing the weighted
analysis in Section 8.

Next, we outline how to prove the effective regularity scale estimates.
The fundamental strategy is to analyze the bubble limits by appropriately
rescaling the collapsing sequence. We first assume that RicgC

δ
= 0. This is of

course not true. For example, in the deep region Oδℓ(p) in Section 5, gCδ is
not the same as the Ricci-flat metric Ψ∗gGδ . However, in this case, we can
study the regularity scale of Ψ∗gGδ and use Proposition 5.10 to study the
regularity scale of gCδ . Similar method applies to the damaged zone in all
cases.

To start with, let us consider the case of codimension 1 collapse: assume
that for the rescaled space (K, g̃,x) with a reference point x ∈ K and a
rescaled metric g̃ ≡ λ2 · gCδ which satisfies Ricg̃ = 0 on Bg̃

2(x), the sequence
satisfies the following Gromov-Hausdorff behavior for a sufficiently small
number ϵ > 0,

dGH(Bg̃
2(x), B2(x∞)) < ϵ, B2(x∞) ⊂ R3.(6.5)
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In this case, it is known that Γϵ(x) has a finite-index cyclic subgroup either
Z or Zp (p ∈ Z+) so that rank(Γϵ(x)) ≤ 1, where

Γϵ(x) ≡ Image[π1(B
g̃
ϵ (x)) → π1(B

g̃
1/4(x))],(6.6)

see [33, Theorem 6.1]. In the general setting, we define the nilpotent rank
for a finitely generated nilpotent group.

Definition 6.6. For a finitely generated nilpotent group N , its nilpotent
rank is defined as the sum of the abelian ranks rank(Aj) arising from the
lower central series

(6.7) N ≡ N0 ▷N1 ▷N2 ▷N0 = {e}, Aj ≡ Nj−1/Nj .

For any finitely generated group Γ, all finite-index subgroups N share the
same nilpotent rank. In this case, we just define rank(Γ) ≡ rank(N ) for any
nilpotent subgroup N satisfying [Γ : N ] <∞.

The regularity at x can be related to the topology at x in the following
way (see [42, Theorem 1.1] or [28, Lemma 7.7]).

Lemma 6.7. There is some 10−3 > ϵ0 > 0 such that if (6.5) holds for ϵ ≤ ϵ0
and the group Γϵ(x) satisfies rank(Γϵ(x)) = 1, then

sup
B1/8(x)

|Rmg̃ | ≤ C0(6.8)

for some absolute constant C0. Conversely, assuming the same Gromov-
Hausdorff behavior (6.5), then (6.8) implies rank(Γϵ(x)) = 1.

Now we return to our regularity scale estimates, which will be proved us-
ing the following general argument. First, the upper bound estimate of rk,α
is given by the following. Lemma 6.7 tells us that, as ϵ sufficiently small, if
Γϵ(x0) has finite order, then rank(Γϵ(x0)) = 0 and hence curvatures around
x0 become unbounded. Using the estimate (6.2) and the Lipschitz property
(6.3), we conclude that rk,α(x) ≤ 2 for any x ∈ Bg̃

1(x0). On the other hand,
if dg̃(x,x0) ≥ 1

2 and rank(Γϵ(x)) = 1, then Lemma 6.7 and the estimate
(6.2) also tell us that rk,α(x) ≥ vk,α, where vk,α > 0 is a uniform constant
independent of ϵ. Therefore, with respect to the original metric gδ, the reg-
ularity scale estimate vk,α · λ−1 ≤ rk,α(x) ≤ 2λ−1 holds if rank(Γϵ(x)) = 1
and rank(Γϵ(x0)) = 0 with 1/2 ≤ dg̃(x,x0) ≤ 1.
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If higher codimensional collapsing occurs, the main theorem in [42] gives
the following generalization of Lemma 6.7.

Theorem 6.8 ([42]). Let (Mn, g,x) be Einstein with |Ricg | ≤ n− 1 and
let (Zk, h, z) be a k-dimensional Riemannian manifold, then there is some
constant 0 < ϵ0 < 10−3 depending only on n and the injectivity radius at
z ∈ Zk such that if

dGH(B2(x), B2(z)) < ϵ(6.9)

holds for ϵ ≤ ϵ0, then Γϵ(x) ≡ Image[π1(Bϵ(x)) → π1(B1/4(x))] has a nilpo-
tent subgroup N with rank(N ) ≤ n− k. Furthermore, the following regular-
ity property holds: rank(N ) = n− k is equivalent to the uniform curvature
estimate

sup
B1/8(x)

|Rmg | ≤ C0(6.10)

for some uniform constant C0 > 0 depending only on n and the injectivity
radius at z ∈ Zk.

We will next apply the above ideas in our situation. For each x ∈ K,
we will appropriately choose metric rescaling factor with respect to x so
that the rescaled convergence has singularity x0 with definite distance away
from x. For each parameter δ ∈ (0, 1), the space (K, gCδ ) is divided in the
following regions:

1) For each p ∈ P1 corresponding to a singular fiber of Type Iν for some
ν ∈ Z+, let SIν (p) = F−1(B2δ0(p)) be the region equipped with the
approximate metric gCδ which satisfies the diameter estimate

1

C0
≤ DiamgC

δ
(SIν (p)) ≤ C0(6.11)

for some uniform constant C0 > 0 independent of δ.

2) Similarly, near each singular fiber of Type I∗ν for some ν ∈ Z+, we can
define SI∗ν (p) such that

(6.12)
1

C0
≤ DiamgC

δ
(SI∗ν (p)) ≤ C0

for some uniform constant C0 > 0 independent of the parameter δ.
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3) For each type of singular fibers with finite monodromy, as constructed
in Section 5, denote by SII,SIII, SIV, SII∗ , SIII∗ , SIV∗ and SI∗0 , the
corresponding small neighborhoods of singular fibers such that the
diameter is comparable with δℓ as δ → 0.

4) For each δ, denote by Rδ the complement of the above regions in
the total space K, on which the approximate metrics gCδ are semi-flat
metrics.

The main technical part is to compute the regularity scales and the
bubble limits of each singular region in the above list. First, we study the
regularity scale rk,α in Rδ as δ → 0. It directly follows from Theorem 6.8
that curvatures are uniformly bounded in any compact subset of Rδ which
has definite distance to the union of singular fibers F−1(S). Around each
boundary component of Rδ, let F

−1(p) be the closest singular fiber to ∂Rδ.
Fix some small constant δ0 > 0 independent of δ, then we define a smooth
function sR(x) by

sR(x) ≡
{
d(x,F−1(p)), d(x,F−1(p)) ≤ 8δ0

1, d(x,F−1(p)) ≥ 16δ0,
(6.13)

with smooth interpolation in the annulus. We claim that there are uniform
constants vk,α > 0 and v̄k,α > 0 depending only k and α such that

(6.14) vk,α ≤ rk,α(x)

sR(x)
≤ v̄k,α.

Indeed, at the point x ∈ Rδ, if we take the rescaled metric g̃Cδ ≡ sR(x)−2gCδ ,
it follows that x has unit distance to F−1(p) under the metric g̃Cδ . Since
rank(Γϵ0(x)) = 2 for small enough δ, all x ∈ Rδ and the constant ϵ0 in The-
orem 6.8, we can obtain the curvature estimates with respect to g̃Cδ ,

sup
B1/8(x)

|Rmg̃C
δ
| ≤ C0,(6.15)

and hence in terms of the original metric gCδ , we have

sup
B sR(x)

8

(x)
|RmgC

δ
| ≤ C0

sR(x)2
,(6.16)
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where C0 > 0 is independent of δ. This implies that

rk,α(x)

sR(x)
≥ vk,α(6.17)

for some uniform constant vk,α depending only upon k and α. The upper
bound estimate of rk,α follows immediately from the 1-Lipschitz continuity
of rk,α and the fact that curvatures are unbounded in terms of δ around
singular fibers.

The inequality (6.14) completely describes the regularity scales of the
regular region Rδ. In the following subsections, we will discuss in detail
the regularity scales and bubble limits of the collapsing metrics gCδ in the
singular regions K \ Rδ

6.2. Regularity scales in the cases of finite monodromy

In this subsection, we will compute the regularity scales near the singular
fibers in the cases of finite monodromy. As discussed before, there are seven
types of singular fibers in this category: II, III, IV, II∗, III∗, IV∗ and I∗0.
It can be seen from the construction in Section 5 that the regularity scales
of the singular regions in all those cases behave in the similar way, so the
singular regions in the above cases are uniformly denoted by

(6.18) SALG ≡ SII ∪ SIII ∪ SIV ∪ SII∗ ∪ SIII∗ ∪ SIV∗ ∪ SI∗0 .

Let us briefly recall the construction of SALG introduced in Section 5.
Let (G, gG , p) be an ALG space with a fixed reference point p ∈ G. For fixed
ℓ ∈ (0, 1) and small δ, as in Section 5.2, we pick a large compact set

(6.19) G(δℓ−1) ≡ G \ Φ
(
(δℓ−1,∞)× Σ3

)
.

Here Φ is the map defined in Proposition 5.6. It immediately follows that

(6.20) c0 · δℓ−1 ≤ DiamgG(G(δℓ−1)) ≤ c̄0 · δℓ−1

for some constants c0 > 0 and c̄0 > 0 independent of the parameter δ. In the
gluing construction in Section 5.3, we rescaled the large subset G(δℓ−1) and
glued it with ωB

δ around the corresponding connected component of ∂Rδ so
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that SALG is diffeomorphic to G(δℓ−1) and its diameter yields to the estimate

(6.21) c0 · δℓ ≤ DiamgC
δ
(SALG) ≤ c̄0 · δℓ.

The proposition below gives the bubbling analysis and regularity scale
estimates for the points in the region SALG.

Proposition 6.9 (Regularity scale and bubble limits near finite
monodromy fibers). For any small parameter δ ≪ 1, let gCδ be the ap-
proximately hyperkähler metric on SALG, then the following holds:

1) Given k ∈ N and α ∈ (0, 1), there are uniform constants vk,α > 0 and
v̄k,α > 0 independent of δ > 0 such that the (k, α)-regularity scale
rk,α(x) at x ∈ SALG has the following bound

(6.22) vk,α · sG(x) ≤ rk,α(x) ≤ v̄k,α · sG(x),

where the function sG(x) is smooth on SALG and explicitly given by

sG(x) =

{
δ, dgC

δ
(Ψ(p),x) ≤ δ,

dgC
δ
(Ψ(p),x), dgC

δ
(Ψ(p),x) ≥ 2δ.

(6.23)

2) The canonical bubble of (K,x) for any x ∈ SALG is either a com-
plete hyperkähler ALG space G or its asymptotic 2-dimensional cone
T∞(G) ≡ C(S1

2πβ) with the flat metric dC,2πβ.

Proof. The proof can be achieved in the following way. Now suppose the
rescaled sequence at x

(6.24) (K, s(x)−2gCδ ,x)
GH−−→ (X̂∞, d̂∞,x∞), δ → 0,

satisfies the property that the regularity scale at x with respect to the
rescaled metrics are uniformly bounded from above and below. Then un-
der the original metric gCδ , the regularity scale at x is comparable with s(x)

and X̂∞ is the canonical bubble limit at x. Notice that by Proposition 5.10,
the rescaling argument is the same for gCδ and Ψ∗gGδ .

To accomplish this, we will divide the above singular region SALG into
several pieces.

Region SALG,1 (deepest ALG bubbles):
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This region consists of the points x ∈ SALG satisfying dgC
δ
(x,Ψ(p)) ≤ δ. As

δ → 0, taking any sequence of points xδ ∈ SALG,1, we rescale the metric gCδ
by

(6.25) g̃Cδ = δ−2gCδ .

By Proposition 5.10,

(6.26) (K, g̃Cδ ,xδ)
C∞

−−→ (G, gG ,x∞) as δ → 0,

where the limit space is a hyperkähler ALG space and the convergence is in
the pointed Ck-topology for any k ∈ N. Since (G, gG ,x) is not flat, so under
gG ,

(6.27) vk,α ≤ rk,α(x) ≤ v̄k,α.

Changing back to gCδ , we have

(6.28) δ · vk,α ≤ rk,α(x) ≤ δ · v̄k,α

and hence the function s(x) in SALG,1 can be simply chosen as δ.

Region SALG,2 (ALG bubble damage zone):

The points x in this region satisfy

(6.29) dgC
δ
(x,Ψ(p)) ≥ 2δ.

Now we consider the rescaled metric for a sequence of reference points xδ in
SALG,2,

(6.30) g̃Cδ = dgC
δ
(Ψ(p),xδ)

−2 · gCδ .

Then there are two different rescaled limits depending upon the distance
dgC

δ
(Ψ(p),xδ):

Case (a): As δ → 0, the sequence {xδ} satisfies that there is some σ0 > 0
independent of δ > 0 such that 0 < σ0 ≤ δ

dgC
δ
(xδ,Ψ(p)) ≤ 1

2 .

In this case, the rescaled limit (X̂, d̂, x̂) is a complete ALG space which
is a finite rescaling of the original ALG bubble (G, gG , p).
Case (b): As δ → 0, the sequence {xδ} satisfies δ

dgC
δ
(xδ,Ψ(p)) → 0.
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In this case, the rescaled limit is isometric to a flat cone (C(S1
2πβ), dC,2πβ , x̂)

in R2 which is exactly the asymptotic cone of the ALG space (G, gG , p).
Notice that in this case, we have dC,2πβ(x̂, 0

2) = 1 and the ball B10−3(x̂)
is contractible in the flat cone (C(S1

2πβ), dC,2πβ). So for the fixed constant

ϵ = 10−4ϵ0 with ϵ0 given in Theorem 6.8, for small enough δ, the group
Image[π1(Bϵ(x̂)) → π1(B10−3(x̂))] is Z⊕ Z, where the geodesic balls Bϵ(x̂)
and B10−3(x̂) are measured under the rescaled metric g̃Cδ . So by Theorem 6.8,
we get the required lower bound on the regularity scale. On the other hand,
the upper bound on the regularity scale comes from Remark 6.3 and the
calculation in Region SALG,1.

This completes the proof of the proposition. □

6.3. Bubbling analysis around the singular fiber Iν

We will next study the regularity scales and classify the canonical bubbling
limits in the singular region SIν for some fixed ν ∈ Z+ which is a neighbor-
hood

SIν ≡ F−1(B4δ0(p))(6.31)

of the singular fiber F−1(p) of Type Iν , where δ0 is a constant independent
of δ.

In Region SIν , as shown in Section 4, there are approximately hyperkähler
metrics gBδ (which agree in this region with the metrics gCδ constructed in
Section 5), which are constructed by gluing the multi-Ooguri-Vafa metric
on N 4

ν with semi-flat metrics, so that for some constant C0 > 0 independent
of δ,

(6.32)
1

C0
≤ DiamgC

δ
(SIν ) ≤ C0.

Remark 6.10. In the following, for the convenience of computations, the
metrics gCδ will be parametrized in terms of

(6.33) T ≡ −ν log δ,

and denoted by gT .
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Recall that the metric gT in F−1(Bδ0(p)) coincides with the Gibbons-
Hawking metric

gδ,ν ≡ 1

2π
e−

2T

ν ·
(
VT · (du21 + du22 + du23) + (VT )

−1θ2
)
,(6.34)

(u1, u2, u3) ⊂ O ⊂ R2 × S1,

where the region O consists all points

x ≡ (u1, u2, u3) ∈ Q3 = R2 × S1(6.35)

satisfying |δ(u1 +
√
−1u2)| ≤ 2δ0. Let us denote by πQ3 the S1-principal

bundle map

(6.36) S1 → N 4
ν

πQ3−−→ O ⊂ R2 × S1,

which sends every x ∈ N 4
ν to x = πQ3(x) ⊂ O.

We need the following conventions and notations:

1) Denote by dQ3 : Q3 ×Q3 → [0,+∞) the distance function induced by
the flat metric on Q3 = R2 × S1. Then we obtain a smooth function
r : Q3 → R+ by slightly mollifying the distance function dQ3 as follows:
For x ∈ Q3,

r(x) =





T−1, dQ3(x, pi) ≤ T−1 for some pi ∈ P,

dQ3(x, pi), 2T−1 ≤ dQ3(x, pi) ≤ ι0 for some pi ∈ P,

dQ3(x, 03), T0 ≤ dQ3(x, pi) ≤ e
T−2

ν for all pi ∈ P,

e
T−2

ν , dQ3(x, pi) ≥ e
T−1

ν for all pi ∈ P.

(6.37)

Here P = {pi}νi=1 ⊂ Q3 is the finite set of monopole points and

ι0 ≡
1

2
min

{
dQ3(pi, pj) | pi, pj ∈ Q3, i ̸= j

}
,(6.38)

T0 ≡ 2max{dQ3(pi, 0
3) | pi, pj ∈ Q3, 1 ≤ i ≤ ν}.(6.39)

2) Let L0 : [0,+∞) → R be a smooth function satisfying

L0(r) ≡
{
−ν log r, r ≥ 4,

0, 0 ≤ r ≤ 2,
(6.40)

and let

(6.41) LT (x) ≡ T + L0(dQ3(πQ3(x), 03)).
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We next describe the regularity scales and classify the canonical bubble
limits for all x ∈ SIν .

Proposition 6.11 (Regularity scale and bubble limits near Iν fibers).
Given any large parameter T ≫ 1 (equivalently δ ≪ 1), let gT = gCδ be the
approximately hyperkähler metric on SIν as the above, then the following
holds:

1) Given k ∈ N and α ∈ (0, 1), there are uniform constants vk,α > 0 and
v̄k,α > 0 independent of δ > 0 such that the (k, α)-regularity scale
rk,α(x) at x ∈ SIν has the following bound

(6.42) vk,α ≤ rk,α(x)

sν(x)
≤ v̄k,α,

where the function sν(x) is explicitly given by

sν(x) = e−
T

ν · LT (x)
1

2 · r(x).(6.43)

2) As T → +∞ (equivalently δ → 0), all the canonical bubbles of (K,x)
for x ∈ SIν are as follows: the Ricci-flat Taub-NUT space (C2, gTN ),
the flat spaces R3, R2 × S1, R2, and singular limit (P1, dML) with
bounded diameter.

Proof. The basic framework is similar to the proof of Proposition 6.9. We aim
at obtaining the required estimate of the regularity scale for every x ∈ SIν ,
so it suffices to show that for all T → +∞ (or equivalently δ → 0) and for
all x ∈ SIν , there is a rescaled limit

(6.44) (K, sν(x)−2gCδ ,x)
GH−−→ (X̂∞, d̂∞,x∞),

so that the regularity scale at x with respect to the rescaled metrics s(x)−2gCδ
is uniformly bounded from above and below.

Remark 6.12. For the convenience of the discussion, we will take a se-
quence Tj → +∞ and denote gj ≡ gTj

in the following proof.

The singular region SIν will be further divided in the several pieces:

Region SIν ,1 (deepest ALF bubbles):
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This region consists of the points x ∈ SIν satisfying dQ3(x, pi) ≤ T−1
j for

some 1 ≤ i ≤ ν, where x = πQ3(x). Let xj be a sequence of reference points
in this region and we rescale the metric by g̃j ≡ λ2j · gj with

(6.45) λj ≡ e
Tj

ν · T
1

2

j .

If we rescale the coordinates by

(6.46) (ũ1, ũ2, ũ3) = Tj · ((u1, u2, u3)− pi),

then the rescaled metrics converge in the pointed C∞-topology,

(K, g̃j ,xj)
C∞

−−→ (C2, gTN ,x∞),(6.47)

where the limit (C2, gTN ,x∞) is a rescaled Taub-NUT metric. By definition,
the Taub-NUT metric is the hyperkähler ALF metric given by the Gibbons-
Hawking ansatz over R3 with a single monopole point and harmonic function
V = 1 + (2r)−1, see [26]. The rescaling computations are straightforward
and hence we skip the details here, see [28, Lemma 7.9] for more details.
Since the (C2, gTN ) is not flat with bounded curvatures and the convergence
is C∞, the regularity scale at xj with respect to the original metrics gj
satisfies

vk,α · T
1

2

j ≤ rk,α(xj) ≤ v̄k,α · T
1

2

j ,(6.48)

where vk,α > 0 and v̄k,α > 0 are uniform constants independent of Tj .

Region SIν ,2 (ALF bubble damage zone):

This region contains all the points x ∈ SIν satisfying 2T−1 ≤ dQ3(x, pi) ≤ ι0
for some 1 ≤ i ≤ ν. Now take a sequence of reference points xj in Region
SIν ,2 and let us denote

(6.49) rj ≡ r(xj)

for xj = πQ3(xj). The rescaled metrics g̃j = λ2jgj is given by

(6.50) λj = e
Tj

ν · T− 1

2

j · r−1
j .

To effectively work with the explicit rescaled metric tensor g̃j , we also rescale
the coordinates by taking

(6.51) (ũ1, ũ2, ũ3) ≡ µj · ((u1, u2, u3)− pi),
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where the coordinate rescaling factor is chosen as

(6.52) µj ≡
1

rj
.

To understand the rescaled limits under the above rescaled metric g̃j , we
need to consider the following cases and study the rescaled limits separately:

Case (a): there is some σ0 > 0 such that 2T−1
j ≤ rj ≤ 1

(σ0)2
· T−1

j .

Case (b): rj satisfies

(6.53)
rj

T−1
j

→ +∞, rj → 0.

Case (c): there is some uniform constant r0 > 0 such that r0 ≤ rj ≤ ι0.

Case (a) is similar to Region SIν ,1, so the rescaled limit is the Ricci-flat
Taub-NUT space. The metric tensor can be written explicitly in terms of
the rescaled coordinates.

In Case (b), we take a fixed region in Q3 where x = (u1, u2, u3) satisfies
dQ3(x, pi) ≤ ι0 and investigate the Gromov-Hausdorff convergence under the
rescaled metrics g̃j . First, the S

1-fibers are collapsing as j → +∞. Moreover,
it can be directly verified that, up to local universal covers, the rescaled
metrics converge in the Ck-topology for any k ∈ N. This in particular implies
that the rescaled coordinate system (ũ1, ũ2, ũ3) ∈ Q3 in fact converges to
some limiting coordinate system (u1,∞, u2,∞, u3,∞). After a fixed rescaling so
that the limiting reference point x∞ satisfies dg̃∞(x∞, 03) = 1, with respect
to the limiting coordinates, the limiting metric tensor g̃∞ can be written as

(6.54) g̃∞ = du21,∞ + du22,∞ + du23,∞,

which is precisely the Euclidean metric in R3. Detailed computations about
this can also be found in the bubbling analysis in Region II of [28, Sec-
tion 7.3]. Moreover, the Gibbons-Hawking ansatz gives an S1-fibration over
BR(0

3) ⊂ R3 for any large R > 0, which is smooth away from 03. Since
03 ̸∈ B 2

3
(x∞), it immediately follows from the S1-principal bundle structure

that, for sufficiently small ϵ,

Image[π1(B
g̃j
ϵ (xj)) → π1(B

g̃j
2/3(xj))] ∼= Z(6.55)

so that its rank is 1. Then Lemma 6.7 shows that curvatures at xj are
uniformly bounded and hence rk,α(xj) with respect to the rescaled metrics
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g̃j is uniformly bounded from below. To see the uniform upper bound of
rk,α(x), it suffices to use the 1-Lipschitz continuity of rk,α and the calculation
in Region SIν ,1.

Now we study the canonical bubble in Case (c). We will work a domain
in N 4

ν which consists of the points x ∈ SIν satisfying

(6.56) r(x) ≤ Tj .

for x = πQ3(x). Notice that, by our definition of the metric rescaling fac-
tor λj and the coordinate rescaling factor µj , it follows that the rescaled
coordinate system (ũ1, ũ2, ũ3) is a bounded rescaling for the original one
(u1, u2, u3). Therefore, the limiting metric g̃∞ is up to a fixed rescaling,
given by

(6.57) g̃∞ = du21,∞ + du22,∞ + du23,∞,

which is the standard flat product metric on R2 × S1. This corresponds to
the case of T2 × R in [28, Section 7.3]. The remainder of the arguments are
the same as Case (b) by noticing that there are ν monopoles of the Green’s
function on R2 × S1 and x has definite distance to those monopoles under
the rescaled metrics.

This completes the bubble classification in Region SIν ,2.

Region SIν ,3 (large scale regions):

This region consists of the points x ∈ SIν which satisfy

(6.58) dQ3(x, pi) ≥ T0 and LT (x)) ≥ 2,

where x = πQ3(x) ∈ Q3. For a sequence of reference points xj ∈ SIν ,3 with
projected coordinates xj = (u1,j , u2,j , u3,j) ∈ Q3, let us define the rescaled
metric g̃j = λ2j · gj by

(6.59) λj = e
Tj

ν · L− 1

2

j · r−1
j ,

where

(6.60) Lj ≡ LTj
(xj) and rj ≡ r(xj).

For the purpose of explicit computations, we will also rescale the coordinate
system x = (u1, u2, u3) ∈ N 4

ν and center around the reference point xj with
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base coordinate xj = (u1,j , u2,j , u3,j) ∈ Q3 to

(6.61) ũ1 = µj · u1, ũ2 = µj · u2, ũ3 = µj · u3,

where the rescaling factor µj is chosen as µj = r−1
j .

In the following computations, Region SIν ,3 will be further subdivided
in the following cases depending upon the location of xj :

Case (a): There is some R0 > 0 such that 1
2 ≤ rj ≤ R0.

Case (b): This case is given by the condition

(6.62) rj → +∞ and Lj → +∞.

Case (c): There is some T0 > 0 such that 2 ≤ Lj ≤ T0.

In Case (a), the metric rescaling is equivalent to Case (c) of Region SIν,2 .
Moreover, the coordinate system is rescaled by uniformly bounded constants
µj which gives the rescaled limit R2 × S1 with up to a fixed rescaling, the
standard flat product metric

(6.63) g̃∞ = du21,∞ + du22,∞ + du23,∞.

Let P ⊂ R2 × S1 be the finite set of monopoles, then xj has definite distance
to P = π−1

Q3 (P ). So applying the same argument as in Case (c) of Region
SIν ,2, we have

vk,α ≤ rk,α(xj) ≤ v̄k,α(6.64)

with respect to the rescaled metrics g̃j . Therefore, changing back to gj , we
have

vk,α · e−
Tj

ν · L
1

2

j · rj ≤ rk,α(xj) ≤ v̄k,α · e−
Tj

ν · L
1

2

j · rj ,(6.65)

where vk,α > 0 and v̄k,α > 0 are uniform constants independent of Tj .
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In Case (b), for any fixed ξ > 1 we choose a sequence of large regions in
N 4

ν defined by

(6.66) Uj(ξ) ≡
{
x ∈ N 4

ν

∣∣∣ r−1
j · dQ3(x, 03) ≤ ξ, x = πQ3(x)

}
.

We will show that g̃j on Uj(ξ), up to a fixed rescaling, converges to the
Euclidean metric on Bξ(0

2) ⊂ R2. The rescaled metrics are given by

g̃j = λ2jgj =
1

2π
r−2
j · 1

Lj
·
(
VTj

· (du21 + du22 + du23) + (VTj
)−1θ2

)
(6.67)

=
1

2π

1

Lj
·
(
VTj

· (dũ21 + dũ22 + dũ23) + (VTj
)−1θ2

)
.

Let

(6.68) Vj(ξ) ≡
{
x ∈ N 4

ν

∣∣∣ r−1
j · dQ3(x, 03) ≤ ξ−1, x = πQ3(x)

}
.

In the following, the main part is to show that for each x ∈ Uj(ξ) \ Vj(ξ), it
holds that as j → +∞,

(6.69)
VTj

(x)

Lj
→ 1.

Indeed, let us take any arbitrary point x ∈ Uj(ξ) \ Vj(ξ) over x = (u1, u2, u3)
∈ Q3, we have

(6.70) ξ−1 ≤ r(x)

rj
≤ ξ.

So it follows that

VTj
(x)

Lj
= 1− ν

Lj
log

(
r(x)

rj

)
+ o(1) = 1 + o(1).(6.71)

Since ξ is arbitrary, and lim
ξ→∞

lim sup
j→∞

Diamg̃j Vj(ξ) = 0, this tells us that g̃j

converges to

(6.72) g̃∞ = du21,∞ + du22,∞,

up to a fixed rescaling, where (u1,∞, u2,∞) is the canonical coordinate system
on R2 which corresponds to the limit of the rescaled coordinates (ũ1, ũ2).
Moreover, the finite set of monopoles P converges to 02 ∈ R2 and xj con-
verges to x∞ ∈ ∂B1(0

2) ⊂ R2.
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To finish Case (b), the regularity scale estimate at xj can obtained from

Theorem 6.8. Topologically, B
g̃j
1/2(xj) is the trivial torus fibration over the

base. Let ϵ = ϵ(n) > 0 defined in Theorem 6.8, it is easy to see that

(6.73) Image[π1(B
g̃j
ϵ (xj)) → π1(B

g̃j
1/2(xj))] ∼= Z⊕ Z.

It has rank 2. So we get the required lower bound on rk,α(xj) by Theorem 6.8.
The upper bound on rk,α(xj) follows from Remark 6.3 and the calculation
in Case (a). So the proof in Case (b) is done.

The rescaled geometry in Case (c) is much simpler. In fact, the metric
rescaling factor λj is uniformly bounded in this case so that the rescaled
limit is (P1, dML,x∞) such that the McLean metric dML is singular on a
finite set S ⊂ P1 and the limit of the reference points x∞ ∈ P1 \ S. The
uniform estimate for the regularity scale at xj just immediately follows.

This completes the proof of the proposition. □

6.4. Bubbling analysis around the singular fiber I∗
ν

This subsection is dedicated to the analysis of the singularity behavior
around a singular fiber of Type I∗ν for some ν ∈ Z+. The associated singular
region SI∗ν was constructed in Section 4.2 which was given by resolving the
four singular points from an orbifold multi-Ooguri-Vafa region. In terms of
the elliptic fibration F : K → P1, the singular region SI∗ν can be represented
as the tubular neighborhood SI∗ν ≡ F−1(B4δ0(p)) of the singular fiber F

−1(p)
of Type I∗ν (ν ∈ Z+).

To be precise, given a family of small parameters 0 < δ ≪ 1, let gCδ be the
approximately hyperkähler metrics on the resolution of the orbifold region
N 4

2ν/Z2, which are constructed in Section 4.2 which is the model of SI∗ν .
Recall that the main geometric features of the region can be summarized as
follows:

1) Denote by (N 4
2ν , gδ,2ν) the incomplete domain endowed with a family

of collapsing multi-Ooguri-Vafa metric gδ,2ν with ν-pairs of monopoles
such that N 4

2ν is a principal S1-bundle over an open subset in the
product space Q3 = R2 × S1 with circles vanishing at monopole points
P ≡ {p1, p̂1, . . . , pν , p̂ν} ⊂ Q3.

2) N 4
2ν admits an isometric Z2-action which descends to Q3 = R2 × S1

such that the four S1-fixed points {q1, q2, q3, q4} on N2ν \ π−1
Q3 (P ) are
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sent to the two S1-fixed points

πQ3(q1) = πQ3(q2) = q− = (0, 0, 0),(6.74)

πQ3(q3) = πQ3(q4) = q+ =

(
0, 0,

1

2

)
(6.75)

on the base Q3 = R2 × S1.

3) The Z2-invariant multi-Ooguri-Vafa metric gδ,2ν has a natural Z2 quo-
tient orbifold metric ǧδ,ν on N 4

2ν/Z2. To resolve the four orbifold sin-
gularities, we constructed in Section 4.2 a family of approximately
hyperkähler metrics, denoted by gCδ , by gluing four copies of Eguchi-
Hanson metrics with ǧδ,ν around the four singular points.

Following the notation in Section 6.3, let T ≫ 1 satisfy δ = e−
T

2ν and let
the approximate metrics gCδ parametrized in terms of T , denoted by gT . We
introduce the following notation in the current I∗ν-case:

1) Let g2ν,T be the rescaled metric g2ν,T = e
T

ν gT , which has diameter

comparable with e
T

2ν for T ≫ 1. There are positive constants ι0 > 0
and ῑ0 > 0 such that for i, j ∈ {1, 2, 3, 4},

(6.76)
1

ι0
· T− 1

2 ≤ dg2ν,T (qi, qj) ≤ ι0 · T− 1

2

if πQ3(qi) = πQ3(qj), and

(6.77) 4 · ῑ0 · T
1

2 ≤ dg2ν,T (qi,x) ≤
1

ῑ0
· T 1

2

if dQ3(πQ3(qi), πQ3(x)) = ι0, where ι0 is half times the minimal dQ3

distance between two different points in P ∪ {q−, q+}, the union of
monopole points with the Z2 fixed points.

2) Given any sufficiently small parameter 0 < ϵ≪ T− 1

2 , we slightly mol-
lify the distance to the orbifold singularities and obtain a smooth func-
tion as follows,
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d∗(x) =





e2λ, dg2ν,T (qλ,x) ≤ e2λ

for some 1 ≤ λ ≤ 4,

min4λ=1 dg2ν,T (x, qλ), dg2ν,T (qλ,x) ≥ 2e2λ for all 1 ≤ λ ≤ 4 and

dg2ν,T (qλ,x) ≤ 1
4 · ῑ0 · T

1

2 for some 1 ≤ λ ≤ 4,

T
1

2 , dg2ν,T (qλ,x) ≥ 1
2 · ῑ0 · T

1

2

for all 1 ≤ λ ≤ 4.

(6.78)

With the above preparations, we are ready to give the regularity scale
analysis around an I∗ν-fiber in the following proposition.

Proposition 6.13 (Regularity scale and bubble limits near I∗ν fibers).
Given any large parameter T ≫ 1 (or equivalently δ ≪ 1), let gT = gCδ be the
approximately hyperkähler metric on SI∗ν , then the following holds:

1) Given k ∈ N and α ∈ (0, 1), there are uniform constants vk,α > 0 and
v̄k,α > 0 independent of δ > 0 such that the (k, α)-regularity scale rk,α
at x ∈ SI∗ν has the following bound

(6.79) vk,α ≤ rk,α(x)

s∗ν(x)
≤ v̄k,α,

where the function s∗ν(x) is explicitly given by

s∗ν(x) =





e−
T

2ν · d∗(x), dgT (qλ,x) ≤ ῑ0 · e−
T

2ν · T 1

2

for some 1 ≤ λ ≤ 4,

e−
T

2ν · LT (x)
1

2 · r(πQ3(x)), dgT (qλ,x) ≥ 2ῑ0 · e−
T

2ν · T 1

2

for all 1 ≤ λ ≤ 4.

(6.80)

2) As δ → 0, the canonical bubbles of (K,x) for x ∈ SI∗ν can be listed as
follows:
(a) the Ricci-flat Taub-NUT space (C2, gTN ),
(b) Euclidean space R3,
(c) ALE Eguchi-Hanson space (X4

EH , gEH),
(d) flat orbifolds R4/Z2, (R

3 × S1)/Z2, R
3/Z2, (R

2 × S1)/Z2 and R2/Z2,
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(e) the McLean metric (P1, dML) with bounded diameter.

Proof. The proof is very similar to that of Proposition 6.11. Most of these
bubbles also appeared in Proposition 6.11, so in the following proof, we will
mainly focus on the cases where new type of bubbles limits occur. Notice
that, the singular region SI∗ν can be subdivided into the deepest ALF bubble
region SI∗ν ,1, the bubble damage zone region SI∗ν ,2 and the large scale region
SI∗ν ,3. In addition, in our current case, the large scale region SI∗ν ,3 will be fur-
ther subdivided into two more pieces for analyzing the singularity behavior
around the ALE bubbles.

Given a sequence Tj → +∞, let gj ≡ gTj
be a sequence of approximately

hyperkähler metrics on SI∗ν given by the gluing construction in Section 4.2.
First, let us summarize the rescaled geometries as follows which is similar
to the regularity and bubbling analysis around I2ν-fibers:

Region SI∗ν ,1 (deepest ALF bubbles):

This region consists of the points x ∈ SI∗ν satisfying dQ3(x, pi) ≤ T−1
j for

some 1 ≤ i ≤ ν, where x = πQ3(x) ∈ Q3. It was shown in the proof of Propo-

sition 6.11 that, if the rescaled metric g̃j = λ2jgj is given by λj = e
Tj

2ν · T
1

2

j ,
then the canonical bubble limit in this region is the Ricci-flat Taub-NUT
space (C2, gTN ,x∞). The regularity scale estimate just follows from the non-
flatness of (C2, gTN ,x∞) and the C∞-regularity of the convergence.

Region SI∗ν ,2 (ALF bubble damage zone):

This region contains all the points x ∈ SI∗ν satisfying 2T−1
j ≤ dQ3(x, pi) ≤ ι0

for some 1 ≤ i ≤ ν. Let us choose the rescaled metric g̃j = λ2jgj with the
rescaling factor

(6.81) λj = e
Tj

2ν · T− 1

2

j · r−1
j ,

then the canonical bubbles arising in this region are listed as follows:

(a) If a sequence of reference points xj satisfy that there is some σ0 > 0
such that

(6.82) 2T−1
j ≤ rj ≤

1

(σ0)2
· T−1

j ,

then the canonical bubble is a Ricci-flat Taub-NUT space (C2, gTN ,x∞),



✐

✐

“9-Viaclovsky” — 2021/1/7 — 1:07 — page 2087 — #69
✐

✐

✐

✐

✐

✐

Collapsing Ricci-flat metrics 2087

(b) If a sequence of reference points xj satisfy the condition

(6.83)
rj

T−1
j

→ +∞ and rj → 0,

then the canonical bubble is the Euclidean space (R3, gR3 ,x∞) such
that the limiting reference point x∞ satisfies dgR3 (0

3,x∞) = 1.

(c) Now we consider the complement of the Case (a) and Case (b). That
is, for any sequence of reference points xj , there is some r0 > 0 such
that r0 ≤ rj ≤ ι0. In the case, the canonical bubble is the flat orbifold
((R2 × S1)/Z2, gflat,x∞), where gflat is the Z2-quotient of the standard
flat product metric on R2 × S1.

The remaining computations coincide with those in the proof of Proposi-
tion 6.11.

Region SI∗ν ,3 (large scale regions):

In comparison with the large scale region SI∗ν ,3 in the proof of Proposi-
tion 6.11, we need two additional pieces to characterize the rescaling geom-
etry around the ALE bubbles, which are removed from this region for the
moment. That is, Region SI∗ν ,3 contains all the points x ∈ SI∗ν determined by
the following conditions

dgT (x, qλ) ≥ 2eλ · e− T

2ν , ∀λ, 1 ≤ λ ≤ 4,(6.84)

dQ3(x, pi) ≥ 2ι0, ∀i, 1 ≤ i ≤ ν,(6.85)

LT (x) ≥ 2.(6.86)

To analyze the regularity scales in Region SI∗ν ,3, we will choose two dif-
ferent rescaling metrics depending on if the reference points xj are close to
the orbifold resolution loci {q1, . . . , q4}.
Case (A):

First, we consider the case that a sequence of reference points xj ∈ SI∗ν ,3 far
from any point in {q1, q2, q3, q4}, that is, xj satisfies

(6.87) dgj (xj , qλ) ≥ 2ῑ0 · e−
T

2ν · T
1

2

j for all 1 ≤ λ ≤ 4.

The arguments in this case are similar to the case of Iν-fibers and the rescaled
metrics g̃j = λ2j · gj are determined by

(6.88) λj = e−
Tj

2ν · L− 1

2

j · r−1
j .
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The canonical bubbles far from qm can be classified as follows:

1) If xj satisfies 1
2 ≤ rj ≤ R0, then the canonical bubble is the flat Rie-

mannian orbifold ((R2 × S1)/Z2, gflat,x∞) such that the distance from
the limiting reference point x∞ to the orbifold singularity equals 1.

2) If xj satisfies rj → +∞ and Lj → +∞, then the canonical bubble is
the flat cone (R2/Z2, gflat,x∞) such that the distance from x∞ to the
cone vertex is equal to 1.

3) If xj satisfies 2 ≤ Lj ≤ T0 for some positive constant T0 > 0 inde-
pendent of T , then the canonical bubble is (P1, dML,x∞) such that
x∞ ∈ P1 \ S and S is the finite singular set in P1.

The remaining computations are exactly same as the proof of Proposi-
tion 6.11 and hence we omit the details. To see the regularity scale estimates
at xj , we can observe that Γϵ0(xj) has maximal rank in each of the above
cases, where ϵ0 is the constant in Theorem 6.8. So Theorem 6.8 gives uniform
curvature estimate at xj and hence rk,α(xj) ≥ vk,α > 0 uniformly bounded
from below. On the other hand, around the orbifold singularities, one can
use the curvature blowing-up behavior of the Eguchi-Hanson space and the
Lipschitz property of rk,α, which guarantees that

rk,α(xj) ≤ 2.(6.89)

Rescaling back to the original metrics gj , the desired regularity scale esti-
mate follows immediately.

Case (B):

Next, we will handle the case that a sequence of reference points xj satisfy

(6.90) dgj (xj , qλ) ≥ 2eλ · e−
Tj

2ν

for all 1 ≤ λ ≤ 4 and

(6.91) dgj (xj , qλ) ≤ ῑ0 · e−
Tj

2ν · T 1

2

for some 1 ≤ λ ≤ 4. In this case, we will use another rescaling to see addi-
tional bubbles around qλ. Let g̃j = λ2jgj be the rescaled metrics given by

(6.92) λj = dgj (xj , qλ)
−1,

then rescaling geometries can be further subdivided into the following cases:
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1) If xj are chosen such that

(6.93)
e

Tj

2ν · dgj (xj , qλ)

T
− 1

2

j

→ 0 for some 1 ≤ λ ≤ 4,

then the rescaled limit is the asymptotic cone of the Eugchi-Hanson
space which is isometric to the flat cone (R4/Z2, gflat,x∞) such that
the distance from x∞ to the cone tip is equal to 1.

2) This case contains the points xj which satisfy the condition that there
is some constant σ0 > 0 such that

(6.94)
e

Tj

2ν · dgj (xj , qλ)

T
− 1

2

j

≥ 1

σ0

for all 1 ≤ λ ≤ 4 and

(6.95)
e

Tj

2ν · dgj (xj , qλ)

T
− 1

2

j

≤ σ0

for some 1 ≤ λ ≤ 4. The canonical bubble in this case becomes the flat
orbifold ((R3 × S1)/Z2, gflat,x∞)

3) In this case, xj satisfies the condition that there is some c0 > 0 such
that

(6.96)
e

Tj

2ν · dgj (xj , qλ)

T
− 1

2

j

→ +∞

for all 1 ≤ λ ≤ 4 and

(6.97)
e

Tj

2ν · dgj (xj , qλ)

T
1

2

j

→ 0

for some 1 ≤ λ ≤ 4. The canonical rescaled limit is isometric to the
flat orbifold (R3/Z2, gflat,x∞) and the orbifold metric gflat is the Z2-
quotient of the Euclidean metric gR3 , where Z2 ⊂ Isom(R3) acts on R2

by rotation with angle π and acts on R by reflection so that there is
only one orbifold singular point 03. Moreover, dgflat(x∞, 03) = 1.
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4) In this case, xj satisfies the condition that there is some 0 < c0 <
ῑ0
10

such that

(6.98) dgj (xj , qλ) ≥ c0 · e−
Tj

2ν · T
1

2

j

for all 1 ≤ λ ≤ 4 and

(6.99) dgj (xj , qλ) ≤ ῑ0 · e−
Tj

2ν · T
1

2

j .

for some 1 ≤ λ ≤ 4. Then it is straightforward to check that the rescaled
limit is ((R2 × S1)/Z2, gflat,x∞) with dgflat(x∞, 03) = 1.

The regularity scale estimates just follow from the same arguments as before,
hence the bubble classification in Region SI∗ν ,3 is done.

Next, we will finish the proof by computing the regularity scale around
the four ALE gluing loci inside Region SI∗ν ,3.

Region SI∗ν ,4 (deepest ALE bubbles):

This region contain the points x satisfying dgC
δ
(x, qλ) ≤ e2λ · e−

Tj

2ν for some
1 ≤ λ ≤ 4. Now take a sequence of reference points xj in this region. So it
straightforward follows from the construction of the gluing region that if we
rescale the metric gj by

(6.100) g̃j ≡ e−4
λ · e

Tj

ν · gj ,

then the rescaled limit is isometric to a Ricci-flat Eguchi-Hanson space
(X4

EH , gEH ,x∞).

Region SI∗ν ,5 (ALE bubble damage zone):

In this region, all the points x satisfy 2e2λ · e−
Tj

2ν ≤ dgC
δ
(x, qλ) ≤ eλ · e−

Tj

2ν

for some 1 ≤ λ ≤ 4. Now the metrics gj will be rescaled by

g̃j ≡ λ−2
j · gj ,(6.101)

λj ≡ dgj (xj , qλ).(6.102)

This region can be decomposed into two pieces:
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1) If xj are chosen such that there is some σ0 > 0 such that

(6.103) 2e2λ · e−
Tj

2ν ≤ dgC
δ
(x, qλ) ≤ σ0 · e2λ · e−

Tj

2ν ,

then the rescaled limit is isometric to an Eguchi-Hanson space
(X4

EH , gEH ,x∞).

2) If xj satisfies

(6.104)
dgC

δ
(x, qλ)

e2λ · e−
Tj

2ν

→ +∞ and dgC
δ
(x, qλ) ≤ eλ · e−

Tj

2ν ,

then the rescaled limit is the asymptotic cone of the Eugchi-Hanson
space which is isometric to the flat cone (R4/Z2, gflat,x∞) with
dgflat(x∞, 0∗) = 1, where 0∗ is the cone tip of R4/Z2.

This completes the proof of the proposition. □

Remark 6.14. Recall that the scale parameter eλ in the definition of d∗(x)
satisfies the constraint (see (4.53))

(6.105) eλ ≤ η0 · T− 1

2 ,

where η0 > 0 is sufficiently small but independent of T . For simplicity, in
our paper, eλ is further required to satisfy eλ/T

− 1

2 → 0 as T → +∞ which
will give four copies of Eguchi-Hanson bubbles. However, our arguments still
hold if

(6.106) η
0
≤ eλ/T

− 1

2 ≤ η0

for some definite constant η
0
> 0 as T → +∞. It is possible to show that

in this case, two copies of ALF-D2 spaces will appear as bubble limits. See
Section 9.3 for more discussions corresponding to the second case.

6.5. Weighted Hölder spaces

In this subsection, we define weighted Hölder space using the regularity
scale function. In general, the weighted Hölder space can be defined in the
following way.

Definition 6.15 (Weighted Hölder spaces). Let (M, g) be a Rieman-
nian manifold. Let ρ > 0 be a smooth function. Let K be any subset of
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M , then for any k ∈ N and α ∈ (0, 1), with respect to the function ρ, the
weighted Hölder norm of a tensor field χ ∈ T p,q(M) on K is defined as fol-
lows:

(6.107) ∥χ∥Ck,α
µ (K) ≡

k∑

m=0

∥∥∥ρµ+m · ∇mχ
∥∥∥
C0(K)

+ [χ]Ck,α
µ (K),

where the weighted Ck,α-seminorm is

[χ]Ck,α
µ (K) ≡ sup

x∈K
sup

{
ρk+α+µ(x) · |∇

kχ̂(x̂)−∇kχ̂(ŷ)|
(dĝ(x̂, ŷ))α

∣∣∣(6.108)

ŷ ∈ Brk,α(x)/2(x̂) \ {x̂}
}
,

where x̂ denotes a lift of x to the universal cover of Brk,α
(x), the difference

of the two covariant derivatives is defined in terms of parallel translation in
Brk,α(x)/2(x̂) along the unique geodesic connecting x̂ and ŷ, and χ̂, ĝ are the
lifts of χ, g, respectively.

We will choose the function ρ on K as the global smooth function s(x)
defined as follows,

s(x) =





sG(x), x ∈ SALG,

sν(x), x ∈ SIν ,

s∗ν(x), x ∈ SI∗ν ,

sR(x), x ∈ Rδ.

(6.109)

The previous subsections give explicit estimates for the Ck,α-regularity scales
rk,α(x) for all points x inK. We have proved that there are uniform constants
vk,α > 0 and v̄k,α > 0 independent of δ > 0 such that

(6.110) vk,α ≤ rk,α(x)

s(x)
≤ v̄k,α.

We next prove a uniform weighted Schauder estimate for the elliptic
operator

d+
gC
δ

: Ω̊1(K) → Ω2
+(K)(6.111)
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defined by

(6.112) d+
gC
δ

η ≡ 1

2
(dη + ∗gC

δ
dη)

with

Ω̊1(K) ≡ {η ∈ Ω1(K)|d∗gC
δ
η = 0},(6.113)

which will be used in the weighted analysis in Section 8.

Proposition 6.16 (Weighted Schauder estimate). For any sufficiently
small positive parameter δ ≪ 1, let gCδ be the approximately hyperkähler met-
ric on K. Then there exists C > 0 independent of δ > 0 such that for any
η ∈ Ω̊1(K) it holds that

(6.114) ∥η∥C1,α
µ (K) ≤ C(∥d+

gC
δ

η∥C0,α
µ+1(K) + ∥η∥C0

µ(K)).

Proof. The proof follows from the explicit expression of the Ck,α-regularity
scales in the above discussions. Under the canonical rescaling,

g̃Cδ = rk,α(x)
−2 · gCδ ,(6.115)

the geodesic ballB1/2(x) under the rescaled metric gCδ has uniformly bounded

Ck,α-geometry (independent of δ) for each α ∈ (0, 1) and k ∈ {0, 1}. So there
is a uniform constant C > 0 (independent of δ) such that the standard
Schauder estimate holds for every η ∈ Ω̊1(K) and x ∈ K under the rescaled
metric g̃Cδ ,

(6.116) ∥η∥Ck+1,α(B1/4(x)) ≤ C
(
∥d+

g̃C
δ

η∥Ck,α(B1/2(x)) + ∥η∥C0(B1/2(x))

)
.

Then the global weighted Schauder estimate (6.114) just follows from rather
standard rescaling arguments. In fact, the only crucial point is to verify that
for every x ∈ K, the function s is roughly a constant in the ball B 1

4
rk,α(x)(x),

in the sense that there is a uniform constant C > 0 such that for any y in
B 1

4
rk,α(x)(x),

(6.117) C−1 · s(x) ≤ s(y) ≤ C · s(x).

The verification of (6.117) follows from (6.110) and Remark 6.3. The re-
mainder of the proof is almost identical to those given in [28, Section 8] or
[49, Section 4]. □
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7. Liouville theorems

The proof of Theorem 1.1 will require vanishing theorems on various bubble
limits, which we refer to as Liouville theorems. In Subsection 7.1, we will
consider the case of non-compact bubble limits. Then in Subection 7.2, we
will consider the case of a compact limit.

7.1. Liouville type theorems on non-compact spaces

First, we will prove a Liouville type theorem on flat sectors in R2. This
vanishing result will be used in proving the uniform injectivity estimate
as the contradiction sequence concentrates around the ALG bubbles. In
addition, it will also be used to prove Proposition 9.3.

To begin with, we fix some notation. Given a real number β ∈ (0, 1] and
the polar coordinate x = (r, θ) ∈ R2 \ {02}, let us denote by

Sec(β) ≡
{
(r, θ) ∈ R2 \ {02}

∣∣∣ r ∈ (0,+∞), θ ∈ (0, 2πβ)
}
,(7.1)

a flat open sector and its closure by Sec(β). We also denote by

(7.2) S̊ec(β) ≡ Sec(β) \ {02}

the punctured sector. In terms of polar coordinates in R2, the Euclidean
metric on Sec(β) is

(7.3) g0 = dr2 + r2dθ2, θ ∈ (0, 2πβ).

Given an angle parameter β ∈ (0, 1], the flat sector (Sec(β), g0), as a
warped product, has a compact cross section [0, 2πβ] at r = 1. The lemma
below gives the spectrum and the associated Fourier expansion with pre-
scribed boundary condition.

Lemma 7.1 (Fourier series on flat sectors). Given β ∈ (0, 1] and a real
number σ, let {φj(θ)}j∈Z be a complete orthonormal basis of L2([0, 2πβ])
which solves

−φ′′
j (θ) = Λj · φj(θ)(7.4)

with the boundary condition

φj(2πβ) = e
√−1·2πσ · φj(0).(7.5)
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Then the following holds:

1) For each j ∈ Z, φj(θ) = e−
√−1·λjθ with

(7.6) λj =
j − σ

β

and Λj = λ2j .

2) Let U(r, θ) be a complex-valued C∞-function on S̊ec(β) satisfying

(7.7) U(r, 2πβ) = e
√−1·2πσ · U(r, 0), r > 0,

then the Fourier series

(7.8)
∑

j∈Z
Uj(r) · φj(θ)

converges to U(r, θ) in the C∞-topology in any compact subset of
S̊ec(β), where

(7.9) Uj(r) ≡
1

2πβ

∫ 2πβ

0
U(r, θ) · φj(θ)dθ.

Proof. First, we compute the eigenvalues and eigenfunctions. For any j ∈ Z,
let us take φj(θ) = e−

√−1·λj ·θ, then φj(θ) is a solution to (7.4) when we
choose Λj as λ

2
j . Now the boundary condition (7.5) gives rise to the relation

(7.10) 2π(λj · β + σ) = j · 2π, j ∈ Z,

and (7.6) follows from this. Moreover, {φj}j∈Z is an orthogonal basis of
L2([0, 2πβ]) with

(7.11)
1

2πβ

∫ 2πβ

0
φj(θ) · φk(θ)dθ = δjk.

The convergence result in Item (2) then follows from standard Fourier theory.
□
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Proposition 7.2 (Liouville theorem on flat sectors). Given β ∈ (0, 1]
and σ ∈ R, let us define a positive number ιβ,σ by

ιβ,σ ≡





1/β, σ ∈ Z,

(σ − [σ])/β, σ − [σ] ∈ (0, 12 ],

([σ] + 1− σ)/β, σ − [σ] ∈ (12 , 1).

(7.12)

Let U(r, θ) ≡ f(r, θ)+
√
−1·h(r, θ) be a complex-valued function on the punc-

tured sector S̊ec(β) ⊂ C such that both f(r, θ) and h(r, θ) are real-valued
harmonic functions on S̊ec(β). Also assume that U satisfies the boundary
condition

U(r, β) = e
√−1·2πσ · U(r, 0), ∀r > 0.(7.13)

Then the following properties hold:

1) With λj and φj as in Lemma 7.1, U has the following types of C∞-
converging Fourier expansions

U(r, θ) = κ0 + c0 · log r +
∑

j ̸=σ

(Cj · rλj + C∗
j · r−λj ) · φj(θ), σ ∈ Z,(7.14)

U(r, θ) =
∑

j∈Z
(Cj · rλj + C∗

j · r−λj ) · φj(θ), σ ̸∈ Z.(7.15)

2) If there is some µ ∈ (0, ιβ,σ) such that for any x ∈ S̊ec(β),

(7.16) |U(x)| ≤ C

r(x)µ
,

then u = 0 on the whole closed sector Sec(β).

Proof. First, we prove Item (1). We will compute the expansion of U by
using separation of variables and Fourier series in Lemma 7.1 along the cross
section [0, 2πβ]. The Euclidean Laplacian ∆0 in terms of polar coordinates
x = (r, θ) ∈ C with θ ∈ [0, 2πβ] is given by

(7.17) ∆0U =
∂2U

∂r2
+

1

r
· ∂U
∂r

+
1

r2
· ∂

2U

∂θ2
.
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Since the harmonic function U is C∞ in the punctured sector S̊ec(β), (7.8)
gives a C∞-converging Fourier series of U ,

(7.18) U(r, θ) =
∑

j∈Z
Uj(r)φj(θ).

Plugging the above expansion into ∆0U = 0, we obtain the Cauchy-Euler
equation for Uj(r),

(7.19) U ′′
j (r) +

U ′
j(r)

r
−
λ2j · Uj(r)

r2
= 0,

where λj = (j − σ)/β. The indicial equation of (7.19) in mj is given by

(7.20) m2
j − λ2j = 0, j ∈ Z,

which gives the indicial roots

(7.21) mj = ±λj , j ∈ Z.

So there are two types of expansions depending on the indicial roots.
First, if σ ∈ Z, then mj = λj vanishes at j = σ. In this case,

Uj(r) =

{
κ0 + c0 log r, j = σ,

Cj · rλj + C∗
j · r−λj , j ̸= σ.

(7.22)

Therefore,

(7.23) U(r, θ) = κ0 + c0 · log r +
∑

j ̸=σ

(Cj · rλj + C∗
j · r−λj ) · φj(θ).

Next, we consider the case σ ̸∈ Z, which gives the solutions

(7.24) Uj(r) = Cj · rλj + C∗
j · r−λj , j ∈ Z.

Hence, U has the expansion

(7.25) U(r, θ) =
∑

j∈Z
(Cj · rλj + C∗

j · r−λj ) · φj(θ).

This completes the proof of Item (1).
We will next prove Item (2). In accordance with the Fourier expansions

obtained in Item (1), there are two cases to analyze.
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First, if σ ∈ Z, then the minimal nonzero indicial root is

(7.26) m1 = λ1 = ±1/β.

If there is some µ ∈ (0, 1/β) such that U satisfies the growth condition

(7.27) |U(x)| ≤ C

r(x)µ
, ∀x ∈ S̊ec(β),

then c0 = κ0 = 0 and Cj = C∗
j = 0 for all j ∈ Z. Therefore U = 0.

Second , we consider the case σ ̸∈ Z, so we have |λj | > 0 for each j ∈ Z.
The minimal nonzero |λj | among j ∈ Z is achieved at j = [σ] or j = 1 + [σ],
which gives

min
j∈Z

|λj | =
{
(σ − [σ])/β, σ − [σ] ∈ (0, 12 ],

([σ] + 1− σ)/β, σ − [σ] ∈ (12 , 1).
(7.28)

Finally, the growth condition on U in this case reads

(7.29) |U(r, θ)| ≤ C

rµ
, ∀r > 0

with µ < ιβ,σ = min
j∈Z

|λj |, which implies Cj = C∗
j = 0 for all j ∈ Z. So we

have proved that U vanishes on Sec(β) in Case (2).
This completes the proof of the proposition. □

Since Sec(1) = R2, Proposition 7.2 immediately implies the following
corollary.

Corollary 7.3. Let u be a real harmonic function on R2 \ {02}. Assume
that there is some µ ∈ (0, 1) such that u satisfies the following growth con-
dition

(7.30) |u(x)| ≤ C

|x|µ , ∀x ∈ R2 \ {02},

then u ≡ 0 on R2.

The following removable singularity result involves the harmonic func-
tions with slower growth rate than the Green’s function, which is rather
standard in the literature, see for example [20].
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Lemma 7.4. Let (Mn, g) be a Riemannian manifold with n ≥ 3. Given a
point p ∈Mn, assume that u is a harmonic function on Br(p) \ {p} which
satisfies

|u(x)| ≤ C

dg(x, pi)µ
for every x ∈ Bs0(pi) \ {pi},(7.31)

for some s0 ∈ (0, r) and µ ∈ (0, n− 2), then u extends to a harmonic func-
tion on Br(p).

As a quick corollary of the above removable singularity lemma, we have
the following Liouville type result for harmonic functions, the proof of which
follows easily from the maximum principle.

Corollary 7.5. Let (Mn, g) be a complete non-compact Riemannian man-
ifold. Given a finite subset S ⊂Mn Assume that u is a harmonic function
on Mn \ S satisfying

{
|u(x)| ≤ C

dg(x,pi)µ
, x ∈ Bs0(pi) \ {pi},

|u(x)| → 0, dg(x,S) → +∞,
(7.32)

for some s0 > 0 and µ ∈ (0, n− 2), then u ≡ 0 on Mn.

We finish the discussion of this subsection by the following vanishing
result for harmonic 1-forms.

Lemma 7.6. Let (Mn, g, p) be a complete non-compact Riemannian man-
ifold with Ricg ≥ 0. If η is a harmonic 1-form on Mn such that |η(x)| → 0
as dg(p, x) → ∞, then η = 0.

Proof. The proof is routine. Applying Bochner’s formula for the harmonic
1-form η,

(7.33)
1

2
∆g|η|2 = |∇η|2 +Ricg(η, η) ≥ 0,

then |η|2 is subharmonic. Since lim
dg(p,x)→∞

|η(x)| = 0, so the maximum prin-

ciple implies that η = 0 on Mn. □
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7.2. A Liouville type theorem on the P1 limits

In this subsection, we prove a Liouville type theorem in the context that a
sequence of approximate metrics gCj on the elliptic K3 surface K Gromov-

Hausdorff converging to the compact limit (P1, dML)

(K, gCj )
GH−−→ (P1, dML),(7.34)

where dML is the McLean metric on P1 with bounded diameter and non-
smooth along a finite singular set S ⊂ P1.

Consider a sequence of co-closed real 1-forms ηj ∈ Ω̊1(K) and we will
identify ηj with a 4-tuple of functions away from the singular fibers. Follow-
ing the notation in Section 2, in terms of the holomorphic coordinates y and
xδj given by the holomorphic section,

(7.35) ηj = f
(y)
j dy + f

(ȳ)
j dȳ + f

(3)
j · e3 + f

(4)
j · e4,

where e3 and e4 as chosen in Subsection 2.3, such that f
(y)
j = f

(ȳ)
j and f

(3)
j ,

f
(4)
j are real. Therefore, the 1-form ηj on Rδj is identified with the functions

(f
(y)
j , f

(ȳ)
j , f

(3)
j , f

(4)
j ). Based on the above discussions, the convergence of 1-

forms can be converted to the convergence of functions on Rδj . We also
remark that as δj → 0,

(7.36) (Rδj , g
C
j )

GH−−→ (P1 \ S, dML).

Moreover, curvatures are uniformly bounded in any compact subset which
has definite distance (independent of δj) away from singular fibers.

The lemma below gives a notion for the convergence of functions away
from the singular set, using the concept of equivariant-Gromov-Hausdorff
convergence, which was discussed in Subsection 2.3. The assumptions below
can be weakened, but for our purposes, the following version will suffice.
Since this is rather standard, we will omit the proof.

Lemma 7.7. In the above notation, let (K, gCj ) collapse to (P1, dML) with

a finite singular set S ⊂ P1 such that for any q∞ ∈ P1 \ S, there exists s > 0



✐

✐

“9-Viaclovsky” — 2021/1/7 — 1:07 — page 2101 — #83
✐

✐

✐

✐

✐

✐

Collapsing Ricci-flat metrics 2101

such that the diagram of equivariant convergence holds

(7.37)
(
B̂2s(qj), ĝ

C
j ,Γj , q̂j

)
eqGH

//

prj
��

(
Y∞, ĝ∞,Γ∞, q̂∞

)

pr∞
��(

B2s(qj), g
C
j , qj

)
GH

//

(
B2s(q∞), dML, q∞

)
.

Let fj be a sequence of smooth functions on Rδj and assume that for each
t ∈ (0, 1

100), there exists a constant Ct > 0 independent of j such that

(7.38) ∥fj∥C1,α(Rt) ≤ Ct,

then there is a function f∞ ∈ C1,α′

(P1 \ S) for any α′ ∈ (0, α) with the fol-

lowing properties: Denote by f̂j the lifting of fj on B̂2s(qj), then passing to a

subsequence, f̂j converges to a Γ∞-invariant function f̂∞ ∈ C1,α′

(Y∞) in the

C1,α′

-topology for any α′ ∈ (0, α) such that f̂∞ descends to f∞ with respect
to the projection pr∞.

Next, we have our main Liouville theorem in the case of a compact limit
space.

Proposition 7.8. Let (K, gCj ) be a collapsing sequence with bounded diam-
eters which are constructed in Section 4 and Section 5 such that as j → +∞,

(7.39) (K, gCj )
GH−−→ (P1, dML).

Let ηj ∈ Ω̊1(K) be a sequence of coclosed 1-forms satisfying ∥ηj∥C0
µ(K) ≤ 1

and

∥d+
gC
j
ηj∥C0,α

µ+1(K) → 0,(7.40)

for 0 < µ < 1. Under the representation

(7.41) ηj = f
(y)
j dy + f

(ȳ)
j dȳ + f

(3)
j · e3 + f

(4)
j · e4

in Rj, there are limiting functions f
(y)
∞ , f

(ȳ)
∞ , f

(3)
∞ , f

(4)
∞ ∈ C0(P1 \ S) in the

sense of Lemma 7.7. Then f
(y)
∞ = f

(ȳ)
∞ = f

(3)
∞ = f

(4)
∞ = 0 on P1.

Proof. By Proposition 6.16, ∥ηj∥C1,α
µ (K) ≤ C. By Lemma 7.7, for any point

q∞ ∈ P1 \ S, there is some s > 0 such that the diagram (7.37) holds, where
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B2s(q∞) ⊂ P1 \ S. Moreover, there are functions f
(3)
∞ , f

(4)
∞ , f

(y)
∞ ∈ C0(P1 \ S)

and a 1-form η∞ ∈ Ω̊1(Y∞) with a coordinate representation

(7.42) η∞ = f (y)∞ dy + f (ȳ)∞ dȳ + f (3)∞ · e3 + f (4)∞ · e4,

such that

(7.43) d+ĝ∞η∞ = 0, d∗ĝ∞η∞ = 0.

It follows from Lemma 2.4 that, on Y∞, the Γ∞-invariant functions

(7.44)
√

Im(τ̄1τ2) · F (x)
∞ ≡

√
Im(τ̄1τ2)(f

(3)
∞ −

√
−1f (4)∞ )

and f
(y)
∞ are holomorphic in y so that they descend to the quotient space

B2s(q∞).
By the above discussions, the function |η∞|2ĝ∞ is Γ∞-invariant and hence

it becomes a function on the base P1 \ S. By Bochner’s formula,

(7.45) ∆ĝ∞ |η∞|2ĝ∞ = 2|∇ĝ∞η∞|2ĝ∞ ≥ 0.

By the Γ∞-invariance and the Kähler identity in terms of holomorphic co-
ordinates, it turns out that on the punctured quotient space P1 \ S

(7.46) ∆dML
|η∞|2ĝ∞ = 2∂y∂̄y|η∞|2ĝ∞ = ∆ĝ∞ |η∞|2ĝ∞ ≥ 0.

We claim that the function |η∞|ĝ∞ is vanishing globally on P1. For example,
near an Iν-fiber, we can choose local coordinate y such that τ1 = 1 and

τ2 = −ν
√−1
2π log y. Under the growth assumption, |η∞|ĝ∞ = O(|y|−µ) near

y = 0 for some µ ∈ (0, 1). On the other hand, |η∞|2ĝ∞ can be computed in
terms of local coordinates,

(7.47) |η∞|2ĝ∞ = (|f (3)∞ |2 + |f (4)∞ |2) + 1

Im(τ̄1τ2)
|f (y)∞ |2.

So both f
(y)
∞ and

√
Im(τ̄1τ2) · F (x)

∞ are holomorphic across y = 0. It fol-

lows that both f
(y)
∞ and

√
Im(τ̄1τ2) · F (x)

∞ are bounded around y = 0. Thus,
|η∞|2ĝ∞ → 0 as y → 0. Similarly, the same condition holds near fiber of type

I∗ν , II, III, IV, II∗, III∗, IV∗. Thus by the maximum principle, |η∞|2ĝ∞ = 0.
This completes the proof. □
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8. Existence of collapsing hyperkähler metrics

We will focus on the proof of Theorem 1.1 in this section. The main idea of
the proof is to use an appropriate version of the implicit function theorem
in order to perturb the approximate solutions to the genuine solutions. Sub-
section 8.1 outlines the framework of the perturbation. In Subsection 8.2, we
will prove error estimates in weighted Hölder spaces, which effectively mea-
sure how far the approximate solutions are from genuine ones. We will prove
the main uniform estimates for the linearized operator in Subsection 8.3, em-
ploying the Liouville Theorems which were proved in Section 7. Finally, in
Subsection 8.4 we will complete the proof Theorem 1.1.

8.1. Framework of the perturbation analysis

Recall that in our context, we begin with an elliptic K3 surface K with an
associated elliptic fibration F : K → P1 such that there is a finite singular set
S ⊂ P1. In the gluing construction, we have fixed a holomorphic (2, 0)-form
ΩK given by the complex structure of K. Then we define ω2 +

√
−1ω3 ≡ δΩK,

which satisfy

ω2
2 = ω2

3, ω2 ∧ ω3 = 0.(8.1)

Let dvol0 =
1
2ω

2
2 = 1

2ω
2
3. From Remark 1.4, the family closed 2-forms ωC

δ

yields a family of approximately hyperkähler metrics gCδ induced by the
definite triple ωC

δ ≡ (ωC
δ , ω2, ω3). Recall that ω

C
δ might not be a (1, 1)-form

because this property is destroyed in the case of finite monodromy. For
δ ≪ 1, the definite triple ωC

δ is very close to being a hyperkähler triple in
the sense that

(8.2) ∥Q
ω

C
δ
− Id ∥C0(K) ≪ 1,

but a more precise statement quantifying this in weighted Hölder spaces will
be proved in Proposition 8.2 below.

The goal of the perturbation procedure will be to find a closed 2-form
θ = (θ1, 0, 0) such that ωD

δ ≡ ωC
δ + θ is an actual hyperkähler triple on K,

which is equivalent to the system

1

2
(ωC

δ + θ1)
2 =

1

2
ω2
2,(8.3)

1

2
(ωC

δ + θ1) ∧ ω2 =
1

2
(ωC

δ + θ1) ∧ ω3 = 0.(8.4)
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Let us write θ1 = θ+1 + θ−1 , where θ
+
1 , θ

−
1 are the self-dual and anti-self-dual

parts of θ1 with respect to gCδ , respectively. Then equations (8.3) and (8.4)
can be written as

1

2

(
2θ+1 ∧ ωC

δ + θ+1 ∧ θ+1
)
=

1

2
(ω2

2 − (ωC
δ )

2 − θ−1 ∧ θ−1 ),(8.5)

1

2
θ+1 ∧ ω2 = −1

2
ωC
δ ∧ ω2,(8.6)

1

2
θ+1 ∧ ω3 = −1

2
ωC
δ ∧ ω3.(8.7)

Let us denote

Ω̊1(K) ≡ {η ∈ Ω1(K)|d∗η = 0},(8.8)

and let H2
+(K) be the space of self-dual harmonic 2-forms on K, which is

of dimension 3, since b+(K) = 3. For η1 ∈ Ω̊1(K) and ξ1 ∈ H2
+(K), it follows

from Hodge theory that a solution of following gauge-fixed system

d+η1 + ξ1 = H0

(
1

2

(
ω2
2 − (ωC

δ )
2 − d−η1 ∧ d−η1,(8.9)

− ωC
δ ∧ ω2,−ωC

δ ∧ ω3

))
,

yields a solution θ1 = d+η1 + ξ1 of the system (8.5)–(8.7). Here the operator
H0 is defined as follows. Let

(8.10) G0 : Ω
2
+(K) → Ω4(K)× Ω4(K)× Ω4(K)

be the map

G0(θ
+
1 ) ≡

1

2

(
2θ+1 ∧ ωC

δ + θ+1 ∧ θ+1 , θ+1 ∧ ω2, θ
+
1 ∧ ω3

)
.(8.11)

Note that, restricted to every point of K, G0 : R
3 → R3 is a local diffeo-

morphism at 03 ∈ R3, and the map H0 is then defined as a pointwise local
inverse near zero to G0.

For a parameter µ ∈ (0, 1) (the precise range of µ will be fixed later), we
define the following Banach spaces,

A ≡ C1,α
µ (Ω̊1(K))⊕H2

+(K),(8.12)

B ≡ C0,α
µ+1(Λ

+(K)),(8.13)
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where A is equipped with the following norm: for (η, ξ̄+) ∈ A,

(8.14) ∥(η, ξ̄+)∥A ≡ ∥η∥C1,α
µ (K) + ∥ξ̄+∥C0,α

µ+1(K),

and where the weighted Hölder space are defined in Definition 6.15, with
weight function is given by (6.109).

We define the operator Fδ : A → B by

Fδ(η, ξ̄
+) ≡ d+η + ξ̄+ − H0

(
1

2

(
ω2
2 − (ωC

δ )
2 − d−η ∧ d−η,(8.15)

− ωC
δ ∧ ω2,−ωC

δ ∧ ω3

))
,

so that a zero of Fδ solves the system (8.9). The linearization of Fδ at (0, 0)
is the operator

(8.16) Lδ ≡ d+ ⊕ Id : A −→ B.

The nonlinear part of Fδ is given by

Nδ(η, ξ̄
+) ≡ H0

(
1

2
(ω2

2 − (ωC
δ )

2,−ωC
δ ∧ ω2,−ωC

δ ∧ ω3)

)

− H0

(
1

2
(ω2

2 − (ωC
δ )

2 − d−η ∧ d−η,−ωC
δ ∧ ω2,−ωC

δ ∧ ω3)

)
.(8.17)

The main tool is the following standard implicit function theorem (see
for example [4]).

Lemma 8.1. Let F : A → B be a map between two Banach spaces such
that

(8.18) F (x)− F (0) = L (x) + N (x),

where the operator L : A → B is linear and N (0) = 0. Assume that

1) L is an isomorphism with ∥L −1∥ ≤ C1,

2) there are constants r > 0 and C2 > 0 with r < 1
5C1C2

such that
a)

(8.19) ∥N (x)− N (y)∥B ≤ C2 · (∥x∥A + ∥y∥A) · ∥x− y∥A

for all x, y ∈ Br(0) ⊂ A,
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b) ∥F (0)∥B ≤ r
2C1

,

then there exists a unique solution to F (x) = 0 in A such that

(8.20) ∥x∥A ≤ 2C1 · ∥F (0)∥B.

In the following subsections, we will show that all of the assumptions in
Lemma 8.1 are satisfied when δ is sufficiently small.

8.2. Weighted error estimates

As noted above, ωC
δ = (ωC

δ , ω2, ω3) is hyperkähler away from the regions
SALG, and the damage zone regions in SIν and SI∗ν . The following proposition
gives precise estimates for the error term with respect to the weighted Hölder
spaces.

Proposition 8.2 (Weighted error estimates). Let F : K → P1 be an
elliptic K3 surface with a family of collapsing metrics gCδ induced from ωC

δ

such that

(8.21) (K, gCδ )
GH−−→ (P1, dML).

Let SALG, SIν and SI∗ν be the regions chosen in previous sections which sur-
round the singular fibers of F. Then the weighted error estimate is listed as
follows:

1) In the singular region SALG near a singular fiber F−1(p) with finite
monodromy,

∥Q
ω

C
δ
− Id ∥C0,α

µ+1(Oδℓ (p))
≤ C · δℓ( 7

5
+µ),(8.22)

∥Q
ω

C
δ
− Id ∥C0,α

µ+1(Aδℓ,2δℓ (p))
≤ C · (δℓ( 7

5
+µ) + δℓ(µ−1)+2),(8.23)

where Oδℓ(p) ≡ F−1(B2δℓ(p)), Aδℓ,2δℓ(p) ≡ F−1(Aδℓ,2δℓ(p)), and SALG

in the union of these two sets.

2) Near a singular fiber of Type Iν for some ν ∈ Z+, the approximate
triple in the singular region SIν yields to the estimate

(8.24) ∥Q
ω

C
δ
− Id ∥C0,α

µ+1(F
−1(Aδ0,2δ0 (p)))

≤ C1e
−C2/δ.
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3) Near a singular fiber F−1(p) of Type I∗ν for some ν ∈ Z+, the approxi-
mate triple in the singular region SI∗ν yields to the following estimate,

∥Q
ω

C
δ
− Id ∥C0,α

µ+1(F
−1(Aδ0,2δ0

(p))) ≤ C1 · e−C2/δ,(8.25)

∥Q
ω

C
δ
− Id ∥C0,α

µ+1(DEH)
≤ C ·

(
δµ+1 · eµ+5

λ + (eλ · δ)µ+3
)
,(8.26)

where DEH ≡ {x ∈ K|eλδ ≤ dgC
δ
(x, qλ) ≤ 2eλδ, 1 ≤ λ ≤ 4} denotes the

transition region for gluing the Eguchi-Hanson metrics ω♭
EH.

Proof. For Item (1), note that the components of Q
ω

C
δ
− Id in Oδℓ(p) are

(8.27) (Ψ∗ωG
δ )

2 − 1

2
δ2ΩK ∧ Ω̄K =

1

2
δ4Ψ∗ΩG ∧Ψ∗Ω̄G − 1

2
δ2ΩK ∧ Ω̄K

and

(8.28) Ψ∗ωG
δ ∧ δΩK = Ψ∗ωG

δ ∧ (δΩK − δ2Ψ∗ΩG).

Thus, to estimate Q
ω

C
δ
− Id in Oδℓ(p), it suffices to compute δΩK − δ2Ψ∗ΩG

using the norm defined by the metric gCδ . Using the weighted norm, it follows
immediately from Proposition 5.10 that

(8.29) ∥δΩK − δ2Ψ∗ΩG∥C0,α
µ+1(Oδℓ (p))

≤ Cδℓ(
7

5
+µ).

Next, in addition to the above complex structure distortion, the error term
|Q

ω
C
δ
− Id | in the annulus transition region Aδℓ,2δℓ(p) also arises from the

difference |ωG
δ − ωflat

δ |. By Proposition 5.6,

∥ωG
δ − ωflat

δ ∥C0(Aδℓ,2δℓ (p))
≤ Cδ2−2ℓ,(8.30)

[ωG
δ − ωflat

δ ]Cα(Aδℓ,2δℓ (p))
≤ Cδ2−ℓ(α+2).(8.31)

So it follows that

∥Q
ω

C
δ
− Id ∥C0,α

µ+1(Aδℓ,2δℓ (p))
≤ C · (δℓ( 7

5
+µ) + δℓ(µ−1)+2).(8.32)

In Item (2), the error term |Q
ω

C
δ
− Id | around a singular fiber of Type

Iν has an exponential decaying rate. The estimate (8.24) in the special case
ν = 1 was proved in [24, Theorem 4.4]. The computations for obtaining the
exponential decaying rate in the general Iν case are along the same lines.
Indeed, the exponential decaying rate essentially arises from the asymptotic
behavior of the Green’s function in Lemma 4.1.
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Finally, we prove Item (3). The exponential error estimate on
F−1(Aδ0,2δ0(p)) is the same as the error estimate in Item (2), so we omit
it. It suffices to prove the error estimate near the Eguchi-Hanson bubbles.
In this region, the approximate metric is constructed by gluing 4 copies of
Eguchi-Hanson metrics with the quotient multi-Ooguri-Vafa metric near the
orbifold points with the flat tangent cone R4/Z2. To estimate the size of the
error |Q

ω
C
δ
− Id | in the damage zone

(8.33)
{
x ∈ K

∣∣∣ eλδ ≤ dgC
δ
(x, qλ) ≤ 2eλδ, 1 ≤ λ ≤ 4

}
,

we need to analyze the asymptotic behavior of the rescaled Eugchi-Hanson
metric g♭EH and the local behavior of the quotient multi-Ooguri-Vafa metric
ǧ♭δ,ν around the singularity. By the approximation estimate (4.55) for the
Eguchi-Hanson metric, we have

(8.34)
∣∣∣∇k

g♭
R4/Z2

(ω♭
EH − ω♭

R4/Z2
)
∣∣∣
g♭
R4/Z2

≤ C · (e2λ · δ)4
(eλ · δ)4+k

= C · e
4−k
λ

δk
.

On the other hand, for the metric approximation around orbifold singulari-
ties, (4.52) implies

(8.35)
∣∣∣∇k

g♭
R4/Z2

(ω♭
δ,ν − ω♭

R4/Z2
)
∣∣∣
g♭
R4/Z2

≤ C · (eλ · δ)2−k.

Therefore, the weighted estimate in the damage zone (8.33) is given by

(8.36) ∥Q
ω

C
δ
− Id ∥C0,α

µ+1
≤ C ·

(
δµ+1 · eµ+5

λ + (eλ · δ)µ+3
)
.

This completes the proof. □

8.3. The uniform injectivity estimates

In this subsection, we will establish the uniform injectivity estimates for the
linear operator d+

gC
δ

. The crucial part in proving such estimates is to use the

Liouville theorems in Section 7 in the contradiction arguments.
To begin with, we give a more accurate upper bound for weight param-

eter µ ∈ (0, 1). In our following weighted analysis, the upper bound of the
weight parameter µ ∈ (0, 1) is determined by the Liouville type theorems
in Section 7.1. By Proposition 7.2, for each punctured sector S̊ec(β) with
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β ∈ (0, 1), the growth parameter µ is chosen such that

0 < µ < ιβ,β =

{
1, β ∈ (0, 1/2],
1
β − 1, β ∈ (1/2, 1).

(8.37)

Here β ∈ (0, 1) corresponds to the angle parameter in the ALG spaces asso-
ciated to the singular fibers of type II∗, III∗, IV∗, II, III, IV and I∗0. Hence
the possible range for β is

(8.38) β ∈
{
1

6
,
1

4
,
1

3
,
5

6
,
3

4
,
2

3
,
1

2

}
,

which gives ιβ,β ≥ 1
5 . Therefore, from now on, the weight parameter is will

be chosen so that µ ∈ (0, 15).

Proposition 8.3 (Uniform injectivity estimate). Given 0 < δ ≪ 1,
α ∈ (0, 1) and µ ∈ (0, 15), there exists C = C(α) > 0 independent of δ > 0

such that for every η ∈ Ω̊1(K),

(8.39) ∥η∥C1,α
µ (K) ≤ C∥d+

gC
δ

η∥C0,α
µ+1(K).

Proof. By Proposition 6.16, it suffices to show the uniform estimate

(8.40) ∥η∥C0
µ(K) ≤ C∥d+

gC
δ

η∥C0,α
µ+1(K).

We will prove it by contradiction and suppose that no such a uniform con-
stant C > 0 exists. That is, there are contradicting sequences:

1) a sequence of manifolds (K, gCj ) with a sequence of parameters δj → 0
satisfying

(8.41) (K, gCj ,xj)
GH−−→ (X∞, dML,x∞).

2) a sequence of 1-forms ηj ∈ Ω̊1(M4
j ) satisfying

∥d+
gC
j
ηj∥C0,α

µ+1(K) → 0,(8.42)

∥ηj∥C0
µ(K) = 1,(8.43)

|s(xj)
µ · ηj(xj)| = 1,(8.44)

as j → ∞.
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Then, centering around the reference points xj , we will rescale the metrics
by

g̃Cj = (λj)
2gCj(8.45)

λj = s−1
j ≡ s(xj)

−1.(8.46)

To guarantee rescaling invariance of (8.44) and the weighted Schauder es-
timate, we will simultaneously rescale the contradicting 1-forms ηj and the
functions s by

{
s̃ = s−1

j · s,
η̃j = κj · ηj , κj ≡ s

µ−1
j .

(8.47)

In terms of these rescalings, the contradiction assumptions become the
following:

(1̃) There is some constant C0 > 0 independent of j ∈ Z+ such that the
rescaled metrics g̃Cj satisfies

1

C0
≤ sup

B1(xj)
|Rmg̃C

j
| ≤ C0,(8.48)

(K, g̃j ,xj)
GH−−→(M∞, d̃∞,x∞),(8.49)

for some complete metric space (M∞, d̃∞,x∞).

(2̃) The rescaled contradicting 1-forms η̃j ∈ Ω̊1(M4
j ) satisfy

∥d+
g̃C
j
η̃j∥C0,α

µ+1(K) → 0,(8.50)

∥η̃j∥C0
µ(K) = 1,(8.51)

|s̃(xj)
µ · η̃j(xj)| = 1.(8.52)

as j → ∞.

Under the rescaled weighted Hölder norm, applying (2̃) and the weighted
Schauder estimate in Proposition 6.16, we have

(8.53) ∥η̃j∥C1,α
µ (K) ≤ C.

Our contradiction arguments will be done in various regions of K around
the singular fibers of type Iν , I

∗
ν (ν ∈ Z+) and the fibers of finite monodromy.

Recall those regions were denoted by SIν , SI∗ν and SALG in Section 6, respec-
tively.
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Region SALG (singular fibers of finite monodromy):

We will further divide region into SALG,1 and SALG,2 according to the
discussions in Section 6.2.

Sub-region SALG,1:

As in the proof of Proposition 6.9, the rescaled spaces (K, g̃Cj ,xj) for xj in
SALG,1 satisfy the pointed convergence

(8.54) (K, g̃Cj ,xj)
C∞

−−→ (G, gG ,x∞),

where (G, g̃∞,x∞) is the complete hyperkähler ALG space determined by
the corresponding singular fiber with finite monodromy.

Combining the above smooth convergence of g̃Cj with uniform C1,α-
estimate (8.53) for η̃j , then for every γ ∈ (0, α), η̃j converges to some limiting
1-form η̃∞ ∈ Ω̊1(G) in the C1,γ-topology which satisfies





d+g̃∞ η̃∞ = 0

|s̃∞(x∞)µ · η̃∞(x∞)| = 1

∥η̃∞∥C0
µ(G) = 1,

(8.55)

and s̃ converges to the limiting function

s̃(x) =

{
1, x ∈ B1(x∞)

dg̃∞(x,x∞), x ∈ G \B2(x∞).
(8.56)

Notice that the above norm bound implies that for all x ∈ G \B2(x∞),

(8.57) |η̃∞(x)| ≤ (dg̃∞(x,x∞))−µ.

Since η̃∞ ∈ Ker(d+g̃∞), immediately η̃∞ is harmonic with respect to the hy-
perkähler metric g̃∞ on the complete ALG space G. Applying Lemma 7.6,
we have η̃∞ = 0.

Sub-region SALG,2:
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In this sub-region, the rescaled sequence (K, g̃Cj ,xj) is collapsing to T∞G,
the asymptotic cone of the corresponding ALG space G. That is, as j → +∞,

(8.58) (K, g̃Cj ,xj)
GH−−→ (C(S1

2πβ), dC,2πβ ,x∞)

where dC,2πβ(x∞, 02) = 1 and (C(S1
2πβ), dC,2πβ) is a flat cone for some angle

parameter

(8.59) β ∈
{
1

6
,
1

4
,
5

6
,
3

4
,
2

3
,
1

3
,
1

2

}
.

Let Sec(β) ⊂ R2 be the open sector obtained from the flat cone C(S1
2πβ)

removing rays θ = 0 and θ = 2πβ. So we can take a sequence of open subsets
Uj ⊂ K such that

(8.60) (Uj , g̃
C
j ,xj)

GH−−→ (Sec(β), g0,x∞).

Moreover, Uj can be chosen such that it has a natural torus bundle structure

(8.61) T2 → Uj
π−→ Sec(β)

with the standard holomorphic coordinate system {u,v}, where u and v are
the holomorphic coordinates on the base and the torus fiber, respectively.
Restricted to Uj , the contradicting sequence η̃j , as real-valued 1-forms, can
be written in terms of the complex coordinates

(8.62) η̃j = fjdu+ f̄jdū+ hjdv + h̄jdv̄,

where fj and hj are complex-valued functions on Uj . Taking any point q∞ in
Sec(β) and letting qj → q∞ for qj ∈ Uj , then there is some s > 0 depending
on q∞ such that the universal covering of B2s(qj) is non-collapsing and the
following equivariant-Gromov-Hausdorff convergence holds:

(8.63)
(
B̂2s(qj), ĝ

C
j ,Γj , q̂j

)
eqGH

//

prj
��

(
Y∞, ĝ∞,Γ∞, q̂∞

)

pr∞
��(

B2s(qj), g
C
j , qj

)
GH

//

(
B2s(q∞), dML, q∞

)
,

where Γj
∼= Z2 and Γ∞ ∼= R2. Remark that the convergence on the universal

covering space B̂2s(qj) can improved to be C∞.
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Denote by

(8.64) η̂j = Fjdu+ F̄jdū+Hjdv + H̄jdv̄

the lifting of the 1-forms η̃j on B̂2s(qj), then combining the contradiction
assumption (8.52) and the above C∞-convergence of the local universal

covers, we have that η̂j ∈ Ω̊1(B̂2s(qj)) converges to η̂∞ ∈ Ω̊1(Y∞) so that
d+ĝ∞ η̂∞ = 0 on Y∞. Then by direct computations,

∆ĝ∞ Re(F∞) = ∆ĝ∞ Im(F∞) = ∆ĝ∞ Re(H∞)(8.65)

= ∆ĝ∞ Im(H∞) = 0 on Y∞.

The definition of ALG space shows that the torus bundle restricted to
B2s(qj) → B2s(q∞) is almost a metric product, which implies that any Γ∞-
orbit is totally geodesic in Y∞. So (8.65) descends to B2s(q∞) ⊂ Sec(β).

By Lemma 7.7, there are global limiting functions f∞ and h∞ on the
open sector Sec(β) satisfying

|Re(f∞)(x)|+ | Im(f∞)(x)|(8.66)

+ |Re(h∞)(x)|+ | Im(h∞)(x)| ≤ C

r(x)µ
,

where r is the distance to the origin. Moreover,

f∞(r, β) = e−
√−1·2πβf∞(r, 0)(8.67)

h∞(r, β) = e
√−1·2πβh∞(r, 0).(8.68)

We have just shown that on Sec(β),

(8.69) ∆g0 Re(f∞) = ∆g0 Im(f∞) = ∆g0 Re(h∞) = ∆g0 Im(h∞) = 0.

Recall that we have chosen µ ∈ (0, 15), then Proposition 7.2 implies that in
any case of β in Table 5.2, we have

(8.70) Re(f∞) = Im(f∞) = Re(h∞) = Im(h∞) = 0.

On other hand, this contradicts to the weighted control

(8.71)
∣∣∣s̃(xj)

µ · η̃j(xj)
∣∣∣ = ∥η̃j∥C0

µ(K) = 1,

which completes the proof in this region.
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Region SIν (singular fibers of type Iν, ν ∈ Z+):

By the regularity scale analysis in Section 6.3, the region SIν can be subdi-
vided into SIν ,1, SIν ,2 and SIν ,3.

Sub-region SIν ,1:

As xj ∈ SIν ,1, we have the following C
∞-convergence for the rescaled metrics

(8.72) (K, g̃Cj ,xj)
C∞

−−→ (C2, gTN ,x∞),

where (C2, gTN ,x∞) is the Ricci-flat Taub-NUT space. The remainder of
the contradiction arguments immediately follow from Lemma 7.6, which is
almost verbatim to the proof in Sub-region SALG,1, so we omit the details.

Sub-region SIν ,2:

In this sub-region, depending upon the distance to the singular fiber, there
are three types of rescaled limits:

(a) the Ricci-flat Taub-NUT space (C2, gTN ,x∞),

(b) the Euclidean space R3,

(c) the flat product space R2 × S1.

The argument in Case (a) is identical to SIν ,1. In Case (b), the rescaled
metrics yield to

(8.73) (K, g̃Cj ,xj)
GH−−→ (R3, gR3 ,x∞)

with dR3(x∞, 03) = 1. Moreover, the convergence keeps curvatures uniformly
bounded away from the origin 03 ∈ R3. Our basic strategy is to reduce the
convergence of the 1-form η̃j to the convergence of the coefficient functions.
Let pi, i = 1, 2, ..., ν, be a fixed monopole in SIν . For any fixed ξ > 1, define

(8.74) Uj ≡ B
gC
j

ℓj
(pi) \BgC

j

δj
(pi)

where ℓj ≡ ξ−1 · dgC
j
(xj , pi) and δj ≡ ξ · dgC

j
(xj , pi), then Uj is naturally a

circle bundle. Now with respect to the rescaled metrics

(8.75) g̃Cj = λ2jg
C
j , λj =

1

dgC
j
(xj , pi)

,
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the open subsets Uj become large punctured balls B
g̃C
j

ξ−1(pi) \B
g̃C
j

ξ (pi) and
since ξ is arbitrary,

(8.76) (Uj , g̃
C
j ,xj)

GH−−→ (R3 \ {03}, gR3 ,x∞).

Therefore, restricted to Uj , the contradicting 1-forms η̃j can be written as

(8.77) η̃j = f1j · θ1j + f2j · θ2j + f3j · θ3j + f4j · θ4j ,

where θ1j , θ
2
j , θ

3
j and θ4j are the orthonormal basis defined as the rescaling of

the pull back of du1, du2, du3 and the connection 1-form for (u1, u2, u3) ∈ R3.
Given the contradiction assumption (8.52), applying the similar argu-

ments as Lemma 7.7, we obtain limiting functions f1∞, f2∞, f3∞, and f4∞ on
R3 \ {03} which satisfy

∆R3f1∞(x) = ∆R3f2∞(x) = ∆R3f3∞(x)(8.78)

= ∆R3f4∞(x) = 0, ∀x ∈ R3 \ {03},

with the growth condition

(|f1∞|+ |f2∞|+ |f3∞|+ |f4∞|)(x) ≤ C
(
dg0(x, 0

3)
)−µ

,(8.79)

∀x ∈ R3 \ {03}.

Since µ ∈ (0, 15), Corollary 7.5 implies

f1∞ = f2∞ = f3∞ = f4∞ = 0 on R3.(8.80)

This contradicts to the property

(8.81)
∣∣∣s̃(xj)

µ · η̃j(xj)
∣∣∣ = ∥η̃j∥C0

µ(K) = 1,

which completes the proof of Case (b).
The rescaled limit in Case (c) is a flat product space R2 × S1, so the

proof in this region is almost identical to Case (b), details are omitted.

Sub-region SIν ,3:

The large scale region SIν ,3 can be divided into three cases of rescaled limits:

(a) the flat product R2 × S1,

(b) the Euclidean plane R2,
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(c) the compact space (P1, dML,x∞), where dML is the McLean metric.

The proof are almost identical to the Sub-region SIν ,2. Here we just point
out the differences: In Case (b), the contradiction arises from the Liouville
theorem on the Euclidean plane, which is guaranteed by Corollary 7.3. The
rescaled limit in Case (c) is compact, so we apply Proposition 7.8 to obtain
the desired contradiction.

Region SI∗ν (singular fibers of type I∗ν, ν ∈ Z+):

In this region, we have classified all the bubbles into the following 5 types:

1) the Eguchi-Hanson space (X4
EH , gEH) and the Taub-NUT space

(C2, gTN ),

2) 4-dimensional flat orbifolds: R4/Z2 and (R3 × S1)/Z2,

3) 3-dimensional flat orbifolds: R3, R3/Z2 and (R2 × S1)/Z2

4) 2-dimensional flat orbifolds: R2/Z2,

5) the compact space (P1, dML,x∞), where dML is the McLean metric.

In Type (1), one can use Lemma 7.6 to obtain the contradiction. In
Types (2)-(4), one can apply Corollary 7.5 on the Z2-covering space when
necessary. Finally, the contradiction in Type (5) follows from Proposition 7.8.

This completes the proof of the proposition. □

8.4. The proof of the existence theorem

In this subsection, we will complete the proof of the main existence theorem.
To start with, we restate Theorem 1.1 with more precise descriptions of
choices of parameters, uniform estimates and bubbling behaviors.

Theorem 8.4. Let 1
log(1/δ) ≪ eλ ≪ 1√

log(1/δ)
, µ ∈ (0, 1

10), α ∈ (0, 1) be pa-

rameters, and fix ℓ = 11
12 . Let F : K → P1 be any elliptic K3 surface with

a fixed holomorphic 2-form Ω. Let gCδ be the family of approximately hy-
perkähler metrics with the error estimates in Proposition 8.2 such that

(8.82) (K, gCδ )
GH−−→ (P1, dML), as δ → 0.

Then for any δ ≪ 1, there exists a hyperkähler metric gDδ induced by a hy-
perkähler triple (ωD

δ ,Re(δ · Ω), Im(δ · Ω)) such that the following properties
hold:
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1) Under the hyperkähler metrics gDδ , (K, gDδ ) are collapsing to (P1, dML)
with a finite singular set S ⊂ P1 such that curvatures of gDδ are uni-
formly bounded away from singular fibers, but are unbounded around
singular fibers.

2) The hyperkähler metrics gDδ satisfy the uniform weighted estimate

∥gDδ − gCδ ∥C0,α
0 (K) ≪

1

(log(1/δ))1/4
,(8.83)

where C0,α
0 norm means the weighted Ck,α

µ′ norm for k = 0 and µ′ = 0
as in Definition 6.15.

3) If F−1(p) is singular with finite monodromy, then rescalings of gDδ con-
verge to a complete hyperkähler isotrivial ALG metric of asymptotic
order at least 2.

4) When F−1(p) is singular of type Iν for some ν ∈ Z+, then rescalings
of gDδ converge to ν copies of complete Taub-NUT metrics.

5) When F−1(p) is singular of type I∗ν for some ν ∈ Z+, then rescalings of
gDδ converge to ν copies of complete Taub-NUT metrics plus 4 copies
of Eguchi-Hanson metrics.

Remark 8.5. We choose the parameters to ensure

max
{
δℓ(

7

5
+µ) + δℓ(µ−1)+2, δµ+1 ·max

λ
e
µ+5
λ +

(
max
λ

eλ · δ
)µ+3

}
(8.84)

≪ (δ ·minλ e
2
λ)

µ+1

(log(1/δ))1/4
.

We will see the application of this estimate in the proof of Theorem 8.4.
We remark that if there are no I∗ν fibers, the estimates may be improved
to some polynomial rate in terms of δ. However, for simplicity, we define
maxλ eλ = minλ eλ = 1

(log(1/δ))3/4 in that case so that our proof can be stated
in a uniform way.

Remark 8.6. In the special case that all singular fibers are of Type Iν
(ν ∈ Z+), it is easy to see that the deviation estimate (8.83) can be improved
to

(8.85) ∥gDδ − gCδ ∥Ck(K) ≤ Ck · e−Dk/δ.
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See Item (2) of Proposition 8.2 and Lemma 8.1. In this case, an alterna-
tive treatment of the higher order estimate can be found in [32], which is
based on a refined C2-estimate for the Kähler potential compared with [24,
Lemma 5.3].

First, we will verify Property (1) in Lemma 8.1 and we will prove that
the linearized operator Lδ is an isomorphism from A to B.

Proposition 8.7. Let (K, gCδ ) be a collapsing elliptic K3 surface with the
family of approximately hyperkähler metrics gCδ , then there exists some con-
stant C > 0, independent of δ, such that for every self-dual 2-form ξ+ ∈ B,
there exists a unique pair (η, ξ̄+) ∈ A such that

(8.86) Lδ(η, ξ̄
+) = ξ+

and

(8.87) ∥η∥C1,α
µ (K) + ∥ξ̄+∥C0,α

µ+1(K) ≤ C∥ξ+∥C0,α
µ+1(K),

where µ ∈ (0, 1
10) and α ∈ (0, 1).

Proof. First, the surjectivity of the linear operator Lδ : A → B immediately
follows from the standard Hodge theory. Indeed,

Ω2
+(K) = H2

+(K)⊕ d+(Ω1(K))(8.88)

Ω1(K) = d(Ω0(K))⊕ Ω̊1(K),(8.89)

where Ω̊1(K) denotes the space of divergence-free 1-forms on K, therefore

(8.90) Ω2
+(K) = H2

+(K)⊕ d+(Ω̊1(K)).

It follows that

(8.91) Lδ = d+ ⊕ Id : A −→ B.

is surjective.
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Therefore the main part of the proof is to establish the uniform injec-
tivity estimate (8.87). By Proposition 8.3,

(8.92) ∥η∥C1,α
µ (K) ≤ C∥d+

gC
δ

η∥C0,α
µ+1(K) = C∥ξ+ − ξ̄+∥C0,α

µ+1(K).

So we only need to prove

(8.93) ∥ξ̄+∥C0,α
µ+1(K) ≤ C∥ξ+∥C0,α

µ+1(K).

Since the definite triple

(8.94) ωC
δ = (ω1, ω2, ω3) = (ωC

δ ,Re(δ · Ω), Im(δ · Ω))

is self-dual harmonic and hence constitutes a basis of H2
+(K) at every point,

we can write

(8.95) ξ̄+ = λ1ω1 + λ2ω2 + λ3ω3.

It follows from the definition of the triple ωC
δ that for every 1 ≤ p, q ≤ 3,

(8.96) ωp ∧ ωq = Qpq dvolωC
δ
.

By the error estimate in Proposition 8.2, the estimate (8.84), and the fact
that the weight s(x) ≥ δ ·minλ e

2
λ, we have the estimate

(8.97) ∥Qpq − δpq∥C0(K) ≪
1

(log(1/δ))1/4
.

With respect to the Kähler metrics ωC
δ , we have the volume estimate

(8.98) C−1δ2 ≤ Volgδ(K) ≤ Cδ2.

Therefore

Qpq ≡
∫

K
Qpq dvolωC

δ
(8.99)

has an inverse matrix whose norm is bounded by Cδ−2.
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On the other hand, we know that ξ̄+ is the L2(K) projection of ξ+, so

(8.100)

∫

K
ξ+ ∧ ωq =

∫

K
ξ̄+ ∧ ωq =

3∑

p=1

λp

∫

K
Qpq dvolωC

δ
=

3∑

p=1

λpQpq,

for q = 1, 2, 3. Therefore,




3∑

q=1

|λq|2



1/2

≤ Cδ−2 ·




3∑

q=1

(∫

K
ξ+ ∧ ωq

)2



1/2

(8.101)

≤ Cδ−2 ·
( ∫

K
s−µ−1 dvol

ω
C
δ

)
· ∥ξ+∥C0,α

µ+1(K)

≤ C∥ξ+∥C0,α
µ+1(K)

because ∥ωq∥C0(K) ≤ C and
∫
K s−µ−1 dvol

ω
C
δ
≤ Cδ2.

Next,

∥ξ̄+∥C0,α
µ+1(K) = ∥λ1ω1 + λ2ω2 + λ3ω3∥C0,α

µ+1(K)(8.102)

≤ |λ1| · ∥ω1∥C0,α
µ+1(K) + |λ2| · ∥ω2∥C0,α

µ+1(K)

+ |λ3| · ∥ω3∥C0,α
µ+1(K).

Since for every 1 ≤ q ≤ 3,

∥ωq∥C0,α
µ+1(K) ≤ C,(8.103)

the above implies that

∥ξ̄+∥C0,α
µ+1(K) ≤ C∥ξ+∥C0,α

µ+1(K),(8.104)

and the proof of the proposition is done. □

Next we prove a uniform weighted estimate for the nonlinear term Nδ,
which is given by the following elementary calculations.

Proposition 8.8 (Nonlinear errors). Given the collapsing sequence
(K, gCδ ), then there exists some constant C > 0, independent of δ, such that
for every v1 ≡ (η1, ξ̄

+
1 ) ∈ Br(0) ⊂ A and v2 ≡ (η2, ξ̄

+
2 ) ∈ Br(0) ⊂ A, where
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r = (δ·minλ e2λ)
µ+1

(log(1/δ))1/4 , we have

∥Nδ(v1)− Nδ(v2)∥B ≤ C ·
(
δ ·min

λ
e2λ

)−(µ+1)

(8.105)

× (∥v1∥A + ∥v2∥A) · ∥v1 − v2∥A.

Proof. By definition, for any v ≡ (ω, ξ̄+),

Nδ(v) ≡ H0

(
1

2
(ω2

2 − (ωC
δ )

2,−ωC
δ ∧ ω2,−ωC

δ ∧ ω3)

)

− H0

(
1

2
(ω2

2 − (ωC
δ )

2 − d−η ∧ d−η,−ωC
δ ∧ ω2,−ωC

δ ∧ ω3)

)
.(8.106)

Since H0 : O ⊂ R3 → Λ+(K) is smooth, so there is some universal constant
C > 0 such that

|Nδ(v1)− Nδ(v2)| ≤ C|d−η1 ∗ d−η1 − d−η2 ∗ d−η2|(8.107)

≤ C(|d−η1|+ |d−η2|) · |d−(η1 − η2)|.

Multiplying by the weight function s(x)µ+1,

s(x)µ+1 · |Nδ(v1)− Nδ(v2)|(8.108)

≤ C · s(x)µ+1 · (|d−η1|+ |d−η2|) · |d−(η1 − η2)|.

Since the weight function s(x)µ+1 has a minimum (δ ·minλ e
2
λ)

µ+1,

s(x)µ+1 · |Nδ(v1)− Nδ(v2)|(8.109)

≤ C · (δ · e2λ)−(µ+1)
(
s(x)µ+1 · (|d−η1|+ |d−η2|)

)

×
(
s(x)µ+1 · |d−(η1 − η2)|

)
.

Taking sup norms,

∥Nδ(v1)− Nδ(v2)∥C0
µ+1(K)(8.110)

≤ C · (δ · e2λ)−(µ+1) ·
(
∥v1∥C1

µ(K) + ∥v2∥C1
µ(K)

)

×
(
∥v1 − v2∥C1

µ(K)

)
.
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By similar computations, we also have the estimate for the Hölder seminorm

[
Nδ(v1)− Nδ(v2)

]
C0,α

µ+1(K)
(8.111)

≤ C · (δ · e2λ)−(µ+1) ·
(
∥v1∥C1,α

µ (K) + ∥v2∥C1,α
µ (K)

)

×
(
∥v1 − v2∥C1,α

µ (K)

)
.

So we obtain the effective estimate (8.105) for the nonlinear errors. □

With the above preparations, we are ready to complete the proof of
Theorem 8.4.

Proof of Theorem 8.4. We start with the metrics gCδ induced by the approx-
imately hyperkähler triples

(8.112) ωC
δ = (ωC

δ ,Re(δ · Ω), Im(δ · Ω))

on the K3 surface K with a fixed homolomorphic 2-form Ω. Then we will
prove the existence of a genuine hyperkähler triple

(8.113) ωD
δ = (ωD

δ ,Re(δ · Ω), Im(δ · Ω)).

This will be accomplished by applying Lemma 8.1 to perturb the approxi-
mate solutions, which requires us to combine all the uniform weighted esti-
mates obtained in this section. Proposition 8.7 gives the isomorphism and
uniform weighted estimate for the linearized operator Lδ. Next, Item (2)
of Lemma 8.1 holds by (8.84) for our choice of parameters. Therefore, ap-
plying Lemma 8.1, the 2-form ωC

δ can be perturbed to ωD
δ such that the

triple (ωD
δ ,Re(δ · Ω), Im(δ · Ω)) is a hyperkähler triple. Moreover, the im-

plicit function theorem also gives the uniform error estimate in the weighted
Hölder space

∥ωD
δ − ωC

δ ∥C0,α
µ+1(K) ≪

(δ ·minλ e
2
λ)

µ+1

(log(1/δ))1/4
.(8.114)

Next, we will analyze the Gromov-Hausdorff behaviors of (K, gDδ ). Re-
mark that the weight s(x) ≥ δ ·minλ e

2
λ. So the above error estimate imme-

diately implies that

∥ωD
δ − ωC

δ ∥C0,α
0 (K) ≪

1

(log(1/δ))1/4
.(8.115)
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By the definition of gCδ and gDδ , it is easy to see that

∥gDδ − gCδ ∥C0,α
0 (K) ≪

1

(log(1/δ))1/4
.(8.116)

By the uniform estimate (8.116), we conclude that, with respect to the
hyperkähler metrics gDδ , all the bubbles around singular fibers coincide with
the corresponding bubbles occurring in the collapsing of gCδ . By Section 6,
it follows that the deepest bubbles around singular fibers are precisely given
in the statement of the theorem. Then Theorem 6.8 for Einstein metrics
implies that curvatures are uniformly bounded away from singular fibers.
This completes the proof of the theorem. □

9. Remarks on moduli

In this section, we give a count of the parameters involved in our construc-
tion.

9.1. ALG moduli

In this subsection, we compute the dimension of the moduli space of isotrivial
ALG metrics which are ALG of at least order 2 near a fixed such space G.

Definition 9.1 (Isotrivial ALG moduli). Given an isotrivial ALG man-
ifold G with holomorphic (2,0)-form ΩG = ωG

2 +
√
−1ωG

3 which is identified
with dU ∧ dV on the model space Cβ,τ outside the central fiber (see Lemma
5.9), define U as the space of closed 2-forms ω1 on G such that

(ω1)
2 = (ωG

2 )
2, ω1 ∧ ωG

2 = ω1 ∧ ωG
3 = 0,(9.1)

and

|∇k
hflat(ω1 − ωflat)|hflat = O(|U |−k−2),(9.2)

as |U | → ∞, for any k ∈ N.

We now fix ωG ∈ U and study the neighborhood of ωG in U . Let gG be
the metric induced by the hyperKähler triple (ωG , ωG

2 , ω
G
3 ).
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The weight function on G is

ρ(x) =

{
1, d(p,x) ≤ 1,

d(p,x), d(p,x) ≥ 2,
,(9.3)

smoothly extended to G, and the weightedW k,2 norm of a tensor η is defined
by

(9.4) ∥η∥L2
µ(G) ≡

∫

G
|η|2ρ−2+2µ, ∥η∥W k,2

µ (G) ≡
k∑

m=1

∥∇mη∥2L2
µ+m(G).

Proposition 9.2. The indicial roots of ∆gG on T2-invariant functions are
λj = β−1j, j ∈ Z. The indicial roots of ∆gG on T2-invariant (1, 1)-forms are
given by

1) λj = β−1j, j ∈ Z,

2) λj = β−1j ± 2, j ∈ Z.

Furthermore, for µ not equal to an indicial root, then ∆gG :W k,2
µ →W k−2,2

µ+2

is Fredholm.

Proof. For functions, this follows directly from Proposition 7.2 with σ = 0.
For (1, 1)-forms, we write a harmonic (1, 1)-form as

ξ = f1(|U |)ϕ1(argU )dU ∧ dŪ + f2(|U |)ϕ2(argU )dU ∧ dV̄(9.5)

+ f3(|U |)ϕ3(argU )dV ∧ dŪ + f4(|U |)ϕ4(argU )dV ∧ dV̄ ,

and note that ξ is well-defined on the model space if and only if

ϕ1(2πβ) = ϕ1(0), ϕ2(2πβ) = e−4πβ
√−1ϕ2(0),

ϕ3(2πβ) = e4πβ
√−1ϕ3(0), ϕ4(2πβ) = ϕ4(0).

(9.6)

By Proposition 7.2, we get the first class of indicial roots for ϕ1, ϕ4, and the
second class of indicial roots for ϕ2, ϕ3.

The Fredholm property is proved in [25, Proposition 16]. We also note
that the estimate

∥ϕ∥W 2,2
µ (G) ≤ C(∥∆gGϕ∥L2

µ+2(G) + ∥ϕ∥L2(BR)),(9.7)

for some R > 0, and µ non-indicial is proved in [8, Theorem 4.11]. The
Fredholm property then follows from this in a standard fashion, see [2, 39].

□
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Define L2H2 as the space of 2-forms ξ ∈ L2 such that dξ = 0 and d∗ξ = 0.

Proposition 9.3. There exists a small neighborhood U ⊂ U around ωG

such that there exists an isomorphism from U onto a small ball in L2H2.

Proof. First, let µ > 0 be sufficiently close to zero. By elliptic regularity of
distributions and Proposition 9.2, the cokernel of the mapping

∆gG :W k,2
µ →W k−2,2

µ+2 ,(9.8)

can be identified with harmonic functions in W k,2
−µ . So let h ∈W k,2

−µ , then

h = c1 log |U |+ c2 +O(|U |−ϵ)(9.9)

as U → ∞. By integration by parts, we see that c1 = 0, and therefore h = c2
is a constant. The mapping in (9.8) therefore has a 1-dimensional cokernel
spanned by the constants. To overcome this, let χ(|U |) be a smooth function
which is 1 when |U | ≥ 2R and is 0 when |U | ≤ R for a large radius R. The
mapping

(9.10) ∆gG :W k,2
µ ⊕ R(χ(|U |) log |U |) →W k−2,2

µ+2 ,

is then surjective since the element ∆gG(χ(|U |) log |U |) pairs nontrivially
with 1 under the L2 pairing. We claim that this mapping is moreover an
isomorphism. To see this, suppose that c ∈ R and f ∈W k,2

µ satisfies

(9.11) ∆gG(f + c(χ(|U |) log |U |) = 0.

By elliptic regularity, we can assume that k is very large. Then

0 =

∫

|U |≤R
∆gG(f + c(χ(|U |) log |U |)(9.12)

=

∫

|U |=R

∂

∂n
(f + c(χ(|U |) log |U |),

where ∂
∂n means the derivative in the normal direction. So c = 0. By maxi-

mum principle, f = 0.
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The condition ω1 ∧ ωG
2 = ω1 ∧ ωG

3 is the same as ω1 being (1, 1). For any
ωG ∈ U , let V as the linear space

(9.13) {ξ ∈ Λ1,1(G), dξ = 0, ξ ∧ ωG = 0, |∇kξ| = O((|U |+ 1)−k−2), k ∈ N}

using the norm defined by the metric gG induced by (ωG , ωG
2 , ω

G
3 ). Then for

any small enough ξ ∈ V, by a standard application of the implicit function
theorem (Lemma 8.1), there exists a unique φ ∈W k,2

µ ⊕ R(χ(|U |) log |U |)
such that

(9.14) (ωG + ξ +
√
−1∂∂̄φ)2 = (ωG

2 )
2.

By elliptic regularity, ωG + ξ +
√
−1∂∂̄φ ∈ U . This provides a local diffeo-

morphism from a small neighborhood of 0 in V to a small neighborhood of
ωG in U .

Next, we will show that L2H2 = V. For any element ξ ∈ V, we know that
ξ is anti-self-dual. So

(9.15) d∗gGξ = − ∗gG ◦d ◦ ∗gGξ = ∗gG ◦ dξ = 0.

Therefore V ⊂ L2H2. On the other hand, for any ξ ∈ L2H2, ∆gGξ = 0. So by
Kähler identities (for example, see the proof of [10, Theorem 5.1]), the coef-
ficient of the self-dual part of ξ is also harmonic. It must vanish by maximal
principle. In other words, ξ is anti-self-dual. Since L2 = L2

−1, we just need to
analyze the indicial roots between −2 and −1. By [25, Proposition 16] (see
also [9, Theorem 4.6] for a similar result), we have existence of harmonic
expansions. For β < 1/2, there is no indicial root in the above range, so we
are done. For β > 1/2, from Proposition 9.2, we have the harmonic leading
terms

U −1/βdU ∧ dŪ , U −1/βdV ∧ dV̄ ,(9.16)

and their conjugates. However, we require that ξ is not only harmonic, but
moreover closed and coclosed because we can do the integration by parts. It
is clear that the first term in (9.16) is not coclosed, and the second term in
(9.16) is not closed. Consequently, there is no non-trivial linear combination
of these 4 leading terms with is both closed and co-closed. So the leading
term of ξ can not be of order −1/β. In the cases β = 2/3 or β = 3/4, the
next indicial root is −2, so we are done in these cases. In the case β = 5/6,
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the next indicial root is −8/5. The corresponding leading term is

(Ū )−8/5dU ∧ dV̄ ,(9.17)

or its conjugate. Any non-trivial linear combination of these terms is not
closed, so the leading term cannot be of order −8/5. The next indicial root
is −2, so we are done in this case as well.

We have shown that in all cases, the leading term of ξ must be of order
at least −2. By elliptic regularity, ξ ∈ V, and this finishes the proof. □

Theorem 9.4. The dimension of the isotrivial ALG moduli space U is
b2(G)− 1.

Proof. Recall that from [25], there is an isomorphism

L2H2 ∼= Image(H2
cpt(G) → H2(G)),(9.18)

so by Proposition 9.3, we just need to compute the dimension of the right
hand side, which is a topological invariant. Note that G deformation retracts
onto a large ball B ⊂ G, and set S = ∂(Bp(R)). Consider B as a compact
manifold with boundary S. We claim that

H1(S;R) ∼= H2(S;R) ∼= R.(9.19)

To see this, recall the action is (U ,V ) 7→ (e2π
√−1βU , e−2π

√−1βV ), so on
S1 × T 2, the action is a rotation on the first factor. Then it is easy to see
that the pull-back of dθ from S1 is the only invariant harmonic 1-form under
this action. Since the action is free, we can identify the cohomology of the
quotient with the invariant cohomology.

The long exact sequence in relative cohomology, with real coefficients
gives

0 → H1(S) → H2(B,S) → H2(B) → H2(S) → 0.(9.20)

This is because by Poincaré-Lefschetz duality for manifolds with boundary,

(9.21) H3(B,S) ∼= H1(B) ∼= H1(G) = 0

and H1(B) ∼= H1(G) = 0 since G deformation retracts onto B. Also by du-
ality we have

(9.22) H2(B,S) ∼= H2(B) ∼= H2(G) ∼= H2
cpt(G).
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So the above exact sequence can be written as

0 → R → H2
cpt(G) → H2(G) → R → 0.(9.23)

Consequently, we have

dim{Image(H2
cpt(G) → H2(G))} = b2(G)− 1.(9.24)

□

9.2. Parameter count

Our family of Calabi-Yau metrics depends upon the following parameters.
For each ALG space Gi, we have an open set Ui of dimension b2(Gi)− 1 as
discussed in the previous subsection. Note that these parameters correspond
to the area of the holomorphic curves in the finite singular fiber of each
ALG space, of which there are b2(Gi), but we subtract 1 since the area of
the singular fiber is fixed to be δ2 (after scaling). For each Iν fiber, we can
also parametrize the multi-Ooguri-Vafa metric by Vi which is an open set
in Rνi−1, which corresponds to the areas of the holomorphic curves, minus
1 constraint. We can vary these parameters by moving the monopole points
along the S1 direction. For the I∗ν′ fibers, we have an open set Wi in Rν′

i+4

given by the areas of the holomorphic curves of multiplicity two (of which
there are ν ′i + 1), subtracting 1 constraint, together with the areas of the
(−2)-curves in each Eguchi-Hanson metric (of which there are 4).

Recall that k1 denote the number of fibers with finite monodromy, k2
denote the number of Iν fibers, and k3 denote the number of I∗ν′ fibers. The
Kähler cone H(K) ⊂ H1,1

R (K) ∼= R20 is a convex cone. By taking the Kähler
class [ωD

δ ] of the Calabi-Yau metric obtained in Theorem 8.4, we have a
mapping

Φ : I × B ×
(

k1∏

i=1

Ui

)
×
(

k2∏

i=1

Vi

)
×
(

k3∏

i=1

Wi

)
→ H(K),(9.25)

where δ ∈ I = (0, δ0), for δ0 sufficiently small, and the space B is defined
in (3.18) above. Note that, dim(Ui) = b2(Gi)− 1, dim(Vi) = νi − 1 and
dim(Wi) = ν ′i + 4, so

k1∑

i=1

dim(Ui) +

k2∑

i=1

dim(Vi) +

k3∑

i=1

dim(Wi) = 24− 2k1 − k2 − 2k3.(9.26)
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Combining this with (3.19) from above, we conclude that the domain of Φ
is 20-dimensional, which is the same dimension as H(K).

Remark 9.5. We expect that [ωD
δ ] → [ωE ] as δ → 0, where [ωE ] denotes

the Poincaré dual of a fiber, and the image of Φ is an open set in H(K). This
is intuitively clear from our construction, but a detailed analysis of this is
very lengthy, so we do not include this here.

9.3. More bubble limits

We can find other possible bubble limits which occur by slightly changing the
gluing data. First, near an Iν-fiber (ν ∈ Z+), recall that the singularity model
comes from the multi-Ooguri-Vafa metrics. In this case, we can change the
locations of the monopoles so that they cluster together at points, so that one
can also see multi-Taub-NUT ALF-Ak metrics instead of having ν copies of
Taub-NUT bubbles. It is also possible to obtain nontrivial bubble tree struc-
ture. For instance, one can make the monopole points cluster together at
different rates, which can give an ALF orbifold with orbifold points and the
deepest bubbles are given by multi-Eguchi-Hanson metrics. As mentioned
above in Remark 6.14, near a singular fiber of Type I∗ν (ν ∈ Z+), one can also
change the scales of the Eguchi-Hanson bubbles so that the ALF-D2 type
bubbles appear, which is identified with the resolution of (R3 × S1)/Z2. See
[4] for more details about the Kummer construction of the ALF-D2 space.
Moreover, if the monopole points approach the ALF-D2 space, it is also pos-
sible to get ALF-Dk spaces for larger k. See [9] and the references therein
to see more details about ALF-Dk hyperkähler 4-manifolds.
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