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We describe the invariant metrics on real flag manifolds and clas-
sify those with the following property: every geodesic is the orbit
of a one-parameter subgroup. Such a metric is called g.o. (geodesic
orbit). In contrast to the complex case, on real flag manifolds
the isotropy representation can have equivalent submodules, which
makes invariant metrics depend on more parameters and allows us
to find more cases in which non-trivial g.o. metrics exist.
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1. Introduction

The theory of harmonic maps is a classic topic in Mathematics. This
theory lives in the intersection of several areas of Mathematics like analysis
of PDE, calculus of variations, differential geometry and so on. Due to this
interdisciplinarity, the theory of harmonic maps archives several deep results
in Mathematics and Theoretical Physics. See for instance, [5], [13], [15], [17].

Based on the article [I7] of Professor Uhlenbeck and a list of problems at
the end of the article, the third author of this paper followed her suggestion
to discuss the Question 4 in this list as his thesis problem. This problem
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concerns to the study of harmonic maps on flag manifolds and is based on
the interplay between the Geometry of non-necessarily symmetric spaces and
the Analysis of flag manifolds. This study is linked deeply with Lie Theory,
and continuing to motivate the study of other variational problems.

In [9] and [10] was studied harmonic maps into flag manifolds, using holo-
morphic horizontal maps and by exploring the (almost) complex geometry
of the complex flag manifolds (see also [11]).

In the theory of harmonic maps it is well know that the geometry of
the target space plays a fundamental role. Therefore, understand the ge-
ometry (Riemannian and Hermitian) of flag manifolds motivated by the
study harmonic maps is a natural step. For instance the understanding of
(1,2)-symplectic structures on flag manifolds is useful to provide examples of
harmonic maps and motivate a question about its classification on complex
flag manifolds. The answer of such question culminate with the complete
characterization of the invariant Hermitian geometry of full flag manifolds
in [14].

In this paper we deal with Riemannian geometry of real flag manifolds.
By real flag manifolds we will refer the coset (homogeneous) space given the
the split real form of a complex Lie group by some parabolic subgroup (see
Section [2| for details). We are interested in the problem of classifications of
homogeneous geodesics, namely, geodesics given by an orbit of 1-parameter
subgroup of the isometry group. References about the study of homogeneous
geodesics on complex flag manifolds are [1], [3], [4].

An interesting class of riemannian homogeneous spaces are the so called
g.o. spaces, namely a homogeneous space such that every geodesic is a homo-
geneous geodesic. Examples of g.0. spaces are compact Lie groups equipped
with the bi-invariant metric, naturally reductive homogeneous space, the
normal metric on homogeneous space of compact Lie groups and so on. The
classification of complez flag manifolds which are g.o. spaces is given in [IJ.

In this paper we provide a description of invariant metrics on real flag
manifolds. As an application we prove our main result: we give the classifi-
cation of the real flag manifolds of classical Lie groups admitting invariant
riemannian metrics such that every geodesic is an homogeneous geodesic,
that is, its become a g.0. space.

A remarkable difference between real and complex flag manifolds lies in
the isotropy representation. Such isotropy representation is essential in order
to describe invariant tensors on homogeneous spaces (e.g. riemannian met-
rics, almost complex structures, differential forms). In the case of complex
flag manifolds, the isotropy representation decomposes into irreducible non-
equivalent components and for real flag manifolds one can have equivalent
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components of the isotropy representation. A reference for the description
of the isotropy representation of real flag manifolds is given in [12]. For re-
cent results concerning to the invariant geometry of real flag manifolds we
suggest [6] and [7].

The paper is organized as follows: in Section 2 we review the basics facts
about real flag manifolds. In Section 3 we describe the invariant metrics on
real flag manifolds associated to classical Lie groups, and in Section 4 we
prove our main result: the classification of the real flag manifolds which are
g.0. spaces.

Acknowledgment. The third named author of this paper wants to ex-
press his deep gratitude to Professor Uhlenbeck for all her immense support
through all these years. Professor Uhlenbeck was the Ph.D. Thesis advisor
of prof. Negreiros at University of Chicago (USA) who was the Ph.D. The-
sis advisor of prof. Grama at University of Campinas (Brazil) who was the
Ph.D. Thesis advisor of B. Grajales also at University of Campinas. This
research is partially supported by the grants 2018/13481-0 (FAPESP) and
305036/2019-0 (CNPq).

2. Preliminaries: real flag manifolds

Let g be a non-compact, simple real Lie algebra. We consider the case where
g is a split real form of a complex Lie algebra. A generalized flag manifold of
g is the homogeneous space Fg = G/Po where G is a connected Lie group
with Lie algebra g and Pg C G is a parabolic subgroup. The Lie algebra pg
of Pg is a parabolic subalgebra, which is the direct sum of the eigenspaces
associated with the non-negative eigenvalues of ad(Hg), where Hg € g is
an element chosen in an appropriate way. If K C G is a maximal compact
subgroup and Kg = K N Pg then we have and identification Fg = K/Kg.
It is a known fact that flag manifolds are reductive homogeneous spaces,
and therefore we have a reductive decomposition of the Lie algebra of K,
given by
t=to & mg,

where mg is an Ad(Kg)—invariant complement of £g.

For an alternative description of the parabolic subalgebra we consider
g =t ®s a Cartan decomposition and a C s a maximal abelian subalgebra.
Denote by II the associated set of roots and by

9=200% P g,

a€ll
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the corresponding root space decomposition. Fixing a set IIT of positive
roots let 3 be the corresponding set of simple roots. Any © C X defines a
parabolic subalgebra

Po=00® P s ® P o
ac(®)~

a€ellt

where (0©)~ is the set of negative roots generated by ©. We say that Hg €
a is characteristic for © if a(Hg) >0 for every a € © and © = {a € ¥:
a(Hg) = 0}. The subalgebra

né = 6}) Yo

a€ll-\(0)~

is identified with the tangent space of Fg at the origin ePg. If 3¢ =
Centy(Hg), then the adjoint representation of 3¢ on ng is completely re-
ducible and we can decompose

- _ o
"o _'€£>‘%N
o

into 3o —invariant, irreducible and non-equivalent subspaces.

With this notation we have that K¢ = Centx (He) and tg = Cent¢(Heg).
The tangent space at 0 = eKg € Fg is identified with mg and there exists a
one-to-one between G—invariant tensors on Fg and tensors on T,Fg ~ mg
which are invariant with respect to the isotropy representation of Kg. If H,,
a € X and Xy € go, a € 11 is Weyl basis for g, we identify ng with me via

Xor— Xo—X_o, acll” \(O)".
The 3¢ —invariant subspaces V§ are Kg—invariant but not necessarily Kg—

irreducible. The Kg—inva- riant subspaces of each V§ and their equivalences
by the adjoint representation of Kg are completely described in [12].

3. Invariant metrics on real flag manifolds

It is known that there exists a one-to-one correspondence between K—
invariant metrics on Fg = K/Kg and Ad(Kg)—invariant inner products



Geodesic orbit spaces in real flag manifolds 1937

g on mg, that is
(1) g(Ad(k)X,Ad(k)Y) = g(X,Y) for all k € Ko, X,Y € mg.

We fix an Ad(K)—invariant inner product (-,-) on ¢ such that the
reductive decomposition ¢ = tg & mg is (-,-)—orthogonal. Given another
Ad(Kg)—invariant inner product g, there exists a unique (-, -)—self-adjoint,
positive operator A : mg — mg commuting with Ad(k) for all £ € Kg such
that

(2) 9(X,Y)=(AX,Y) for all X|Y € me.

Any Ad(Kg)—invariant inner product is determined by such an oper-
ator. We call A the metric operator corresponding to g. We will make no
distinction between g and its metric operator A. Since Kg is compact, the
adjoint representation of Kg in mg induces a (-, -)—orthogonal splitting

(3) me = @mi
i=1

of mg into Kg—invariant, irreducible submodules m;, i =1,...,s. We say
that the submodules m; and m; are equivalent if there exists an Ad(Kg)—
equivariant isomorphism 7" : mj — m;, that is, Ad(k)|, o T'=ToAd(k)|,,,
for all k € Kg. Evidently, this equivalence relation induces a partition

{my,...,mg} =C1U---UCg with S < s,

therefore, we have a new (-,-)—orthogonal splitting

s
(4) mg = @ M;
=1

where

Mi: @ my, z’zl,...,S.

my Ecq',

We call each M; an isotypical summand of the decomposition . We
consider a (-,-)—orthogonal ordered basis B = By U --- U Bg adapted to the
decomposition such that for every i, all vectors in B; have the same
norm with respect to (-,-). Then, any metric operator A can be written in
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the basis B as a block-diagonal matrix of the form

(Al B, 0 0
A
5) (Al — ? [ IA:42]BQ ?
0 0 oo [Alws)Bs

If M; =m;, ®&---@®m,;, , then [A|ps]p, has the form

Pl BL ... Brgl
) D
B B e jolm,
where ng represents the transpose of By, and g, ..., gy, > 0. We shall use

the facts above and the results in [12] about the isotropy representation on
real flag manifolds to obtain the invariant metrics in these manifolds.

3.1. Flagsof A;, 1 > 1

We use the standard realization of A; where the positive roots are o;; =
Ai —Aj, 1 <1< j <1+ 1 and the simple roots are a; = o ;41,1 =1,...,1L.
The Lie algebra £ is the set so(l + 1) of skew-symmetric real matrices of order
[+ 1. Wefix (-,-) = —(-, ), where (-, -) is the Killing form of so(l + 1). Let m;;
be the subspace span{w;; = E;; — Ej;;}, where E;j is thereal (I 4+ 1) x (I 4+ 1)
matrix with value equal to 1 in the (7, j)—entry and zero elsewhere. The set
{w;j :1<j<i<l+1}isan (-,-)—orthogonal basis for so(l 4 1). For every
© C X, there exist positive integers l,...,[, such that [+ 1 =11 +--- + [,
and if we set [y = 0, Li =11+ l;;i=1,...,7, then © is written as the union
of its connected components as

(7) 0= {oi v}
1;>1

By writing © in this form, we have that Ko = S(O(l;) x --- x O(l;)).
The following proposition was proved by Patro and San Martin in [12].
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Proposition 3.1. ([12]) For any flag manifold Fg of A;, | # 3, the Kgo—
nvariant irreducible subspaces are

(8) My = B mpif, oy TS <m<r
1<i<im
1<j<ln

Two such subspaces are not equivalent.

Corollary 3.2. LetFg a flag of A;, | # 3. For © as in , every invariant
metric A is determined by # positive numbers pmn, 1 <n <m <r, such
that

(9) Alm,,. = tmnly,,,, 1 <n<m <.

Next, we describe the Kg—invariant, irreducible subspaces and their
equivalences for each flag of As. For more details, see [12].

¢ O =10, Fy=S50(4)/S(0(1) x O(1) x O(1) x O(1)).

In this case, ¢y = {0} and the tangent space my has a decomposition
mp = Moy O mMyz O m3z; O My O m3zz O My
where all the m;;, 1 < j < i <4 are Ky—invariant, irreducible and

My = mg1 @ mygz,
My = m31 @ mya,
M3 = m3s ®myy

are the corresponding isotypical summands.
e © = {a1}, Fla,; = SO4)/S(0(2) x O(1) x O(1).

In this case, {’{al} = my; and
Mo} = My3 © (M31 © m32) S (My2 S myg)
where my3, m3; @ m3o and myo P my; are K{al}—invariant, irreducible and

My = mygs,
My = (m3; © mg2) © (my2  myy)

are the corresponding isotypical summands.

e 0= {Ozg}, F{QQ} = SO(4)/S(O(1) X 0(2) X O(l))
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We have t(,,; = m32 and

Mig,} = My1 @ (M1 © m31) © (My3 S My2)
where ma1, mg; ® my and myo B mgo are K {az}—invariant, irreducible and

My =my,
My = (mg; @ mg1) @ (my3 B my2)

are the corresponding isotypical summands.

e © = {as}, Fro,; = SO()/S(0(1) x O(1) x O(2)).
In this case, t,,} = my3 and

Mg} = Ma1 @ (M1 © my1) © (My2 G ma2)
where myq, mo; @ m3; and myg B myo are K{a3}—invariant, irreducible and

Ml = My,
My = (m21 D m31) S¥ (m43 S m42)

are the corresponding isotypical summands.
e O ={aj,a} or {ag,a3}, Fo = SO(4)/S(O(3) x O(1))
or SO(4)/S(0(1) x O(3)), respectively.
For these sets, the adjoint representation of Kg on mg is irreducible.
e O = {a1,a3}, Frqa, 0y = SO(4)/S(0(2) x O(2)).
We have €., o,} = m21 © my3, and My, 4,3 = M1 @& Mz, where

M1:{< 0 _B):BhastheformB:<Z _ba), a,bER}

B 0
and
0 —-BT a —b
Mg-{(B 0 ).BhastheformB-(b a ),a,beR}

are not equivalent K, q,}—invariant, irreducible subspaces.
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For each © C 3, we fix an ordered (-, -)—orthogonal basis for meg:

By = {wa1, w43, w31, Wa2, w32, Wa1 },
B{al} = {w43,w31,w32,w42, w41}7
B,y = {wa1, w21, w31, waz, waz },
(10) Bio,y = {wa1, w31, w41, w2, w3z},
Biayas) = {wa1, waz, was},
B{amag} = {w21>w31,’w41}>

Biayas) = {w31 — wa, wa1 + w32, w31 + waz, wa — w32}

Now, we describe the invariant metrics for the flags of As.

Proposition 3.3. Every invariant metric A on a flag of As is written in
the above basis in the following form:

A b 0 0 00
b oY 0 0 0 o0
o 0o 42 B 0 o0
[A]B@ 2) )
0o 0 b Y 0 o0
0o 0 0 0 Y b
0 0 0 0 by pY
AV 0 0 0 o
o 42 0o b o0
[Alpe = 0 0 u?) 0 —b |, for®={a1},{az} or{as}
o b 0 P o
o 0 —b 0 u
w0 0
[Algo=1| 0 pn 0 ) , for © ={ay,as} or {ag, as}
0 0 wu
g 0 0 0
0 pw 0 0
[AlB (o, n) 0 0 wm 0 |
0 0 0 p

where the numbers ,ugi), W oand p; are positive.
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Proof. For © =0, {a1}, {as}, {as}, {a1, a2} and {ag, a3} is obvious from
the description above of the isotypical summands. For © = {1}, we have A
is written in By, in the form

po 0 0
o 42 0o b d
[A]B{al} = 0 0 u?) c e
0 b c Méz) 0
0 e 0 uéQ)

Given k € Ko,y = S(0(2) x O(1) x O(1)), we have that k has the form

SO+ 3
OO »
o< OO
n O o o

where its columns are orthonormal and det(k) = 1. It is easy to verify that

vz 0 0 0 O
0O wvr ws 0 O
[Ad(K)|p,, =] O vt wvu 0 0
0O 0 0 =zu =zt
0O 0 0 =zs =zr

Since A commutes with Ad(k) for all k € Ky}, then for r =t =u =
1

—s:ﬁandv:zzlwehave

0 0 0 0 0
—d b+
0 00 ety
0 0 0 bte  _c=d -0
< V2 V2 =
0 <4 bte 0 0
V2 V2
0 —bte c=d 0 0
2 2
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thus, b = —e and ¢ = d. Takingr =v=—u= —z=1and { = s = 0 we have

0 0 0 0 0
0 0 0 0 -2d
| 0 0 0 2 0 =0
0 0 —-2¢ O 0
0 2 0 O 0

concluding that ¢ = d = 0, as we wanted to prove. Analogously for © = {as}
and © = {as}. O

3.2. Flagsof B;, 1 > 5

The set of roots of the Lie algebra of type B; is described as follows:
e The long ones £(\; — \j), £(Ai + ), 1 <i<j<land
e the short ones +);, 1 <17 </,

where

0O 0 O

N:<H=| 0 A O i A = diag(ag,...,q;) p — R,
0 0 —-A

Ni(H)=a;, i=1,...,L

The simple roots are a; = Ay — Aj+1, 1 < i <[ —1and oy = A;. The sub-
algebra ¢ is the set of (20 + 1) x (2] + 1) skew-symmetric matrices
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It is isomorphic to so(l + 1) @ so(l). The isomorphism is provided by the
decomposition

0 —a -—a 0 —a —a
d oA B || oo B (B
Jd B A T (ATB)  (41B)
2 2
0 0 0
A-B A-B
o @B _un
o _UA-B  (A-B)
2 2

We fix the Ad(K)—invariant inner product (-,-) on ¢ defined by

0 —a -—a 0 —c —c
(11) a® A B |,| <5 C D
o B A & D C

—al %(TT(BD) + TrH(AC)).

The matrices

v = By — Brasr + Bigigrn — Briggr, 1<E <,
(12) wij = Ertinyj — Bivgivi + Biviviati+j — Bivivgitivis
Wij = Erqitinyy — Erviggi+vi

+ Eiviitirj — Eigjipsi, 157 <i <,

where Ej; is the matrix with value equal to 1 in the (7, j)—entry and zero
elsewhere, form a (-, -)—orthonormal basis for €.

We take r positive integers l1,...,l. such that { =1y +---+ 1, and if
io =0, Zz = ZZ'_1 + I; then

(13) ©= U {og 4se-saq_ por U {og oo P U{ad,

I;>1 1;>1
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In this case, it is more difficult to explicitly determine the subgroup Kg.
Instead we have that

0 O 0
x=[0 A4 —A |eso)ce
0 -4 A
1 0 0
. exp 0 I+ex§(2A) I—exg(QA) cK
0 I—exp(2A)  I+exp(24)
2 2
and
0 0 O
Y= 0 A A |e€so(l+1)C¢
0 A A
1 0 0
— exp(Y) _ 0 I+ex§)(2A) _Ifex§(2A) c K.
0 _ I—exp(24) I+exp(24)
2 2

Since A is skew-symmetric, then exp(24) € SO(I). Also, every P € SO(I)

can be written as a product [] exp(A;) with A; skew-symmetric, so
i=1

1 0 0
0o &£ 122 ). pPeSo(); CK.
I-P I
0 +5- 5
Therefore
1 0 1 0 0
o I+P I-P o IxP _I-P
IEP IEP I2fP I+%’
0 =5 & 0 -5 5
1 0 0
P+Q P—
0o He @ )eg
0 P-Q P+Q
2 2
for P,Q € SO(1)
0 O 0
Hg = 0 Ao 0
0 O —Ag
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is characteristic for ©, then
kHo = Hok <= PAg = ApQ.
In particular, for P = () we have

S(O() x -+ x O(1,))

1 0 O

if.

by 0 P 0 |:PeSO(l), Pho =AoP % C Ko.
0O 0 P

Proposition 3.4. ([12]) Let Fg be a flag manifold of By, with | > 5. Then
the following subspaces are Kg—invariant and irreducible:

a)

Vi, = span{UljFl_"_s 1<s< li},

with 1 <1i <7 if ay ¢ ©. All these subspaces are not equivalent.
b)

Wnn = @ span{w; ;7 .} and
1<i<l,,
1<5<ln

U= @ spanfug, i, 1)

1<i<lm
1<j<ln

with 1<n<m<rifaqdd andl<n<m<r—1if q € 0. For each
(m,n), Win and Uy, are equivalent. We denote by My, = Wip @ Upyp.

¢)

U; = span{u[i_ﬁs’[i_ﬁt 1 <t<s<l}

for i such that I; >1 and 1 <i<r ifoqy ¢ © and 1 <i<r—1if ay € O.
All these subspaces are not equivalent.

d)

(‘/;)1 - Span{wzr—l-i-&l:‘,—l-‘rt o u[r—1+s7[i—1+t l<s<il,1<t< lZ}
(‘/Z)2 - Span{viifﬁrs’ wir71+8,l~r71+t + uzr71+37[7‘71+t l<s<l,l<t< ZZ}

with 1 < i <r —1 when oy € ©. All these subspaces are not equivalent.

Proposition 3.5. Let © C X, and [ > 5.
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a) If oy ¢ © then

(14) Bo = (U BO,Z) Ul U Bm|Uu <U BZ)

i=1 1<n<m<r 1;>1

is a (,-)—orthonormal basis for mg adapted to the subspaces of Proposi-

tion [3.4. Where

Boi = {vlj_l_i_szlgsgr},
B = {wl~7,L,1+s,l~,,L,1+t cs=1,. 0,0, t=1,...,1,}

U {ufmfﬁs,fnfﬁ-t cs=1,. 00, t=1,...,0,}

Bi - {uzi—1+5,l~i—1+t rlst<s< ll} :

b) If a; € © then

r—1
(15) B@:<U(Bi)1u(l§i)2)u U Bwm|u| U &

i=1 1<n<m<r—1 1<i<r—1

is a (-,-)—orthogonal basis for mg adapted to the subspaces of Proposi-
tion 3.4 Here By, and B; are as before and

(Bl)l = {w[r_l-‘rs,[q‘,—l"rt - u[r—1+5,l~i—1+t rl<s< lr’ l<t< ZZ} ’

(BZ)Q = {vl~1>1+t’ wl;71+5,l~i71+t + u[r71+5,l~i71+t tl<s< lr’ l<t< ZZ} ’

Next proposition describes invariant metrics on flags of By, [ > 5.

Proposition 3.6. FEvery invariant metric A on a flag of By, | > 5 is written
in the bases above in the following form:
a) If oy ¢ © then

Avi :M(l)[‘/ﬂ 1Si§7‘,

A L bl
[Aln, B = ,1<n<m<r,

O N

mn

Ay, =191y, 1 <i<r and l; > 1.
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b) If a; € © then

[Aln,,.]8,., = | ,l<n<m<r—1,

bl NI

mn

Ay, =491y, 1<i<r—1andl; > 1.

Proof. 1t is enough to prove the result for Ay, . By equation (6] we have

A, BT
[AlM,. )8, =
B )\gmn) v
Let us take
1 0 O
k= 0O P O € Ko
0O 0 P

where det(P) = 1 and P is a block diagonal matrix

P 0 ... O
0 P ... 0

P = . . . . s PZEO(ZZ) fori=1,...,r.
o o0 ... P

If P, = (pit)lixli , then

l m l n

Ad(RJw, yof, 4o = Z Zpgép?t Yl tednatf
e=1 f=1

and
bl ln
Ad(k)uZm,—1+57[n—l+t = Z sz;p?t u[m—l"!‘evznfl""f’
e=1 f=1

Also, we have that for every (s,t) there exist a set of real numbers
{bg? 1<e<ly,, 1<f<l,} (each b‘;’} is an entry of the matrix B) such
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that

l’VTL
_ \(mn) .
Awp i = A wzm,1+s,zn71+t+zzbef Ul et f?

e=1 f=1
So
() T
mn
Ad(k) e} Awlm 1+s, ln 1+t = )\1 pgp}tt wi,,L,1+8,l~7171+f
e=1 f=1
Lo ln
st . m,n
+ Z befpeepff e f
é,e:l fale
and
mn
Ao Ad(k)wim71+s,l~n71+t - )\1 pgzpft fmte, b o
e=1 f=1
lm ln
ef
+ Z b~fp2;p?t A
576:1 f'7f:1

Since A commutes with Ad(k) then

l'm ln

(16) DpEp, = Y o
e=1 f:l e=1 f:l

for 1 <s,6 <lp,and 1 <t,f <l,. Fixing s,t, ¢, f, we shall show that bSt =

0if (s,t) # (e, f) First, we suppose r > 2. By taking P,, = diag(1, ...,1, —1,
1,...,1), with —1 in the (¢, é)—entry, P; = diag(—1,1,...,1) for some i ¢
{m,n} (which exists because r > 2) and P; =1, for j ¢ {m,i} we have

- b§t~ bzl}p g; ’

since p7: = 1 for s # €, then b2t~ = 0if s # é. By taking P,, = diag(1,...,1, —1,
1,...,1), with —1 in the (f, f) entry, P; = diag(—1,1,...,1) for some i ¢
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{m,n} and P; =1 for j ¢ {n,i} we have

_bst bs; g’

again, pj; =1 for ¢ # f,then bS =0 if t # f. We conclude that bSt~ =0 if
(s,t) # (&, f). If r = 2 then m = 2 n =1 and we have two poss1b1ht1es

e [; > 2: In this case, we take P, =diag(1,...,1,—1,1,...,1) and P =
diag(1,...,1,-1,1,...,1), where % has —1 in the (¢, €)—entry and P has
—1 in the (4, j)—entry for some j ¢ {f,t} and we obtain from that

bSt - bsfpss

Then s;éé:>b2'}:(). For s = ¢, we take P, = diag(1,...,1,—1,1,...,1)
with —1 in the (€, €)—entry, P, = diag(1,...,1,~1,1,...,1) with —1 in the
(f, f)—entry and therefore

bzt - _befpth

sot;éf:>b§'}~:0.
e/; <2:Sincel > 5andl; + lo = [, we have that I > 2 and we can proceed

analogously as before. .
We conclude that bz; =0 of (s,t) # (€, f), thus equation becomes

(17) biipEn, = b D2,

by taking P, € SO(l,,) with non-zero (€, s)—entry and P, € SO(l,) with
non-zero (f, t)—entry, we have bs! = bej; =: by for all s,t, &, f. Then

Awy = /\gmn)

m—1+38, Lo q+t wszlJrS,[nflth + bmn uzm71+37[n71+t.

Hence, B = b,,,,1. O
3.3. Flagsof C;, 1 > 3

The set of roots of the Lie algebra of type C is described as follows:

e The long ones £2);, 1 <17 <[, and
e the short ones +(\; — \j) and £(\; + ), 1 <i<j <l
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where

A O .
)\iZ{H:<0 _A):A:dlag(al,...,al)}—HR,
)\i(H):CLZ’, i:1,...,l.

The simple roots are a; = A\; — Ai+1, 1 <i <1 —1 and oy =2);. The
subalgebra ¢ is the set of 2] x 2] matrices

A —-B T T
(4 7). aewr—pw o

which is isomorphic to u(l), where the isomorphism associates the above
matrix to A + +/—1B. We fix the Ad(K)—invariant inner product (-,-) on ¢
defined by

(18) (( o F )( i >> :%(TT(BD)—Tr(AC)).

The 2! x 2] matrices

Uk = Bk — Bk 1<k <,
wij = Eij — Eji + Eigigtj — Eigjis,
wij = B+ Eigji — By — Ejp, 1< <6<

form a (-,-)—orthogonal basis for . In what follows, we describe the Kg—
invariant, irreducible subspaces . Similar to the case B;, we can find positive
integers ly,...,l, suchthatl =1; +--- + [, and O is written as disjoint union
of its connected components as

(19) 0= U {oj 1s--soq_qpor U {og 1veeoq U {au}

1;>1 1;>1

wherely =0, l;_1 + 1;, i =1,....rn1fy ¢ ©, then Kg w O(ly) x -+ x O(l),

dif.

otherwise, we have Kg ~ O(l1) X - -+ x O(l,—1) x U(l;).

Proposition 3.7. ([12]) Let Fg be a flag manifold of Cj, with | # 4. The
following subspaces are Kg—invariant irreducible:

a)
Vi, = Span{ufi,l—l—l,ﬁ,l—&—l + .4+ uiiyii}7
withl <i<rifa €O andl1 <i<r—1ifq € 0. All these subspaces are
equivalent.



1952 B. Grajales, L. Grama, and C. J. C. Negreiros

Won = EB Span{wfm,l—&—i,fn,l—&—j} and
1<i<l,n
1<5<l,

Umn = @ Span{u[m71+i7l~nfl+j}7

1<i<l,
1<5j<l,

with 1<n<m<rifaqdd andl <n<m<r—1if a € 0. For each
(m,n), Wi and Uy, are equivalent.

¢)

MTn: @ Span{wirfl'i"ijnfl'f'j}@ @ Span{uir71+i7l~7171+j}’

1<i<l, 1<i<l,
1<5<l, 1<j<l,

with 1 <n <r—1, if og € ©. All these subspaces are not equivalent.
d)

Ui =span{u;_ oo g =W peitiy4epr LSS <Li— 1)

U {uzifl“rs,zifl“rt 1 St<s< ll}’

for i such that l; >1 and 1 <i<rifoq €0, 1<i<r—11if o €0. All
these subspaces are not equivalent.
And any other pair of subspaces are not equivalent.

Corollary 3.8. Let Fg be a flag of C;, 1 # 4. Then, the isotypical sum-
mands corresponding to the Kg—invariant spaces in Proposition are

MOZ@Wv
)
Mpn = Won @Upp, 1 <n<m <7,
MjZUj, lj>1.

(20)

Where i extends over {1,...,r} if oy ¢ © and over {1,...,7r — 1} if oy € ©.

Proposition 3.9. Let © C X, withl #4, oy ¢ © and ly,...,l, as in .
Then

(21) B=Bu| |J Bm U(UBZ)

1<n<m<r 1;>1
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is a (-, -)—orthogonal basis for mg adapted to the decomposition
mo=M®| B M| (@ Mi>
1<n<m<r I;>1

Where

1
BOZ{ Uy I +”'+U~A~.:Z‘:17”’7r}7
\/E Lii+1,0,_1+1 Liyls
Bin = {w[m_1+s7l~n,_1+t ts=1,..,0p, t=1,... 7ln}

U{ufmfﬁs,l},ﬁt:821""7lm7 t=1,...,0,}

s
1
Bi = {S Zu[i—l-l't,zi—l"rt B uzi—1+s+1,l~i_1+8+1 P8 = 1’ o ’li —1
t=1

Y {uzifl‘i’syii—l‘i’t lst<s< ll} .
If oy € ©, @ extends only over {1,...,7r —1}.

The proof is a lengthy but straightforward calculation and we omit it.
Now, we can obtain a description of invariant metrics on the flags of Cj,

1 # 4.

Proposition 3.10. FEvery invariant metric A on a flag of Cy, 1 # 4 is writ-
ten in the basis in the following form:
a) If oy ¢ O then

(0)

Hq asy asr ... Gp1
0
az1 ,ué ) asg ... Qp2
0
Als, = | asi a2 1Y 0 a4 |,
(0)
ar]  Qr2  Qp3 ... [y
[A|M'mn]8mn = s 1 S n < m S r’a,

S L

mn

(Al = p Iy, 1<i<r andl; > 1.
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b) If a; € © then
(0)

Hq azi asi cee Gr-11
0
a1 Mé ) as2 cee Qro12
0
[A|M0]Bo = a31 as2 ,Uz:(g ) cee Gp_13 ,
(0)
Ar-1,1 Qr-12 GQr-13 ... [,
mn
Mg )Ian byn !
(Al 1B, = S l<n<m<r—1,

bond 1" s,
[Aln,, )8, = pnT™ Iy, 1< <r—1,

rn

Proof. Case 1. a; ¢ ©.
Because of equations and (@, it is enough to prove the result for
Aln,,, - In fact, we know [A|ar,,, ]85, has the form

mn

(mn)

pi lw,,, BT

[A | MnLn]an =

B o Unnn

Given k € Ko by O(ly) x -+ x O(l,), we have that k has the form

P o
(o 2)

where P is a block diagonal matrix

P 0 ... O
0 P

P = . . s PlEO(lZ) fori=1,...,r.
o o0 ... P

Writing P; = (pgt)l‘xl. , we can easily verify that for any pair (s,t) with
1<s5<lp, 1<t<1l

l"n ln
(22) Ad(k’)wszl+5,[n71+t - Z Zpg‘;p}lt wirrufl+e7infl+f
e=1 f=1
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<23) Ad(k)uz'm71+57["71+t - Z Zpg‘;p}bt uz;”,1+€,in,1+f'
e=1 f=1

Because of the form of A|ys, ., we also have that for every (s,t) there
exist a set of real numbers {bSt 1<e<ly, 1 <f<I,} such that

L ln
(mn)
(24) Awy s+t — M1 W 4T ,1+t+zzbef Ul et o
e=1 f=1

From , and we get

I ln
=S nowe
n—1+8ln—1+1 = H p Spft Im—1teln a1+f
e=1 f=
b ln
st m,.n
+ Z Z efpeepff lon1 4+, 1+f
é,e

=Lfr=1

Ad(k) o Aw;

[y

and

N

In
(mn
Ao Ad(k)w[m,1+s,in,1+t Z Zpespft I 14€ln 14+f
e=1 f=1

m l'n/
§ § ef m
+ b pespft U, R
é,e

=Lfr=1
Since A o Ad(k) = Ad(k) o A, then

lnz ln

ln  ln
(25) » 1bi§p£’2p’}f Zfz bIpT
e= = =1 f=1

forl1 <s,e<ly,,and1 <t f < I,. Fixing s, t, €, f, we shall show that b?} =

0if (s,t) # (&, f). The equation (25) is true for every k € Kg in particular,
if P, =diag(1,...,1,-1,1,...,1), with —1 in the (é,é)—entry and P, =1,
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1 # m we have
t _ pst
—bgf— bgfpé’;
since plt =1 for s # €, then bZ} = 0 if s # €. By taking P, = diag(1,...,1,
—1,1,...,1), with —1 in the (f,f)—entry and P, =1, i # n we have

st __ pst,n
—béf = béfptt,

again, pj; =1 for ¢ # f,then bgj; =0if t # f. We conclude that b?} =0 of

(s,t) # (€, f), whereupon equation becomes

(26) DPZpG, = VDT,

by taking P, € O(l;,) with non-zero (€, s)—entry and P, € O(l,) with non-
ZEro (f, t)—entry, we have bSl = bsz =: by, for all s,t,ée, f Equation
implies

(mn)

(27) Aw[m,—1+37in,—l+t = M w[m—1+8,l~n—1+t + bmn uzm—l-‘rs,[n—l-‘rt'

as we wanted.
The same argument works for the case o; € © taking into account that

Ol) x -+ x O(y) CO() x - x Ol—1) x Uly) = Koo
When [ = 4, in addition to the subspaces described in Proposition 3.7} we
have more equivalent subspaces for some subsets ©. The table below shows

the equivalence classes for the flags Fg of Cy where there exist equivalences
different to those presented in Proposition

O |L|l|l3|l Equivalence classes

[] 11|11 |{V,Va,Vs,Vi}, {War, Wu3, Ua1, Uss}, {Ws1, Waa, U3y, Usa }, {Ws2, War, Usa, U1 }
{ari} [2]1]1 {V1, Va, 3}, {Wa1, Wa1, Ua1, Us1 }, {Wiao, Usa }, {U1 }
{ag} |1 ]2]1 {V1,Va, Va}, {Woa1, W3y, Ua1, Usa }, {W31, Us1 }, {Ua}
{ag} [ 11 ]2 {V1, Vo, V3}, {Ws1, Waa, Us1, Usa }, {War, Ua1 }, {Us}

Table 1.

Therefore, we have the isotypical summands and adapted, ordered, (-, -)—
orthogonal bases for every © in Table 1. Let us analyse case by case:

¢ 0 =0,Fy=U(4)/(0(1) x O(1) x O(1) x O(1)).
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The isotypical summands are

My=ViaaVopV3pVy

N1 = Wa1 @ Wy3 @ Uz1 @ Uss
Ny = W31 @ Wy @ Usy @ Uy
N3 = W30 @ Wy @ Usa ® Ugy

and By = By U By U B2 U B3 is an adapted basis, where

Bo = {u11, ug2, ugs, uaa}
Bi = {wa1, w43, u21, ua3}
Bo = {ws1, w2, ug, uaz}

Bs = {ws2, w41, usz, w41}

¢ O ={a1}, Fra,y =U4)/(0(2) x O(1) x O(1)).

The isotypical summands are

Mo=ViVod V3

M, =U

M = W3z & Usg

N =Wy & Ws1 @& U1 & Usy

and By,,y = Bo U By UBy U By is an adapted basis, where

By = {\}i(un + U22)7u33,u44}

By = {u21}

By = {wa3, uaz}

By = {w31, w32, w41, wa2, u31, u32, Us1, Ud2 }

¢ © = {a}, Fro,y = U(4)/(0(1) x O(2) x O(1)).

The isotypical summands are

My=VioVad V3

Ms = U,

M =Ws1 & Us

N =Wy @ Waa @ Uz @ Use

1957
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and By, = By U By U By U By is an adapted basis, where

1
By = {U117 E(Um + u33), u44}

By = {us2}
Bar = {wa1,ua '}

By = {wa1, w31, Wiz, w43, U1, U1, Ua2, U4z }

e O = {az}, Fia,y = U(4)/(0O(1) x O(1) x O(2)).

The isotypical summands are

My=Vi®Vod Vs

Ms =Us

M =Wy & Uy

N = W31 & Wsa @ Us1 ® Uso

and By, = Bo U Bs U By U By is an adapted basis, where

By = {U11,U227 \/§

Bs = {uas}
By = {wa1,ug1}

(uss + u44)}

Bn = {ws1, w41, w3z, wa2, u31, U4, Usz, Us2 }.

Proposition 3.11. Let A be an invariant metric on a flag Fg of Cy.
a) If © =0, then A is written in the basis By as

(0)
Hyt o a21  az a4

(0)

[A|M ]B o a1 Mg a32 Q42
0 - 0 )

asy  as2 Mg, ) a43

(0)

aq1 Q42 G443 [y
R
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b) If © = {a1},{aa}, or {as}, then A is written in the basis Bo as

(0)
Hq as1 a3
[A’MO}BO = a21 Méo) a32 )
asp  as2 uéo)
Alpg, = 1Dy, i =1,2,3. (if © = {as})
M
(M bM)
A = ;
[ ’M]BI\/I (bM :U’é\/[
p¥o0 0 0 B 0 0 0
o ¥ 0 0o o B 0 o0
0 0 W o0 o0 0 b 0
1 o o o Y o o0 o b
[Alnlsy = Wo 0 0 ¥ 0 0 0
o s 0 0 0 ¥ 0 0
0o o v 0 0 0 w o
0o 0o 0 b 0o 0 0 u¥

Proof. a) For each i € {1,2,3} we write A|y, in the basis B; in the form

A

dif.

N.B,

!

1
b41

o
bl
oy |
u)

Given k€ Ky = O(1) x O(1) x O(1) x O(1), we have that k has the

form

P 0
0 P

t=(o )

where P = diag(p1,p2,p3,p4), pi = 1,1 =1,2,3,4. It is easy to see that

Pi, Pi, 0 0 0
. 0 DisPiy 0 0
[Ad(K)|n.]8, = 0 0 piupi, O 7
0 0 0 PizPiy

where {i1,12,13,i4} = {1,2,3,4}. Since A commutes with Ad(k) for all k €
Ky, then
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[Aln, ], [Ad(K)|N,]5, — [Ad(K)|N,]5,[AlN.]B, = 0O
o - o b
8 0 o
0o o) 0o -5y
B0 ) 0

— (plfspu _pilp’iz)

Taking —p;, = 1 = p;, = pi, = pi,, we can conclude that b((jb) =0if (a,b) ¢
{(3,1),(4,2)}. Defining bgz) = bgl) and bg) = bfg, we have the result.

b) Let us consider © = {ay}. Again, it is enough to show the result for
Aln. We know that A|y is written in the basis By in the form

pdt 0 bR bRy DR bR bR DR
0 py by by b bl by bl
by b k0 b b by bl
e = | B 00wl ol

N by b5y bsy bgy 0 by bgs
by by bgs by 0 pd b bl
by by by b b b py O
bt b b b bl b5 0 uf

Given k € Ky, < 0O(2) x O(1) x O(1), k has the form

r s 0 O

P O . t u 0 0
k;_<0 P)’ with P = 00 v 0|

0 0 0 =z

where the columns of P are orthonormal. Then

vr vs 0 0 O O O O
vt vu O O O O O O
0O 0 2r zs 0 0O 0 O
0O 0 2t zu 0 0 0 O
AdB)INss =10 0 0 0 wr ws 0 0
0O 0 0 0 wt vu 0 O
0O 0 0O 0 0 0 2zr =zs
0O 0 0O 0 0 0 =zt zu



Geodesic orbit spaces in real

For -r=1=u=v=zands=t=0

[Aln]sy [Ad(E) [Ny — [Ad(R)|N]Bx [AlN]BN

0 0 0 26 0

0 0 -2, 0 —2b})
0 268, 0 0 0

=2} 0 0 0 —2b})
o0 oy, 0w, o
—2bh 0 =2, 0 0
0 268, 0 268, 0

—26% 0 —2b), 0 —2bif

therefore b2, = b)) = b, = b0, =

flag manifolds 1961
=0
2680 0 2bd)
0 -2, 0
260, 0 2l
0 268, 0 _
N - 07
0 0 2
0 268, 0
268 0 0
0 0 0

N _ N _ N _ N _ 3N _ 31N _ N _
b61_b63_b72_b74_b76_b81_b83_

bé\g:O. By takingr =u=2z=1= —v and s =t = 0, we have
[Aln]sy [Ad(K) Ny — [Ad(F)[N]By [AlN]Ey =0
0 0 26} 0 0 0 208 0
0 0 0 2}, 0 0 0 2bY
—2v8 0 0 0 -2, 0 0 0
0 —2b)% 0 0 0 —2b), 0O 0 B
1 o 0 2 0o o0 o X o |79
0 0 0 2v), 0 0 0 2bl
—26% 0 0 0 28 0 0 0
0 —2b), 0 0 0 =26k 0O 0
which implies b} = b}, = b, = bl = b2 = bl = b), = b, = 0. Finally, if
r:s:t:fu:% and v = z = 1, then
[Aln]sy [Ad(R)|N]By — [Ad(F)|N]By [AlN]By = 0 <
b31 —bg
0 0 0 0 N ?bN o 0 0
0 0 0 0 e 0 0 N obN
0 0 0 0 0 0 N obN e
0 N obN 0 0 0 0 e 0
N obN v 0 0 0 0 0 0
e 0 0 N ?bN 0 0 0 0
0 0 ! 0 ) Sav. 0 0 0
0 0 (b g 0 0 0 0

V2
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thus, b = b)), =: bV and b, = bY, =: b)Y. The cases © = {ay} and © =
{a3} are analogous. O

3.4. Flags of D;, 1 > 5

The roots are £(\; — Aj), £(Xi + Aj), 1 <i < j <[, where

A O .
/\i:{H: ( 0 —A > :A:dlag(al,...,al)}—>R,

)\i(H):CLi, ’Lzl,,l

The simple roots are oi; = Aj — Ajr1,0=1,...,0 —land oy = \j_1 + A;. The
subalgebra ¢ is the set of skew-symmetric 21 x 2 matrices of the form

A B T T
(B A>, A+AT =B+ BT =0

which is isomorphic to so(l) @ so(l) via the decomposition

< A B ) ( A+B A+B ) A-B _A-B

_ 2 p) 2

=\ afiB AlB +< AB  AB )
B A 48 A8 Sz Tz

We fix the Ad(K)—invariant inner product (-,-) on ¢ given by

(385 8))- e

The matrices

wij = Eij — Eji + Eiyigtg — Bt

29 . .
(29) wij =B j— B+ By — Ejvg, 1<j<i<1

form a (-,-)—orthogonal basis for ¢. Given © C ¥, we take l1,...,l, as in
. As in the case of B;, we can show that

P+Q  P-Q
K:{< 2o Pg):ngsO(z)}.

If
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is characteristic for ©, then
P+Q P-Q
K@Z{( rlo Pl >3P7Q€50(l)7 PA@:A@Q},
2 2

in particular, when P = (), we obtain

S(O(lh) x -+ x O(1y))
' P -~ 0
© <]g g):P: oo, , det(P) =1, P e O(l;) ; € Ke.
0o --- P

Proposition 3.12. ([12]) Let Fg be a flag manifold of Dy, Il > 5. Then the
following subspaces are Kg—invariant and irreducible:

a)
1< s <lp, 1<t <1y},
1< 5< 1y, 1<t<1,},

Wonn = Span{wim,1+s,in,1+t

U, = span{uimﬂ“jniﬁt

withl<mn<m<rifaé¢O, 1<n<m<r—1ifa,qq1€0 and 1<
n<m<r—2ifa €0 and a;_1 ¢ O. For each (m,n), Wy, is equivalent
to Upn,. We set My = Wonn @ Unn.-
b)
Up=span{u; ;i ., :1<t<s<I},
with ; >1, 1<i<rifoq¢O,1<i<r—1ifaq,q-1€0 and 1<i<
r—2ifa; € O and oy_q ¢ O. All these subspaces are not equivalent.

c)

Mrn: @ Span{wzr—l+s7[n,—l+t}@ @ Span{u[’r—l‘l'syin—l“rt}’

1<s<l, 1<s<i,
1<t<l,, 1<t<l,,

with 1 <n <r—1 when oy € © and oy_1 € O. All these subspaces are not

equivalent.
d)

Mn:Span{w[%JrS[le?1§3§lr—1, 1<t<l,}
U{w g i1 St <},
Nn:span{u[_2+sl~_l+t 1<s<l_, 1<t<l,}

U{wyp i1 <E< 10},
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with 1 <n <r—2 when oy € © and ay_1 ¢ O. For eachn € {1,...,r —2},
M, is equivalent to N,,. We set S, = M,, ® N,.

e)

Vo_i1= Span{ul},ﬁs,l},ﬁt 1<t<s<l_1}U {wl,l},ﬁt 1<t <l_1},

when oy € © and ay_1 ¢ O.

Proposition 3.13. Let©® € ¥ and | > 5.
a) If oy ¢ O then

(30) Be = U Bun|U (U B,)

1<n<m<r [i>1

is a (-,-)—orthonormal basis for mg adapted to the subspaces of Proposi-

tion where

an - {wim71+5’l~n71+t tl<s< lm’ L=<t
Uu; el gt 1 S8 <l 1<t <1y}

and
Bi=Au; i oj ,:1St<s<lL} (1<i<r).
If we have {oq_1,0q} C O instead of oy ¢ O then i extends only over {1,...,
r—1}.
b) If y € © and ay—1 ¢ © then

r—2
(31) Bg = U Bwm|u| U 8 u(UB%uBﬁ)uBV,

1<n<m<r-—2 1;>1
1<i<r—2

n=1

is a (-,-)—orthonormal basis for mg adapted to the subspaces of Proposi-
tion [3.13, where By, and B; are as before and

B = {w;

SN S 1<s<lq, 1 <t<I,}U {uh~ 1<t <l,},

ln—1+t

BY = 1<s<l1, 1<t <l yUfw; ., :1<t<l},

(Ui st

BY ={u; i i1 <t<s<lLa}U{w; o, :1<t<l1}.
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Proposition 3.14. FEvery invariant metric A on a flag of Dy, | > 5 is writ-
ten in the basis of Proposition|3.15 in the following form:
CL) If (e7] ¢ O

Iy, bon
[AlM, B = ,1<n<m<r,
bl NIy,
A|Ui = ’y(i)IUi, 1<i<randl; > 1.
b) If {oy—1,q} C O
A L by ]
1 Winn mn
(Alnm,,. 1B, = ,1<n<m<r—1,
bl AL
Ay, =AM, 1<n<r—1,
Ay, =71y, 1<i<r—1andl; > 1.

¢) If oy €O and ay_1 ¢ O

A gmn) IWm n bmn I
(A, 1B, = Jl<n<m<r—2
bl NIy

Aly, =191y, 1<i<r—2andl; > 1,

(1)
(r—1n) byl 0

MM o v 1
[Als, |srusy = | 7 ,1<n<r-2

1

b —l,nI (2)0 )\gﬂfl,n)l
br—l,nI

Ay, ="V, _,.

Proof. We have the result for U;, for M,,, when {a;_1,¢} C © and for V,,_;
when o € © and ;1 ¢ O, because these subspaces are Kg—invariant, ir-
reducible and not equivalent to any other. For M,,,, let us take

P, - 0
k= GK@,
0o --- P
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where P; = (p,)1,xi, € O(l;) and det(P) = 1, then

b o

Ad(kwy L op = Z Zpgp?twim_l-s-e,fn_l—kf
e=1 f=1

and
b ln

Ad(R)ug, op =D Zpgp?tufm—ﬁ@fn—ﬁf’
e=1 f=1

There exist real numbers A7 > 0 and bg? such that

l l

. . St - -
lm—1+57ln—1+t + Z Z befulrn—l"'evlnfl“l‘f’
e=1 f=1

~ ~ _ \(mn)
Awlm—1+57ln—1+t - )\1 w

SO

l’nl l"L
__y(mn) - -
Ad(k‘) o Awi,,L71+S,l~7zf1+t = )\1 Z Zpg;p?t Wy, _i+eln_1+f
e=1 f=1
l/yn l’VL

st .m, n - - -

+ Z Z befpéepff U4+ f
578:1 fvle

and

Ao Ad(k‘)wi PesPrt w[m_l—&—e,fn_l-&-f

PR
i Z bef T N .
efPesPre Wi, el i+

Since A commutes with Ad(k), we obtain

n

L b L
ZZ bi}p’gép?f = Z Z b;j;p’g;p}‘t for all s,t,é, f.

e=1 f=1 e=1 f=1

We can proceed as in the proof of Proposition to show that b“;; =0 if

(s,t) # (¢, f) and that b5t = 2}5 =: byn for all s,t, ¢, f. Now, we shall prove
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the result for S,. When oy € © and ;1 ¢ © we have that [, = 1. Also,

— (r—l,n)
Awlr 2+s, In 1+t =A lr 2+s, Lo 1+t
lr—1 1, ln
t
+ Z Z beful 2+€7l~n71+f + Z b; wl,[n—1+f’
e=1 f=1 f=1
and
( lr—1 1y ln
r—1,n) t
Aup =N U g, o+t T Z Z bef“l el atf T Z Fwig, sy
e=1 f=1 f=1

As before, since Ad(k) o Awy Ao Ad(k)w; then

o8 ot oSl 1+t

l~71 ’V‘ 1 l

r ln
t 1 ef 1
(32) Zl le Dpk P =D bk v
e= =

e=1 f=1
and
ln r 1 l
(33) Z fpllpff Zzbefpgs 1pft
f=1 e=1 f=1

By the same arguments in the proof of Proposition equations and
3) implies b = 0 if (s,1) # (&, f), b3 = bei = b§ L and 0 =0 for all

s,t, g f.On the other hand, Ad(k) o Au” = Ao Ad(k)y, ;

4t implies

ln
=1

and

~

r—1 Ip ln
1
(3) bl yphe 'y = Dbl phanhe
=1

e=1 f=1

o, . t _ t _ .
Analogously to the proof of Propos1t1(~)n we obtain bé = 0, b = 0 if
t;éfandbt—bf—b() for all t,¢, f. 0

r—1,n
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4. Geodesic orbit spaces

In this section we shall find all the invariant g.o. metrics in real flag mani-
folds.

Definition 4.1. Let G/H be a homogeneous manifold with an invariant
metric g. A geodesic v starting at eH is called homogeneous if it is the orbit
of a 1—parameter subgroup of GG, that it

(36) 7(t) = exp(tX)H
where X is in the Lie algebra of G. In this case, X is called a geodesic vector.

Definition 4.2. We say that a Riemannian homogeneous manifold (G/H, g)
(g an invariant metric) is a g.o. space if every geodesic starting at eH is ho-
mogeneous. In this case g is called a g.o. metric.

Let us consider a homogeneous compact manifold G/H, (-,-) an Ad(G)—
invariant inner product in the Lie algebra g of G and a (-,-)—orthogonal
reductive decomposition g = h @ m. In order to determine the real flag man-
ifolds (Fg, g) which are g.o. spaces, we use the following propositions.

Proposition 4.3. ([16]/) (G/H,g) is a g.o. space if and only if for all
X €m, there exist a vector Z € by such that

(37) [Z+X,AX]=0
where A is the metric operator corresponding to g.

Since every invariant metric A is a positive (-, -)—self-adjoint operator, we
have that m admits a decomposition m =my, @ --- ® m,_ into eigenspaces
of A.

Proposition 4.4. ([16]) Let (G/H, A) be a g.0. space.

a) If \1, Ag are eigenvalues of A, such that there exist Ad(H )—invariant,

pairwise (-, -)—orthogonal subspaces my, mg of m with

m; C my,, 1= 1,2 and [ml,mg](ml@mzy 7'5 {0},

where the orthogonal complement is taking with respect to (-, -), then Ay = Aa.
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b) If A1, X2, A3 are eigenvalues of A, such that there exist Ad(H)—
invariant, pairwise (-,-)—orthogonal subspaces my, mg mg of m with

m; g m)\i, 7 = 1,2,3 and [ml,mg]mg 75 {0},
then )\1 = /\2 = )\3.

Remark. Every invariant metric A which is a scalar multiple of the identity
endomorphism is a trivial solution for equation (37)) (by taking Z =0 for
every X), such a metric is called normal.

4.1. Flagsof A;, 1 > 1

As in section 2, we fix (-, -) = —(-, ), where (-, -) is the killing form of so(l + 1)
and the (-, -)—orthogonal basis {w;; : 1 <j <i <141}

Proposition 4.5. Let Fg be a flag of Ay, with | #3 or =3 and © €
{{aq, a2}, {as,a3}}. Then, (Fg, A) is a g.o. space if and only if A is normal,
ie., A= plne, p>0.

Proof. Let A a g.o. metric in a flag Fg of A;. If [ =3 and © € {{a1, a2},
{ag,a3}}, then, by Proposition A has the form A = ply,. If [ # 3, we
have by Corollary that A is determined by w positive numbers piyn,
1 <n<m<r,such that A|p.. = pmnlnr,,, with My, as in . We shall
prove that fimm = e for all (m,n), (m/,n’). First, we prove fimn = fmmn
for 1 <n <m,m' <r. In fact, without loss of generality, let us suppose
m < m’, then

Wi 1 = [wfm,lJrl,in,lJrl?wfm/,1+1,l~,L,1+1} € [Minn, Mynrm] -

Since b1 +1#1l,_1 +tforallt e {1,...,1,}, then

(wim/_1+1,l~m71+1’wzm71+s,l~n,1+t) =0, 1<s<ly,, 1<t<l,

and

(wlN,,YL,71+1,l~m71+17 wimu1+8,l~n71+t) =0, 1<s<lyy, 1<ty

thus, Wi, gf 1 € (M @ M) *. Evidently, M,,,, and M,,, are con-
tained in the eigenspaces of A corresponding to the eigenvalues p,, and
lmn, Tespectively and, by Proposition they are Kg—invariant. Also
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My, and My, are (-, -)—orthogonal. By Proposition we conclude that
tmn = Hmn. Now, we will show that fiymn = e, 1 < n,n’ <m < r. Let us
suppose n < n’, then

w[n’fl'i_lyinfl“!‘l - w[mfl'i'lyinfl"rl’w[m71+17l~71’71+1:| € {an’anl] :

Since ly—1+1# L1+t for all ¢ € {1,...,ln}, then

(w[n,/—1+1)zn—l+17w[m/—l"l'syin—l“l't) = 0’ 1 <s< lm’ 1 <t< ln

and

(wzn,/,1+1,l~n71+1’wzm,71+87l~n',1+t) = 07 1<s< lma 1<t < ln’7

thus, Wi D41 € (M @ an,)l, By Proposition tmn = Mmn -
Because of the above, we have pimn = tmm = bmmn- O

Proposition 4.6. Let Fg be a flag of Az with © ¢ {{a1,as}, {ag,as}}.
Then, (Fg, A) is a g.o. space if and only if A is written in the basis as

ub 0 0 0 0
b u 0 0 0 0
oo u b0 o0
[Als, 00 =b pu 0 0 |
00 0 0 pu b
0 0 0 b u
w0 0 0
o om0 o0
[AlBay oy = 0 0 p O
0 0 0
and
" 0 0 0 0
0 2 0 £/ pi2(p2 — p1) 0
Al = | 0 0 2 0 F u2(p2 —p1) |,
0 £/ pa(p2 — ) 0 2 0
0 0 T/ p2(p2 — 1) 0 12
M2 > p1

for © = {an}, {2} or {as}.
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Proof. Let us analyse case by case:
e O =1(.

Since ¢y = {0}, by Proposition A is a g.o. metric if and only if
[X,AX] =0 for every X € my. We write A as in Proposition for
X = w91 + w31 + wa1, we have AX = /Lgl)’wgl + biwys + MgQ)UJ{gl + bowas +
bswsy + ,ugg)wu and [X, AX] = 0 if and only if

(b + b3)war + (Mgg) — M§2))w43 + (b1 — b3)ws
+ (18 — 1 was + (1 = 8 ywgs — (b1 + bo)was = 0,

thus, ugl) = ugz) = ,ués) and by = —by = b3 =: b. For X = wyz + wyo + wyy,

we have AX = byway + ,ugl)w43 + +bowsy + ug)w@ + bgwso + ,u,gg)wu and
[X,AX] = 0 if and only if

(ué” - Még))wm — (b2 + b3)waz + (Mgl) - Még))wm
+ (bg — bl)w42 + (ugl) — M§2))w32 + (bl + bQ)UJ41 =0,

(1) (1) (2) (2) 3) (3)
1 1

concluding that p; " =y’ =" = py ' = "’ = ptg ~ =: p. It is a lengthy
calculation to verify that if ,ugl) = gl) = u§2) = Mgz) = Mgg) = ,ugg) =: p and
by = —by = bg =: b, then [X, AX]| =0 for all X € my

e O ={aj,as}.
Let A be a g.o. metric. By Proposition A has the form

g 0 0 0
0 w 0 0
[A]B{ocl,ag,} O 0 MQ 0
0 0 0

Given
X = z1 (w31 — waz) + z2(war + wsz) + x3(w31 + waz) + x4(war — waz)

written in the basis By, q,}, we have
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(X, AX]| = piz1x2ws; — wag, w41 + w3z] + por1za[ws — waz, wa1 — w3z)
+ p1w122[war + w32, w31 — waz] + p2rer3(war + w32, w31 + W2
+ p1w2x3[war + wag, wa1 + w3z] + porsrafws) + waz, wa — w32
+ 121 T4[war — w32, w31 — Wa2] + poT3T4[Wa1 — W32, W31 + W2
= 2p12122(Ww21 + wa3) — 2p1 7122 (Wa1 + W43)
+ 2p0x374(Wa3 — wa1) — 222374 (W43 — Wo1)
=0.

Therefore [0 + X, AX] =0 for all X € my,, 4,) and A is g.o.
e 0= {Oél}.

Since t,,) = span{wz;}, then A is a g.o. metric if and only if for all
X €my,,), there exists A € R such that

[)\’U}Q]_ +X,AX] = 0.

By Proposition [3.3| we have

AR 0 0
o 42 0o b o0

Als.,=| o o 4P o -b
o b 0 P o0

0 b 0 u

We set pp := ,ugl). For X = w31 + w3 + wyo + wy1, we take A € R such
that [Awe; + X, AX] = 0, then

0= [)\wgl + X, AX]
= 2(#52) - N&Q))w43 - )\(M?) — b)wsy
+ )\(ugz) — b)wye + )\(ugz) + b)wsg — )\(ug) + b)wyy,

by linear independence we have Mgz) — u?) =0, i.e., ug) = ,ugz) =: u2. Now,

let us consider the vector X = w43 4+ w32 +2w4; and A € R such that
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[AMwa1 + X, AX] =0, then

0= [)\ZUm + X, AX]
= (2(p1 — p2) +b = Ap2 — 20))ws1 + (p2 — p1 — 20+ A(2p2 — b))wa,

by linear independence

(38) 2(u1 — p2) + b= A(pz — 2b) = 0
and
(39) pr2 — pi1 — 20+ A(2u2 — b) =0,

multiplying equation by (2u2 — b) and equation by (u2 — 2b), we
obtain respectively

(40) — A5 + dpa g + Abpg — 2bpy — b* — A(2pz — b) (2 — 2b) =0
and

(41) 3 —dbus — g + 2bpr + 467 + N(2p2 — b) (2 — 2b) =0,
adding equations and we have

(42) 3(6% — p2(p2 — 1)) =0,

therefore b2 — pa(po — p1) = 0, i.e., b= 2/ pa(pa — p1).

Conversely, let us suppose that pg := ,ug ) = ,ug ), B = ug ) and b=

pa(pe — p1), then, for X = zy3waz + w31w31 + Taowas + T32ws2 + Ta1wa1
in my,,y we have

(X, AX] = za3/ 2 — pa(@32+/H2 — Ta1v/ 12 — 1) wsn
— za3v/ 2 — pi(Ta1y/ 12 — T3/ [l2 — (1) Wa2
— za3v/ 12 — pa(T31/ 02 + Ta2v e — 1) wss
+ xazy/p2 — pi(zaz/2 + 31V 2 — p1)war

and for every A € R

[)\w21, AX] —)\\/7

/-\

T32/ 2 — Ta1V/ fl2 — [1)Ww31

+ AV l2(xa14/ 2 — X327/ 2 — f11)Wa2
+ A2 (x31v/ 12 + Ta2v/ 2 — p1)ws2
— M2 (Taav/ 12 + 231V 2 — p1)war,
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thus

w2y + X, AX] = (za3v/ 2 — p1 — ANj2) (232y/ 112 — Ta1v/ph2 — p1) w31
— (wa3v/p2 — 11 — Ap2) (Ta1y/12 — T32v/ 112 — 1) waz
— (w432 — p1 — A/p2) (231412 + T4/ 2 — p1)wso
+ (a3 2 — p1 — A2) (@az/H2 + 2317/ 12 — f11)way.

By taking )\:,/%mg, we obtain [Awg + X, AX]=0. For b=

—+/t2(p2 — p1), the argument is analogous.
e O = {az} or {as}.

Let us consider the diffeomorphisms

©; - F{al} — ]F{ai}

k‘K{al} — e;fpk‘eiK{ai} » b= 27 3
01 0 0 0 010
0 010 0 0 0 1 .
where e; = 100 0 and es = 1000 | It is easy to ver-
0 0 0 1 01 00

ify that for every invariant metric

A9 0 0 0 0
o 42 0o b o0

(Al 0 My 0 —b

o b 0 u? o0

0 b 0 u?

we have

AV 0 0 0 0

o ¥ 0 - o0

WiAls.,, = o o u? o b

0o b 0 uP o
2
o o b o0
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and

A9 0 0 0 0
o w2 0o b o0

Widls., = o o u® o b
o b 0 u? o0

o 0o b 0o g

By Proposition every invariant metric in Fy, .y has the form ¢j A.
Since A is g.o. if and only if ¢} A is g.o. then we obtain the result. a

4.2. Flags of By, 1l > 2

We consider (+,-) as in and the (-, -)—orthonormal basis in (|12]).

Proposition 4.7. Let Fg be a flag of By, | > 5 and A an invariant metric
as in Proposition 3.0,
a) If ay ¢ O, then (Fo, A) is a g.o. space if and only if
p == =y,
/\gmn) = )\(zmn) =: A, for all (m,n),

bimn =: b, for all (m,n),

(43)
D =: 5 for alli € {1,...,7r} with l; > 1,
pw—A=b
A2
A

b) If oy € O, then (Fo, A) is a g.o. space if and only if
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r—1)

a0 = = D)

PN = = pr=D) =

)\gmn) = )\gmn) =: \, for all (m,n),

(44) bin =: b, for all (m,n),

v =~ forallie {1,...,r — 1} with l; > 1,
p—A=b=XA—p

— 2up _ N-b?
\ 7= putp A

Proof. a) Let us suppose that (Fg, A) is a g.o. space. We have that for
i <j, Vi and Vj are (-,-)—orthogonal, are Kg—invariant, are contained in
the eigenspaces corresponding to the eigenvalues p(® and pl9) respectively
and

wzj—1+17l~i71+1 + u[j—1+17l~171+1 = [Ulifl""l’ /Ulifl'i'l] € (‘/; ® VVJ)L n [‘/Z’ VYJ]
then, by Proposition p = U = 4. For

X = wim71+1yl~n71+1 + wZ‘nL—1+l7in+17
there exists a Z € tg such that [Z + X, AX] = 0, but

X, AX] = [w; Almn)

Lt T SR S|

+ bmnu[m—l-i-ljn—l-‘rl} + [me—1+17l~n,—1+1

N 5 (mn41) B} - -
+ wlmfl"rlaln"l_l’ >\1 wlmfl"l_laln"l_l + bm’n+1ul7n—l+1aln+1:|

_\mn+l)r B B B
=\ [wlmfl-&-l,lna-i-l’ wz,H+1,ln+1]
+ bm,n+l |:wl~m71+1,l~n71+1’ ul~m71+17l~n+1j|

(mn)7g, ~ N -
+ N wr, e Wi, g )

+ bmn [wimfl-&-lfn-&-l’ “Zm71+1,l~n71+1}

m,n+1 mn
= ()‘g ) )‘g ))w[,b+1,l~",1+1

+ (bm,nJrl - bmn)u[n_i_17[n71+1 € MnJrl,n
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and since M,p ® My, nt1 is to—invariant, then [Z, AX] € Myp & My, pt1.
By linear independence, [Z+ X,AX]|=0= [Z,AX]=0=[X,AX],
thus bynsr = by and AT =A™ By taking X =u; ;o +

uzm,—1+17l~n+1’ wzm,—1+17[n—1+1 + w[m+17[w,—1+1 or uzm—l"rl,[n—l-i-l + u[7n+1a[77,—1+1
we obtain that

m,n+1 mn
[Xa AX] = ()‘g - )‘é ))wfn—i-l,l}_l—s-l + (bm,n+l - bmn)ufn+1,l~n_1+1’

(m+1,n) (mn) ~ ~ B B
()\1 -\ )wzm+17lm,1+1 + (bm+1’n o bm")“l,wl,lmfﬁl

(m+1,n) (mn)y, ~ ~ ~
or (Ay — A )wlm+1,lm,1+1 + (bm+1,n — bmn)ulm+1,lm,1+1

respectively. As before, this implies )\(Qm’nH) = )\;mn) A§m+1,n) = )\gmn),

)\ém—&—l,n)

b
= )\grnn) and by41.n = by Since this argument works for every
pair (m,n), then

A = A
AT = A =

bn = byyns =t b

for all m,n,m',n’. For X = U twp ., take Z €tg such hat
[Z + X, AX] =0, then
[X, AX] = [Wﬁ-l twp bVt )‘1w[1+1,1 +0 uz}+1,1]
=M [”l}ﬂvwl]ﬂ,l} +0 [Uf1+17ul~1+1,1} +p [wf1+1,1’vl~1+1}

=M +b—pv eV

and [Z, AX]| € Vo @& Ma;. Thus, by linear independence we conclude that
A1 +b— p=0. Using the same argument for X = Vi 1 U g, WE can
show that Ao + b — o = 0. Therefore, \y = g =: Aand b=pu — A.

Next, we will prove that v = ~U) for all 4,5 with [;, l; > 1. In fact, if
l;>1and ¢ <r—1, take

X = UZ'i—1+1 + ui’i—1+27l~i—1+1 + wlNr‘rljifl-i-l

and Z € tg such that [Z + X, AX] = 0. Then,

— . (@), - - o o
AX = H ,Uli—l"l‘]- + uli—1+27lzfl+1 +A wli+17li—1+1 +b uli+17li—1+1
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and

X, AX] =71 [“z IRSELANEY 1+1] +>‘[ 0 Wi T 1+1}
+0 [”l SRS 1+1}
[“z 42 1+1v”z}-,1+1} +A [“L,ﬁz,u,lﬂ’wl}+1,l1,1+1}
[ BN A LR A A 1+1] +u [wl 1,041 Y 1-|-1]
+41 [wli+1,l~i,1+l’ ufi,1+2,l~i,1+1}
= (M - ’Y(i))vfi71+2 + (M — A= b)inJrl + (/\ - ’Y(i))u[i+1,l~i71+2

Tbhw 47

= (M - (Z)) Ui 42 + ()‘ - ’Y(Z))uii+1,l~¢71+2 +b wzi+17l~171+2'

; — () ()
We can write Z = Z Z Zs Wi ysT 4 |0 st € R0
L;>1 \1<t<s<l;

Z,AX] = /M%)Uz 4o bzél)“z 1042 T )‘Zél)wl 41 42 T z,

where Z' is linearly independent of {v; }. There-

fore,

1427 u[i“l’lyii—l“rQ, wzi+]-7ii—1+2

2+ X, AX] = (=D + pef)oy o+ 0+ A= Dyug 7 L

+(b+ Azé?)wl 102 T z,
so Z' =0 and
=0 4 pzf) =0
b4 A—y0 =0 .
b+ )\zgl) =0

AQ;bZ (and 2'51) = —7) If i=r and I, > 1, we use the

to con-

This implies () =

last argument but taking X = (AR T ST ok S S
clude)\zv(;) = @. Therefore 'y( ) = ~4U) = ~ for all 4, Wlth li;l; > 1 and
= T'
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Conversely, let us suppose that A satisfies the equations in . We can

write every X € mg as

Z +ZY+ > Xomt Do Yo,

1<n<m<r 1<n<m<r
l >1

where v € Vi, Y; € Ui, Xon € Winn, and Yo, € Upnp. If

0 0 0 0 0 0
an = 0 Cmn 0 ) Ymn = 0 0 Dmn
0 0 Cuy 0 Dpn O
0O 0 O
and Y; = 0 0 D
0 D; O
we denote by
] 0 0 0 ] 0 0 o
an = 0 0 Cmn ) Ymn = 0 Dmn 0
0 Cin 0 0 0 D,
) 0 0 0
and Y; = 0 D, O ,
0 0 D

so we have AX,,, = A X,;n + bf(mn, AY, i = bffmn + AY,,., and

AX = MZ’U +fyZY+/\ > Xon

1<n<m<r
l >1

+b Z Xy + b Z Yom + A Z \ A

1<n<m<r 1<n<m<r 1<n<m<r
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Then
T r r
X, AX =5 (D 0O v+ A D 0D > X
i=1 i=1 i=1 1<n<m<r
1i>1
r i r
D STCAND S S S b MU S
i=1 1<n<m<r ] i=1 1<n<m<r
[ r r r
+A Zv(i), Z Yo | +u ZY},Zv(i)
_i:1 1<n<m<r lzL:>11 =1

+A ZY > Xpm| +0 ZY;, > Xom

1<n<m<r 1<n<m<r
LI, >1 l >
r T
i 1<n<m<r i:l 1<n<m<r
li>1 l; >
r
+p Xmns U(l) + § Xmns E Y
1<n<m<r i=1 1<n<m<r
L l >1
+b Xmn,s Xmn
1<n<m<r 1<n<m<r
+b E Xmns Yo
1<n<m<r 1<n<m<r

+ v Z Ymnyzy + A z Yo, Z Xmn

1<n<m<r l 1 1<n<m<r 1<n<m<r
>

Z ?mn bl

1<n<m<r 1<n<m<r 1<n<m<r 1<n<m<r
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since
E an; E an =0= E Ymna § Ymn )
1<n<m<r 1<n<m<r 1<n<m<r 1<n<m<r
[ r
[ 7 "
E U()y E an = E U()7 E an ’
=1 1<n<m<r =1 1<n<m<r

S0 Y V| = 300 Y Fo| and
=1

1<n<m<r i=1 1<n<m<r

Z eru Z ?mn = - Z Ymna Z an y

_1§n<m§r 1<n<m<r 1<n<m<r 1<n<m<r
then
r ‘ r r ‘
X,AX] = (v =) [ DO Vi + A b—p) [ D 0D > X
=1 lZ:>11 i=1 1<n<m<r

i=1 1<n<m<r
r r
=1 1<n<m<r =1 1<n<m<r
[;>1 [;>1
T _ T
02 Ve D K| #0I3 Ve D Y
i=1 1<n<m<r i=1 1<n<m<r
> l;>
r ‘ r r
:(7_/1’) U(Z)’Z}/i +(A_fy) ZE? Z an
i=1 i=1 =1 1<n<m<r
1;>1 l;>1
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b o
Last equality is because A + b — u = 0. By taking Z = DY Z Y;, we obtain

i=1
1;>1
b,u r r r
~ i ~
[Z, AX] = _7 E 2 U() —b E s Xmn
i=1 i=1 i=1 1<n<m<r
[;>1 1;>1
o b2 o ~
_b le, Ymn _X § Y;, E an
i=1 1<n<m<r i=1 1<n<m<r
1;>1 1;>1
b? ZT - -
_X iy Ymn ’
=1 1<n<m<r
1;>1
but
T T r T
Y 7 _ )
D Vi d oW =13 vy W0
i=1 i=1 i=1 i=1
Li;>1 l;i>1
T T
§ Iz E an = E }/’ia § an ’
i=1 1<n<m<r i=1 1<n<m<r
Ll;>1 1;>1
T r
E 2 Ymn = § Y;', § Ymn ;
i=1 1<n<m<r i=1 1<n<m<r
LI;>1 1;>1
T T
79 an = § Yvi; E an ;
i=1 1<n<m<r =1 1<n<m<r
Li;>1 I;i>1
T r
Iz Ymn = E )/Z'u § Ymn 5
i=1 1<n<m<r i=1 1<n<m<r
LI;>1 1;>1
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then

2 T
+(A—v—bA> SV, > Y

1<n<m<r
=0 (by )

By Proposition [£:3] A is a g.o. metric.
b) Let us suppose that A is a g.o. metric. Interchanging V; by (V;)2, the
arguments of item a) work to show that

LIi>1

p == = =,
)\(m”) — )\(m”) =\ f
1 =Xy /=1 forall (m,n),

b = 1 — A =: b, for all (m,n),

~(® :#::'yfor allie{l,...,r—1} with [; > 1.
For i < j, we have that (V;); and (V}); are Kg—invariant, (-,-)—orthogonal
and are contained in the A—eigenspaces corresponding to p(l) and pl) re-
spectively. Also

2<w[.7—1+17l~7‘,—1+1 - u[j—1+1)zi—1+1)
= [wzr—l'f'lyii—l'i'l _ulr 1+1l _1+1 lr 1+1 lJ 1+1 qu71+17l~j71+1:|

is an non-zero element in [(V;)1, (Vj)1 ] ((Vi)1 @ (V;)1)*, then, by Proposi—

tion [4.4] p( = pU). Therefore, p(l) = pr=1) =: p. For X = wp
Ui y1q t Wi g, there exists a Z € E@ such that [Z + X, AX]| =0, but

AX = plwp g = ) P o
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and
[X’ AX] - (>\ p— b)(wlr 1+1 1772+1 UZ’T71+17Z’T‘72+1) € Mr’rfl'

Since AX € (V1)1 @ M,_1,1 which is tg —invariant, we have [Z, AX] € (V1)1 &
M, _1 1, so, by linear independence A —p —b =0, i.e., b=\ —p. Thus, A

satisfies .
Conversely, if A satisfies and we write

r—1 r—1
SR ILED D DR R SR
i=1 i=1 1<n<m<r—1 1<n<m<r—1
[;>1
r—1 r—1 ~
+ Z(Xrn + X'rn) + Z(X;«n - X/'r’n)a
n=1 n=1

where v(*) € span{vleJrs 1 <s<U;},Y; € Uiy Xonn € Wann, Yinn € Upp, for
I1<n<m<r-—1, X, X, € span{wllﬁs i 1<t <, 1<s< I}
and X, X', are as in the proof of item a), then

r—1 r—1
AX =p) oD 44> VA Y X
i=1

=1 1<n<m<r—1
1;>1
+b Xon+b Y Yo
1<n<m<r—1 1<n<m<r—1
r—1 ~ r—1 ~
+ A Z Ymn‘l’MZ(Xm“‘Xrn) "’PZ(X;n — X'rn).
1<n<m<r—1 n=1 n=1

Similar to item a), we have that

r—1

r—1 -
(X, AX] = (y =) | Do ,Zn A=Y D, Xam
i=1 =

i=1 1<n<m<r—1

ll>1 1;i>1
r—1 r—1
AR + Y Y Y Y|+

i=1 1<n<m<r-—1 i=1 1<n<m<r-—1
[;>1 [;>1
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r—1

+()‘_/Y) ZY;’ Z Ymn

i=1 1<n<m<r-—1

+ (:u - 7) Z }/tia Z(Xrn + Xrn)

r—1 r—1
+(p =) | D Vi (Xpy = X'rn)
s
. b
By taking Z = Y € to, we have
:>11
b r—1 r—1
[Z + X, AX] <7 /~L+f> > v 3y,
G
b2 r—1
-5 n X K
=1 1<n<m<r—1
Li;>1
b2 r—1
S CEEEES D D SO
i=1 1<n<m<r—1
Li;>1
b
+ (M v- f) ZYzZ rn + Xon)
l >1
+(p— 7+b—p ZY Z o= X'n)
)\ (3] ™m
l >1
=0 (by (4).

Thus, A is a g.o. metric.

1985
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4.3. Flags of C;, 1 > 3
We fix (-, ) as in equation and the (-,-)—orthogonal basis
upk = Eippp — gy, 1<k <1,

wij = Eij = Eji + Epvigvg — B
iy = B+ Erpji — By — Ejpgi, 1<7<i <.

Proposition 4.8. Let Fg be a flag of C;. Then, (Fo, A) is a g.o. space if
and only if A is written in the basis as:

0) ~

Hq a1  asr ... G

(0)
a1 Mo asg . az9
(0)

[A|M0]Bo = asy as2 Hg e ai3 ,

N s ; (0)

arl a2 a3 ... g

Alm,,, = #lnm,,,,  Alv, = ply, (1> 1)

where T =71 if ¢ O and F=r—1if €O, 1<n<m<r, 1<i<7T,
and

Ly Ly
Mgg) = lf/ﬂggf) + (1 - ) H
(45) "

I

am/n/ =
Ly

foralll1 <n' <m/ <F.

Proof. Let us suppose A is a g.o. metric. We take © as in equation and
we write A as in Proposition [3.10] First, we will show that by, = 0. In fact,
given s € {1,...,l,} and t € {1,...,1,}, there exists Z € g such that

A’LUZ~

m71+37[n71+t:| =0.

(46) [Z + wfm,1+s,in,1+t’
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But,

|:wlm 1+s, [P Aw l'm—1+87[ﬂ,—1+t:|

(mn) 5 5 5
|:wlm 18,1t Hy wl7n71+syln71+t + bmnul77t71+syl7r.fl+t
bmn |: —1+s, L1+t lm 1+, I 1+ti|

= 2bmn(ufm71+37[m71+5 B uin71+t,l~n71+t)

and [Z, Aw; 7 ] € My, (this is because My, is Ke—invariant, so
it is E@—mvarlant) Since My, is (-, -)—orthogonal to 2bmn(uZWlJr&[milJrS —
U el 1+t) then equation implies [wl~ Y Aw[m,1+s,l~n,1+t] =
0, concluding that b,,,, = 0. Next, we prove that ,u,(mn) = u;mn). Since by, =
0, we have that W,,, and U,,, are contained in the eigenspaces of A cor-
responding to the eigenvalues #gmn) and ,ugmn) respectively. Also, they are
Kg—invariant and

uim71+19[m71+1 _uin71+lvznfl+1 = wlm 1+1, In 141 lm 1+1, In_ 1+1]
S [Wmna Umn] (Wmn @ Umn)

By Proposition we have ,ugmn) = M;m”) =: (™) To prove that p(™" =

pm™) =2y for all (m,n) and (m/,n’), is analogous to Proposition To

show the result for A|as,, we consider the vector X = ﬁ(uhiﬁl,l}fﬁl +
oty l~)—|—w; 417,41 Where 1 <n <m <7, then

ny

[X AX \/72 ln— 1+lln 1+1

twp g, 1+17“n ﬁz Do +isln_1+i

L
+Z%nfz i TRWL 1
]

J#n
(here ajp, = ayj for j < n)
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(0) In
(g =) | ) Su
- \/m wl'mfl"rlalnfl"l'l’ ul'rzfl+i7ln71+i

i=1

l'f’L
Gmn
+ \/l» [wzm—l+17[n—l+17Zuzm—l+i>zm—l+i]
m i=1
(0)
_ (pn” — ) w _ _ Gmn w _
/ln I +1L1—1+1 /lm ln—1 41,0 _1+1

(0) 4 dum
= \/“ \ﬁ L4141 € Unnin-

Since My and Wy, are Kg—invariant, they are £g—invariant too, so is
My ® Wy Also, we have

1 L, r
S SIS s ot
AX = piy, v UL, i, i T “Jn Uiy i
noi=1 j=1 J i=1
j#n

+,U 1€M0@Wmn7

I+ 111+
therefore
[Z,AX] € My & Wpp.
By linear independence [Z, AX] + [X AX ] =0 implies [X, AX] =0, thus,
BP—p  Gmn . _
" = 0. By taking X =

where 1 <n <m < 7, we have

Vi Z L1+, T —1+i Tw l771—1+17ln71+1’

— a
[X7 AX] - <N /’Lm + mn) u["lfl"’_ljn—l“!‘l E Umn-

o) .
As before, we conclude #=—fm~ 4 %mn — (), Summarizing,

Vim Vie
W e
Vie  Vin
, I1<n<m<r,
()
— K amnzo

Vi Vi

thus, 9 = b JEWY -

ﬁ) poand apmp = \/ %(N;O) - N) =
w, we take ¢ such that [; > 1. If 1 <i<r—1,

l
l
,u)foralllgn<m§f.No
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we have that M; and W11 ; are contained in the eigenspaces corresponding
to u® and p, respectively. Since

_u['i+1yl~'£71+2 = { lL 142, Lii+1 Z’i+17i"i71+1j|
iR
€ [Mi, Wip1:] N (M; @ Wiga4)™,

then, by Proposition we obtain u( = p. If i = r, then

uzr,-71+2,l~7-72+1 = |:ul~r71+2,l~7-71+1’ l1 A1 2+1:|
€ [My, Wyor] O (My & Wyp_y)*,

SO u(r) = u. Conversely, let us suppose A has the form of the statement.
Given X € mg, we can write

Z Z ;1+Slj 1+s
+ZX+ Yo Xomt D Yo,

1<n<m<r 1<n<m<r
l >1

where z; € R, X; € M;, Xy € Wiy, and Yy, € Uy So

T

L
X5 a
SO0l FRUED OIS 355 o
AX = Z \/E/‘j Up s _4s T UG, 4,0y 1+s
s=1

j=1 t=1
t#£j

1<n<m<r 1<n<m<r
l >1

We have two cases:
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Case 1. a; ¢ © : We have

l
Tn
xax)= XSS e
1<n<m<r no]s=1
l'VYL
Tm
+ — U5 5 , X

2 Z \/m [; Ly 148l 145 m”]
ln
1

D

1<n<m<r
Tn
+ H Z /] [ ln—1+$7[n—1+57 Ymn
1<n<m<r n Ls=

Im
xm
+ ILL Z \/T; Z uimfl—"_svﬁrt—l-i‘s’ Ymn]

1<n<m<r s=1

ln
20 XY
+ (\/> an’ ul —1+s, In_1+s
1<n<m<r s=1
l’

lm
Tm
+ \/7 lm—1+s, l'm 1+s
=1
Im
+ Z an’ Z ul~m—1+5,l~m—1+5
n<m s=1
ln
m
\/—amn E ln_1+s, [n_14s
Im
+ Z Z am] an’zuinl—l"!‘syiwn—l"'s
1<n<m<r j=1 5=1
j#Em,n
J [an’ uzn,1+s,l~n,1+5] )
s=

+ i a
Vi "
x
r x| ;un
1<n<m<r n

mna

Yon, Z Ul sl 1-1-8]

\/* m ulm 18l 1+81 )
x L
n
+ E /l amn Ymn’ Z ul~m,1+s,l~m,1+s
m s=1

1<n<m<r
ln,
Yo, Z ul~n71+8,l~n71+s
s=1

_|_7

Tm

+ —= mn
N
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+ ) Z( mj

1<n<m<r j=1
JFm.n

ln
Ymn, Z uan"!‘S,an"!‘S] ) )
s=1

In
Ymny E ui7n1+57l~ml+S]
s=1

/I
Vi

ln Ly
since |:Z ul~n71+8,l~n71+8’ Z:| - |:Z ul7n 1+s, lm 1482 Z:| 7Z € {Xm’fUYm’VZ}? 1 S

s=1 s=1

n <m <r, then

X, Ax]= Y xn<“(

lm
Z ul~m71+8,l~m71+87 Xomn
1<n<m<r s=1

_ Omn )
a ln
mn
+ Z Tm Z u[n,—1+57l~n—1+5’ an
s=1
amn )

1<n<m<r
FY (“
1<n<m<r
0) _
Hm _ Omn
N ] ST
1

Ym n

[ uimf1+87l~m71+5’
=1

1<n<m<r
r i ln
an] am]
> zwpfw)xmz%ﬁwq
1<n<m<r j=1 n m L s=1
J#Fm,n

. A A r In

1<n<m<r j=1 s=1
by ([5), St — fos = HB K G — MUK S — ), thus [X, AX] = 0.

Case 2. oy € © : Similarly as before we obtain

r—1 !

. n

[X,AX] = Z— —u +Zamx] Xmazui,-ysi,nts

2 \/r po n—1 sbn—1

J#n
r—1

( @wwzwﬁ
j=1

j#n

3

r—1

ln
Y;nn’ Z u[n—1+57[71,—1+5 :
s=1

il
3

n=1
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l,

We consider Z = € tg, for some x € R, then

lr—1+s, I_1+s

Z u~r—1 +87l~7‘—1+57 XTTL]

r—1
2,AX] =Y xlu[

n=1 r

l
1
_ . I,
+ uy 7 Yon |,

n=1

l
s=

l, Ly
since [Zjlulrﬁs,l}ﬁs’ W] = — [Z Up ol s W] for W € { Xy, Yon}

s= s=1

and 1 <n <r—1, we have

r—1 r—1
1 0 Tl
[Z + X, AX] = E m(%z(ﬂgz)—ﬂ)‘f' E anj“"]’) +\/E

n=1
l'ﬂ,

uzn1+3,l~n1+S]
+ i L (wn(uﬁ]) —p)+ i anja;j) + K
2\ i 2 7L

ln
Y:r'ny Z uin71+87zn71+8 ’

s=1

X [Xmu

X

We observe that

1
i (0) xr _
x — W)+ anjT =0, n=1,...,r—1
W(” #) Z"“) N/
J#n
— [Z+ X,AX]=0,

but

r—1
1 Tl
7 (9“”(“9 > ) =’

7j=1
J#n
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r—1
Thus, it is enough to show that the number % <Z \/E%) (“%J) does
=1 !

not depend on n. In fact,

,ngo) — K ,U;EO) -

I

In

= m

which is true by .

—

ln/ \/E
N (1D — p) = l /(uﬁg) — 1)

4.4. Flags of D;, I > 5

We consider the invariant inner product (-,-) in and the (-, )—

orthonormal basis .

Proposition 4.9. Let Fg be a flag of D;, 1 > 5 and A an invariant metric

as in Proposition |5.14)

a) If ag ¢ O, then (Fo, A) is a g.o.space if and only if

(47)

\ v A

_ AP

A = A0 =2\, for all (m, n),
bmn = b, fOT’ all (m’n)’

VO =i for alli € {1,...,7} with l; > 1,

b) If {ay_1, ¢} € O, then (Fo,A) is a g.o. space if and only if A is

normal.

¢) If ay € © and ay_1 ¢ O, then (Fo, A) is a g.o. space if and only if

2

—p)

bmn

(48)

A2 —b?
T= T

= )\ngl’n) = )\grfl’n) =: \, for all (m,n),

=:b, for all (m,n),

fy(i) =i forallie{1,...,r—1} with[; > 1,
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Proof. a) Let us suppose that (Fg, A) is a g.o. space. We take Z € g such
that [Z + X, AX], where X =w; 7 . +w; ;7 . Then we have

AX = /\gmn)wfm71+1,l~n71+1 + bmntg,,
(m+1m)

+ A Wi 17, 41 T Omiiny L f g

Ll +1

and

_ y(mA1n) | ~ - -
(X, AX] = \j Wi g1 Wi,

+ b+ [wim_1+1,in_1+17 uim+1,in_1+1]
(mn) | . B .

T W T, W1

+ b [wim+1,l~n71+1’ “Zm71+1,l~n71+1}

m+1,n mn
= ()‘g ) Ag ))w[m+1,l~m,1+1

+ (bm—‘rl,n - bmn)w[erl,[m_lJrl € Mm—i—l,m'
Since AX € Myyp & Mpyi1,5, we have [Z, AX] € My @& Myyy1,n. Thus,

[Z+X,AX]=0= [X,AX] =0=[Z, AX],

in particular, )\gm—l-l,n) = )\gmn) and by41,n = byn. We can use the same ar-

gument for X =w; 17 o FU 7 e WL T WL g

and (ARl S + (A to conclude that

)\gm—&-l,n) _ )\gmn)’ )\gm,n—i-l) _ )\gmn)7

AEED Z A0 and bt = b

Then,
A = A =

AT = AT

bmn = bm/n’ =:b

for all m,n,m’,n’. Next, we will show that ~() = N=b B0 g all
v X P

ie{l,...,r} with [; > 1. In fact, if i <r —1 we take)(}:uleHZHHjL
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w; 1741 and Z € tg such that [Z + X, AX] = 0. In this case, we can write

Z = Z Z Z'f(;.z)wijfl-'rs,l},l-‘rt ) Zg‘l]f) € R?

1;>1 \1<t<s<l;

therefore

[Z7 AX] = {27 ’Y(Z)Ul*i71+27l~i71+l + Alw[i+1,l~i71+1 + bui/i+1,l~i71+1

@Dy (2) L /
2100 U7 TR MW f 2

where {u; _ ; Z'} is linear independent. On the other hand,

i—1+1? wzi+17l~i—1+1’

[X’ AX] = X’ ’Y(l)uﬁ_ﬁllﬁ_ﬁl + Alw[ﬂrlji—ﬂrl + buii+1,l~i—1+1:|

— Ay, .
=M =Y )ug g O W

Thus, [Z+ X, AX]=0=2'=0, M —7®+:0b=b+ 20\ =0, so
. )\2—1)2 .

A1) = - i=r we take X = 357‘_21“’[;_1“ + er—1+1,Zr—2t1 ?Ud pro-

ceeding as before we obtain v(") = %. To show that v = % we can

use the same argument but taking X = Ui iof 41 T U101 instead of

us - LAk SR (when i<r—1) and X = Ui oi 1t

lioa4+2,0,1+1
Ui 10,11 instead of uj (when i = 7). Sum-

marizing,

71+27ir71+1 + wirfl+17ir72+1

. 2 12 2 12
7(2):)\1 b _Xcob , forallie{l,...,r} withl; > 1.
Al A2

We observe that 2= = 270 e A Ay (A1 — A2) = —0* (A1 — Ag), there-
fore

M # X = 0< A\ =—b2<0,

which is absurd. Thus, A\; = \o. We point out that when © = (), the previous
argument does not work to show \; = A =: A (because there is no i with l; >
1). In that case, we have [X, AX] =0 for all X € mg (because tg = {0}), in
particular, when X = w1 + ug1, [X, AX] = (A2 — A\1)ug2, so A1 = A\a. Now,
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we suppose A satisfies . Let

X = ZY+ Z Xom + Z Yo

1<n<m<r 1<n<m<r
l >1

be a vector in mg, where Y; € U;, X, € Wi and Yy € Uy If

~( Chn 0 B 0 D
an_( 0 Con ) Ymn = ( Dy 0

0 D,
and Yi_(Di 0)

we set

v 0 Cmn ¥ _ Dmn 0
an - ( Cmn 0 ) ) Ymn — ( 0 Dmn >

With this notation we have AX . = AXmn + 0Xmn, AXmn = bYmn + Ao,

1<n<m<r 1<n<m<r 1<n<m<r 1<n<m<r
and g X, E Yon| =— g Yin, E Xmn
1<n<m<r 1<n<m<r 1<n<m<r 1<n<m<r
Therefore

AX = 72Y+A > X

1<n<m<r
l >1

0 Y Xntbd D YawtA Y Y

1<n<m<r 1<n<m<r 1<n<m<r
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and

r

[X,AX]= XD Y, D> Xpn| +b ZY > Xom

i=1 1<n<m<r i=1 1<n<m<r
r r
O Yo D Y| +A{D Ve D Vi
i=1 1<n<m<r i=1 1<n<m<r
l;i>1 1;>1
'
+ Z anazifz + 7 Z Ymmzy
1<n<m<r 1<n<m<r
l>1 l>1
r r
=0=) |2 Y D K| O =) |2 Ye > Yo
= 1<n<m<r i=1 1<n<m<r
r
0D Y Y. K|+ ZYu > Yo
=1 1<n<m<r 1<n<m<r
I;>1 l>
b T
LetZ——X Y; € o, then
i=1
1;>1
r r
(Z,AX]==b|> Yo Y Xn| =b|D Vi D Yo
i=1 1<n<m<r =1 1<n<m<r
l;i>1 l;
b2 | - . b2 [ - -
SE) LD SIS S5 A D
i=1 1<n<m<r i=1 1<n<m<r
[;>1 1;>1
Since
r r
2 Z an = Zlfu Z an )
=1 1<n<m<r =1 1<n<m<r
l;>1 [;>1
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r r
g s E Ymn = }/za g Ymn ;
i=1 1<n<m<r i=1 1<n<m<r
Li;>1 l;i>1
r r
§ I3 an = E Y;‘; § an )
=1 1<n<m<r =1 1<n<m<r
_li>1 li>1
r r
2 Ymn = E }/tia E Ymn )
=1 1<n<m<r i=1 1<n<m<r
Ll;>1 l;i>1

then

P\ |
[Z+X,AX]:<)\—7—)\> Yi, Y. X

i:l1 1<n<m<r

+<)‘_7_b)\2) ZY;’ Z Ymn

1<n<m<r

Thus, A is a g.o. metric.
b) Let A be a g.o. metric on Fg. Analogously to item a) we have

A = A =
AT = A5 =g

binn = by =10

forl<n<m<r—land1<n' <m'<r—1. Givenn <n' <r—1, the
subspaces M,,, and M,, are Kg—invariant, (-,-)—orthogonal and are con-
tained in the eigenspaces of A corresponding to the eigenvalues AU™ and
A7) regpectively. Also,

wZn’—1+11[n—1+1 = |:wl~r71+1,l~n71+17wl~7~71+1,l~n/,1+1i| € [Mrru Mrn’} N Mn’n)
and M, C (M, ® M,,«n/)J-, therefore, by Proposition A(rn) — Z\ (') —.
A7) Next, we shall show that b =0 and A\ = Ay = A"). In fact, if X =
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wWs

i1 TWL 40 then

= |w- - () - - -
X, AX] = [wlr—lﬂ,l F0L o AT g TNy Ty

= ()‘(T) - )\1)10[ M’r,r—l'

SIEES AT B b uj

a1

Let Z € tg such that [Z+ X,AX] =0, since AX € M,y & M,_1; and
[X,AX] € M,,_1, then [Z, AX] =0 = [X, AX], so A(") = \; and b = 0. By
taking X = Wi 11 TUL L410 instead of Wi 1 TWE 40 and pro-
ceeding analogously, we obtain A(") = Xy, We define A := X\ = Ay = A",

The same arguments of item a) let us to show that for each i € {1,...,r — 1}
with I; > 1, 40 = g = 72 = \. Therefore A = M, i.e., A is normal.
¢) Analogously to item a), we have that
Abmm) —x
)\gm”) — )y 1<n<m<r-—2
bn =: b
and () = /\%bz = ’\3)\_21)2 for every i € {1,...,r — 2} with [; > 1, in particu-

lar, Ay = Ao =: A. By taking X = Wi 11 T WL 110 W have

_y(r=1n) B (1) B .
AX =X Wi i T

(r—1,n+1) - ~ (1) ~ ~
+ A Wi g T O n Y a4

thus

r—1,n+1 r—1,n
(X, AX] = O‘g ) )‘g ))win+1,in,1+1

(1) 1)
+ (brfl,nJrl - brfl,n)ufn+1’l~n_1+1 € Mn+1,n~

There exists Z € g such that [Z+ X, AX]| =0, but AX €S, ® 85,11 —
Z,AX] € S, ® Spp1, then, [X,AX]=0 = A=t \I=tn) g
[ + 1 1

(1) _ (1) : — u- -

b2y ny1 = b2y, By using the same argument for X = Up qf w1t
~ ~ ~ ~ . (r—=1,n+1)  (r—1,n)

Up 1041 and Wi + wyp g We obtain that A, =X and

by 1 = bTQ_Ln, respectively. Thus

)\(r—l,l) L )\(r—l,r—2) . )\(’r‘—l)

7 i )

IO RAY

T r—
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For X = Wi W g Wi g twn and up . qq Fwin, we have

AT = A b =5 = band ALY = Xy Now we will show that 7("—1 =

AZ_p2 AZ_p2
= then

in fact, if X = wp + (TR

AX =buy + Aawp + V(T_l)wz,l},ﬁl

and

(X, AX] = (=) - AJwp g —bup g

Let Z € tg such that [Z + X, AX]| = 0. In this case we write Z as

A

_ (), i N ()
Z = E E Zot Wi yoi 4t | T E :Zt“l,zT_ngt’ Zg'» 2zt € R,

j<r—1 \1<t<s<l; t=1
l;>1

therefore

[Z, AX] — 721[) wl~7‘72+171 - Zl>\2ul~T72+171 + Zl?

where {wi‘,2+1 L ANERT Z'} is linear independent. Since [Z + X, AX] = 0,
then

Ay — ’Y(r_l) +216=0

b+ 212 =0,
where we have 7"~ = )\g,\_QbZ- When X = vy + Wil pg10 WE have (1) =
A2—b?

5 Conversely, if A satisfies every X € mg can be written as

r—1
X=YY+ > Xwmt+t Y. Yo
1=1

= 1<n<m<r—1 1<n<m<r—1
1;>1

where V; € U;if 1 < i <r—2,Y,1 € Vi1, Xinn € Wi, Yinn € Uppn ifm <
r— 21 Xr—1n € Myand Y,_1, € N,. Fori,m <r — 2 we consider X,,5,, Yinn
and Y; as in item b), if

X _ Arfl,n Brfl,n Y., _ Crfl,n Drfl,n
r=ln Brfl,n Arfl,n ’ r=Ln Drfl,n Crfl,n

wd o= (570 2
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we set
5 B, 4 A —1 I D, 4 Cr_1
X _ r—1,n r—1,n V. _ r—1,n r—1,n
rhn ( Ar—lm, Br—l,n ’ rhn C(7“—1,n Dr—l,n
~ D,y Ci
and Y,_; = " " )
! < Cr—l Dy )
Thus,
r—1
AX =) Y+ A D Xpntbd DY X
i=1 1<n<m<r—1 1<n<m<r-—1
l;>1
+b Y YA D> Yo,
1<n<m<r—1 1<n<m<r—1

we can proceed exactly as in the proof of item a) to conclude that Z =

r—1
—g Z Y; implies
i=1

1;>1
b2 r—1
[Z+X7AX]:<>‘_’7_)\> ZYZ’ Z an
i=1 1<n<m<r—1
b2 r—1
A CEE e N ) D S
i=1  1<n<m<r—1
[;>1
=0.
Hence A is a g.o. metric. g
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