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preserving and the length preserving curvature flows of curves in a
plane, to develop a singularity at some finite time or converge to an
m-fold circle as time goes to infinity. For the area-preserving flow,
the positivity of the enclosed algebraic area determines whether
the curvature blows up in finite time or not, while for the length-
preserving flow, it is the positivity of an energy associated with
initial curve that plays such a role.
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1. Introduction

1.1. Background

The planar curvature flows, arising in many application fields, such as phase
transitions, image processing, etc., have received a lot of attention in recent

1863



✐

✐

“5-Sesum” — 2020/12/24 — 14:19 — page 1864 — #2
✐

✐

✐

✐

✐

✐

1864 N. Sesum, D. H. Tsai, and X. L. Wang

years. Generally, their evolution equations take the form of

(1.1)

{

∂X(u, t)/∂t = Fn,

X(u, 0) = X0(u),

where X(u, t) : S1
m × [0, T ) → R

2 (T > 0) is a family of evolving curves
with speed F along inward pointing unit normal n and X0 is a closed curve
with total curvature of 2mπ (m ∈ Z

+). When F is the signed curvature
κ(u, t) at X(u, t), (1.1) is the famous curve shortening flow, which evolves
an embedded closed curve into a convex one and then shrinks it into a
round point (see for example the pioneering works of Gage-Hamilton [18]
and Grayson [19]). If X0 is immersed and locally convex 1, the behaviour of
the curve shortening flow becomes more complicated and has been studied
by Abresch-Langer [1] and Angenent [5]. When F = 1

α |κ|α−1κ (for α ̸= 0)
and X0 is a locally convex curve (including the embedded or immersed case),
(1.1) is known as the generalized or power-type curvature flow. The different
homogeneous degree α of F w.r.t. the curvature κ could possibly result into
different evolution behavior of the flow, see for instance [2, 3, 34] and etc.
For more about (1.1) and its applications, one may refer to monographs
[9, 12, 35] and references therein.

Another class of popular curvature flows are the so-called nonlocal cur-
vature flows, whose evolution equations take the form of

(1.2)

{

∂X(u, t)/∂t = [f(κ(u, t))− λ(t)]n,

X(u, 0) = X0(u).

As for the speed, f(κ) is a given function of curvature satisfying f ′(z) > 0
for all z in its domain, and λ(t) is a function of time which may depend on
certain global quantities of X(., t), say enclosed algebraic area A(t), length
L(t), or others. Specifically, A(t) =

∫

R2 w(x, y, t)dxdy and w(x, y, t) is the
winding number of γ(θ, t) around (x, y) ∈ R2. When these flows are applied
to the image processing, they have better boundary smoothing effect than
the curve shortening flow, see [29, 38]. Also, some nonlocal flows could be
used to describe the motion of the interface arising in nonlocal models of
Allen-Cahn equation or Hele-Shaw models, see [10] and [13] respectively.

1Here and after, we use the convention that for locally convex plane curves the
curvature is positive everywhere.
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The purpose of this paper is to study κα-type nonlocal flow (1.2) with
the speed function given by

f (k)− λ (t) = κα − 1

L (t)

∫

X(·,t)
καds, α > 0,(AP)

or

f (k)− λ (t) = κα − 1

2mπ

∫

X(·,t)
kα+1ds, α > 0,(LP)

and initial curve X0 being smooth, immersed, locally convex and closed.
Here 2mπ(m ∈ Z

+) denotes the total curvature of X(·, t), s is the arc length
parameter of X(·, t) and the constant α > 0 is arbitrary. We shall see shortly
that under the evolution equation (AP) the flow is area-preserving, and
under the equation (LP) the flow is length-preserving. The abbreviations
AP and LP will be used to indicate that the flow is “area-preserving” and
“length-preserving”, respectively. Without causing ambiguity in the context,
we define

λ(t) =

∫

X κα ds
∫

X ds
=

∫

X κα ds

L(t)

for the AP flow and

λ(t) =

∫

X kα+1 ds
∫

X k ds
=

∫

X kα+1 ds

2mπ

for the LP flow.
When initial curve X0 is embedded, convex and closed, Gage studied

the AP flow with α = 1 in [17] and showed the flow could exist for all time,
preserving the evolving curves’ enclosed area, while decreasing their length,
and finally making them converge to a round circle in C∞ metric. After
that, many authors had nice contributions to the research of planar non-
local curvature flows. For example, Ma-Zhu [22] studied the LP flow with
α = 1, and Jiang-Pan [21] studied the gradient flow of isoperimetric ratio
functional, which increases the enclosed area of evolving curves and decreases
their length. Those flows also exist globally and converge smoothly to round
circles. Recently, the authors considered the AP flow and the LP flow with
any α > 0 and other nonlocal flows in [32], showing that all of those flows
have the same convergence behavior as in [17]. See also related work [24] by
Pan et al. The key step in proving the above flows’ convergence is showing
the time-independent bounds for the curvature of evolving curves, which is
obtained in [17, 21, 22, 24], by modifying the proof of Gage-Hamilton [18],
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and in [32] by using the support function method of Tso [33]. In any case,
the Bonnesen inequality plays an important role.

When initial curve X0 is immersed, locally convex and closed, it is not
hard to show that the evolving curves’ enclosed algebraic area (length) is
preserved under the AP flow (the LP flow respectively), but some things be-
come more difficult and different from a case of embedded convex and closed
curves. For instance, it is unknown whether Bonnesen inequality holds or
not in this case. This requires developing new methods when dealing with
the evolution of these flows. In [16], among other things, Escher-Ito showed
that the singularity must happen (that is, the curvature blows up) at some
finite time in the AP flow with α = 1 when the algebraic area of initial curve
is negative. Later, in [36], two classes of rotationally symmetric and locally
convex initial curves, namely, highly symmetric curves and Abresch-Langer
type curves (see the definitions in Section 1.2), both enclosing positive al-
gebraic area, are found to guarantee the convergence of the AP flow with
α = 1 to m-fold circles. A similar result is established for the LP flow with
α = 1 in [37].

In this paper, we would like to investigate the AP flow and the LP flow for
any α > 0 for immersed, locally convex, closed curves. The previous results
about singularity formation and convergence when α = 1 (as discussed in
[16, 36, 37]) are generalized to the case when α > 0. Moreover, by observing
the sufficient conditions on finite-time singularity or global convergence of
the flow, we can compare the difference between the AP flow and the LP flow,
and also the difference between the nonlocal flows and the curve shortening
flows. The key ingredient is resolving the convergence problem for a globally
existing flow. To do this, one faces a traditional problem in the theory of
nonlinear evolution equations to prove that under some hypotheses, any
global solution to a particular nonlinear evolution equation is uniformly
bounded from above. The arguments are motivated by the works of Chou
[11] and Dziuk-Kuwert-Schätzle [14].

Before ending this section, we would like to mention other nonlocal flows.
In the higher dimensional Euclidean space, people consider nonlocal flows
for hypersurfaces. For example, there are volume preserving and surface area
preserving mean curvature flows for embedded closed convex hypersurfaces,
see Huisken [20], McCoy [26] and etc. When the speed function is a nonlinear
function of curvature, see a recent work [31]. People also considered the
problems of nonlocal flow with boundary, see [23, 30], for the planar curve
case and [6, 8] for the higher dimensional cases.
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1.2. Main Theorems

It turns out that both flows preserve local convexity during the evolution,
which we prove in Lemma 3.2. Therefore, we can always use the normal
angle θ ∈ [0, 2mπ] for the parametrization of the evolving curves. Here and
after, we use I to denote the circle:

I = [0, 2mπ],

or more precisely

I = R/2mπZ.

We first introduce two classes of rotationally symmetric curves. The first
class is highly symmetric curves, which are defined to be

Hm,n = {The locally convex curves with n-fold rotational

symmetry and total curvature of 2mπ (m and n

are mutually prime and satisfy n > 2m)}.

The second class is Abresch-Langer type curves. Before we explain what
those curves are, let us define the support function of a locally convex closed
curve X (parameterized by its normal angle θ ∈ I) to be,

(1.3) h(θ) =< X(θ),−n(θ) >,

where −n is the outward normal vector. The relationship between locally
convex, closed curves and their support functions is contained in Proposi-
tion 2.1 of [12]. Now we define the Abresch-Langer type curves to be

Am,n = {The locally convex smooth curves having n-fold rotational

symmetry and total curvature of 2mπ (m and n are mutually

prime and satisfy n < 2m), and having the property (P)},

where the property (P) means

(P) Under the normal angle’s parametrization, the locally convex curve’s
support function h(θ) and curvature function κ(θ) are symmetric with
respect to θ = 0 and θ = mπ/n; both of them are strictly decreasing in
(0,mπ/n); moreover, h(mπ/n) > 0.

Theorem 1. Let the initial curve X0 be immersed, locally convex and
closed. Then the following holds for the AP flow starting at X0.
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Figure 1: The deformation of Abresh-Langer type curve.

1) If A0 < 0 or L2
0 < 4mπA0 (where A0 and L0 are the enclosed alge-

braic area and the length of X0, respectively), then a singularity occurs
during the evolution of the AP flow.

2) If X0 encloses a zero algebraic area, that is, A0 = 0, then a singularity
appears at the maximal existence time Tmax. If Tmax = ∞, then the
flow converges to a point.

3) If X0 ∈ Hm,n with n > 2m, then the AP flow exists globally and con-
verges to an m-fold circle in C∞-metric as time goes to infinity.

4) If X0 ∈ Am,n with n < 2m, then the AP flow exists globally and con-
verges to an m-fold circle in C∞-metric as time goes to infinity.

Remark 1. In [16], the authors proposed a question whether the maximal
existence time of the AP flow with A0 = 0 is finite or not? Our result in
Theorem 1 (2) implies that if one can show a locally convex closed curve
with A0 = 0 does not evolve into a point as t → Tmax, then Tmax must be
finite.

Remark 2. An example of a curve in Hm,n is a pentagram. In the work [15]
of Epstein and Gage, all the curves Hm,n are shown to have positive support
function if the symmetric center is chosen to be the origin. The examples of
curves that belong to Am,n can be found in [1, 3, 7] (Abresch-Langer curves,
the self-shrinkers in the curve shortening flow). In Figure 1, one can see that
an Abresch-Langer type curve could be deformed artificially into a curve
with negative algebraic area.
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Remark 3. When X0 is a rotationally symmetric locally convex curve with
m = 1 and n ≥ 2, it is just an embedded convex closed curve with symmetry.
In fact, the AP flow for general embedded convex closed curves has been
investigated in [17] and [32].

Our second main theorem about the LP flow is stated as follows. We
define the following energy for the curvature function κ parametrized by
normal angle θ ∈ I,

E(t) =

∫

I
((κα)θ)

2 dθ −
∫

I
(κα − κα)2 dθ,

where

κα =
1

2mπ

∫

I
κα dθ.

Theorem 2. Let the initial curve X0 be immersed, locally convex and
closed. Then the following holds for the LP flow starting at X0.

1) If X0 satisfies that E(0) ≤ 0 and k0 is nonconstant on I, or if L2
0 <

4mπA0 (where A0 and L0 are the enclosed algebraic area and the length
of X0, respectively), then a singularity appears during the evolution of
the LP flow;

2) If X0 has 2mπ total curvature and n-fold rotational symmetry with
m/n ≤ 1, then the LP flow exists globally and converges to an m-fold
circle in C∞-metric as time goes to infinity.

Remark 3. We note that by the Poincaré inequality (or Wirtinger inequal-
ity) any initial curve with period |I| satisfies

∫

I
(κα0 − κα0 )

2 dθ ≤
( |I|
2π

)2 ∫

I
((κα0 )θ)

2 dθ.

From this inequality, we can see that the curvature function of a rotationally
symmetric curve X0 in Theorem 2 (2) satisfies E(0) > 0 if m/n < 1 and
E(0) ≥ 0 if m = n = 1. The convergence result in Theorem 2 (2) coincides
with the existing results in [22] and [32] for the case of embedded convex
curves, i.e., the case m = 1.

We can see from the above theorems that there exists an essential dif-
ference between two nonlocal flows. For the AP flow, the positivity of the
enclosed algebraic area determines whether the curvature blows-up or not,
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while for the LP flow, it is the positivity of an energy associated with initial
curve that plays such a role. Also, nonlocal flows exhibit different behavior
from the (normalized) curve shortening flow. The homogeneous degree α of
F w.r.t. the curvature κ does not affect the evolution behavior of considered
nonlocal flows.

This paper is organized in the following way. We reformulate our prob-
lems in Section 2 and give some basic lemmas in Section 3. Then we prove
Theorems 1 and 2 separately in Sections 4 and 5, respectively.

2. Reformulation of problems

For the convenience of readers, we use the following notations:

ds the differential element of arc-length
θ the normal angle of X(·, t)
n the inward pointing unit normal of X(·, t)
L(t) the length of X(·, t)
A(t) the algebraic area of X(·, t) defined by −1

2

∫

X < X,n > ds
κ(·, t) the curvature of X(·, t) w.r.t n.
h(·, t) the support function of curve X(·, t) as given in (1.3).

Here, we always take the orientation of X(·, t) to be counter clockwise.

The evolution of various geometric quantities along both flows can be
deduced from the general formulas in [12] and [17].

∂κ

∂t
= (κα)ss + κ2(κα − λ(t)),

dL

dt
= −

∫

X
κ(κα − λ(t))ds,

dA

dt
= −

∫

X
(κα − λ(t))ds.

Here, it can be easily seen that the enclosed algebraic area A(t) of the
evolving curves is preserved while the length L(t) is non-increasing along
the AP flow. And for the LP flow, L(t) is preserved while A(t) is non-
decreasing. Indeed, we know (see [17]) that for a family of time-dependent
closed curves X(θ, t) : I × [0, T ) → R

2 with time variation ∂X(θ, t)/∂t =
W (θ, t) ∈ R

2, their length L(t) and enclosed algebraic area A(t) satisfy the
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following:

dL

dt
(t) = −

∫

X
< W,κn > ds,

dA

dt
(t) = −

∫

X
< W,n > ds.

For the AP flow, it is just straightforward to verify dA(t)/dt ≡ 0 on (0, T )
and

dL

dt
(t) = −

∫

X
κ

(

κα −
∫

X κα ds

L(t)

)

ds.

To show dL(t)/dt ≤ 0, it is equivalent to show

∫

X
ds

∫

X
κα+1 ds−

∫

X
κ ds

∫

X
κα ds ≥ 0.

Indeed, this holds by multiplying out the following Hölder inequalities:

∫

X
κ ds ≤

(
∫

X
κα+1 ds

)
1

α+1
(
∫

X
ds

)
α

α+1

and
∫

X
κα ds ≤

(
∫

X
κα+1 ds

)
α

α+1
(
∫

X
ds

)
1

α+1

.

For the LP flow, the conclusion could be proved via a similar argument.

When locally convex solution X(·, t) is considered, each point on it has
a unique tangent and one can use the normal angle θ ∈ I to parameterize
it. Generally speaking, θ is a function depending on t. In order to make θ
independent of time t, one can attain that by adding a tangential component
to the velocity vector ∂X/∂t, which does not affect the geometric shape of
the evolving curve (see, for instance, [17]). Then the evolution equations
can be expressed in the coordinates of θ and t. If we denote by κ(θ, t) the
curvature function of X(θ, t), Problem (AP) or (LP) could be reformulated
equivalently as follows

(2.1)

{

κt = κ2[(κα)θθ + κα − λ(t)], (θ, t) ∈ I × (0, Tmax),

κ(θ, 0) = k0(θ), θ ∈ I

where k0 is the curvature of X0. In terms of the new coordinates, we have

λ(t) =

∫

I κ
α−1(θ, t) dθ

L(t)
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for the AP flow, and

λ(t) =

∫

I κ
α(θ, t) dθ

2mπ

for the LP flow.

The evolution equation of a support function h(θ, t), along the AP flow
or the LP flow, is given by

(2.2)

{

ht = −(h+ hθθ)
−α + λ(t), (θ, t) ∈ I × (0, Tmax),

h(θ, 0) = h0(θ), θ ∈ I,

where h0 is the support function of X0.

For brevity, we set v = κα and p = 1 + 1
α . Then v satisfies

(2.3) vt = αvp(vθθ + v − λ(t)), (θ, t) ∈ I × (0, Tmax).

This equation will be frequently used later.

3. Some basic lemmas

In this section, we prove a few lemmas that are needed to complete proofs
of Theorems 1 and 2. The first one is about the unique existence of both
flows.

Lemma 3.1. When the initial curve is immersed, locally convex, closed and
smooth, both flows have unique smooth, locally convex solutions on a time
interval [0, T ). If Tmax is the maximal existence time, then either Tmax = ∞
or lim supt→Tmax

maxκ(θ, t) = ∞.

Proof. The unique existence of the flow can be proven by applying the clas-
sical Leray-Schauder fixed point theory to Problem (2.1). See details in [24],
where a generalized area-preserving flow is studied. One can also find the
relative references in [26], where the nonlocal flows in higher dimensions are
discussed. The preserved convexity will be proven in the next lemma. □

By the maximum principle, we can show that the local convexity of
initial curve is preserved along both flows.

Lemma 3.2. If the initial curve X0 is locally convex, then X(·, t) continues
to be locally convex as long as the flow exists.
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Proof. By the continuity, minθ∈I κ(θ, t) keeps positive on small time interval.
Assume that the time span of the flow is Tmax. Suppose that the conclusion
is not true. Then there must exist the first time, say t1 < Tmax, such that
minθ∈I κ(θ, t1) = 0. Next, consider the quantity

Φ(θ, t) =
1

κ(θ, t)
− L(t)

2mπ
− 1

2mπ

∫ t

0

∫ 2mπ

0
κα(θ, τ)dθdτ

with (θ, t) ∈ I × [0, t1). By (2.1), we have

Φt = − (κα)θθ − κα + λ (t)−
(

λ (t)− 1

2mπ

∫ 2mπ

0
καdθ

)

− 1

2mπ

∫ 2mπ

0
κα (θ, t) dθ

= ακα+1Φθθ − α(α+ 1)κα+2Φ2
θ − κα

≤ ακα+1Φθθ.

Hence by the maximum principle,

1

κ(θ, t)
≤ max

θ∈I

(

1

κ0(θ)

)

+
L(t)− L(0)

2mπ
+

1

2mπ

∫ t

0

∫ 2mπ

0
κα(θ, τ)dθdτ

for all (θ, t) ∈ I × [0, t1). In fact, except the fact that L(t) is nonincreasing
in both flows, we have the following observations:

max
θ∈I

(

1

κ0(θ)

)

− L(0)

2mπ
= max

θ∈I

(

1

κ0(θ)

)

− 1

2mπ

∫ 2mπ

0

1

κ0(θ)
dθ ≥ 0,

and

max
(θ,t)∈I×[0,t1)

κ(θ, t) ≤ C1(t1) < ∞

for some constant C1(t1). Therefore,

min
θ∈I

κ(θ, t) ≥ C2(t1) > 0, ∀ t ∈ [0, t1),

for some constant C2(t1). This contradicts our assumption that

min
θ∈I

κ(θ, t1) = 0

and hence finishes the proof of the Lemma. □
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In the following, we establish the gradient estimate for the curvature of
evolving curves.

Lemma 3.3. Under both flows, there holds the estimate

(3.1) max
I×[0,t]

Ψ ≤ max

{

max
I×[0,t]

v2, max
I×{0}

Ψ

}

, ∀ t ∈ [0, Tmax),

where v = κα and Ψ = v2 + v2θ .

Proof. The proof is analogous to the proof of Lemma I1.12 in Andrews
[2] and we include it here for the convenience of a reader. Fix a t > 0.
Suppose that at (θ0, t0) ∈ I × [0, t] we have Ψ(θ0, t0) = supI×[0,t]Ψ. We may
assume t0 > 0 (otherwise we are done). At the maximum of Ψ we have
vθ(v + vθθ) = 0. If the maximum of Ψ is so large that v2θ + v2 > supI×[0,t] v

2,
then we also have vθ(θ0, t0) ̸= 0. This implies vθθ + v = 0 at (θ0, t0). Using
that, a simple computation as in [2] shows that at the maximum point of Ψ
we have

∂Ψ

∂t
= ακα+1Ψθθ − 2α2(α+ 1)λ(t)κ2α−1(κθ)

2 − 2αλ(t)κ2α+1

≤ −2α2(α+ 1)λ(t)κ2α−1(κθ)
2 − 2αλ(t)κ2α+1 ≤ 0,

that is, the maximum of Ψ is nonincreasing, which concludes the proof of
the Lemma. □

Based on the gradient estimate, we obtain the following lemma.

Lemma 3.4. Assume that κ(θ, t) is the curvature function of the evolving
curves under the AP flow or the LP flow, and

κ(θ0, t0) = max
I×[0,t0]

κ(θ, t)

for some (θ0, t0) ∈ I × (0, Tmax). Then for any small ε > 0, there exists a
number δ > 0, depending only on ε, such that

(1− ε)κα(θ0, t0) ≤ κα(θ, t0) + ϵ
√
C

for all θ ∈ (θ0 − δ, θ0 + δ), where C is the constant only depending on the
initial curve.
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Proof. We adopt the notation v = κα. An easy integration gives that

v(θ0, t0) = v(θ, t0) +

∫ θ0

θ
vθ(θ, t0) dθ

≤ v(θ, t0) + |θ0 − θ|max
θ∈I

|vθ(θ, t0)|.

Then by Lemma 3.3 we have

v(θ0, t0) ≤ v(θ, t0) + |θ0 − θ|
√

max
I×[0,t0]

v2(θ, t) + C

= v(θ, t0) + |θ − θ0|
√

v2(θ0, t0) + C

≤ v(θ, t0) + δv(θ0, t0) + δ
√
C.

Take δ := ε and the lemma is proved. □

The lemma that follows will be useful to show the convergence of the
flow, once the time-independent a priori estimate for the curvature is estab-
lished.

Lemma 3.5. If there is a constant C independent of time, such that

max
θ∈I

κ(θ, t) ≤ C, t ∈ [0, Tmax),

with Tmax being the maximal existence time, then the flow must exist for all
time and converge smoothly to an m-fold circle as time goes to infinity.

Proof. The proof is very similar to the one for the convergence of a nonlocal
flow of embedded curves in Section 2.4 of [32], which uses the Lyapunov
functional method to show desired convergence. The details are omitted
here. □

4. The evolution of area-preserving flow

The main goal of this section is to prove Theorem 1. In a view of Lemma
3.5, in order to show the convergence of the AP flow in certain cases and
prove Theorem 1 we need to show uniform curvature bounds along the flow.

4.1. The convergence of the AP flow

In this section, assuming global existence of the AP flow we show the integral
∫

I κ
α dθ is bounded for all times, and then by Lemma 3.4 we obtain the
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L∞-estimate of the curvature κ along the time sequence {tj}∞j=1 such that
maxθ∈I κ(θ, tj) = maxI×[0,tj ] κ(θ, t).

Lemma 4.1. If the AP flow exists for all times and if the limt→∞ L(t) =
L∞ > 0, then for any fixed d0 > 0, there is a sequence tj ∈ [(j − 1)d0, jd0],
such that

(4.1) L(tj)

∫

I
κα(θ, tj) dθ − 2mπ

∫

I
κα−1(θ, tj) dθ → 0, as tj → ∞,

and

(4.2) max
j≥j0

∫

I
κα(θ, tj) dθ ≤ (2mπ)α+1L−α

∞ ,

for some j0 ≥ 1.

Proof. By the evolution equation of L(t), we have

−
∫ t

0

∫

X(·,t)
κ(v − λ(τ)) dsdτ = L(t)− L0.

If the flow exists for all times, then

∫ ∞

0

∫

X(·,t)
κ(v − λ(τ)) dsdτ ≤ L0.

Denote

f(t) =

∫

X(·,t)
κ(v − λ(t)) ds.

The integral
∫∞
0 f(τ) dτ is finite and thus we have

lim
j→∞

∫ ∞

(j−1)d0

f(τ) dτ = 0.

Noticing that f(t) ≥ 0 for all times t, we have

lim
j→∞

∫ jd0

(j−1)d0

f(τ) dτ = 0.

By the mean value theorem, we can conclude that there exists a sequence
{tj}∞j=1 with tj ∈ [(j − 1)d0, jd0] such that

f(tj) → 0, j → ∞,
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that is,

∫

I

(

κα(θ, tj)−
∫

I κ
α−1(θ, tj) dθ

L(tj)

)

dθ → 0, as tj → ∞.

Hence, for any given ϵ > 0, there exists a j0 depending on ϵ, such that

(4.3)

∫

I

(

κα(θ, tj)−
∫

I κ
α−1(θ, tj) dθ

L(tj)

)

dθ ≤ ϵ, ∀ j ≥ j0.

When α > 1, one may notice that

(4.4)

∫

I
κα−1 dθ ≤ (2mπ)1/α

(
∫

I
κα dθ

)(α−1)/α

.

Taking ϵ = 2α−1(2mπ)Lα
∞ in (4.3), we can conclude that there is a j1 such

that

(4.5)

∫

I

(

κα(θ, tj)−
∫

I κ
α−1(θ, tj) dθ

L(tj)

)

dθ ≤ 2α−1(2mπ)Lα
∞, ∀ j ≥ j1.

Then we can claim from (4.5) that

(4.6)

∫

I
κα(θ, tj) dθ ≤ 2α(2mπ)L−α

∞ , ∀ j ≥ j1.

Otherwise, if there exists a j∗ ≥ j1 such that

∫

I
κα(θ, tj∗) dθ > 2α(2mπ)L−α

∞ ,

then from (4.4) we have

∫

I

(

κα(θ, tj∗)−
∫

I κ
α−1(θ, tj∗) dθ

L(tj∗)

)

dθ

≥
(
∫

I
κα(θ, tj∗) dθ

)(α−1)/α
[

(
∫

I
κα(θ, tj∗) dθ

)1/α

− (2mπ)1/α

L∞

]

> 2α−1(2mπ)Lα
∞,

which is a contradiction to (4.5).
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When 0 < α ≤ 1, noticing that

∫

I
κα−1 dθ =

∫

I
(κ−1)1−α dθ ≤

(
∫

I
κ−1 dθ

)1−α

(2mπ)α

≤ (2mπ)αL1−α,

and L(t) ≥ L∞ > 0, we take ϵ = (2mπ)αL−α
∞ in (4.3) to conclude that there

is a j2 such that

(4.7)

∫

I
κα(θ, tj) dθ ≤ 2(2mπ)αL−α

∞ , ∀ j ≥ j2.

Estimates (4.7) for 0 < α ≤ 1 and (4.6) for α > 1 conclude the proof of
Lemma. □

We have showed the bound (4.2) holds along a sequence. In order to
prove the bound holds for all sufficiently large times we need to consider the
evolution of

∫

I κ
α dθ. Define

F (t) :=

∫

I
κα(θ, t) dθ,

or equivalently,

F (t) :=

∫

I
κα+1(s, t) ds.

Lemma 4.2. For the function F (t) defined as above, we have

(4.8) F ′(t) ≤ C[F (t)
4(2α+1)

5α+1 + F (t)2],

where the constant C only depends on the exponents appearing in the
Gagliardo-Nirenberg interpolation inequalities.

Proof. A direct computation shows that

dF

dt
= α

∫

kα−1ktdθ = α

∫

kαktds

= α

∫

kα[(kα)ss + k2(kα − λ(t))] ds

≤ −α

∫

(kα)2sds+ α

∫

k2α+2ds.(4.9)

We shall use the Gagliardo-Nirenberg interpolation inequalities (called GN
inequality for simplicity, see [27]): For a function u defined on [0, L], which
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is sufficiently smooth, we have

||u(j)||Lr ≤ C[||u||1−θ
Lp ||u(k)||θLq + ∥u∥l], θ ∈ (0, 1),

where r, p, q, j, k and θ satisfy p, q, r > 1, j ≥ 0,

1

r
= j + θ

(

1

q
− k

)

+ (1− θ)
1

p
,

with
j

k
≤ θ ≤ 1,

and l > 0. Here the constant C depends on r, p, q, j, k and l only.
We bound the integral

∫

I κ
2α+2 ds. Set

v = κα.

By choosing j = 0, r = 2 + 2
α , k = 1, p = 1 + 1

α , q = 2 and l = 1 + 1
α in the

GN inequality we have

∥v∥2+ 2

α

≤ C1[∥v∥1−θ
1+ 1

α

∥vs∥θ2 + ∥v∥1+ 1

α

],

and thus

∥v∥2+
2

α

2+ 2

α

≤ C2[∥v∥
(1−θ)(2+ 2

α
)

1+ 1

α

∥vs∥
θ(2+ 2

α
)

2 + ∥v∥2+
2

α

1+ 1

α

],

where

θ =
α

3α+ 1
.

Then we use Young’s inequality to obtain

(4.10) ∥v∥2+
2

α

2+ 2

α

≤ 1

2
∥vs∥22 + C3∥v∥

4(2α+1)(α+1)

α(5α+1)

1+ 1

α

+ C2∥v∥
2+ 2

α

1+ 1

α

.

Substituting (4.10) into (4.9), we have

d

dt

∫

I
κα+1 ds ≤ C3∥v∥

4(2α+1)(α+1)

α(5α+1)

1+ 1

α

+ C2∥v∥
2+ 2

α

1+ 1

α

.

□

Now, from Lemma 4.1 and Lemma 4.2, we can obtain the bound on
∫

I κ
α dθ for all times. More precisely, we have the following Lemma.
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Lemma 4.3. Under the assumptions of Lemma 4.1, there exists a time T0,
and a constant C only depending on the limit of length L∞, such that

(4.11)

∫

I
κα dθ ≤ C, ∀ t ≥ T0.

Proof. Set C0 = (2mπ)α+1L−α
∞ to be a uniform constant that appears in the

statement of Lemma 4.1. Since the integral F (t) satisfies the ODE (4.8), if
the initial data F (0) ≤ C0, then there exists a δ0 > 0, such that

F (t) ≤ 2C0, ∀ t ∈ [0, δ0].

Choose d0 =
δ0
2 , and then by Lemma 4.1 find a sequence {tj}∞j=1 with tj ∈

[(j − 1)d0, jd0) such that

∫

I
κα(θ, tj) dθ ≤ C0, ∀ j ≥ j0.

Using the above observation for solutions to ODE, we know that

∫

I
κα(θ, t) dθ ≤ 2C0, for t ∈ [tj , tj + 2d0], ∀ j ≥ j0,

which implies that

∫

I
κα(θ, t) dθ ≤ 2C0, ∀ t ≥ tj0 .

The proof is finished. □

Finally we can prove the convergence result for the AP flow. More pre-
cisely, we have the following Lemma.

Lemma 4.4. Assume the initial curve X0 is locally convex. If the AP
flow exists for all times and limt→∞ L(t) = L(∞) > 0, then X(·, t) converges
smoothly to an m-fold circle.

Proof. In view of Lemma 3.5, we only need to show that the curvature of
evolving curves has a time-independent upper bound. Indeed, if the claim
does not hold, there exists a sequence {θj}∞j=1 ⊂ I and a sequence {tj}∞j=1 →
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∞, such that

κ(θj , tj) = max
I×[0,tj ]

κ(θ, t)

and

κ(θj , tj) → ∞, as j → ∞.

Then by Lemma 3.4, we have

∫

I
κα(θ, tj) dθ → ∞, as j → ∞,

a contradiction with the obtained bound for
∫

I κ
α dθ in Lemma 4.3. This

implies there exists a uniform constant C so that

max
I

κ(·, t) ≤ C, for all t ∈ [0,∞).
□

4.2. The AP flow for highly symmetric curves

When α = 1, one can mimick the proof of Gage [17] to show the global ex-
istence of the AP flow when X0 ∈ Hm,n, see [36]. For α ̸= 1, the method of
Gage does not apply and hence, it is not easy to obtain the similar gradient
estimate as that one in Corollary 3.5 of [17]. Here, we employ an isoperi-
metric bound established in Lemma 7.2 of [3] by Andrews to achieve our
goal.

Lemma 4.5. (Andrews [3]) For any curve in Hm,n, its support function
h(θ) satisfies

sup
I

h(θ) ≤ C inf
I
h(θ),

for some constant C only depending on m and n.

Consider the AP flow starting at an immersed, locally convex curve
X0 ∈ Hm,n. Immediately, we have two-sided bound for the evolving curve’s
support function.

Lemma 4.6. For X0 ∈ Hm,n, the support function of evolving curves under
the AP flow satisfies

2r0 ≤ h(θ, t) ≤ 2R0, (θ, t) ∈ I × [0, Tmax),

for some time-independent positive constants r0 and R0.
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Proof. Since L(t) is nonincreasing and L2(t) ≥ 4π|A(t)| (see an isoperimetric
inequality of Rado in [28]), we have

(4.12) 2
√

π|A0| ≤ L(t) ≤ L0.

Notice that |A(t)| = 1
2

∫

X(·,t) h ds and

inf
I
h(θ, t)L(t) ≤

∫

X(·,t)
h ds ≤ sup

I
h(θ, t)L(t).

So by (4.12) we have infI h(θ, t) ≤ 2|A0|/L(t) ≤ |A0|/
√

π|A0|, and by the
monotonicity of L(t) we have supI h(θ, t) ≥ 2|A0|/L(t) ≥ 2|A0|/L0. Then the
two-sided bound for h follows from Lemma 4.5. □

We will use the two-side bound of h in the proof of Thoerem 1 to establish
the upper bound on κ. The method is originally from [33].

4.3. The AP flow for Abresch-Langer type curves

The properties of Abresch-Langer type curves guarantee that evolving curves
have ‘good’ shape and thus the estimates for curvature are feasible. In the
following, κ(θ, t) and h(θ, t) denote, as before, the curvature function and the
support function of X(., t), respectively, and they evolve from an Abresch-
Langer type curve X0 under the AP flow.

We first prove two lemmas in order to get some information about the
shape of evolving X(., t).

Lemma 4.7. Let X(·, t) be the solution to the AP flow starting at an
Abresch-Langer type curve X0. Then we have the following.

(a) Both, κ(θ, t) and h(θ, t) are symmetric with respect to θ = 0 and θ =
mπ/n, for all times of the existence of the flow.

(b) For all times t, both, κ(·, t) and h(·, t) attain their maximum at θ =
0; hθ(θ, t) and κθ(θ, t) are negative on (0,mπ/n), and consequently,
κ(θ, t) and h(θ, t) are strictly decreasing in (0,mπ/n).

Proof. It is easy to observe that (a) holds. We only show (b). By differ-
entiating the equation in (2.2), we see that the function w = hθ satisfies a
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parabolic equation

wt = a(θ, t)wθθ + b(θ, t)w, (θ, t) ∈ [−mπ/n,mπ/n]× [0, Tmax)

where a(θ, t) = b(θ, t) = ακα+1. According to the Sturm comparison princi-
ple (see [4] or [25]), the number of zeros of w is non-increasing in time. Since
at initial time the function

w(θ, 0) =
∂

∂θ
h0(θ)

has exactly 2 zeros in [−mπ/n,mπ/n] (a circle) by Property (P), the number
of zeros of w(θ, t) cannot exceed two for all t ∈ [0, Tmax). On the other hand,
the reflectional symmetry of equation (2.2) with respect to the axis θ = 0 and
θ = mπ/n guarantees that w(θ, t) must vanish at θ = 0 and mπ/n for every
t ∈ [0, T ). This implies that w(θ, t) does not change its sign on (−mπ/n, 0)
and (0,mπ/n) for all t ∈ [0, Tmax). Then the conclusion for h follows. The
conclusion for κ can be proved similarly. □

Lemma 4.8. We have

h0(mπ/n) ≤ h(θ, t) ≤ h0(0), (θ, t) ∈ I × [0, Tmax).

Proof. We claim that for any time t ∈ (0, Tmax)

ht < 0 at θ = 0; ht > 0 at θ = mπ/n.

Indeed, since κ(mπ/n, t) ≤ κ(θ, t) ≤ κ(0, t) by Lemma 4.7, we have

κα(mπ/n, t) < −
∫

I
κα(θ, t) dθ < κα(0, t).

Then the claim is true in view of the equation ht = −
∫

I κα dθ − κα. The proof
is done. □

4.4. Proof of Theorem 1

An isoperimetric inequality of Rado [28] tells that for any closed, immersed
curve,

L2 ≥ 4πΣ|mj |Aj ,

and thus

L2 ≥ 4π|ΣmjAj | = 4π|A(t)|,
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where mj and Aj are the winding number and the enclosed area (which is
nonnegaive in the usual sense) of the j-th component of the curve, respec-
tively. Since the flow preserves the (algebraic) area of the curve, we have

L2(t) ≥ 4π|A0|.

So, if A0 ̸= 0 and Tmax = +∞, then limt→∞ L(t) > 0.
Assume now A0 < 0 as in part (1) of Theorem 1. Our goal is to show the

singularity occurs in finite time in this case. Assume on a contrary, that the
flow exists forever. By Lemma 4.4, we then obtain the convergence of the
flow to an m-fold circle, which contradicts the fact that the flow preserves
the negative enclosed area. Thus, if A0 < 0, then a singularity must happen
at some finite time.

Assume next the initial curve satisfies

0 < L2
0 < 4mπA0,

and exists for all times. Since dL(t)/dt ≤ 0 and dA(t)/dt ≡ 0, we have L0 ≥
L(∞) := limt→∞ L(t) and A0 = A(∞) := limt→∞A(t). Thus,

(4.13) L2(∞) < 4mπA(∞).

Then according to Lemma 4.4 the flow converges smoothly to an m-fold
circle as t → ∞, which implies that

L2(∞) = 4mπA(∞).

This contradicts (4.13). Thus, the singularity must happen at some finite
time during the evolution of the flow.

We now consider part (2) of the Theorem, that is, the case when A0 = 0.
If the maximal existence time Tmax < ∞, then it is well known the curvature
must blow up as t → Tmax. If Tmax = ∞, the curvature must blow up as
t → ∞, otherwise by Lemma 3.5 we have the convergence to an m-fold
circle enclosing a nonzero algebraic area, which contradicts the assumption
0 = A0 = A(t), for all times t ∈ [0,∞). Moreover, in the case Tmax = ∞, the
flow must go to a point as t → ∞. Suppose this is not true. It means that
limt→∞ L(t) > 0. By Lemma 4.4, the flow would then converge to an m-fold
circle, which contradicts our assumption A0 = 0.

For part (3) of the Theorem, assume X0 ∈ Hm,n and n > 2m. Fix a
t ∈ (0, Tmax). Consider the quantity Φ = κα/(h− r0) where h(θ, t) is the
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support function of evolving curves under the AP flow and r0 is a constant
from Lemma 4.6 (by the same Lemma we have h(θ, t) ≥ 2r0, which makes
function Φ well defined). Let the maximum of Φ over I × [0, t] be attained
at (θ0, t0), t0 > 0. At the point (θ0, t0), we have

∂Φ

∂θ
= 0,

∂Φ

∂t
≥ 0, and

∂2Φ

∂θ2
≤ 0.

Since

0 ≤ ∂Φ

∂t
= ακα+1Φθθ +

2ακα+1hθΦθ

h− r0
+

(α+ 1)κ2α

(h− r0)2
− rακ2α+1

(h− r0)2

− λ(t)

(

ακα+1

h0 − r
+

κα

(h− r0)2

)

≤ (α+ 1)κ2α

(h0 − r)2
− rακ2α+1

(h0 − r)2

≤ −Φ2[r1+1/ααΦ1/α − (α+ 1)]

(where the inequality h− r0 ≥ r0 > 0 is used), we deduce that

Φ(θ0, t0) ≤ r
−(α+1)
0 (1 + α−1)α.

If the maximum of Φ is attained at the initial time, we have

Φ ≤ max
I

Φ(θ, 0).

Hence,

Φ ≤ max

{

r
−(α+1)
0 (1 + α−1)α,max

I
Φ(θ, 0)

}

:= M.

It follows that

κ ≤ M1/α(h− r0)
1/α

≤ M1/α(2R0 − r0)
1/α,

where R0 is the same constant as in Lemma 4.6. At last, the convergence of
the flow is just an immediate result of Lemma 3.5.

In the case of part (4) of the Theorem, due to the two-sided bound
obtained in Lemma 4.8, the time-independent upper bound for curvature
can be deduced immediately by the same proof of part (3) of Theorem. The
convergence then follows from Lemma 3.5. □
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5. The evolution of length-preserving flow

For the LP flow, we can follow the steps in Sections 4.1 to show the con-
vergence of global flow and then deduce the sufficient conditions for the
occurrence of singularity at a finite time.

5.1. The convergence of global LP flow

Lemma 5.1. For the LP flow, if the flow exists for all time, then for any
fixed d0 > 0, there is a sequence tj ∈ [(j − 1)d0, jd0] such that

(5.1) L0

∫

I
κα(θ, tj) dθ − 2mπ

∫

I
κα−1(θ, tj) dθ → 0, as tj → ∞,

and

max
j≥1

∫

I
κα(θ, tj) dθ ≤ C

for some constant C independent of time, where L0 is the length of an initial
curve.

Proof. By the evolution equation of A(t), we have

−
∫ t

0

∫

X(·,t)
(v − λ(τ)) dsdτ = A(t)−A0.

Since L2(t) ≥ 4πA(t) and A(t) is nondecreasing in t, the limit limt→Tmax
A(t)

is finite. If Tmax = ∞, then

∫ ∞

0

∫

X(·,t)
(v − λ(τ)) dsdτ > −∞.

Since
∫

X(·,t)
(v − λ(t)) ds ≤ 0,

we can argue as in the proof of Lemma 4.1 to conclude that for any fixed
d0 > 0 there exists a sequence {tj}∞j=1 with tj ∈ [(j − 1)d0, jd0] such that

∫

X(·,tj)
(v − λ(t)) ds → 0, as tj → ∞,
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that is,

∫

I
κα−1(θ, tj) dθ −

L0

2mπ

∫

I
κα(θ, tj) dθ → 0, as tj → ∞.

When α > 1, noticing that

∫

I
κα−1 dθ ≤ (2mπ)1/α

(
∫

I
κα dθ

)(α−1)/α

,

we could employ the similar argument as in the proof of Lemma 4.1 to
show that maxj≥1

∫

I κ
α(θ, tj) dθ ≤ C1 for a constant C1. When 0 < α ≤ 1,

noticing that

∫

I
κα−1 dθ =

∫

I
(κ−1)1−α dθ ≤ (2mπ)αL1−α

and L(t) ≡ L0, it is easy to find a constant C2 such that

max
j≥1

∫

I
κα(θ, tj) dθ ≤ C2.

This concludes the proof. □

Now, we can show the convergence of the LP flow if it exists for all times.

Lemma 5.2. Assume the initial curve X0 is locally convex with the length
L0 > 0. If the LP flow exists for all times, then X(·, t) converges smoothly
to an m-fold circle.

Proof. By checking the initial step in the proof of Lemma 4.2, one can imme-
diately observe that the ODE inequality (4.8) also holds along the LP flow.
Then arguing as in the proof of Lemma 4.3, we have the uniform bound for
the integral

∫

I κ
α dθ, for all times. Recall that the estimate in Lemma 3.4

also holds for the LP flow. Following the proof of Lemma 4.4, we use this
integral estimate to get the uniform upper bound estimate for maxI κ(·, t).
The convergence then follows from Lemma 3.5. □
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5.2. Proof of Theorem 2

Define f = 1
2mπ

∫

I f dθ. For the function v(θ, t) = κα(θ, t) we have

v =
1

2mπ

∫

I
v dθ = λ(t).

Recall that

E(t) =

∫

I
(vθ)

2 dθ −
∫

I
(v − v)2 dθ,

or

E(t) =

∫

I
(vθ)

2 dθ −
∫

I
v2 dθ +

1

2mπ

(
∫

I
v dθ

)2

.

Lemma 5.3. For the energy E(t) defined as above, we have

dE(t)

dt
≤ 0.

Proof. From the equation (2.3), we have

∫

I

(vt)
2

αvp
dθ =

∫

I
(vθθ + v − v)vt dθ

= −1

2

d

dt

∫

I
[(vθ)

2 − v2] dθ − v

∫

I
vt dθ,

where

v

∫

I
vt dθ =

1

4mπ

d

dt

(
∫

I
v dθ

)2

.

Thus,

−1

2

dE(t)

dt
=

∫

I

(vt)
2

αvp
dθ ≥ 0,

and the Lemma is proved. □

One may ask what happens if the condition E(0) < 0 does not hold for
initial curve. A large class of rotationally symmetric curves belong to this
case. In fact, the Poincaré inequality (or Wirtinger inequality) tells us the
following is true.
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Lemma 5.4. If the initial curve is locally convex, closed and has total
curvature of 2mπ and n-fold rotational symmetry with m/n ≤ 1, then its
curvature k0(θ) satisfies

(5.2)

∫

I
(v0 − v0)

2 dθ ≤
(m

n

)2
∫

I
(v0θ)

2 dθ.

We are ready now to prove Theorem 2.

Proof of Theorem 2. To prove part (1) of the Theorem, we argue by
contradiction. Assume that for the initial curve we have E(0) < 0, but that
the flow exists for all time. Then Lemma 5.2 tells us that the flow must
converge to an m-fold circle, whose energy is 0. In view of the monotonicity
of E(t) in Lemma 5.3, we have E(t) ≥ 0 for all t ≥ 0, which contradicts the
assumption E(0) < 0. Hence, the singularity must occur at some finite time.

If E(0) = 0 and k0 ̸≡ constant, we claim that (v0)θθ + v0 − v0 ̸= 0 must
hold at some point of I. Indeed, if (v0)θθ + v0 − v0 = 0 holds everywhere on
I, it means that v0 is a stationary solution of (2.3). Since v0 ̸≡ constant, the
initial curve is a non-circle locally convex closed curve, which either produces
a singularity during the evolution, or exists globally and converges to an m-
fold circle smoothly, according to Lemma 5.2. This contradicts the fact that
v0 is a noncircle stationary solution. Hence, it holds that (v0)θθ + v0 − v0 ̸=
0 at some point in I. Then by the continuity, the same is true for some
subinterval of I. By recalling the proof of Lemma 5.3, for t close to 0, we
have

dE(t)

dt
= −2

∫

I

(vt)
2

αvp
dθ < 0,

which implies that E(t) < 0 for t > 0. Taking any t0 > 0 to be the initial
time, the above argument (since E(t0) < 0) shows a singularity must happen
at some finite time.

Next we show that if the initial curve satisfies L2
0 < 4mπA0, then a

singularity must also occur at some finite time. Indeed, if we assume that
the flow exists globally, then from Lemma 5.2 we have a smooth convergence
to an m-fold circle. This implies that L2(∞) = 4mπA(∞), a contradiction
due to the monotonicity of A(t).

To show part (2) of Theorem 2 we first consider the case when α > 1, or
equivalently, 1 < p < 2. By equation (2.3) and integration by parts we have

1

α(2− p)

d

dt

∫

I
v2−p dθ =

∫

I
v(vθθ + v − v̄) dθ = −E(t).
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By Lemma 5.4, we have E(t) ≥ 0 for t ∈ [0, Tmax), since the evolving curves
are rotationally symmetric. Hence, we have d

dt

∫

I v
2−p dθ ≤ 0. This implies

there exists a constant C1, depending only on the initial curve, such that
∫

I v
2−p dθ ≤ C1 for all t ∈ [0, Tmax). We claim there exists a constant C2

independent of time, such that

(5.3) max
θ∈I

κ(θ, t) ≤ C2,

for all t ∈ [0, Tmax). To show the claim we argue by contradiction. Assume
on the contrary that (5.3) does not hold. Then Lemma 3.4 and the fact that
∫

I v
2−p dθ ≤ C1 for all t ∈ [0, Tmax) yield contradiction. After the priori esti-

mate (5.3) is established, we obtain the flow’s global existence and its smooth
convergence to an m-fold circle as time goes to infinity by Lemma 3.5.

Now we consider 0 < α ≤ 1. The case m = n (= 1) means that the curve
is embedded and convex and has been studied in [22] and [32]. We only need
to consider the case m/n < 1. Since p ≥ 2 in this case, the above argument
cannot be applied and hence we need different idea. Notice that v is 2mπ/n-
periodic. Then the Wirtinger inequality gives

E(t) ≥
(

1−
(m

n

)2
)
∫

I
(vθ(θ, t))

2 dθ, ∀ t ∈ [0, Tmax).

Since E(t) ≤ E(0), we have the gradient estimate

(5.4)

∫

I
(vθ(θ, t))

2 dθ ≤ C, ∀ t ∈ [0, Tmax),

with C only depending on initial data. Fix any time t ∈ [0, Tmax). For any
θ1, θ2 ∈ I, it holds that

v(θ1, t)− v(θ2, t) =

∫ θ1

θ2

vθ(θ, t) dθ

≤ |θ1 − θ2|
1

2

[
∫ θ2

θ1

(vθ(θ, t))
2 dθ

]1/2

≤ C1

[
∫

I
(vθ(θ, t))

2 dθ

]1/2

≤ C2.

(5.5)

If we choose θ2 = θ2(t) such that

L0 =

∫

I

dθ

κ(θ, t)
=

2mπ

κ(θ2(t), t)
,
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that is κ(θ2(t), t) = 2mπ/L0, and for θ1 to be any θ ∈ I, then (5.5) yields
the time-independent estimate

v(θ, t) ≤ (2mπ/L0)
α + C2, (θ, t) ∈ I × [0, Tmax).

The desired convergence follows from Lemma 3.5. □
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