COMMUNICATIONS IN
ANALYSIS AND GEOMETRY
Volume 28, Number 8, 1807«@ 2020

Isotropic curve flows
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A smooth curve 7 in R* 17 is isotropic if v, va, . . ., 752" are lin-

early independent and the span of v, v,, . .. ,’yz”_l is isotropic. We
construct two hierarchies of isotropic curve flows on R*T4"  whose
differential invariants are solutions of Drinfeld-Sokolov’s KdV tyFe
soliton hierarchies associated to the affine Kac-Moody algebra Enl)
and flgi) For example, the Bg)—KdV is the KdV hierarchy and the
121(22)—KdV hierarchy is the Kupershmidt-Kaup (KK) hierarchy.
Hence we our study gives geometric interpretations of the KdV
and KK equations as the curvature flows of natural geometric curve
flows on the light cone of R%!. Bi-Hamiltonian structures and con-
servation laws for isotropic curve flows on R**1:" are also given.
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1. Introduction

Let R™tL7 be the vector space R?"t! equipped with the index m, non-
degenerate bilinear form

2n+1

(11)  (X,Y)=X'p,Y, where p =Y (—=1)""e;on40.
=1

Let O(n + 1,n) denote the group of linear isomorphisms on R®*%" preserv-
ing (, ).

A subspace Z € R"1 is called isotropic if (X,Y) =0 for all X,Y € T.
We note that a maximal isotropic subspace in R"t1" has dimension n.
A smooth curve v: R — R is isotropic if 7,7, ... ,'y§2n) are linearly
independent and the span of v, ~s, ..., 7§n_1) is a maximal isotropic subspace
of R"*t1L7 for all s € R. Note that a curve being isotropic is independent of the
choice of parameter. It is easy to see that there is an orientation preserving
parameter x (unique up to translation) for an isotropic curve such that
<7§"),7§")> = 1. We call such z the isotropic parameter of .

Set

M1 = {7: R = R | 4 isisotropic, (M 4y =11,

T

We prove that given v € M, 41 5, there exists a unique smooth map g : R —
O(n + 1,n) such that the i-th column is %(f’” for 1 <i<n+1and g lg,
is of the form

9 g =b+ ) wifi

i=1

for some u; € C*°(R,R), where
2n

(1.2) b= g €it1i, B = enyl—inti + €ny2—iniiyi-
i=1

We call g and u =7, u;3; the isotropic moving frame and the isotropic
curvature along =y respectively.
Let W : My 41, = C®(R,V},) be the isotropic curvature map defined by

(1.3) V() =u=g"g.—b= Zuzﬂi,
i1



Isotropic curve flows 1809

where g and u are the isotropic moving frame and the isotropic curvature
along v and

(1.4) Vi = @1 RB;

the isotropic curvature space.
In [3], Drinfeld and Sokolov constructed

(i) a G-hierarchy of soliton equations for each affine Kac-Moody algebra
G, and

(ii) a G-KdV hierarchy on a cross section of certain gauge action by push-
ing down the G-hierarchy along gauge orbits to the cross section.

Note that G-KdV hierarchies constructed from two different cross sections
look different but they are gauge equivalent.

Let B} and B, denote the subalgebras of upper and lower triangular
matrices in o(n + 1,n) respectively, and N, and N, the subalgebras of
strictly upper and strictly lower triangular matrices in o(n + 1,n), and B,jf
and N the corresponding connected subgroups of O(n + 1,n) with Lie
algebra B~ and NF respectively.

In this paper, we prove the following results:

1) We show that C°(R,V,,) is a cross section of the gauge action of
C>®(R, N,;5) on C*(R, B}, where V,, is the isotropic curvature space
for M,, 1., defined by (|1.4)).

2) Two Poisson structures {,}; and {,}s are compatible if c¢i1{,}1 +
co{, }2 is again a Poisson structure for any constants cj,co € R. A
bi-Hamiltonian structure for a soliton hierarchy is a pair of compati-
ble Poisson structures ({, }1,{, }2) on the phase space such that the
flows in the soliton hierarchy are Hamiltonian with respect to both
Poisson structures. The ET(ALI)—KdV and fléi)—KdV hierarchies have bi-
Hamiltonian structures and they share the same Poisson structure

{, }2 defined by ([5.20). We study the Hamiltonian theory of
Moui1.4(SY) = {y € Myy1n | v(z +27) = (), Vo € R}

with respect to the pull back {,}4 of the Poisson structure {, }2 on
C>®(SY,V,) to My11.,(Sh) by the isotropy curvature map W.

3) We call the commuting Hamiltonian flows on M, 1., (S1) with respect
to {, }4 obtained from the commuting Hamiltonians for the BV Kav
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and flgl)-KdV hierarchies the isotropic curve flows of type B and A
respectively. We show that there is a correspondence between solutions
of isotropic curve flows of type B (type A resp.) and solutions of the

BY-Kav (flgn)—KdV resp.) flows.
In particular, for n = 1 we prove the following results:

(a) A map v:R — R?! lies in Mo if and only if ~ is a space-like curve
parametrized by the arc-length in the light cone of R*! and the iso-
tropic curvature of such curve is the standard curvature in differential
geometry.

(b) The KdV equation

(15) 4t = Qxxx — Sq(bca

and the Kupershmidt-Kaup (KK) equation

1
(1.6) gt = _§(q(5) — 109Gzza — 29G4 Gz + 2OQQQz)

are the third B{"-KdV flow and the fifth AY-KdV flow for u = ¢8,
respectively.

(¢) The bi-Hamiltonian structure ({, }1,{, }2) for the Bgl)—KdV hierarchy
on C°°(SY R) is the standard bi-Hamiltonian structure for the KdV
hierarchy.

(d) The third isotropic curve flow of B-type and the fifth isotropic curve
flow of A-type on Ma1(St) are

(1.7) Yt = qeY — @Yo
1 1
(1.8) =~ (Geaw = 8902)7 + 5 (¢ — 46%) Yy

which are the Hamiltonian flows for

(1.9) &M——f&m,

(1.10) Gat) = f (450" )an

with respect to {, }4 respectively, where u = ¢f3; is the isotropic cur-
vature of ~.
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(e) If v is a solution of (1.7]) or (1.8]), then the isotropic curvature ¢ is a
solution of the KAV (|1.5) and KK ([1.6)) respectively.

(f) We use the solution of the periodic Cauchy problem for the KdV (KK
resp.) to solve the periodic Cauchy problem for the isotropic curve flow

(7 ((8) resp.).
2)

We construct Darboux transforms for the qul) and flén -hierarchies and
use them to construct explicit soliton solutions for the isotropic curve flows
of type B and type A in [I8] and [19] respectively. In particular, we show in
[18] that given a constant a € R\0,

asq(x,t) a?(co(z,t)—1) 2
L— ca(:r,t2+1x + T L
t) _ 2sq(x,t) ca(x,t)—lm
Vo2 ,0(2; aca@D+D)  calzh)tl
2(ca(z,t)—1)
a?(ca(z,t)+1)

is a solution of the third isotropic flow (|1.7) of type B on My ; and its
isotropic curvature is the 1-soliton solution

3
2 2 [ & o
= — h“ | —x 4+ —t
q a“sec <2x 5 )

of the KAV, where c,(x,t) = cosh(ax + a3t) and s, (x,t) = sinh(ax + a3t).
We show in [19] that given a constant r € R\0,

1—cosh(v/3(rz—r5t))
(cosh(v/3( 2+COS§1)(\/§)(M\7M)) (V3( )
o r~1(cosh(v/3(rz—r°t))—1)xz—+/3sinh(v/3(rz—r°t
’YT(CU, t) o 2+4-cosh(v/3(rz—r5t))
r=2(1—cosh(V/3(rz—r5t)))x24+2v/3 sinh(v3(rz—rt))z—3(14-cosh(v3(rz—rt)))
442 cosh(V/3(rz—r5t))

is a solution of the fifth isotropic curve flow on My of type A with the
1-soliton solution of the KK equation,

977"2 <1 + 2 cosh(v/3(rz — r5t))>

2\ 24 cosh(v3(rz —r5t))2 )’

qr(z,t) =

as its isotropic curvature.

Note that the relation between central affine curve flows on R™\0 and
the soliton theory of the flg_)l—KdV hierarchy were considered in [12] and
[16] for n =2, in [I] for n = 3, and for general n in [17]. General methods
for constructing integrable curve flows on homogeneous spaces can be found
in Ovsienko and Khesin [I1], Mari-Beffa ([6]-[10]), and in Terng [13].
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The organization of this paper is as follows: We prove the existence of
isotropic parameters and construct isotropic moving frames and curvatures
for v € My41,, in Section |2, and give description of the tangent space of
May1,n at 7y in Section [B} In Section [, we study the Hamiltonian flows
on My +1,(St) with respect to Poisson structure {,}4 and their Cauchy
problems. We give the construction and some basic results of the Bﬁl)—KdV
and Aéi)—KdV hierarchies in Sectionsand@respectively. In the last section,
we explain the relation between solutions of the E;l)—KdV (Aéi)—KdV resp.)
flows and isotropic curve flows of B-type (A-type resp.).

2. Moving frames along isotropic curves

In this section, we prove the existence of isotropic parameter and construct
isotropic moving frames and curvatures along isotropic curves.
Note that the Lie algebra of O(n + 1,n) is

on+1,n)={Acsl(2n+1,R) | A'p+ pA =0}
= {(Ay) | Aij + (1) Agpyo—jonta—i =0, 1<i<2n+ 1},
A direct computation implies that A = (A4;;) € o(n + 1,n) if and only if

(i) Ajj’s are symmetric (skew-symmetric resp.) with respect to the skew
diagonal line i + j = 2n + 2 if ¢ 4+ j is odd (even resp.),

Let
(2.1) Gi=o(n+1,n)Nspanfe; ;i |1 <i+j <2n+1}.

Then we have the following gradation:

o(n+1,n) =@ 5,Gi, Goon=0m=0, [Gi,G;] C Giyj

A basis {v1,...,v2,01} of R2"*Lis called an isotropic basis if (vi,v5) =
pij, where p, = (p;;) is the matrix defined by (1.1]), or equivalently, the
matrix (vy,...,v2p41) is in O(n + 1, n).

Proposition 2.1.

(i) The O(n + 1,n)-action on the space of ordered isotropic bases of R* 1"
defined by g - (v1,...,v2n+1) = (gU1,. .., guant1) is transitive.
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(ii) The dimension of a mazimal isotropic subspace of R"T1m jsn,

Proof. (i) follows from linear algebra. To proves (ii), first let {e;,1 <i <
2n + 1} denote the standard basis of R?**1. Then A = span{ey, e, ..., e}
is an isotropic subspace in R?+1m,

Let V =span{vy,...,v,} be another n-dimension isotropic subspace,
g1 =(e1,...,en), and go = (v1,...,v,). We claim that there exists C €
O(n+1,n) such that go = Cg;. From linear algebra, we can extend

{v1,...,v,} to a basis {v1,...,Vn, Vpnt1,..., V2001 in R™7 and denote
g2 = (v1,...,v2p41) € O(n+ 1,n). Then choose C = gs.

Suppose B = span{wy, ..., w, 41} is an isotropic subspace in R*" ™17 of
dimension n+1. According to (i), there exists C' € O(n + 1,n), such that
(w1,...,wy) =Cl(e1,...,ey). Therefore, we may assume w; = ¢e;,1 <i < n.
Then from (e;,wn+1) =0 for 1 <i<mn and (wWpi1,wn1+1) =0, we have
wWp+1 = 0, which is a contradiction. This proves (ii). O

Proposition 2.2. If v(s) is isotropic in R"tY" for all s € R, then there
exists an orientation preserving parameter x = x(s) unique up to translation
such that (Vén),'yg(gn)> =1, i.e., x is the isotropic parameter of ~y.

Proof. Since ~ is isotropic,
(WD) =0, 0<i<n-—1.

Take the derivative with respect to s of both sides to get

(n=1) ,(2)

(7§D, A ()

bs = (1, AD) + (77D A D) = 0

So <7§”),~y§i)) =0 for any 0 <i<n—2. But <7£n—1)77$(n—1)> =0 implies

that

(2.2) (M), A0y = .

) s

This shows that <7§n),7§i)> =0 for 0 <i <n— 1. Since the span of {~,...,
( (

'ysn_l)} is a maximal isotropic subspace, (’ysn),’yén)> #0.
(n)

We claim that (fygn),’ys ) >0 for all s € R. To see this, we first note
that from Proposition (i), there exists C' € O(n + 1,n) such that

(n—1)

C('.)/a'“’f)/s ):(61,62,...7€n),
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where e; is the i-th standard basis of R?"*1. Let ¢ = (c1,¢2,...,con41)! =
C'ygn). For 0 <i<n-—1, we use (2.2)) to see that
(CAM, YD) = (e, eipn) = (1) eapir—i = (7, 41P) = 0

S S
for 1 <7 < n. So capqo—; =0 for 1 < i < n. This implies that

(n)

(7, A = (CA, CA) = efpe = éh .

T

But <7§"),7§”)) # 0. This proves the claim.

Choose z such that % = (vgn), ’ygn)>1/ 2 and the proposition follows. O

Next we want to construct moving frames and a complete set of differ-
ential invariants for v € My,11,. First note that if (v, %(f y=0for 0<i<
n — 1, then ('yg(f),%(gj)> =0for0<i,j <n-—1. 507 € Myt is determined
by n 4+ 1 independent conditions

A =1, (1)) =0, 0<i<n-—1.
Hence we expect there should be n differential invariants for v € My 41,.

Recall that the Frenet frame g for curves in the Euclidean space R"
satisfies A = (a;;) := g~ 'g, in o(n), where all entries of A are zero except
ai+1,; = ki = —a; 41 for 1 <4 <n — 1. Motivated by this, we seek a moving
frame g for v € My, 41, satisfying g~ 1g, lies in b + V;,, where V,, is defined
by . We will first give detailed constructions of such g for v € My and
M3 9 so that the construction for general M, 1, is easier to follow.

Example 2.3 (The isotropic moving frame for v € Mjy;). Assume
that there exists pg such that (7,7, p3) is in O(2,1) and satisfies

(2‘3) (777x:p3)ac = ('77'7957]73)

O = O
_ O
o O

for some g. Note that the first column of (2.3)) is automatically true. The
second column of ([2.3]) holds if and only if v, = ¢y + p3. So we can choose

p3 =97 — Yaz-
To find ¢, we first compute

<7a’7;tz> = ((77'730>)x - <")/gg,’}/1»> =0—-1=-1.
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So we have (vy,p3) = —1 and (7., p3) = 0. We note that

(P3,03) = (Yaz, Yaz) — 26(V; Vez) = (Vaz» Vaz) + 29

which is zero if and only if

1
q= *§<7m»'7m>~

This implies that (7,7, p3) is in O(2,1) and holds.

Note that a smooth curve v : R — R?! lies in My if and only if v is a
smooth space-like curve in the null cone ¥ = {y € R*! | (y,y) = 0} parame-
terized by its arc-length. The isotropic moving frame and isotropic curvature
are the standard moving frame and curvature of v in ¥ in differential geom-
etry.

Example 2.4 (The isotropic moving frame for v € M33). Suppose
9= (7, Ya, Yoz, P4, P5) : R = O(3,2) satisfies

00 0 uy O
1 0 wp 0 g
(24) (VY2 Vazs P45 P5)e = (Vs Yoy Yoz, P4,05) |01 0 ug 0
00 1 0
00 0 1 0

for some ui,us. Set p; = ’yg(f_l) for 1 <14 < 3. Note that p = (p;;) = e33 —

€24 — €42 + €15 + e51. We need to choose ps and ps so that (p;,p;) = pij
and ([2.4) holds. It follows from

(2.5) (YO Ay =0, for0<4,5 <1, (YawVaz) =1
that
(26) <’73’7xx> = <'Yxa'7xx> = 07 <71a’71x> = —1.

So (pi,p;) = pij for 1 <4, j < 3. The first two columns of (2.4) are true. The
third column of (2.4]) holds if and only if v,zr = u1y, + pa, i-e.,

(27) P4 = Vexx — U1 V-

We need to find u1 such that (p;, ps) = pig for 1 < i < 4. It follows from (2.5))
and (2.6)) that (p;,ps) =0 for 1 <i < 3. So

<P47p4> = <’Yx:m:7'7x1’z> - 2'LL1 <7$77xxm> = <73:$$7’sza:> + 2ul~
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This implies that if we choose

1

Uy = §<’7xxxa7xa:x>a

then (p;, pj) = pij for 1 < ¢, < 4. Next we construct ps. The fourth column
of equation (2.4]) gives (p4), = uay + u1yzz + p5. Hence

ps = (p4)z — U227y — U1Vza-

Note that

(7, (P4)a)
(e, (Pa)z)
<’7xa:7 (p4)a:>

((vsp4))z — (Vz> 1) = —pas = 1,
((Vz,Pa))e — (VazsPa) = —p32 = 0,
(<’Vm7p4>) = (Vaaz: Pa) = —(Voza, Pa)
—(u1Vz + P4, pa) = —u1p2a = uy.

These equalities imply that (p;, ps) = pis for 1 < i < 4. Note that

(p5,p5) = ((pa)w, (Pa)2) + uf + 2uz

is zero if we choose

s = — 2 (((pa)es (pa)a) + 2).

2
This proves that (p1,...,ps) is in O(3,2) and satisfies (2.4)).
Theorem 2.5. Given v € My 11, then there exists a unique smooth map

9= (p1,-.-,p2n+1) : R = O(n+ 1,n) such that p; = 'yéi_l) for1<i<n+1
and

(2.8) Yo =9 <b +) Uiﬂi)
i=1

for some n smooth functions uy, ..., u,, where b and B;’s are given in ((1.2)).
Moreover,

(2.9) =) er ()

for some differential polynomials ri;(u) in u forn +2 <i <2n+1.
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Proof. Set p; = g(ci_l) for 1 <i<n+1. We need to find pnpio,...,pon+1
such that (p1,...,pant1) is in O(n + 1,n) and satisfies .

(i) We claim that (p;,p;) = pi; for 1 <4i,j <n+1, where p = (p;j)
as defined by . Since v € Mp41m, (pi,pj) =0 for 1 <14,5 <n and
(Png1,Pn41) =1L For 1 <i<n—1,

(n—1)

P Prg1) = (Y, 40y = (17D 4=y, — (79,470 = 0.

And (pn, ps1) = (W Ay = Ll Ay o,

This proves the claim.
(ii) The (n + 1)-th column of (2.8) gives ’yénﬂ) = ul'yg(cn_l) + pn42. We
need to determine uy. From <%(6"71 ,%n)> =0, we get

(D, 94D = — (o), ) = -1,

x x v lx [ T

And the condition (p,+2, pp+1) = 0 implies that

1, o " 1
(2-10) up = —§<’Y§; H), ;g H)) = _§<(pn+1)x7 (Pn+1)x>.

Then we have

(2.11)

<pzvpn+2>:07 OS’LSTL—FQ, 7'7én7
(P> Pny2) = —1.

(iii) The (n + 2)-th column of gives (Pp+2)s = U2Pp—1 + U1Dn+1 +
Pn+3; 1.€.,
Pnt3 = (Pn+2)e — U2Pn—1 — U1Pnt1-
For1<i<n-—2andi=n,

Wispnes) = (Y, Dns2)e) = (Y, paga)s — (07, Prsa) = 0.

- —1
Moreover, <pn717pn+3> = <,Y£TL 7pn+2>:r - <’71(Pn )7pn+2> =L

From (2.10)) and (2.11)), we have

2)

(Pt Prts) = (O, (Pnr2)e) — ur (3, A(M)

= < ag:n)vpn+2>l - <7£:n+1)7pn+2> —u
= — (MDD gl ) = 0.

1
<pn+2apn+3> = <pn+2a (pn+2)a:> = 5<pn+2apn+2>w =0.
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A direct computation shows that (p,+3, pn+3) = 0 if we choose

1
uz = 5 ({(Pn+2)s, (Po+2)a) + ui).
(iv) Suppose we have already found p,yo,...,ppyj and uq,...,uj—1 for

j > 3 satisfying

(Pi,Pnyj) =0, 1<i<n4+j, i#n+2-—7j,
(2.12) (Prt2—js Puyg) = (1771,

(Pn—144)z = Pn+j + Uj—1Dnt2—j + Uj—2Dpta—j-

Set

_1)d
wj = P2 Pnrs)es (Pt i)a)s
Prtj+1 = Pntj)e — WjPnti—j — Uj—1Pn+3—j-
Forl1<i<n+landi#n+1-j,
<pi7pn+j+1> = <’Y:S:i

= (W, (Dnti)x — WiPnt1—j — Wj—1Pnt3—5)

= (W patse — 08 pig) = 0.

D pniia)

+1—j ;
And (pri1—j, Prsj1) = — (8 parg) = (=1)7.
Forn+1<i<n+4jandi#n+j—1,

A (pn-l-j):t: — UjPn+1—5 — Uj—lpn+3—j>

(p
(pisPnvj)e — ((Pi)a, Putj) DY
0.

<piapn+j+l> =

From uj—1 = S —((Pn4j—1)as (Pntj-1)a), We have (ppij1, pnyj) = 0. And
u; can be solved from (py4j, pntj) = 0.
(v) The uniqueness follows from the construction. O

Example 2.6. Isotropic curves in R" ™" with zero isotropic curvatures are
of the form

2 2n—1 oan \ ¢

T x x
2.13 = cpe?®er =co (1,2, =, ... , ,
( ) v Coe €1 (&) ( , T, 2|, 3 (27’L — 1)' (271)‘)

where ¢y € O(n + 1,n) is a constant and

(2.14) e1 = (1,0,...,0)" ¢ R*TLm,
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If follows from the Existence and Uniqueness Theorem of ordinary dif-
ferential equations that we have the following.

Proposition 2.7. Let V,, be the isotropic curvature space defined by (1.4]),
and VU : My 1, = C®(R,V,) the isotropic curvature map defined by (1.3)).
Then W is onto and W~1(U(v)) is the O(n + 1,n)-orbit at 7.

Hence {ui,...,u,} is a complete set of differential invariants for ~ €
M 415 under the group O(n + 1,n).

Remark 2.8. Let g = (v,... 7%(571)7 Dn+t2, - - -, Pan) denote the isotropic frame
along v € My41,,. If 67 is tangent to M, 11, at vy, then 5(%(0’)) = (5’7)9(;).
So we can use (2.9) to write down dg in terms of d~.

The following Proposition follows from a straight forward computation.

Proposition 2.9. Let ¥ : M1, — CP°(R,V,) be the isotropic curvature
map. Then the differential of ¥ at 7y is

(2.15) dW(67) = du = [0, + b +u, g 9],

where g, u, and 6g are the isotropic moving frame, isotropic curvature, and
the variation of g when we vary v by dv respectively.

Proof. Tt follows from g~'g, = b+ u that we have
Su=—g""099"" o + 97 (69)s = =g 3g(b+u) + g7 (59)a-
On the other hand,
(97109)s = —9" 9297109 + 97 (89)s = —(b+u)g ™ 0g + g~ (09)a-
Therefore
Ju=—g~0g(b+u)+(g7"09)s + (b+u)g~"(3g)
= [0s + b+ u,g " dg).
3. The tangent space of M, 1, at ~

In this section, we
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(i) give descriptions of the tangent space T, Mp11, and show that it is
isomorphic to C*°(R,R"),

(ii) construct linear differential operator P, : C®(R, V) — C*®(R, o(n +
1,n)) that is needed for the BY-KdV and Agi)—KdV hierarchies for
u € C®(R,V,).

We have seen in Proposition that if §v = 21221“ &ipi € TyMytin
then [0, +b+u,g '6g] € C®(R,V,), where g = (p1,...,pans1) and u are
the isotropic moving frame and isotropic curvature along ~y, and dg is vari-
ation of g when we vary . Below we show that the converse is also true.

Proposition 3.1. Let g and u be the isotropic moving frame and isotropic
curvature along v € My41,, respectively.

1) If C:R — O(n+ 1,n) satisfies
(3.1) [0p +b+u,Cl € C®(R,V,),

then &(v) = gCey is tangent to My 1, at v, where ey is defined by

14).
2) If 8 is tangent to Mpy1, at 7y, then C := g~ '8g satisfies (3.1)) and
o0y = gCle;.

Proof. (1) It follows from the definition of M,y , that dv is tangent to

(3.2) {<<5v>§fw§”> + (s () =0, 0<ij<n—1,

(57)5 Y Ay = 0.

Let n; denote the j-th column of gC for 1 < j <2n + 1. To prove gCe;
is tangent to M4, it suffices to prove that n; satisfies (3.2)). Let p =
[0z + b+ u,C]. A direct computation gives

(gc)m = g:cC + gC:c = gC(b + u) + gp.

Since the first n columns of p are zero, the first n 4+ 1 columns of gC' are
related by

e = (771)$7 vy in1 = (nl)gtn)
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Hence, for 0 <4,j < n —1, we have

()P, 4y + (v, (1) D) = (9Ceir1, gejir) + (geir1, gCejs1)
= (Ceit1,€j+1) + (€it1,Cejy1)
= €i11(C'p+ pChejn
=0.

Since C' = (Cj;) € o(n+1,n), <(771)§gn), g(gn)> =Cpy1n=0. So &{(y) =m is
tangent to M1, at 7.

(2) Note that Propositionimplies that C := g~ 'dg satisfies (3.1). By
definition, 0y = g(g~16g)e; = gCe;. O

Next we prove that if C' = (Cj;) satisfying (3.1) then C is determined
by {Crtint1—is1 <i<n}or {Cy,1<i<n}.

Theorem 3.2. Let u € C*°(R,V,,), C = (Cj;) € C*(R,0o(n+1,n)), v; :=
Cntint1—i for1 <i<n, andv = Z?Zl vzﬂf. Assume that

(3.3) [0 + b+ u,C] € CP(R, Vy,).

Then there exist differential polynomials ¢i;(u,v) for 1 <i,5 <2n+1 sat-
1sfying the following conditions:

(i) Cij = dij(u,v) for all i,5 <2n+1 and ¢niint1—i(u,v) =v; for 1 <
1 <n.
(i) Pan—2i1(u,v) = vp—i + Gi(U, Vng1-is ..., vp) for 0 <i<n—1.

(iii) There exist differential polynomials ha;y1 such that
Coit11 = hoit1(u, Coiqo1,...,Cop1), 0<i<n-—1,
(iv) Ci;’s are differential polynomials of u,Co1,Cu1,...,Cop1,...,Con1.

Proof. Since C € o(n+1,n), Cpiitint2—i = Cntin+1—i = vi. Let v =
S vl € Vi, where V,, and S;’s are defined in (1.4)). Let Gy be as in ([2.1)).
Then [G;, G;] C Giyj. For £ € o(n+1,n), let &, denote the G;-component of
€ wrt. o(n+1,n) =@, G.

i=1-2n
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Suppose [0y +b+u,Cl =" | ;5. Write C = Zfﬁ;_l% C; with C; €
gi. Then

Bi, =21,
(34) G+ [b.Cya] + [, Cly, = {gjﬁ e
We claim that C} are differential polynomials in v and u. For j =1 — 2n,
we have Coy,1 = Copy1,2 = vp. For j <0, if j is even, ad(b) : G; — Gj_1 is a
bijection. If j is odd, then dim(Im(ad(b)(G;))) = dim(G;—1) = dim(G;) — 1.
Then from , for both cases, entries of C; are differential polynomials in
Uny o o5 U_[d)- Then by induction, the claim is true for j < 0.

Note that ad(b) is a bijection from Gy to G_1, and we have the G; compo-
nent [u, Clg, depends only on u, v1,...,v,. So Cy is a differential polynomial
in u and v.

For j > 0, we see that when j is odd, ad(b) : G; — G;_1 is again a bijec-
tion. When j is even, we have dim(Im(ad(b)(G;))) = dim(G;) = dim(G;—1) —
1. Therefore, in both cases, C; can be solved uniquely from C;_; and n;’s
are differential polynomials in entries of Cy;_1. By induction, the claim is
true for j > 0. This proves the statement (i).

To prove (ii), let j =2i+ 1 — 2nin . Then the linear system implies
that Con—2i1 = vn—i + ¢;,0 <i <n —1, where ¢; is a differential polyno-

mial in u, Vpqy1-4, .., Un.
Statement (iii) and (iv) are consequence from (i) and (ii). O
Let

Vi={veon+1n)|v €V},
and 7 : o(n + 1,n) — V;! the natural projection onto V!, i.e.,

2n
(3.5) 70(8) = &nvim—it1(Entini1—i + Entitim_it2)
i=1

for £ = (&) € o(n + 1,n).
The proof of Theorem [3.2] implies the converse of Theorem [3.2] is true.

Theorem 3.3. Let u € C®(R,V,), v e C®R, V), and ¢ij(u,v) the dif-
ferential polynomials given in Theorem [3.4 Let C = (Cy;) € C®(R, o(n +
1,n)) defined by Cij = ¢; j(u,v) (so mo(C) =wv). Then C satisfies (3.3).
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Corollary 3.4. Let g = (p1,...,pon+1) and u denote the isotropic mov-
ing frame and isotropic curvature along v € Mpq1,,. Then § = 21221 &ipi s
tangent to My 1, at v if and only if

§2i+1 - h2’i+1(u7§2i+27 o 7§2n)7 0 S 1 S n— 1)

where hai1’s are the differential polynomials given in Theorem[3.3 In par-
ticular, we identify TyMpi1n as C(R,R"™).

Corollary 3.5. Ifu € C®(R,V,), then there is a unique linear differential
operator

P, : C®[R, V) = C®(R,0(n + 1,n))
satisfying
1) mo(Pu(v)) = v,
2) [0z + b+ u, P,(v)] € C*(R,V,).
Moreover, the coefficients of the linear differential operator P, are differen-

tial polynomials of .

It follows from Proposition and Theorem that we have the fol-

lowing.

Corollary 3.6. Let g and u be the isotropic moving frame and the isotropic
curvature along v € My, 1., respectively. Then the following statements are
equivalent for C : R — o(n+ 1,n):

1) [0z +b+u,C] € CZ(R, V).

2) 07 := gCey is tangent to My41., aty and C = g~ 18g, where g is the
isotropic moving frame along v = gey, 0g is the variation of g when
we vary vy by 0.

3) C = Pu(mo(C)),

where P, is the differential operator defined in Corollary[3.5.
Note that the proof of Theorem [3.2|gives an algorithm to compute P, (v).

We write down the operator P, and T, M1, for n =1,2 in the two ex-
amples below.
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Example 3.7. When n =1, we have b = eo1 + e30, 51 = e12 + e23, and
Vi =RpBy. Let u = B, and v = vy 8. Use the algorithm given in the proof
of Theorem to compute P,(v) and obtain

_(Ul):v _(Ul):m: + qu1 0
(36) Pu(’l)) = U1 0 _(Ul)x:p + qu1
0 vy (v1)a

Corollary implies that all tangent vectors of Mg at « is of the form
gP,(v)er. So

TfyMQ,l = {_5367 =+ ‘5’796 | 5 € COO(R’R)}
Example 3.8. For n =2, we have b = Zl 1€itli, P1=ea3+ e, Bo=

e14 + ez, and Vo = RB; @ RfBy. Let w = u1 By + ugfBe, and v = vy 81 + ve35.
Use the algorithm given in the proof of Theorem to get

n * * 0

13 a * 0 *
(3.7) P,(v) =] —(v2)s v 0 * x |,

V2 0 V1 —a *

where

§=v1+ (UQ)mac — U1v2,
n=(v2)®) — 26, — (u1)zv2,

a = (02)§53 — & — (u1v2)2
By Corollary we have 0y € T, M3 if and only if

5’7 = ((UQ);?)) — 28 — (ul)xv2)7 + 57:1: - (UQ)mPY:m: + vap4,

for some &, vo € C*°(R,R), where g = (v, Y2, Yoz, P4, P5) is the isotropic mov-
ing frame along ~.

4. Hamiltonian isotropic curve flows

The gradient VF(u) of a functional F' : C*°(S*,V},) — R is the unique map
in C®(S1, V) satisfying

dFy,(v) = f(VF(u), v)dz
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for all v € C*(S,V,,). Note that
{F1, Fo}(u) = —([0x + b+ u, P,(VFi(u))], VF3(u))

is the Poisson structure {, }o defined by (5.20]) in Section [5|on C°°(St,V,,).
So the Hamiltonian flow for F': C*°(S!,V,) — R with respect to {, } is

(4.1) ut = [0y + b+ u, P,(VF(u))].

Given a functional F' on C*®(S1,V},), let

F=FoW.

Then F is a functional on M, 1 ,(S?) invariant under O(n + 1,7n). Let
{,}" denote the pull back of the Poisson structure {,} on C°°(S',V,) to
M0 (S 1Y by the isotropic curvature map ¥. Then

(4.2) {F.G}"={F,G}o U

for functionals F' and G on C*°(S!,V,,).
In this section, we write down the Hamiltonian flow on M, 11 ,,(S 1Y with
respect to the Poisson structure {,}"* and study their Cauchy problems.
Recall that the Hamiltonian vector field for F' is the unique vector field
X satisfying

A~

{(F,G}" = —X(G) = —dG(X ),

and the Hamiltonian flow for F is v, = X (7).

Theorem 4.1. Let I' be a functional on C>(S',V,,). Then the Hamilto-
nian flow of F' = F o W with respect to the pull back Poisson structure {, }

defined by 18
(4.3) Yt = gPu(VF (u))er,

where g and u are the isotropic moving frame and isotropic curvature along
~v respectively, P, is the linear operator given in Corollary and ey 18

defined by (2.14).
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Proof. By definition of P,, we have [0, + b+ u, P,(VF(u))] € C®(SY,V,,).
It follows from Corollary (2) that

(4.4) 67 = gP.(VF (u))er
is tangent to M,41.,(S?) at . Corollary implies that

(4.5) 97169 = Pu(VF(u)),

where g is the variation of g when we vary v by 7. Next we compute

([0x + b+ u, P,(VF(u))], VH(u)), by ([.5),
([0p +b+u,g 6], VH(u)), by Proposition[2.9
= —(dU(0y), VH(u)) = —dH(d¥(67)) = —dH (7).

{F,HY\(v) = -
This proves that the Hamiltonian vector field of F at « is 9P, (VF(u))e;. O
Example 4.2. If VF(u) = £/, then use to see that
gPu(VF(u))er = g(—€4,€,0)" = =&y + €
By Proposition the Hamiltonian flow for F' = F o U is
(4.6) Ve = =&y + &V, where VF(u)=¢E6.
Recall the following elementary fact:

Proposition 4.3. Let A, B € C®(R?,0(n + 1,n)). Then the following lin-
ear system
gz = gA,
gt = .gBa
is solvable for g : R? — O(n + 1,n) if and only if
A =B+ [b+u,B] =[0; +b+u,B].

It follows from Proposition [4.3] that we have the following.

Proposition 4.4.
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1) w is a solution of (4.1) if and only if the linear system

(47) {gm =g(b+u),
gt = gP,(VF(u)).

is solvable for g : R? — O(n + 1,n).

2) If g : R? — O(n+ 1,n) is a smooth solution of (4.7), then u satisfies
(1.

Theorem 4.5.

1) If v is a solution of (4.3]), then the isotropic curvature u(-,t) along
(-, t) is a solution of (4.1)).

2) If u is a solution of (4.1), then given ¢ € O(n+ 1,n), there exists a
unique smooth solution g : R? — O(n + 1,n) for ([4.7) with g(0,0) = c.
Moreover, v := gey is a solution of (4.3|) whose isotropic curvature is
u.

Proof. (1) is true because {, }” is the pull back of {,} by ¥. The existence
of g follows from Proposition Compute directly to see that v, = (ge1): =
gre1 = gP,(VF (u))e;. O

Next we use Theorem to solve the Cauchy problem for (4.3)) on the
line from the solution of the Cauchy problem for (4.1]) on the line.

Theorem 4.6 (Cauchy problem on the line). Let~yy € M1, and ug,
go are the isotropic curvature and isotropic moving frame along ~yy. Suppose
u(z,t) is the solution of with initial data u(z,0) = up(z), and g the
solution of with g(0,0) = go(0). Then ~v(z,t) = g(z,t)e1 is a solution
of with v(x,0) = yo(x).

To solve the periodic Cauchy problem for the isotropic curve flow (4.3]),
we need to solve the period problem of (4.1J).

Theorem 4.7 (Periodic Cauchy problem). Let vy € My 11,(5'), and
go and ug the isotropic moving frame and curvature along ~vo. Let u(x,t) be
the solution of periodic in x such that u(z,0) = ug(z), and g(z,t) the
solution of with g(0,0) = go(0). Then v(x,t) = g(z,t)e1 is a solution
of with v(x,0) = yo(x) and (-, t) is periodic in x.
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Proof. By Theorem 4.6, v is a solution of on R x R. We claim that
y(t) := g(2m,t) — g(0,t) = 0. Note that both g(z,0) and go(x) satisfy
h~th, = b+ ug with the same initial condition, so g(z,0) = go(z). Because
go is periodic, we have y(0) = 0. Set B(u) = P,(VF(u)). It follows from
Proposition [4.4] that

% = g(2m,t)B(u)(2m,t) — g(0,2) B(u)(0,1).

Since u(z,t) is periodic in x with period 27, B(u)(2m,t) = B(u)(0,t). So

dy _

Y — yHBw)(0,0)

Note that the constant function 0 is the solution of the above linear system
with y(0) = 0. It follows from the uniqueness of solutions of ordinary differ-
ential equations that we prove the claim y(¢) = 0. So g(z,t) is periodic in z,
which implies that v(z,t) = g(«x,t)e; is periodic in x. O

5. The BT(LI)- and BS)-KdV hierarchies

In this section, we give the constructions of the 37(11)— and the Ber(Ll)—KdV
hierarchies and study their Hamiltonian theory (cf. [3], [17]).
First we construct the Bfll)—hierarchy. Let

B ={e(\) = > &\ | ng €2, & € o(n+1,n)},

'iS?’LO

and

(5.1) Jp =LA+ b,

where b is defined by and

(5.2) f= %Bn = %(61,271 + €2,2n+1)-
Note that

JE ¢ B, J§ e B,
JEHHN) = Mg (N).
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Theorem 5.1. ([3]) Let g € C*°(R,B;"), and Jp as in (5.1)). Then there

exists a unique

T(q, ) = BA+ Y Tii(gN

1<0

mn 337(11) satisfying

(5.3) {[8:5 +JB(\) +¢,T(q,\)] =0,

T2+ (g, \) = AT (g, \),

Moreover, T1i(q)’s are differential polynomials in q for all i and can be
computed by comparing coefficients of G\ of (5.3)).

Write T%~1(q, \) as a power series in \:

(5.4) T (q,\) = Z Toj—1,i(Q) N

SEE

It follows from Theorems that Th;_1(q)’s are differential polynomials in
g and can be computed from T ;(q)’s.

If A, B are in an associative algebra and [A, B] = 0, then [A, B/] = 0 for
all j. So it follows from the first equation of that we have

(5.5) 0, + JB(\) + ¢, T (g, \)] = 0.

Compare the constant term of the above equation as a power series expansion
in A to see that

(5.6) [0 + b+ ¢q,To5-10(q)] = [T2j-1,-1(q), B].

Since the right hand side of (5.6) is upper triangular, [0, + b+ ¢, T2j—1,0(¢q)] €
C>®(R,B;). So we have

Definition 5.2. The (25 — 1)-th B,(})—flow is the following flow

(5.7) G = [0y + b+ u, Toj—10(q)]

on C®(R, B;).

Remark 5.3. It follows from that if ¢ = (gi5) is a solution of ,

then g;;(x,t) = ¢;;(0,0) fori+j <2n+ 1,7 # 1, and j # 2. In fact, (5.7)) is a
flow on C*(R,Y,), where Y,, = Im(ad(8)) = {[3,9] | y € o(n + 1,n)} C B.
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Definition 5.4. The (2j — 1)-th B -KdV flow is the following flow on
Coo (R7 VTL)?

(5.8) U = [6z + b+ u, Pu(ﬂo(TQj_Lo(u))],
where P, is the operator defined in Corollary

Next we discuss the gauge action and construct a cross section of this
action. The group C*®°(R, N,) acts on C*°(R, B;') by gauge transformation

(5.9) Axqg=NAb+ A — A AT —b,
where ¢ € C®°(R,B), A € C®(R,N,). A direct computation implies that

(5.10) ANOp+b+ AV =0, +b+ Axg,
(5.11) A0y +Ip(\) +)AT =0, + Jp(\) + A x q.

Proposition 5.5. Let g € C*®(R,B;}), T(q,\) defined by (5.3)), and A €
C>®(R,N,5). Then

(5.12) AT (g, VAP =T(A % q, \).
Proof. Use (5.11]) and conjugate (5.3 by A to see that
[0 4+ BX+b+ A x q, AT(q, VA7 = 0.

The Proposition follows from Theorem ) O

The next Proposition shows that C*°(R,V,,) is a cross section of this
gauge action, where V,, is defined as in ((1.4)).

Proposition 5.6. Given q € C*(R,B), then there exist a unique A €
C>®(R, N, such that u:= /A xq€ C®(R,V,), ie.,

(5.13) A0y + Jp(N) + )AL =0, + Tg(\) + u,

where Vy, is as in (1.4) and Jp(X) is given by (5.2)). Moreover, entries of /A
and u are differential polynomials of q, which can be computed from (5.13)).

Proof. Let G;’s be as in (2.1]), we write elements m € B, as m = 22251 m;

(2

with m; € G;. First note that AS = SA. Hence it suffices to prove that
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A0y + b+ q) = (0 + b+ u)A. From a direct computation, we have the fol-
lowing recursive formula:

it Dipib+ D Djge = ui+ (Di)a + 001+ Y uilg
jh=i jk=i

Note that for each w;, there is only one unknown term needs to be solved.
Hence u; and A;41 can be solved uniquely from the previous solved terms.
This proves the proposition. ]

Example 5.7. Given ¢ = qi(e11 — e33) + g2(e12 + ea3), the proof of Propo-
sition [5.6] gives a method to compute u and A explicitly as differential poly-
nomials of g. For the case n = 1, we have

1 —q1 3¢
A=10 1 —q1 1>
0 O 1

1
u= <Q2 + 59% + (Q1)x> (e12 + ea1).
Proposition 5.8. Assume that q : R? — B} is a solution of the (2j — 1)-th
B,(})—ﬂow (5.7) and A(-,t) is the unique N, -map as in Proposition

that u(-,t) := A(-,t) x q(-,t) lies in V,,. Then

such

1) up = [0 + b4 u, Toj_10(u) — N AT,

2) Toj—1,0(u) — A A™Y = Py(mo(Tan-1,0(u))),
3
4) u is a solution of the (25 — 1)-th Bgl)-KdVﬂow (5-8)-

entries of A\eAT are differential polynomials of u in x variable,

)
)
)
)

Proof. Recall that A(9; +b+q)A ™' =0, +b+ Axq= 0, +b+u. Com-
pute directly we obtain

w = (0 +b+u) = (A0: +b+q) A1),
= Ag AT [N AT A0 + 0+ ) AT
= A0y + b+ ¢, Toj-1,0(@)] A7 = [A0: + b+ @A™ A AT
=[N0z +b+ ) AT ATy 10(q) A7
—[A(0 + b+ )AL ALY, by (BI2),
= [0y +b+u, Toj_10(u)] — [0 + b+ u, A AT

This proves (1).



1832 C.-L. Terng and Z.-W. Wu
Since A¢A™! lies in N,

o(Toj—1,0(0) — DA™Y = 70(Thj—1,0(w)).

Since u(z,t) € Vp, us € V;,. So (2) and (3) follow from Theorem [3.2}
(4) follows from (1). O

It follows from Proposition [5.8| that we have the following:
Theorem 5.9. Ifue C*(R,V,), then
(5.14) nj(u) :=Taj—1,0(u) — Pu(mo(T2j-1,0(w)))
is a N} -valued differential polynomial of u.

Corollary 5.10. The flow on the cross section C*°(R,V,) obtained by
pushing the (25 — 1)-th Befll)—ﬂow along the orbit of the gauge action of
C(R,N) is the (2j — 1)-th BV -KdV flow.

It was proved in [3] that the BV flows commute. Hence the BYY-KdV
flows commute.
As a consequence of Proposition [4.3] we have the following.

Proposition 5.11.

1) g € C®(R2,B}) is the (2§ — 1)-th flow Egl)—ﬂow (5.7) if and only if
the following system is solvable for h: R? — O(n +1,n),

h~hy = b+ q,
(5.15) { +a

h=thy = Toj—10(q).

2) u € C®(R?%,V,,) is a solution of the (2j — 1)-th BT(LI)-KdVﬂow (15.8) if
and only if the following linear system

(5.16) {g 9o =011,

9™ g1 = Pu(mo(Taj-1,0(w))),
is solvable for g : R?> — O(n +1,n).

By Propositions we have the following.
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Proposition 5.12. Let q, A, and u be as in Proposition [5.8 If h is a
solution of (5.15)), then g := hA~! is a a solution of (5.16)).

Next we discuss the bi-Hamiltonian structure. The gradient of a func-
tional F': C°(S, B;F) — R at g is the unique VF(q) € C*®(S!, B;;) satisfy-
ing

aF, () = f (VF(q), €)dz

for all £ € C>°(S1, B;F). It was proved in [3] that

(517) (BB} = f (VFi(q)., 8], VFa(q))de,

(518)  {F, () = 74 ([0 + b+ ¢, VE(q)], VEy(q))da,

give a bi-Hamiltonian structure on C*°(S 1,]5’?{ ) for the ég)—hierarchy.
Given a functional F' on C*(R, V,,), let F' be the functional on C*(R, B;})
defined by

if u = /A x*q for some A € C°(R, N,"). Since C*(R,V,,) is a cross section,
all functionals on C*°(R, B;") that are invariant under the gauge action of
C*(R, N,) arise this way.

Lemma 5.13. Let Fy, Fy be functionals on C*(S,V},), and Fy,Fy the
functional on C*°(St, B;F) given above. Then

1) {F1, F2}° is invariant under the gauge action of C*(S', N;t),

2) let {F1, Fy}; = the restriction of {F1, Fa}? to C®(S™,V,,), then {, }i is
a Poisson structure on C*°(SY,V,,) fori=1,2.

Proof. 1t follows from the definition of the gradient and a direct computation
that we have

VFE(q) = AT'WVWF(Axq)A.
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Note also that AGA™L = ABpnAlp, = B. So we have
(P Ba}i(0) = UATIVE(S x0) 2,8, 57 VEA ) A)ds
— PUTR(2 4.8, TRA(L + s = (R B (2 4 o)
(1 (0) = 0.+ +0, VE (@), Vsl

= fl10s + b+ 0, 57IVA(L 5 )0, A7 IVE(S ) M)

= lIAE, +b+ )AL VAL g TEAL £ q))ds, by EI0),
= 0+ b+ D g, VRI(L £ Q) VEA # )i
= {F, B}3(A *q).
This proves (1). Statement (2) is a consequence of (1). 0

The Lemma and Theorem can be proved the same way as for the 121,(11)
case given in [I7].

Lemma 5.14. Let H be a functional on C®(S',V;,,), and H the functional
on C® (S, B) defined by H(q) = H(u) if A q = u € C®(S*,V;,) for some
A€ C®(S',N). Then VH(u) = g (Pu(VH(u))), where Ty is the pro-
jection onto B,, along N, and P, is the linear differential operator given in

Corollary 3.5,

Theorem 5.15. Let {,}; be the Poisson structure on C*®(S1,V,,) defined
in Lemma (5. 13 Then we have

(519)  {F.FEhw= ;4 (PU(VE1 (w), 8], Pu(V Fy(u)))de,

(5.20) {Fl, FQ}Q(U) = j{q&v + b+ u, Pu(VFl (u))], VFg(u)>dx

The Poisson operator at u for {,}; is the operator J; : C*°(S, V;!) —
C>(S1,V,,) defined by

(Fy, Bai(u) = f (T)u(VFi (), V Es())da.

So
(J2)u(v) = [0x + b+ u, Py(v)].
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For {, }1, let & = VF;(u). Use integration by part to get

FUPE0.0) Puleds = (6. )

The Hamiltonian flows for F : C*(S*,V,,) — R with respect to {, }; is
up = (Ji)u(VF(u))
fori=1,2.

Example 5.16. [Bi-Hamiltonian structure for E;l)-KdV] )
Write { = VFi(u) = £(e21 + e32), ) = VFy(u) = n(ear +e32), C = Py(§) =
(Cij) and D = P,(7) = (Dj;). We use the formula (3.6) for P,(v) to write
down C and D in terms of & and 7 respectively and compute directly to see
that

(Fi, Bsh(w) = ((C. 81, D) = -2 § &,
{F1, Fa}o(u) = ([0x + b+ u,C]|,D) = —2}1{(&55073 —2u1&, — (u1)z&)nd.

Since (€,7) = 2 § éndx, we see that

(Jl)u(é) = —&b,

(JQ)U(g) = _(Exmz —2u1&y — (ul)xg)ﬁl’

where 31 = ej3 + eo3. This is the standard bi-Hamiltonian structure for the
KdV-hierarchy (cf. [2]).

The commuting Hamiltonians for the B,(ll)—hierarchy given in [3] can be

written in terms of Th;_1,—1(u).

Theorem 5.17. ([3]) Let u,3,T(u,\) be as in Theorem Toj—1,-1(u)
as in , hgj_1(u) = —tI‘(TQj_L_l(’U,)ﬂ), and F2j—1 : COO(S ,Vn) — R de-
fined by

(5.21) ng_l(u) = fhzj_l(u)d$ = — j{tr(ng_L_l(u)ﬁ)da:.

Then we have the following:

1) VEy_1(u) = mo(Toj—1,0(u)), where my is the projection onto V! defined

by .



1836 C.-L. Terng and Z.-W. Wu

2) The Hamiltonian equation for Fa;_q with respect to the Poisson struc-
ture {, }o defined by (5.20) is the (25 — 1)-th BWY_Kav flow.

3) The Hamiltonian flow of Faj_1 for j > n with respect to {,}1 defined
by (5.19) is the (2(j —n) — 1)-th B -Kav flow.

Example 5.18 (The third B{"-KdV flow). Forn = 1. we have u = ¢f;.
Since J3 = AJp, T3(u, \) = AT (u, \). So T3 _1(u) = Ty, _2(u). We compare
coefficients of G;\ of to compute the G_1 component of T7 _5 and see
that h3(u) = —¢%. So F3 given in Theorem is , ie.,

Fs(qB) = —]{QQdﬂﬁ-

Next we compute VF3. For v = 3, we have

A(Fy)u(v) = —2 75 gndz = ]{ (—qBl, ).

(Here we use the fact that (31, 8¢) = 2). So VF3(u) = —q/3. It follows from
Example [5.16] that the Hamiltonian flow for F3 with respect to {, }2 is the

KdV (T35).

Example 5.19 (The third BéQ)-KdV flows). For n =2, we have 1 =
€23 + €14, B2 = e1q + es5, and u = w1 B + ugfe. Compare coefficient of G;M\’s
of to obtain 77 ;(u) for small ¢, then use them to compute T3 (u) and
the G_4 component of 75 _1(u). We obtain

1
hs(u) = §u% + 2uo.

For v = v181 + v2 B2, we have

1
d(F3)y(v) = %mm + 2ugvodx = %(2’&15% + B4, v1 1 + vaBe)d.
Thus
I S
VIE3(u) = 2U1ﬁ1 + 533.

We use (3.7) to write down P, (VF3(u)) with § = —%, n=0, and vy = 1.
A direct computation implies that the third Bél) -KdV flow, uy = [0, + b+
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u, P, (VF5(u))], is

(5.22)

QO]

3)

(u1)e = —luﬁg’) + 3ug(u1)g + 3(u2)a,
(ug)y = uy’ — Jua(ug)s.

6. The A?- and AZ)-KdV hierarchies

In this section, we give the constructions of the Agi)— and the /Algb)—KdV
hierarchies and their Hamiltonian theory.
Let 6 be the involution of si(2n + 1,C) defined by
0(y) = —pu 'y

where p,, is defined by (L.1)). Note that si(2n 4 1,R) is invariant under 6. Let
K and P be the +1 and —1 eigenspaces of 6 on sl(2n + 1,R) respectively,
ie.,
K =1{yesi@n+1LR) | —p:ly'pn =y} = o(n+1,m),
P={yesln+1,R)|p, y'pn =y}

Then we have
(6.1) K,KlcK, [K,P]CcP, [P,P]CK.

The affine Kac-Moody algebra /léi) is the algebra of £(A) € sl(2n 4+ 1,C)

2)

satisfying the Aén -reality condition,

(6.2) EA) =€), 0E(=N) =EMN).
We have the following simple facts.

1) €)= 32, € lies in A if and only if & is in K for even i and in P
for odd 1.

2) Let
(6.3) J()\) = 61,2n+1)\ + b.
Then J%~! are in flgi) for all 7 > 1 and

(6.4) TN = Moyt
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Theorem 6.1. ([3], [15]) Let ¢ € C®°(R,B;}), and J as in (6.3). Then

there exists a unique

S(q,\) = e1on41A + Z S1i(q)\

i<0
in flgi) satisfying

6.5
(5) 521 (g, A) = Man1.

{[ax +J+4,5(¢,\)] =0,
Moreover, S1,(q) is a differential polynomial of q for all i.

Write

(6.6) S Mg, \) = Z Saj—1,i(q)\".

S

Since S(q, -) satisfies (6.2)), S%~'(g, ) also satisfies (6.2). So we have

IC, for even i,

(6.7) SQj_M(q) < {73, for odd .
It follows from [0, + J(A) + ¢, S(g, A)] = 0 that we have
(6.8) (00 +J(N) + ¢, 5% (g, \)] = 0.
Compare the constant coefficient of as a power series in A\ to get
(6.9) [0z + b+ u, S2j-10(q)] = [S2j-1,-1(q), €1,2n+41]-

It follows from (6.7 that the left hand side of lies in K =o(n+1,n)
and the right hand side is upper triangular. So the left hand side lies in
C*>(R, B;) and we have the following flows:

Definition 6.2. For j # 0(mod(n)), the (25 — 1)-th fléi) -flow is the follow-
ing flow on C®(R, B;}),

(6.10) gt = [0z +b+q,S2j-1,0(q)]-

Remark 6.3. If ¢ = (¢;;) € C(R?,B,) is a solution of (6.10), then by
we have ¢;;(z,t) = ¢;(0,0) for i +j <2n+1 and i # 1. In other words,

(6.10) is a flow on C*°(R, X,,), where X,, = {[e12n+1,y] | y € P} C B;}.
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Definition 6.4. The (2j — 1)-th A2 -KdV flow is the following flow on
Coo (Rv VTL)7

(6.11) up = [0y + b+ u, Py(mo(S2j-1,0(w)))],
where P, is the operator defined as in Corollary

Remark 6.5. Let ba, denote the subalgebra of upper triangular matrices
in sl(2n + 1,R), NJ. the subgroup of upper triangular matrices y = (y;;) in
SL(2n+ 1,R) with y;; =1 for all 1 <7 <2n+1,

Yo, : = @?ElReiQn—i—l?
Zop : = Vi ® (B2 Rej ont2-i).

It is known (cf. [3], [17]) that C*°(RR, Y3,) is a cross section of the gauge ac-
tion of C*°(R, N3, ) on C*®(R, b3,)). Use a proof similar to the one given for
Proposition to see that C*°(R, Zs,) is also a cross section of this gauge
action. So we obtain two flgl) KdV hierarchies. One on C*°(R, Y2,), which
is the Gelfand-Dickey hierarchy. The second is a hierarchy on C*°(R, Zs,).
They look different but are gauge equivalent. Moreover, the Agn) KdV hier-
archy on C*°(R, Zay,) leaves C*°(R, V},) invariant and the restriction of the
Agln)—KdV hierarchy to C*°(R,V},) is the Agi)—KdV hierarchy.

The following two propositions can be proved by similar argument as for
the B,(zl) case.

Theorem 6.6. Ifuc C*(R,V,) and j > 1, then
(6.12) 1j(w) := Szj—1(u) = Pu(mo(S2j-1,0(u)))
is a Ni-valued differential polynomial of u.

Proposition 6.7.

1) q:R? = Bl is a solution of the (2j — 1)-th A ﬂow if and only if the
following linear system is solvable for h : R? —> O(n+1,n),

h~hy = b+ q,
(6.13) { +4a

h™hy = Saj-10(q)-
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2) u:R? =V, is a solution of the (25 — 1)-th flgl) -KdV flow if and only
if the following linear system is solvable for g : R? — O(n + 1,n),

(6.14) {g g +4q,

97 gt = Pu(mo(S2j-1,0(w))).

Proposition 6.8. Let g be a solution of the (25 — 1)-th flgzn)—ﬂow, and A :
R2 — NI such that A(-,t) * q(-,t) is in C®°(R, V;,) for allt. Thenu = A xq
is a solution of the (2j — 1)-KdV flow. Moreover, if h is a solution of ,
then g = hA™! is a solution of .

Remark 6.9. It follows from similar arguments as for the Bfll)-KdV hier-
archy that we obtain two compatible Poisson structures on C*°(S*,V},) for
the Agi)—KdV hierarchy:

{F1, F5}0(u) = }{ ([Pu(VF1(w)), e12n+1], Pu(VFa(u)))dz,
{Fl, FQ}S(U) = f([@x + b+ u, PU(VFl (u))], VFg(u)>dx

We claim that {, }{ = 0. To see this, first note that ej 2,41 € P, K = o(n +
1,n), [K,P]CP, and (P,K)=0. Since P,(VF(u)) CV, C K, we have
[P,(VF(u)),e1,2n+1] C P. Hence

{F1, Fa}i(u) = j{<[Pu(VF1(U))7 e12n+1], Pu(VF2(u)))dz = 0.

This proves the claim.
It is known (cf. [14], [I7]) that {,}{ and {,} generate a sequence of
compatible Poisson structures {, }; defined by

(F1 F2)30) = UV F ), VEs(u)ds,  where

Ji = J5 (1) Ig)y
for j > 1 (cf. [14], [17]). Although {,}3,_; =0, {, }3, defines a Poisson struc-
ture for the flgi)-KdV hierarchy. Hence ({,}5,{,}{) is a bi-Hamiltonian

structure for the ASB—KdV hierarchy. Note also that {, }4 is the same Pois-
son structure {, }o defined by (5.20) for the BY Kav.
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Theorem 6.10. ([3], [I7]) Let u, and S(u,\) be as in Theorems[6.1], and
Soj—1,0(u) defined by . Let kyj—1(u) = —tr(S2j—1,-1(uw)B), and

(6.15) ng_l(u) = fhgj_l(u)dﬂf = _j{tr(SZj—l,—l(U)€1,2n+1)d1"

Then
1) VGaj_1(u) = mo(S2j—1,0(w)), where my is the projection onto Vit de-
fined by (53),
2) the Hamiltonian flow for Gaj—1 with respect to {, }o defined by (5.20))
is the (2j — 1)-th A -KdV flow (6.11),
3) the Hamiltonian flow for Ga;—1 for j > 2n with respect to {, }} defined
by (5.20) is the (2(j — 2n) — 1)-th flgi) -KdV flow.
Example 6.11 (The fifth AgQ)-KdV flows). For the AgQ)—KdV hierar-
chy, we have u = g(e12 + e23) and S3(u, \) = Al3. Hence Ss.—1(u) = Sz _1(u).

Note that the leading term of S2(u,\) is b'A. Write S2(u,\) = b\ +
>2i<0 So.i(u)At. Compare coefficients of G;\ of

[83: + b+ u, bt)\ + Zlgo S2,l(u))‘l] = 07
(O°A + 3750 S2,i(u)X')? = N1

to obtain ks(u) = —%(qﬁ + %qg) and

Gs(u) = —;7{ (fﬁ + iq?’) da.
(

» —4¢?)BE. Use (3.6) to
-KdV is the KK equa-

A direct computation implies that VG5(u) =
compute P,(VGs(u)) and see that the fifth A
tion (|1.6]).

qx
(2)
2

Example 6.12 (The third flf)-KdV flows). We have (31 = ea3 + €14,
Bo = e14 + €25, and u = u1 51 + ugfs. We first compare both sides of the
GiN component of to obtain S, _;(u) for 0 <14 < 2, then use these to
compute the coefficient of (2n + 1,1)-th entry of the coefficient of A~ of
T3(u, X). We see that ks(u) = 2us + su? and

G3(u) = f{ <2uQ + ?ﬁ) dz



1842 C.-L. Terng and Z.-W. Wu

on Ms2(S1). Moreover,

d(G3)u(v) = }{ (iulvl + 202) dae = j{ <§Ulﬁf + B2, v181 + U2ﬁ2> dz

So we have VG3(u) = w1 8] + B5. Use (3.7) to get P,(VGs(u)). Then a
direct computation implies that the third flf)—KdV flow is

(3)

3
(u1)e = 3ufy — 2ug ) 4 152u 1uf,
(ug)e = uy”’ — 2uy” + Suguy” + Suhul! + Tuhug — Sup
2)t 2 541 5 sUIUl T 5U U2 = FUIUy.

7. Isotropic curve flows on M,,;; ,, of type B and A

In this section, we use Sections [ [B] and [6] to write down isotropic curve
flows on M,, 11, of type B and A respectively, and their relations to the
321)— and /Algi)—ﬂows.

It follows from Theorems and that we have the following:

Theorem 7.1. Let Fyj_1, Gaj—1 be the functionals on C"O(S1 w) defined
by and - ) respectively, FQJ 1=1Fy_ 10V, GQJ 1=Goj_10V,
where \If is the isotropic curvature map from Mii1.4(SY) to C=(SH, V).
Then the Hamiltonian flows for FQJ 1 and GQJ 1 with respect to the Pois-
son structure {,}" on My41,, defined by (4.2) are

(7.1) v = gPu(mo(To-1,0(u)))e1,
Y = gPu(mo(S25-1,0(w)))e1,

respectively, where g(-,t) and u(-,t) are the isotropic moving frame and cur-
vature along y(-,t).

Definition 7.2. Equations (7.1) and (7.2)) on Mj41, are called the (2j —
1)-th isotropic curve flow of type B and A respectively.

It follows from Theorem (1) that we have

Corollary 7.3. If v(z,t) is a solution of flow (7.1) ((7.2) resp.), then zts
isotropic curvature u(-,t) is a solution of the (2] 1)-th B Kav (A
KdV resp.) flow.
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It follows from Theorems [5.9|and [6.6|that the (25 — 1)-th isotropic curve
flows on M, 41, of B-type and A-type can be written as

(7.3) Y = gT2j-10(u)e1,
(7.4) Y = gS2j-10(u)er..

Proposition 7.4. If q is a solution of the (2j — 1)-th Bél)—ﬂow (Agg-ﬂow
resp.) and h is a solution of (5.15)) ((6.13) resp.), then v := he; is a solution

of the (7.1) ((7.2) resp.). Moreover, let N(x,t) € N, such that /(- t) *
q(-,t) € C®(R,V,,). Then the isotropic curvature of v is A~ x q.

Proof. By Proposition u:= A"1x%q is a solution of the (2j —1)-th
B,(ll)—KdV flow and g := hA~! is a solution of . It follows from Theo-
rem that + := ge; is a solution of with w as its isotropic curvature.
Since A € N,F, ge1 = hA"te; = hey. O

Example 7.5 (The trivial solution of isotropic curve flows). Note
that u = 0 is a solution of the (25 — 1)-th B,(Ll)- (Agi)- resp.) flow respectively,

and h(z,t) = exp(bx 4+ b*>~t) is a solution of (5.15). So by Proposition
v(z,t) = exp(bx + b¥ " 1t)e;
is the solution of (7.1 ((7.2) resp.) with zero isotropic curvature.

Example 7.6 (The third isotropic curve flow of B-type on M, ).
For n = 1, we have seen in Example that VF3(u) = —gB¢ for u = ¢f.
Formula implies that the first column of P,(VF3(u)) is (g, —q,0)".
Hence the third isotropic curve flow on My 1 is .

Example 7.7 (The third isotropic curve flow of B-type on Ms3).
We have seen in Example that for u = u1 81 + u2f2, we have VF3(u) =
%ulﬁf + B5. So (3.7) implies that the first column of P,(VF5(u)) is

1 t
<0, —§U1, 0, 1, O) .

So the third isotropic curve flow of B-type on M3 o is

1
"= (’777&77me7p47p5)Pu(VF3(u))el = _§u17x + p4, by ‘)

3
= _iul'%c + Yrzz-
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Example 7.8 (The fifth isotropic curve flow of A-type on May;).
For u = ¢B1, we have seen in Example that VG5(u) = %(qm — 4q2)ﬂf.
Use to see that the first column of P,(VGs(u)) is (=&, &,0)!, where
&= %(qm — 4¢?). Hence the third isotropic curve flow of A-type on Ma

18 .

Example 7.9 (The third isotropic curve flow of A-type on Ms>).
For u = u1 81 + w232, we have seen in Example that VG3(u) = %uﬁ% +
B5. The formula (3.7)) implies that the first column of P,(VGs(u)) is

3 1 !
<_5(u1)17 _511'1707 17O> .

So the third isotropic curve flow of A-type on M3 is

3( ) 1 .
=——(u - —u .
T 5 1)z 5 x Yz T P4
Use formula (2.7)) for ps to see that it can be written as

3 6

M == (u1)ey — zwye + .
5 5
References

[1] A. Calini, T. Ivey, and G. Mari Beffa, Integrable flows for starlike curves
in centroaffine space, SIGMA Symmetry Integrability Geom. Methods
Appl. 9 (2013), Paper 022, 21 pp.

[2] L. A. Dickey, Soliton Equations and Hamiltonian Systems, second
edition, Advanced Series in Mathematical Physics 26, World Scien-
tific Publishing Co. Inc., River Edge, NJ, (2003), xii+408 pp. ISBN
981-238-173-2.

[3] V. G. Drinfel’d and V. V. Sokolov, Lie algebras and equations of
Korteweg-de Vries type [Russian], Current Problems in Mathematics 24
(1984), 81-180, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz.
Inst. Nauchn. i Tekhn. Inform., Moscow.

[4] D. J. Kaup, On the inverse scattering problem for cubic eigenvalue
problems of the class VYypr + 6QY, + 6RY = b, Stud. Appl. Math. 62
(1980), no. 3, 189-216.

[5] B. A. Kupershmidt, A super Korteweg-de Vries equation: an integrable
system, Phys. Lett. A 102 (1984), no. 5-6, 213-215.



Isotropic curve flows 1845

[6] G. Mari Beffa, The theory of differential invariants and KdV Hamilto-
nian evolutions, Bull. Soc. Math. France 127 (1999), no. 3, 363-391.

[7] G. Mari Beffa, Projective-type differential invariants and geometric
curve evolutions of KdV-type in flat homogeneous manifolds, Annales
de l'institut Fourier 58 (2008), 1295-1335.

[8] G. Mari Beffa, Geometric Hamiltonian structures on flat semi-simple
homogeneous manifolds, Asian J. Math. 12 (2008), 1-33.

[9] G. Mari Beffa, Geometric realizations of bi-Hamiltonian completely in-
tegrable systems, SIGMA Symmetry Integrability Geom. Methods Appl.
4 (2008), Paper 034, 23 pp.

[10] G. Mari Befta, Bi-Hamiltonian flows and their realizations as curves in
real semi-simple homogeneous manifolds, Pacific J. Math. 247 (2010),
163-188.

[11] V. Yu Ovsienko and B. A. Khesin, Symplectic leaves of the Gel’fand-
Dickey brackets and homotopy classes of non-degenerate curves [Rus-
sian|, translated from Funktsional. Anal. i Prilozhen. 24 (1990), no. 1,
38-47, Funct. Anal. Appl. 24 (1990), no. 1, 33—40.

[12] U. Pinkall, Hamiltonian flows on the space of star-shaped curves, Re-
sults Math. 27 (1995), no. 3-4, 328-332.

[13] C. L. Terng, Dispersive geometric curve flows, Surveys in Differen-
tial Geometry 2014, Regularity and Evolution of Nonlinear Equations,
pp. 179-229, Surv. Differ. Geom. 19, Int. Press, Somerville, MA, (2015).

[14] C. L. Terng, Soliton equations and differential geometry, J. Differential
Geometry 45 (1997), 407-445.

[15] C. L. Terng and K. Uhlenbeck, The n x n KdV hierarchy, JFPTA 10
(2011), 37-61.

[16] C. L. Terng and Z. Wu, Central affine curve flow on the plane, J. Fixed
Point Theory Appl., Mme Choquet-Bruhat Fastschrift 14 (2013), 375—
396.

[17] C. L. Terng and Z. Wu, N-dimension central affine curve flows, J.
Differential Geometry 111 (2019), no. 1, 145-189.

[18] C. L. Terng and Z. Wu, Darbouz Transfroms of the Bgl)—hierarchy, to
appear in J. of Geometric Analysis.



1846 C.-L. Terng and Z.-W. Wu

[19] C. L. Terng and Z. Wu, Darboux Transfroms of the flgl)—hiemrchy,
preprint.

DEPT. OF MATHEMATICS, UNIVERSITY OF CALIFORNIA AT IRVINE
IrvINE, CA 92697-3875, USA
E-mail address: cterng@math.uci.edu

SCHOOL OF MATHEMATICS (ZHUHAI), SUN YAT-SEN UNIVERSITY
ZHUHAI, GUANGDONG 519082, CHINA
E-mail address: wuzhiwei3@mail.sysu.edu.cn

RECEIVED JUNE 14, 2018
AcceEPTED OCTOBER 14, 2019



	Introduction
	Moving frames along isotropic curves
	The tangent space of Mn+1, n at 
	Hamiltonian isotropic curve flows
	The n(1)- and n(1)-KdV hierarchies
	The 2n(2)- and 2n(2)-KdV hierarchies
	Isotropic curve flows on Mn+1,n of type B and A
	References

