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A smooth curve γ in R
n+1,n is isotropic if γ, γx, . . . , γ

(2n)
x are lin-

early independent and the span of γ, γx, . . . , γ
(n−1)
x is isotropic. We

construct two hierarchies of isotropic curve flows on R
n+1,n, whose

differential invariants are solutions of Drinfeld-Sokolov’s KdV type
soliton hierarchies associated to the affine Kac-Moody algebra B̂

(1)
n

and Â
(2)
2n . For example, the B̂

(1)
1 -KdV is the KdV hierarchy and the

Â
(2)
2 -KdV hierarchy is the Kupershmidt-Kaup (KK) hierarchy.

Hence we our study gives geometric interpretations of the KdV
and KK equations as the curvature flows of natural geometric curve
flows on the light cone of R2,1. Bi-Hamiltonian structures and con-
servation laws for isotropic curve flows on R

n+1,n are also given.
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1. Introduction

Let Rn+1,n be the vector space R2n+1 equipped with the index n, non-
degenerate bilinear form

(1.1) ⟨X,Y ⟩ = XtρnY, where ρn =

2n+1
∑

i=1

(−1)n+i−1ei,2n+2−i.

Let O(n+ 1, n) denote the group of linear isomorphisms on Rn+1,n preserv-
ing ⟨ , ⟩.

A subspace I ⊂ Rn+1,n is called isotropic if ⟨X,Y ⟩ = 0 for all X,Y ∈ I.
We note that a maximal isotropic subspace in Rn+1,n has dimension n.

A smooth curve γ : R → Rn+1,n is isotropic if γ, γs, . . . , γ
(2n)
s are linearly

independent and the span of γ, γs, . . . , γ
(n−1)
s is a maximal isotropic subspace

of Rn+1,n for all s ∈ R. Note that a curve being isotropic is independent of the
choice of parameter. It is easy to see that there is an orientation preserving
parameter x (unique up to translation) for an isotropic curve such that

⟨γ(n)x , γ
(n)
x ⟩ ≡ 1. We call such x the isotropic parameter of γ.

Set

Mn+1,n = {γ : R → R
n+1,n | γ is isotropic, ⟨γ(n)x , γ(n)x ⟩ ≡ 1}.

We prove that given γ ∈ Mn+1,n, there exists a unique smooth map g : R →
O(n+ 1, n) such that the i-th column is γ

(i−1)
x for 1 ≤ i ≤ n+ 1 and g−1gx

is of the form

g−1gx = b+

n
∑

i=1

uiβi

for some ui ∈ C∞(R,R), where

(1.2) b =

2n
∑

i=1

ei+1,i, βi = en+1−i,n+i + en+2−i,n+1+i.

We call g and u =
∑n

i=1 uiβi the isotropic moving frame and the isotropic
curvature along γ respectively.

Let Ψ : Mn+1,n → C∞(R, Vn) be the isotropic curvature map defined by

(1.3) Ψ(γ) = u = g−1gx − b =

n
∑

i=1

uiβi,
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Isotropic curve flows 1809

where g and u are the isotropic moving frame and the isotropic curvature
along γ and

(1.4) Vn = ⊕n
i=1Rβi

the isotropic curvature space.
In [3], Drinfeld and Sokolov constructed

(i) a G-hierarchy of soliton equations for each affine Kac-Moody algebra
G, and

(ii) a G-KdV hierarchy on a cross section of certain gauge action by push-
ing down the G-hierarchy along gauge orbits to the cross section.

Note that G-KdV hierarchies constructed from two different cross sections
look different but they are gauge equivalent.

Let B+
n and B−

n denote the subalgebras of upper and lower triangular
matrices in o(n+ 1, n) respectively, and N+

n and N−
n the subalgebras of

strictly upper and strictly lower triangular matrices in o(n+ 1, n), and B±
n

and N±
n the corresponding connected subgroups of O(n+ 1, n) with Lie

algebra B±
n and N±

n respectively.
In this paper, we prove the following results:

1) We show that C∞(R, Vn) is a cross section of the gauge action of
C∞(R, N+

n ) on C∞(R,B+
n ), where Vn is the isotropic curvature space

for Mn+1,n defined by (1.4).

2) Two Poisson structures { , }1 and { , }2 are compatible if c1{ , }1 +
c2{ , }2 is again a Poisson structure for any constants c1, c2 ∈ R. A
bi-Hamiltonian structure for a soliton hierarchy is a pair of compati-
ble Poisson structures ({ , }1, { , }2) on the phase space such that the
flows in the soliton hierarchy are Hamiltonian with respect to both

Poisson structures. The B̂
(1)
n -KdV and Â

(2)
2n -KdV hierarchies have bi-

Hamiltonian structures and they share the same Poisson structure
{ , }2 defined by (5.20). We study the Hamiltonian theory of

Mn+1,n(S
1) = {γ ∈ Mn+1,n | γ(x+ 2π) = γ(x), ∀x ∈ R}

with respect to the pull back { , }∧2 of the Poisson structure { , }2 on
C∞(S1, Vn) to Mn+1,n(S

1) by the isotropy curvature map Ψ.

3) We call the commuting Hamiltonian flows on Mn+1,n(S
1) with respect

to { , }∧2 obtained from the commuting Hamiltonians for the B̂
(1)
n -KdV
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and Â
(2)
2n -KdV hierarchies the isotropic curve flows of type B and A

respectively. We show that there is a correspondence between solutions
of isotropic curve flows of type B (type A resp.) and solutions of the

B̂
(1)
n -KdV (Â

(2)
2n -KdV resp.) flows.

In particular, for n = 1 we prove the following results:

(a) A map γ : R → R2,1 lies in M2,1 if and only if γ is a space-like curve
parametrized by the arc-length in the light cone of R2,1 and the iso-
tropic curvature of such curve is the standard curvature in differential
geometry.

(b) The KdV equation

(1.5) qt = qxxx − 3qqx,

and the Kupershmidt-Kaup (KK) equation

(1.6) qt = −1

9
(q(5) − 10qqxxx − 25qxqxx + 20q2qx)

are the third B̂
(1)
1 -KdV flow and the fifth Â

(2)
2 -KdV flow for u = qβ1

respectively.

(c) The bi-Hamiltonian structure ({ , }1, { , }2) for the B̂(1)
1 -KdV hierarchy

on C∞(S1,R) is the standard bi-Hamiltonian structure for the KdV
hierarchy.

(d) The third isotropic curve flow of B-type and the fifth isotropic curve
flow of A-type on M2,1(S

1) are

γt = qxγ − qγx,(1.7)

γt = −1

9
(qxxx − 8qqx)γ +

1

9
(qxx − 4q2)γx,(1.8)

which are the Hamiltonian flows for

F3(γ) = −
∮

q2dx,(1.9)

G5(γ) = −1

9

∮ (

q2x +
8

3
q3
)

dx,(1.10)

with respect to { , }∧2 respectively, where u = qβ1 is the isotropic cur-
vature of γ.
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Isotropic curve flows 1811

(e) If γ is a solution of (1.7) or (1.8), then the isotropic curvature q is a
solution of the KdV (1.5) and KK (1.6) respectively.

(f) We use the solution of the periodic Cauchy problem for the KdV (KK
resp.) to solve the periodic Cauchy problem for the isotropic curve flow
(1.7) ((1.8) resp.).

We construct Darboux transforms for the B̂
(1)
n and Â

(2)
2n -hierarchies and

use them to construct explicit soliton solutions for the isotropic curve flows
of type B and type A in [18] and [19] respectively. In particular, we show in
[18] that given a constant α ∈ R\0,

γα2,0(x, t) =









1− αsα(x,t)
cα(x,t)+1x+ α2(cα(x,t)−1)

4(cα(x,t)+1) x
2

2sα(x,t)
α(cα(x,t)+1) −

cα(x,t)−1
cα(x,t)+1x

2(cα(x,t)−1)
α2(cα(x,t)+1)









is a solution of the third isotropic flow (1.7) of type B on M2,1 and its
isotropic curvature is the 1-soliton solution

q = −α2sech2
(

α

2
x+

α3

2
t

)

of the KdV, where cα(x, t) = cosh(αx+ α3t) and sα(x, t) = sinh(αx+ α3t).
We show in [19] that given a constant r ∈ R\0,

γr(x, t) =











1−cosh(
√
3(rx−r5t))

2+cosh(
√
3(rx−r5t))

r−1(cosh(
√
3(rx−r5t))−1)x−

√
3 sinh(

√
3(rx−r5t))

2+cosh(
√
3(rx−r5t))

r−2(1−cosh(
√
3(rx−r5t)))x2+2

√
3 sinh(

√
3(rx−r5t))x−3(1+cosh(

√
3(rx−r5t)))

4+2 cosh(
√
3(rx−r5t))











is a solution of the fifth isotropic curve flow on M2,1 of type A with the
1-soliton solution of the KK equation,

qr(x, t) = −9r2

2

(

1 + 2 cosh(
√
3(rx− r5t))

2 + cosh(
√
3(rx− r5t))2

)

,

as its isotropic curvature.
Note that the relation between central affine curve flows on Rn\0 and

the soliton theory of the Â
(1)
n−1-KdV hierarchy were considered in [12] and

[16] for n = 2, in [1] for n = 3, and for general n in [17]. General methods
for constructing integrable curve flows on homogeneous spaces can be found
in Ovsienko and Khesin [11], Mari-Beffa ([6]–[10]), and in Terng [13].
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The organization of this paper is as follows: We prove the existence of
isotropic parameters and construct isotropic moving frames and curvatures
for γ ∈ Mn+1,n in Section 2, and give description of the tangent space of
Mn+1,n at γ in Section 3. In Section 4, we study the Hamiltonian flows
on Mn+1,n(S

1) with respect to Poisson structure { , }∧2 and their Cauchy

problems. We give the construction and some basic results of the B̂
(1)
n -KdV

and Â
(2)
2n -KdV hierarchies in Sections 5 and 6 respectively. In the last section,

we explain the relation between solutions of the B̂
(1)
n -KdV (Â

(2)
2n -KdV resp.)

flows and isotropic curve flows of B-type (A-type resp.).

2. Moving frames along isotropic curves

In this section, we prove the existence of isotropic parameter and construct
isotropic moving frames and curvatures along isotropic curves.

Note that the Lie algebra of O(n+ 1, n) is

o(n+ 1, n) = {A ∈ sl(2n+ 1,R) | Atρ+ ρA = 0}
= {(Aij) | Aij + (−1)i−jA2n+2−j,2n+2−i = 0, 1 ≤ i ≤ 2n+ 1}.

A direct computation implies that A = (Aij) ∈ o(n+ 1, n) if and only if

(i) Aij ’s are symmetric (skew-symmetric resp.) with respect to the skew
diagonal line i+ j = 2n+ 2 if i+ j is odd (even resp.),

(ii) Aij = 0 if i+ j = 2n+ 2.

Let

(2.1) Gi = o(n+ 1, n) ∩ span{ej,j+i | 1 ≤ i+ j ≤ 2n+ 1}.

Then we have the following gradation:

o(n+ 1, n) = ⊕2n
i=−2nGi, G−2n = G2n = 0, [Gi,Gj ] ⊂ Gi+j .

A basis {v1, . . . , v2n+1} of R2n+1 is called an isotropic basis if ⟨vi, vj⟩ =
ρij , where ρn = (ρij) is the matrix defined by (1.1), or equivalently, the
matrix (v1, . . . , v2n+1) is in O(n+ 1, n).

Proposition 2.1.

(i) The O(n+ 1, n)-action on the space of ordered isotropic bases of Rn+1,n

defined by g · (v1, . . . , v2n+1) = (gv1, . . . , gv2n+1) is transitive.
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(ii) The dimension of a maximal isotropic subspace of Rn+1,n is n.

Proof. (i) follows from linear algebra. To proves (ii), first let {ei, 1 ≤ i ≤
2n+ 1} denote the standard basis of R2n+1. Then A = span{e1, e2, . . . , en}
is an isotropic subspace in Rn+1,n.

Let V = span{v1, . . . , vn} be another n-dimension isotropic subspace,
g1 = (e1, . . . , en), and g2 = (v1, . . . , vn). We claim that there exists C ∈
O(n+ 1, n) such that g2 = Cg1. From linear algebra, we can extend
{v1, . . . , vn} to a basis {v1, . . . , vn, vn+1, . . . , v2n+1} in Rn+1,n and denote
g̃2 = (v1, . . . , v2n+1) ∈ O(n+ 1, n). Then choose C = g̃2.

Suppose B = span{w1, . . . , wn+1} is an isotropic subspace in Rn+1,n of
dimension n+1. According to (i), there exists C ∈ O(n+ 1, n), such that
(w1, . . . , wn) = C(e1, . . . , en). Therefore, we may assume wi = ei, 1 ≤ i ≤ n.
Then from ⟨ei, wn+1⟩ = 0 for 1 ≤ i ≤ n and ⟨wn+1, wn+1⟩ = 0, we have
wn+1 = 0, which is a contradiction. This proves (ii). □

Proposition 2.2. If γ(s) is isotropic in Rn+1,n for all s ∈ R, then there
exists an orientation preserving parameter x = x(s) unique up to translation

such that ⟨γ(n)x , γ
(n)
x ⟩ = 1, i.e., x is the isotropic parameter of γ.

Proof. Since γ is isotropic,

⟨γ(n−1)
s , γ(i)s ⟩ = 0, 0 ≤ i ≤ n− 1.

Take the derivative with respect to s of both sides to get

⟨γ(n−1)
s , γ(i)s ⟩s = ⟨γ(n)s , γ(i)s ⟩+ ⟨γ(n−1)

s , γ(i+1)
s ⟩ = 0

So ⟨γ(n)s , γ
(i)
s ⟩ = 0 for any 0 ≤ i ≤ n− 2. But ⟨γ(n−1)

s , γ
(n−1)
s ⟩ = 0 implies

that

(2.2) ⟨γ(n)s , γ(n−1)
s ⟩ = 0.

This shows that ⟨γ(n)s , γ
(i)
s ⟩ = 0 for 0 ≤ i ≤ n− 1. Since the span of {γ, . . . ,

γ
(n−1)
s } is a maximal isotropic subspace, ⟨γ(n)s , γ

(n)
s ⟩ ≠ 0.

We claim that ⟨γ(n)s , γ
(n)
s ⟩ > 0 for all s ∈ R. To see this, we first note

that from Proposition 2.1 (ii), there exists C ∈ O(n+ 1, n) such that

C(γ, . . . , γ(n−1)
s ) = (e1, e2, . . . , en),
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where ei is the i-th standard basis of R2n+1. Let c = (c1, c2, . . . , c2n+1)
t =

Cγ
(n)
s . For 0 ≤ i ≤ n− 1, we use (2.2) to see that

⟨Cγ(n)s , Cγ(i)s ⟩ = ⟨c, ei+1⟩ = (−1)n+ic2n+1−i = ⟨γ(n)s , γ(i)s ⟩ = 0

for 1 ≤ i ≤ n. So c2n+2−i = 0 for 1 ≤ i ≤ n. This implies that

⟨γ(n)x , γ(n)x ⟩ = ⟨Cγ(n)x , Cγ(n)x ⟩ = ctρc = c2n+1.

But ⟨γ(n)s , γ
(n)
s ⟩ ≠ 0. This proves the claim.

Choose x such that dx
ds = ⟨γ(n)s , γ

(n)
s ⟩1/2n and the proposition follows. □

Next we want to construct moving frames and a complete set of differ-

ential invariants for γ ∈ Mn+1,n. First note that if ⟨γ, γ(i)x ⟩ = 0 for 0 ≤ i ≤
n− 1, then ⟨γ(i)x , γ

(j)
x ⟩ = 0 for 0 ≤ i, j ≤ n− 1. So γ ∈ Mn+1,n is determined

by n+ 1 independent conditions

⟨γ(n)x , γ(n)x ⟩ = 1, ⟨γ, γ(i)x ⟩ = 0, 0 ≤ i ≤ n− 1.

Hence we expect there should be n differential invariants for γ ∈ Mn+1,n.
Recall that the Frenet frame g for curves in the Euclidean space Rn

satisfies A = (aij) := g−1gx in o(n), where all entries of A are zero except
ai+1,i = ki = −ai,i+1 for 1 ≤ i ≤ n− 1. Motivated by this, we seek a moving
frame g for γ ∈ Mn+1,n satisfying g−1gx lies in b+ Vn, where Vn is defined
by (1.4). We will first give detailed constructions of such g for γ ∈ M2,1 and
M3,2 so that the construction for general Mn+1,n is easier to follow.

Example 2.3 (The isotropic moving frame for γ ∈ M2,1). Assume
that there exists p3 such that (γ, γx, p3) is in O(2, 1) and satisfies

(2.3) (γ, γx, p3)x = (γ, γx, p3)





0 q 0
1 0 q

0 1 0





for some q. Note that the first column of (2.3) is automatically true. The
second column of (2.3) holds if and only if γxx = qγ + p3. So we can choose

p3 = qγ − γxx.

To find q, we first compute

⟨γ, γxx⟩ = (⟨γ, γx⟩)x − ⟨γx, γx⟩ = 0− 1 = −1.
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So we have ⟨γ, p3⟩ = −1 and ⟨γx, p3⟩ = 0. We note that

⟨p3, p3⟩ = ⟨γxx, γxx⟩ − 2q⟨γ, γxx⟩ = ⟨γxx, γxx⟩+ 2q

which is zero if and only if

q = −1

2
⟨γxx, γxx⟩.

This implies that (γ, γx, p3) is in O(2, 1) and (2.3) holds.
Note that a smooth curve γ : R → R2,1 lies in M2,1 if and only if γ is a

smooth space-like curve in the null cone Σ = {y ∈ R2,1 | ⟨y, y⟩ = 0} parame-
terized by its arc-length. The isotropic moving frame and isotropic curvature
are the standard moving frame and curvature of γ in Σ in differential geom-
etry.

Example 2.4 (The isotropic moving frame for γ ∈ M3,2). Suppose
g = (γ, γx, γxx, p4, p5) : R → O(3, 2) satisfies

(2.4) (γ, γx, γxx, p4, p5)x = (γ, γx, γxx, p4, p5)













0 0 0 u2 0
1 0 u1 0 u2
0 1 0 u1 0
0 0 1 0 0
0 0 0 1 0













for some u1, u2. Set pi = γ
(i−1)
x for 1 ≤ i ≤ 3. Note that ρ = (ρij) = e33 −

e24 − e42 + e15 + e51. We need to choose p4 and p5 so that ⟨pi, pj⟩ = ρij
and (2.4) holds. It follows from

(2.5) ⟨γ(i)x , γ(j)x ⟩ = 0, for 0 ≤ i, j ≤ 1, ⟨γxx, γxx⟩ = 1

that

(2.6) ⟨γ, γxx⟩ = ⟨γx, γxx⟩ = 0, ⟨γx, γxx⟩ = −1.

So ⟨pi, pj⟩ = ρij for 1 ≤ i, j ≤ 3. The first two columns of (2.4) are true. The
third column of (2.4) holds if and only if γxxx = u1γx + p4, i.e.,

(2.7) p4 = γxxx − u1γx.

We need to find u1 such that ⟨pi, p4⟩ = ρi4 for 1 ≤ i ≤ 4. It follows from (2.5)
and (2.6) that ⟨pi, p4⟩ = 0 for 1 ≤ i ≤ 3. So

⟨p4, p4⟩ = ⟨γxxx, γxxx⟩ − 2u1⟨γx, γxxx⟩ = ⟨γxxx, γxxx⟩+ 2u1.



✐

✐

“3-Terng” — 2021/1/7 — 11:39 — page 1816 — #10
✐

✐

✐

✐

✐

✐

1816 C.-L. Terng and Z.-W. Wu

This implies that if we choose

u1 =
1

2
⟨γxxx, γxxx⟩,

then ⟨pi, pj⟩ = ρij for 1 ≤ i, j ≤ 4. Next we construct p5. The fourth column
of equation (2.4) gives (p4)x = u2γ + u1γxx + p5. Hence

p5 = (p4)x − u2γ − u1γxx.

Note that

⟨γ, (p4)x⟩ = (⟨γ, p4⟩)x − ⟨γx, p4⟩ = −ρ24 = 1,

⟨γx, (p4)x⟩ = (⟨γx, p4⟩)x − ⟨γxx, p4⟩ = −ρ34 = 0,

⟨γxx, (p4)x⟩ = (⟨γxx, p4⟩)x − ⟨γxxx, p4⟩ = −⟨γxxx, p4⟩
= −⟨u1γx + p4, p4⟩ = −u1ρ24 = u1.

These equalities imply that ⟨pi, p5⟩ = ρi5 for 1 ≤ i ≤ 4. Note that

⟨p5, p5⟩ = ⟨(p4)x, (p4)x⟩+ u21 + 2u2

is zero if we choose

u2 = −1

2
(⟨(p4)x, (p4)x⟩+ u21).

This proves that (p1, . . . , p5) is in O(3, 2) and satisfies (2.4).

Theorem 2.5. Given γ ∈ Mn+1,n, then there exists a unique smooth map

g = (p1, . . . , p2n+1) : R → O(n+ 1, n) such that pi = γ
(i−1)
x for 1 ≤ i ≤ n+ 1

and

(2.8) gx = g

(

b+

n
∑

i=1

uiβi

)

for some n smooth functions u1, . . . , un, where b and βi’s are given in (1.2).
Moreover,

(2.9) pi = γ(i−1)
x +

i−3
∑

j=0

rij(u)γ
(j)
x

for some differential polynomials rij(u) in u for n+ 2 ≤ i ≤ 2n+ 1.
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Proof. Set pi = γ
(i−1)
x for 1 ≤ i ≤ n+ 1. We need to find pn+2, . . . , p2n+1

such that (p1, . . . , p2n+1) is in O(n+ 1, n) and satisfies (2.8).
(i) We claim that ⟨pi, pj⟩ = ρij for 1 ≤ i, j ≤ n+ 1, where ρ = (ρij)

as defined by (1.1). Since γ ∈ Mn+1,n, ⟨pi, pj⟩ = 0 for 1 ≤ i, j ≤ n and
⟨pn+1, pn+1⟩ = 1. For 1 ≤ i ≤ n− 1,

⟨pi, pn+1⟩ = ⟨γ(i−1)
x , γ(n)x ⟩ = ⟨γ(i−1)

x , γ(n−1)
x ⟩x − ⟨γ(i)x , γ(n−1)

x ⟩ = 0.

And ⟨pn, pn+1⟩ = ⟨γ(n−1)
x , γ

(n)
x ⟩ = 1

2⟨γ
(n−1)
x , γ

(n−1)
x ⟩x = 0.

This proves the claim.

(ii) The (n+ 1)-th column of (2.8) gives γ
(n+1)
x = u1γ

(n−1)
x + pn+2. We

need to determine u1. From ⟨γ(n−1)
x , γ

(n)
x ⟩ = 0, we get

⟨γ(n−1)
x , γ(n+1)

x ⟩ = −⟨γ(n)x , γ(n)x ⟩ = −1.

And the condition ⟨pn+2, pn+1⟩ = 0 implies that

(2.10) u1 = −1

2
⟨γ(n+1)

x , γ(n+1)
x ⟩ = −1

2
⟨(pn+1)x, (pn+1)x⟩.

Then we have
{

⟨pi, pn+2⟩ = 0, 0 ≤ i ≤ n+ 2, i ̸= n,

⟨pn, pn+2⟩ = −1.
(2.11)

(iii) The (n+ 2)-th column of (2.8) gives (pn+2)x = u2pn−1 + u1pn+1 +
pn+3, i.e.,

pn+3 = (pn+2)x − u2pn−1 − u1pn+1.

For 1 ≤ i ≤ n− 2 and i = n,

⟨pi, pn+3⟩ = ⟨γ(i−1)
x , (pn+2)x⟩ = ⟨γ(i−1)

x , pn+2⟩x − ⟨γ(i)x , pn+2⟩ = 0.

Moreover, ⟨pn−1, pn+3⟩ = ⟨γ(n−2)
x , pn+2⟩x − ⟨γ(n−1)

x , pn+2⟩ = 1.
From (2.10) and (2.11), we have

⟨pn+1, pn+3⟩ = ⟨γ(n)x , (pn+2)x⟩ − u1⟨γ(n)x , γ(n)x ⟩
= ⟨γ(n)x , pn+2⟩x − ⟨γ(n+1)

x , pn+2⟩ − u1

= −⟨γ(n+1)
x , γ(n+1)

x − u1γ
(n−1)
x − u1⟩ = 0.

⟨pn+2, pn+3⟩ = ⟨pn+2, (pn+2)x⟩ =
1

2
⟨pn+2, pn+2⟩x = 0.
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A direct computation shows that ⟨pn+3, pn+3⟩ = 0 if we choose

u2 =
1

2
(⟨(pn+2)x, (pn+2)x⟩+ u21).

(iv) Suppose we have already found pn+2, . . . , pn+j and u1, . . . , uj−1 for
j ≥ 3 satisfying

(2.12)











⟨pi, pn+j⟩ = 0, 1 ≤ i ≤ n+ j, i ̸= n+ 2− j,

⟨pn+2−j , pn+j⟩ = (−1)j−1,

(pn−1+j)x = pn+j + uj−1pn+2−j + uj−2pn+4−j .

Set
{

uj =
(−1)j

2 ⟨(pn+j)x, (pn+j)x⟩,
pn+j+1 = (pn+j)x − ujpn+1−j − uj−1pn+3−j .

For 1 ≤ i ≤ n+ 1 and i ̸= n+ 1− j,

⟨pi, pn+j+1⟩ = ⟨γ(i−1)
x , pn+j+1⟩

= ⟨γ(i−1)
x , (pn+j)x − ujpn+1−j − uj−1pn+3−j⟩

= ⟨γ(i−1)
x , pn+j⟩x − ⟨γ(i)x , pn+j⟩ = 0.

And ⟨pn+1−j , pn+j+1⟩ = −⟨γ(n+1−j)
x , pn+j⟩ = (−1)j .

For n+ 1 ≤ i ≤ n+ j and i ̸= n+ j − 1,

⟨pi, pn+j+1⟩ = ⟨pi, (pn+j)x − ujpn+1−j − uj−1pn+3−j⟩
= ⟨pi, pn+j⟩x − ⟨(pi)x, pn+j⟩ by (2.12)

= 0.

From uj−1 =
(−1)j−1

2 ⟨(pn+j−1)x, (pn+j−1)x⟩, we have ⟨pn+j−1, pn+j⟩ = 0. And
uj can be solved from ⟨pn+j , pn+j⟩ = 0.

(v) The uniqueness follows from the construction. □

Example 2.6. Isotropic curves in Rn+1,n with zero isotropic curvatures are
of the form

(2.13) γ = c0e
bxe1 = c0

(

1, x,
x2

2!
, . . . ,

x2n−1

(2n− 1)!
,
x2n

(2n)!

)t

,

where c0 ∈ O(n+ 1, n) is a constant and

(2.14) e1 = (1, 0, . . . , 0)t ∈ R
n+1,n.
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If follows from the Existence and Uniqueness Theorem of ordinary dif-
ferential equations that we have the following.

Proposition 2.7. Let Vn be the isotropic curvature space defined by (1.4),
and Ψ : Mn+1,n → C∞(R, Vn) the isotropic curvature map defined by (1.3).
Then Ψ is onto and Ψ−1(Ψ(γ)) is the O(n+ 1, n)-orbit at γ.

Hence {u1, . . . , un} is a complete set of differential invariants for γ ∈
Mn+1,n under the group O(n+ 1, n).

Remark 2.8. Let g = (γ, . . . , γ
(n)
x , pn+2, . . . , p2n) denote the isotropic frame

along γ ∈ Mn+1,n. If δγ is tangent to Mn+1,n at γ, then δ(γ
(i)
x ) = (δγ)

(i)
x .

So we can use (2.9) to write down δg in terms of δγ.

The following Proposition follows from a straight forward computation.

Proposition 2.9. Let Ψ : Mn+1,n → C∞(R, Vn) be the isotropic curvature
map. Then the differential of Ψ at γ is

(2.15) dΨ(δγ) = δu = [∂x + b+ u, g−1δg],

where g, u, and δg are the isotropic moving frame, isotropic curvature, and
the variation of g when we vary γ by δγ respectively.

Proof. It follows from g−1gx = b+ u that we have

δu = −g−1δgg−1gx + g−1(δg)x = −g−1δg(b+ u) + g−1(δg)x.

On the other hand,

(g−1δg)x = −g−1gxg
−1δg + g−1(δg)x = −(b+ u)g−1δg + g−1(δg)x.

Therefore

δu = −g−1δg(b+ u) + (g−1δg)x + (b+ u)g−1(δg)

= [∂x + b+ u, g−1δg].
□

3. The tangent space of Mn+1,n at γ

In this section, we
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(i) give descriptions of the tangent space TγMn+1,n and show that it is
isomorphic to C∞(R,Rn),

(ii) construct linear differential operator Pu : C∞(R, V t
n) → C∞(R, o(n+

1, n)) that is needed for the B̂
(1)
n -KdV and Â

(2)
2n -KdV hierarchies for

u ∈ C∞(R, Vn).

We have seen in Proposition 2.9 that if δγ =
∑2n+1

i=1 ξipi ∈ TγMn+1,n

then [∂x + b+ u, g−1δg] ∈ C∞(R, Vn), where g = (p1, . . . , p2n+1) and u are
the isotropic moving frame and isotropic curvature along γ, and δg is vari-
ation of g when we vary γ. Below we show that the converse is also true.

Proposition 3.1. Let g and u be the isotropic moving frame and isotropic
curvature along γ ∈ Mn+1,n respectively.

1) If C : R → O(n+ 1, n) satisfies

(3.1) [∂x + b+ u,C] ∈ C∞(R, Vn),

then ξ(γ) = gCe1 is tangent to Mn+1,n at γ, where e1 is defined by
(2.14).

2) If δγ is tangent to Mn+1,n at γ, then C := g−1δg satisfies (3.1) and
δγ = gCe1.

Proof. (1) It follows from the definition of Mn+1,n that δγ is tangent to
Mn+1,n at γ if

(3.2)

{

⟨(δγ)(i)x , γ
(j)
x ⟩+ ⟨γ(i)x , (δγ)

(j)
x ⟩ = 0, 0 ≤ i, j ≤ n− 1,

⟨(δγ)(n+1)
x , γ

(n)
x ⟩ = 0.

Let ηj denote the j-th column of gC for 1 ≤ j ≤ 2n+ 1. To prove gCe1
is tangent to Mn+1,n, it suffices to prove that η1 satisfies (3.2). Let ρ =
[∂x + b+ u,C]. A direct computation gives

(gC)x = gxC + gCx = gC(b+ u) + gρ.

Since the first n columns of ρ are zero, the first n+ 1 columns of gC are
related by

η2 = (η1)x, . . . , ηn+1 = (η1)
(n)
x .
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Hence, for 0 ≤ i, j ≤ n− 1, we have

⟨(η1)(i)x , γ(j)x ⟩+ ⟨γ(i)x , (η1)
(j)
x ⟩ = ⟨gCei+1, gej+1⟩+ ⟨gei+1, gCej+1⟩

= ⟨Cei+1, ej+1⟩+ ⟨ei+1, Cej+1⟩
= eti+1(C

tρ+ ρCt)ej+1

= 0.

Since C = (Cij) ∈ o(n+ 1, n), ⟨(η1)(n)x , γ
(n)
x ⟩ = Cn+1,n = 0. So ξ(γ) = η1 is

tangent to Mn+1,n at γ.
(2) Note that Proposition 2.9 implies that C := g−1δg satisfies (3.1). By

definition, δγ = g(g−1δg)e1 = gCe1. □

Next we prove that if C = (Cij) satisfying (3.1) then C is determined
by {Cn+i,n+1−i, 1 ≤ i ≤ n} or {C2i,1, 1 ≤ i ≤ n}.

Theorem 3.2. Let u ∈ C∞(R, Vn), C = (Cij) ∈ C∞(R, o(n+ 1, n)), vi :=
Cn+i,n+1−i for 1 ≤ i ≤ n, and v =

∑n
i=1 viβ

t
i . Assume that

(3.3) [∂x + b+ u,C] ∈ C∞(R, Vn).

Then there exist differential polynomials φij(u, v) for 1 ≤ i, j ≤ 2n+ 1 sat-
isfying the following conditions:

(i) Cij = φij(u, v) for all i, j ≤ 2n+ 1 and φn+i,n+1−i(u, v) = vi for 1 ≤
i ≤ n.

(ii) φ2n−2i,1(u, v) = vn−i + φi(u, vn+1−i, . . . , vn) for 0 ≤ i ≤ n− 1.

(iii) There exist differential polynomials h2i+1 such that

C2i+1,1 = h2i+1(u,C2i+2,1, . . . , C2n,1), 0 ≤ i ≤ n− 1,

(iv) Cij’s are differential polynomials of u,C21, C41, . . . , C2k,1, . . . , C2n,1.

Proof. Since C ∈ o(n+ 1, n), Cn+1+i,n+2−i = Cn+i,n+1−i = vi. Let v =
∑n

i=1 viβ
t
i ∈ V t

n, where Vn and βi’s are defined in (1.4). Let Gk be as in (2.1).
Then [Gi,Gj ] ⊂ Gi+j . For ξ ∈ o(n+ 1, n), let ξGi

denote the Gi-component of
ξ w.r.t. o(n+ 1, n) = ⊕2n−1

i=1−2nGi.
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Suppose [∂x + b+ u,C] =
∑n

i=1 ηiβi. Write C =
∑2n−1

i=1−2nCi with Ci ∈
Gi. Then

(3.4) C ′
j + [b, Cj+1] + [u,C]Gj

=

{

ηiβi, j = 2i− 1,

0, j ̸= 2i− 1.

We claim that Cj are differential polynomials in v and u. For j = 1− 2n,
we have C2n,1 = C2n+1,2 = vn. For j < 0, if j is even, ad(b) : Gj → Gj−1 is a
bijection. If j is odd, then dim(Im(ad(b)(Gj))) = dim(Gj−1) = dim(Gj)− 1.
Then from (3.4), for both cases, entries of Cj are differential polynomials in
vn, . . . , v−[ j

2
]. Then by induction, the claim is true for j < 0.

Note that ad(b) is a bijection from G0 to G−1, and we have the Gj compo-
nent [u,C]Gj

depends only on u, v1, . . . , vn. So C0 is a differential polynomial
in u and v.

For j > 0, we see that when j is odd, ad(b) : Gj → Gj−1 is again a bijec-
tion. When j is even, we have dim(Im(ad(b)(Gj))) = dim(Gj) = dim(Gj−1)−
1. Therefore, in both cases, Cj can be solved uniquely from Cj−1 and ηi’s
are differential polynomials in entries of C2i−1. By induction, the claim is
true for j > 0. This proves the statement (i).

To prove (ii), let j = 2i+ 1− 2n in (3.4). Then the linear system implies
that C2n−2i,1 = vn−i + φi, 0 ≤ i ≤ n− 1, where φi is a differential polyno-
mial in u, vn+1−i, . . . , vn.

Statement (iii) and (iv) are consequence from (i) and (ii). □

Let

V t
n = {v ∈ o(n+ 1, n) | vt ∈ Vn},

and π0 : o(n+ 1, n) → V t
n the natural projection onto V t

n, i.e.,

(3.5) π0(ξ) =

2n
∑

i=1

ξn+i,n−i+1(en+i,n+1−i + en+i+1,n−i+2)

for ξ = (ξij) ∈ o(n+ 1, n).
The proof of Theorem 3.2 implies the converse of Theorem 3.2 is true.

Theorem 3.3. Let u ∈ C∞(R, Vn), v ∈ C∞(R, V t
n), and φij(u, v) the dif-

ferential polynomials given in Theorem 3.2. Let C = (Cij) ∈ C∞(R, o(n+
1, n)) defined by Cij = φi,j(u, v) (so π0(C) = v). Then C satisfies (3.3).
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Corollary 3.4. Let g = (p1, . . . , p2n+1) and u denote the isotropic mov-
ing frame and isotropic curvature along γ ∈ Mn+1,n. Then ξ =

∑2n
i=1 ξipi is

tangent to Mn+1,n at γ if and only if

ξ2i+1 = h2i+1(u, ξ2i+2, . . . , ξ2n), 0 ≤ i ≤ n− 1,

where h2i+1’s are the differential polynomials given in Theorem 3.2. In par-
ticular, we identify TγMn+1,n as C∞(R,Rn).

Corollary 3.5. If u ∈ C∞(R, Vn), then there is a unique linear differential
operator

Pu : C∞(R, V t
n) → C∞(R, o(n+ 1, n))

satisfying

1) π0(Pu(v)) = v,

2) [∂x + b+ u, Pu(v)] ∈ C∞(R, Vn).

Moreover, the coefficients of the linear differential operator Pu are differen-
tial polynomials of u.

It follows from Proposition 3.1 and Theorem 3.2 that we have the fol-
lowing.

Corollary 3.6. Let g and u be the isotropic moving frame and the isotropic
curvature along γ ∈ Mn+1,n respectively. Then the following statements are
equivalent for C : R → o(n+ 1, n):

1) [∂x + b+ u,C] ∈ C∞(R, Vn).

2) δγ := gCe1 is tangent to Mn+1,n at γ and C = g−1δg, where g is the
isotropic moving frame along γ = ge1, δg is the variation of g when
we vary γ by δγ.

3) C = Pu(π0(C)),

where Pu is the differential operator defined in Corollary 3.5.

Note that the proof of Theorem 3.2 gives an algorithm to compute Pu(v).
We write down the operator Pu and TγMn+1,n for n = 1, 2 in the two ex-
amples below.
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Example 3.7. When n = 1, we have b = e21 + e32, β1 = e12 + e23, and
V1 = Rβ1. Let u = qβ1, and v = v1β

t
1. Use the algorithm given in the proof

of Theorem 3.2 to compute Pu(v) and obtain

(3.6) Pu(v) =





−(v1)x −(v1)xx + qv1 0
v1 0 −(v1)xx + qv1
0 v1 (v1)x



 .

Corollary 3.6 implies that all tangent vectors of M2,1 at γ is of the form
gPu(v)e1. So

TγM2,1 = {−ξxγ + ξγx | ξ ∈ C∞(R,R)}.

Example 3.8. For n = 2, we have b =
∑4

i=1 ei+1,i, β1 = e23 + e34, β2 =
e14 + e25, and V2 = Rβ1 ⊕ Rβ2. Let u = u1β1 + u2β2, and v = v1β

t
1 + v2β

t
2.

Use the algorithm given in the proof of Theorem 3.2 to get

(3.7) Pu(v) =













η ∗ ∗ ∗ 0
ξ a ∗ 0 ∗

−(v2)x v1 0 ∗ ∗
v2 0 v1 −a ∗
0 v2 (v2)x ξ −η













,

where

ξ = v1 + (v2)xx − u1v2,

η = (v2)
(3)
x − 2ξx − (u1)xv2,

a = (v2)
(3)
x − ξx − (u1v2)x.

By Corollary 3.6, we have δγ ∈ TγM3,2 if and only if

δγ = ((v2)
(3)
x − 2ξx − (u1)xv2)γ + ξγx − (v2)xγxx + v2p4,

for some ξ, v2 ∈ C∞(R,R), where g = (γ, γx, γxx, p4, p5) is the isotropic mov-
ing frame along γ.

4. Hamiltonian isotropic curve flows

The gradient ∇F (u) of a functional F : C∞(S1, Vn) → R is the unique map
in C∞(S1, V t

n) satisfying

dFu(v) =

∮

⟨∇F (u), v⟩dx
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for all v ∈ C∞(S1, Vn). Note that

{F1, F2}(u) = −⟨[∂x + b+ u, Pu(∇F1(u))],∇F2(u)⟩

is the Poisson structure { , }2 defined by (5.20) in Section 5 on C∞(S1, Vn).
So the Hamiltonian flow for F : C∞(S1, Vn) → R with respect to { , } is

(4.1) ut = [∂x + b+ u, Pu(∇F (u))].

Given a functional F on C∞(S1, Vn), let

F̂ = F ◦Ψ.

Then F̂ is a functional on Mn+1,n(S
1) invariant under O(n+ 1, n). Let

{ , }∧ denote the pull back of the Poisson structure { , } on C∞(S1, Vn) to
Mn+1,n(S

1) by the isotropic curvature map Ψ. Then

(4.2) {F̂ , Ĝ}∧ = {F,G} ◦Ψ

for functionals F and G on C∞(S1, Vn).
In this section, we write down the Hamiltonian flow on Mn+1,n(S

1) with
respect to the Poisson structure { , }∧ and study their Cauchy problems.

Recall that the Hamiltonian vector field for F̂ is the unique vector field
XF̂ satisfying

{F̂ , Ĝ}∧ = −XF̂ (Ĝ) = −dĜ(XF̂ ),

and the Hamiltonian flow for F̂ is γt = XF̂ (γ).

Theorem 4.1. Let F be a functional on C∞(S1, Vn). Then the Hamilto-
nian flow of F̂ = F ◦Ψ with respect to the pull back Poisson structure { , }∧
defined by (4.2) is

(4.3) γt = gPu(∇F (u))e1,

where g and u are the isotropic moving frame and isotropic curvature along
γ respectively, Pu is the linear operator given in Corollary 3.5, and e1 is
defined by (2.14).



✐

✐

“3-Terng” — 2021/1/7 — 11:39 — page 1826 — #20
✐

✐

✐

✐

✐

✐

1826 C.-L. Terng and Z.-W. Wu

Proof. By definition of Pu, we have [∂x + b+ u, Pu(∇F (u))] ∈ C∞(S1, Vn).
It follows from Corollary 3.6 (2) that

(4.4) δγ := gPu(∇F (u))e1

is tangent to Mn+1,n(S
1) at γ. Corollary 3.6 implies that

(4.5) g−1δg = Pu(∇F (u)),

where δg is the variation of g when we vary γ by δγ. Next we compute

{F̂ , Ĥ}∧(γ) = −⟨[∂x + b+ u, Pu(∇F (u))],∇H(u)⟩, by (4.5),

= −⟨[∂x + b+ u, g−1δg],∇H(u)⟩, byProposition 2.9,

= −⟨dΨ(δγ),∇H(u)⟩ = −dH(dΨ(δγ)) = −dĤ(δγ).

This proves that the Hamiltonian vector field of F̂ at γ is gPu(∇F (u))e1. □

Example 4.2. If ∇F (u) = ξβt1, then use (3.6) to see that

gPu(∇F (u))e1 = g(−ξx, ξ, 0)t = −ξxγ + ξγx.

By Proposition 4.1, the Hamiltonian flow for F̂ = F ◦Ψ is

(4.6) γt = −ξxγ + ξγx, where ∇F (u) = ξβ1.

Recall the following elementary fact:

Proposition 4.3. Let A,B ∈ C∞(R2, o(n+ 1, n)). Then the following lin-
ear system

{

gx = gA,

gt = gB,

is solvable for g : R2 → O(n+ 1, n) if and only if

At = Bx + [b+ u,B] = [∂x + b+ u,B].

It follows from Proposition 4.3 that we have the following.

Proposition 4.4.
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1) u is a solution of (4.1) if and only if the linear system

(4.7)

{

gx = g(b+ u),

gt = gPu(∇F (u)).

is solvable for g : R2 → O(n+ 1, n).

2) If g : R2 → O(n+ 1, n) is a smooth solution of (4.7), then u satisfies
(4.1).

Theorem 4.5.

1) If γ is a solution of (4.3), then the isotropic curvature u(·, t) along
γ(·, t) is a solution of (4.1).

2) If u is a solution of (4.1), then given c ∈ O(n+ 1, n), there exists a
unique smooth solution g : R2 → O(n+ 1, n) for (4.7) with g(0, 0) = c.
Moreover, γ := ge1 is a solution of (4.3) whose isotropic curvature is
u.

Proof. (1) is true because { , }∧ is the pull back of { , } by Ψ. The existence
of g follows from Proposition 4.4. Compute directly to see that γt = (ge1)t =
gte1 = gPu(∇F (u))e1. □

Next we use Theorem 4.5 to solve the Cauchy problem for (4.3) on the
line from the solution of the Cauchy problem for (4.1) on the line.

Theorem 4.6 (Cauchy problem on the line). Let γ0 ∈ Mn+1,n, and u0,
g0 are the isotropic curvature and isotropic moving frame along γ0. Suppose
u(x, t) is the solution of (4.1) with initial data u(x, 0) = u0(x), and g the
solution of (4.7) with g(0, 0) = g0(0). Then γ(x, t) = g(x, t)e1 is a solution
of (4.3) with γ(x, 0) = γ0(x).

To solve the periodic Cauchy problem for the isotropic curve flow (4.3),
we need to solve the period problem of (4.1).

Theorem 4.7 (Periodic Cauchy problem). Let γ0 ∈ Mn+1,n(S
1), and

g0 and u0 the isotropic moving frame and curvature along γ0. Let u(x, t) be
the solution of (4.1) periodic in x such that u(x, 0) = u0(x), and g(x, t) the
solution of (4.7) with g(0, 0) = g0(0). Then γ(x, t) = g(x, t)e1 is a solution
of (4.3) with γ(x, 0) = γ0(x) and γ(·, t) is periodic in x.
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Proof. By Theorem 4.6, γ is a solution of (4.3) on R× R. We claim that
y(t) := g(2π, t)− g(0, t) ≡ 0. Note that both g(x, 0) and g0(x) satisfy
h−1hx = b+ u0 with the same initial condition, so g(x, 0) = g0(x). Because
g0 is periodic, we have y(0) = 0. Set B(u) = Pu(∇F (u)). It follows from
Proposition 4.4 that

dy

dt
= g(2π, t)B(u)(2π, t)− g(0, t)B(u)(0, t).

Since u(x, t) is periodic in x with period 2π, B(u)(2π, t) = B(u)(0, t). So

dy

dt
= y(t)B(u)(0, t).

Note that the constant function 0 is the solution of the above linear system
with y(0) = 0. It follows from the uniqueness of solutions of ordinary differ-
ential equations that we prove the claim y(t) ≡ 0. So g(x, t) is periodic in x,
which implies that γ(x, t) = g(x, t)e1 is periodic in x. □

5. The B̂(1)
n

- and B̂(1)
n

-KdV hierarchies

In this section, we give the constructions of the B̂
(1)
n - and the B̂

(1)
n -KdV

hierarchies and study their Hamiltonian theory (cf. [3, 17]).

First we construct the B̂
(1)
n -hierarchy. Let

B̂(1)
n = {ξ(λ) =

∑

i≤n0

ξiλ
i | n0 ∈ Z, ξi ∈ o(n+ 1, n)},

and

(5.1) JB = βλ+ b,

where b is defined by (1.2) and

(5.2) β =
1

2
βn =

1

2
(e1,2n + e2,2n+1).

Note that

J2i
B ̸∈ B̂(1)

n , J
2j−1
B ∈ B̂(1)

n ,

J2n+1
B (λ) = λJB(λ).
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Theorem 5.1. ([3]) Let q ∈ C∞(R,B+
n ), and JB as in (5.1). Then there

exists a unique

T (q, λ) = βλ+
∑

i≤0

T1,i(q)λ
i

in B̂
(1)
n satisfying

(5.3)

{

[∂x + JB(λ) + q, T (q, λ)] = 0,

T 2n+1(q, λ) = λT (q, λ),

Moreover, T1,i(q)’s are differential polynomials in q for all i and can be
computed by comparing coefficients of Giλ

j of (5.3).

Write T 2j−1(q, λ) as a power series in λ:

(5.4) T 2j−1(q, λ) =
∑

i≤[ 2j−1

2n+1
]+1

T2j−1,i(q)λ
i.

It follows from Theorems 5.1 that T2j−1,i(q)’s are differential polynomials in
q and can be computed from T1,k(q)’s.

If A,B are in an associative algebra and [A,B] = 0, then [A,Bj ] = 0 for
all j. So it follows from the first equation of (5.3) that we have

(5.5) [∂x + JB(λ) + q, T 2j−1(q, λ)] = 0.

Compare the constant term of the above equation as a power series expansion
in λ to see that

(5.6) [∂x + b+ q, T2j−1,0(q)] = [T2j−1,−1(q), β].

Since the right hand side of (5.6) is upper triangular, [∂x + b+ q, T2j−1,0(q)] ∈
C∞(R,B+

n ). So we have

Definition 5.2. The (2j − 1)-th B̂
(1)
n -flow is the following flow

(5.7) qt = [∂x + b+ u, T2j−1,0(q)]

on C∞(R,B+
n ).

Remark 5.3. It follows from (5.6) that if q = (qij) is a solution of (5.7),
then qij(x, t) = qij(0, 0) for i+ j ≤ 2n+ 1, i ̸= 1, and j ̸= 2. In fact, (5.7) is a
flow on C∞(R, Yn), where Yn = Im(ad(β)) = {[β, y] | y ∈ o(n+ 1, n)} ⊂ B+

n .
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Definition 5.4. The (2j − 1)-th B̂
(1)
n -KdV flow is the following flow on

C∞(R, Vn),

(5.8) ut = [∂x + b+ u, Pu(π0(T2j−1,0(u))],

where Pu is the operator defined in Corollary 3.5.

Next we discuss the gauge action and construct a cross section of this
action. The group C∞(R, N+

n ) acts on C∞(R,B+
n ) by gauge transformation

(5.9) △ ∗ q = △(b+ q)△−1 −△x△−1 − b,

where q ∈ C∞(R,B+
n ), △ ∈ C∞(R,N+

n ). A direct computation implies that

△(∂x + b+ q)△−1 = ∂x + b+△ ∗ q,(5.10)

△(∂x + JB(λ) + q)△−1 = ∂x + JB(λ) +△ ∗ q.(5.11)

Proposition 5.5. Let q ∈ C∞(R,B+
n ), T (q, λ) defined by (5.3), and △ ∈

C∞(R, N+
n ). Then

(5.12) △T (q, λ)△−1 = T (△ ∗ q, λ).

Proof. Use (5.11) and conjugate (5.3) by △ to see that

[∂x + βλ+ b+△ ∗ q,△T (q, λ)△−1] = 0.

The Proposition follows from Theorem 5.1 . □

The next Proposition shows that C∞(R, Vn) is a cross section of this
gauge action, where Vn is defined as in (1.4).

Proposition 5.6. Given q ∈ C∞(R,B+
n ), then there exist a unique △ ∈

C∞(R, N+
n ) such that u := △ ∗ q ∈ C∞(R, Vn), i.e.,

(5.13) △(∂x + JB(λ) + q)△−1 = ∂x + JB(λ) + u,

where Vn is as in (1.4) and JB(λ) is given by (5.2). Moreover, entries of △
and u are differential polynomials of q, which can be computed from (5.13).

Proof. Let Gi’s be as in (2.1), we write elements m ∈ B+
n as m =

∑2n−1
i=0 mi

with mi ∈ Gi. First note that △β = β△. Hence it suffices to prove that
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△(∂x + b+ q) = (∂x + b+ u)△. From a direct computation, we have the fol-
lowing recursive formula:

qi +△i+1b+
∑

j+k=i

△jqk = ui + (△i)x + b△i+1 +
∑

j+k=i

uj△k.

Note that for each ui, there is only one unknown term needs to be solved.
Hence ui and △i+1 can be solved uniquely from the previous solved terms.
This proves the proposition. □

Example 5.7. Given q = q1(e11 − e33) + q2(e12 + e23), the proof of Propo-
sition 5.6 gives a method to compute u and △ explicitly as differential poly-
nomials of q. For the case n = 1, we have

△ =





1 −q1 1
2q

2
1

0 1 −q1
0 0 1



 ,

u =

(

q2 +
1

2
q21 + (q1)x

)

(e12 + e21).

Proposition 5.8. Assume that q : R2 → B+
n is a solution of the (2j − 1)-th

B̂
(1)
n -flow (5.7) and △(·, t) is the unique N+

n -map as in Proposition 5.6 such
that u(·, t) := △(·, t) ∗ q(·, t) lies in Vn. Then

1) ut = [∂x + b+ u, T2j−1,0(u)−△t△−1],

2) T2j−1,0(u)−△t△−1 = Pu(π0(T2n−1,0(u))),

3) entries of △t△−1 are differential polynomials of u in x variable,

4) u is a solution of the (2j − 1)-th B̂
(1)
n -KdV flow (5.8).

Proof. Recall that △(∂x + b+ q)△−1 = ∂x + b+△ ∗ q = ∂x + b+ u. Com-
pute directly we obtain

ut = (∂x + b+ u)t = (△(∂x + b+ q)△−1)t

= △qt△−1 + [△t△−1,△(∂x + b+ q)△−1]

= △[∂x + b+ q, T2j−1,0(q)]△−1 − [△(∂x + b+ q)△−1,△t△−1]

= [△(∂x + b+ q)△−1,△T2j−1,0(q)△−1]

− [△(∂x + b+ q)△−1,△t△−1], by (5.12),

= [∂x + b+ u, T2j−1,0(u)]− [∂x + b+ u,△t△−1].

This proves (1).
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Since △t△−1 lies in N+
n ,

π0(T2j−1,0(u)−△t△−1) = π0(T2j−1,0(u)).

Since u(x, t) ∈ Vn, ut ∈ Vn. So (2) and (3) follow from Theorem 3.2.
(4) follows from (1). □

It follows from Proposition 5.8 that we have the following:

Theorem 5.9. If u ∈ C∞(R, Vn), then

(5.14) ηj(u) := T2j−1,0(u)− Pu(π0(T2j−1,0(u)))

is a N+
n -valued differential polynomial of u.

Corollary 5.10. The flow on the cross section C∞(R, Vn) obtained by

pushing the (2j − 1)-th B̂
(1)
n -flow along the orbit of the gauge action of

C∞(R, N+
n ) is the (2j − 1)-th B̂

(1)
n -KdV flow.

It was proved in [3] that the B̂
(1)
n -flows commute. Hence the B̂

(1)
n -KdV

flows commute.
As a consequence of Proposition 4.3 we have the following.

Proposition 5.11.

1) q ∈ C∞(R2,B+
n ) is the (2j − 1)-th flow B̂

(1)
n -flow (5.7) if and only if

the following system is solvable for h : R2 → O(n+ 1, n),

(5.15)

{

h−1hx = b+ q,

h−1ht = T2j−1,0(q).

2) u ∈ C∞(R2, Vn) is a solution of the (2j − 1)-th B̂
(1)
n -KdV flow (5.8) if

and only if the following linear system

(5.16)

{

g−1gx = b+ u,

g−1gt = Pu(π0(T2j−1,0(u))),

is solvable for g : R2 → O(n+ 1, n).

By Propositions 5.8, 5.11, we have the following.
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Proposition 5.12. Let q, △, and u be as in Proposition 5.8. If h is a
solution of (5.15), then g := h△−1 is a a solution of (5.16).

Next we discuss the bi-Hamiltonian structure. The gradient of a func-
tional F : C∞(S1,B+

n ) → R at q is the unique ∇F (q) ∈ C∞(S1,B−
n ) satisfy-

ing

dFq(ξ) =

∮

⟨∇F (q), ξ⟩dx

for all ξ ∈ C∞(S1,B+
n ). It was proved in [3] that

{F1, F2}b1(q) =
∮

⟨[∇F1(q), β],∇F2(q)⟩dx,(5.17)

{F1, F2}b2(q) =
∮

⟨[∂x + b+ q,∇F1(q)],∇F2(q)⟩dx,(5.18)

give a bi-Hamiltonian structure on C∞(S1,B+
n ) for the B̂

(1)
n -hierarchy.

Given a functional F on C∞(R, Vn), let F̂ be the functional on C∞(R,B+
n )

defined by

F̂ (q) = F (u)

if u = △ ∗ q for some △ ∈ C∞(R, N+
n ). Since C∞(R, Vn) is a cross section,

all functionals on C∞(R,B+
n ) that are invariant under the gauge action of

C∞(R, N+
n ) arise this way.

Lemma 5.13. Let F1, F2 be functionals on C∞(S1, Vn), and F̂1, F̂2 the
functional on C∞(S1,B+

n ) given above. Then

1) {F̂1, F̂2}bi is invariant under the gauge action of C∞(S1, N+
n ),

2) let {F1, F2}i = the restriction of {F̂1, F̂2}bi to C∞(S1, Vn), then { , }i is
a Poisson structure on C∞(S1, Vn) for i = 1, 2.

Proof. It follows from the definition of the gradient and a direct computation
that we have

∇F̂ (q) = △−1∇F (△ ∗ q)△.
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Note also that △β△−1 = △βρn△tρn = β. So we have

{F̂1, F̂2}b1(q) =
∮

⟨[△−1∇F1(△ ∗ q)△, β],△−1∇F2(△ ∗ q)△⟩dx

=

∮

⟨[∇F1(△ ∗ q), β],∇F2(△ ∗ q)⟩dx = {F1, F2}b1(△ ∗ q),

{F̂1, F̂2}b2(q) =
∮

⟨[∂x + b+ q,∇F̂1(q)],∇F̂2(q)⟩dx

=

∮

⟨[∂x + b+ q,△−1∇F1(△ ∗ q)△],△−1∇F2(△ ∗ q)△⟩dx

=

∮

⟨[△(∂x + b+ q)△−1,∇F1(△ ∗ q)],∇F2(△ ∗ q)⟩dx, by (5.10),

=

∮

⟨[∂x + b+△ ∗ q,∇F1(△ ∗ q)],∇F2(△ ∗ q)⟩dx

= {F1, F2}b2(△ ∗ q).

This proves (1). Statement (2) is a consequence of (1). □

The Lemma and Theorem can be proved the same way as for the Â
(1)
n

case given in [17].

Lemma 5.14. Let H be a functional on C∞(S1, Vn), and H̃ the functional
on C∞(S1,B+

n ) defined by H̃(q) = H(u) if △ ∗ q = u ∈ C∞(S1, Vn) for some
△ ∈ C∞(S1, N+

n ). Then ∇H̃(u) = πB−

n
(Pu(∇H(u))), where πB−

n
is the pro-

jection onto B−
n along N+

n and Pu is the linear differential operator given in
Corollary 3.5.

Theorem 5.15. Let { , }i be the Poisson structure on C∞(S1, Vn) defined
in Lemma 5.13. Then we have

{F1, F2}1(u) =
∮

⟨[Pu(∇F1(u)), β], Pu(∇F2(u))⟩dx,(5.19)

{F1, F2}2(u) =
∮

⟨[∂x + b+ u, Pu(∇F1(u))],∇F2(u)⟩dx.(5.20)

The Poisson operator at u for { , }i is the operator Ji : C
∞(S1, V t

n) →
C∞(S1, Vn) defined by

{F1, F2}i(u) =
∮

⟨(Ji)u(∇F1(u)),∇F2(u)⟩dx.

So

(J2)u(v) = [∂x + b+ u, Pu(v)].
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For { , }1, let ξi = ∇Fi(u). Use integration by part to get
∮

⟨[Pu(ξ1), β], Pu(ξ2)⟩dx =

∮

⟨(J1)u(ξ1), ξ2⟩dx.

The Hamiltonian flows for F : C∞(S1, Vn) → R with respect to { , }i is

ut = (Ji)u(∇F (u))

for i = 1, 2.

Example 5.16. [Bi-Hamiltonian structure for B̂
(1)
1 -KdV]

Write ξ̃ = ∇F1(u) = ξ(e21 + e32), η̃ = ∇F2(u) = η(e21 + e32), C = Pu(ξ̃) =
(Cij) and D = Pu(η̃) = (Dij). We use the formula (3.6) for Pu(v) to write
down C and D in terms of ξ and η respectively and compute directly to see
that

{F1, F2}1(u) = ⟨[C, β], D⟩ = −2

∮

ξxηdx,

{F1, F2}2(u) = ⟨[∂x + b+ u,C], D⟩ = −2

∮

(ξxxx − 2u1ξx − (u1)xξ)ηdx.

Since ⟨ξ̃, η̃⟩ = 2
∮

ξηdx, we see that

(J1)u(ξ̃) = −ξxβ1,
(J2)u(ξ̃) = −(ξxxx − 2u1ξx − (u1)xξ)β1,

where β1 = e12 + e23. This is the standard bi-Hamiltonian structure for the
KdV-hierarchy (cf. [2]).

The commuting Hamiltonians for the B̂
(1)
n -hierarchy given in [3] can be

written in terms of T2j−1,−1(u).

Theorem 5.17. ([3]) Let u, β, T (u, λ) be as in Theorem 5.1, T2j−1,−1(u)
as in (5.4), h2j−1(u) = −tr(T2j−1,−1(u)β), and F2j−1 : C

∞(S1, Vn) → R de-
fined by

(5.21) F2j−1(u) =

∮

h2j−1(u)dx = −
∮

tr(T2j−1,−1(u)β)dx.

Then we have the following:

1) ∇F2j−1(u) = π0(T2j−1,0(u)), where π0 is the projection onto V t
n defined

by (3.5).
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2) The Hamiltonian equation for F2j−1 with respect to the Poisson struc-

ture { , }2 defined by (5.20) is the (2j − 1)-th B̂
(1)
n -KdV flow.

3) The Hamiltonian flow of F2j−1 for j > n with respect to { , }1 defined

by (5.19) is the (2(j − n)− 1)-th B̂
(1)
n -KdV flow.

Example 5.18 (The third B̂
(1)
1 -KdV flow). For n = 1. we have u = qβ1.

Since J3
B = λJB, T

3(u, λ) = λT (u, λ). So T3,−1(u) = T1,−2(u). We compare
coefficients of Giλ

j of (5.3) to compute the G−1 component of T1,−2 and see
that h3(u) = −q2. So F3 given in Theorem 5.17 is (1.9), i.e.,

F3(qβ1) = −
∮

q2dx.

Next we compute ∇F3. For v = ηβ1, we have

d(F3)u(v) = −2

∮

qηdx =

∮

⟨−qβt1, ηβ1⟩dx.

(Here we use the fact that ⟨β1, βt1⟩ = 2). So ∇F3(u) = −qβt1. It follows from
Example 5.16 that the Hamiltonian flow for F3 with respect to { , }2 is the
KdV (1.5).

Example 5.19 (The third B̂
(2)
2 -KdV flows). For n = 2, we have β1 =

e23 + e14, β2 = e14 + e25, and u = u1β1 + u2β2. Compare coefficient of Giλ
j ’s

of (5.3) to obtain T1,i(u) for small i, then use them to compute T3,0(u) and
the G−4 component of T3,−1(u). We obtain

h3(u) =
1

2
u21 + 2u2.

For v = v1β1 + v2β2, we have

d(F3)u(v) =

∮

u1v1 + 2u2v2dx =

∮

⟨1
2
u1β

t
1 + βt2, v1β1 + v2β2⟩dx.

Thus

∇F3(u) =
1

2
u1β

t
1 + βt2.

We use (3.7) to write down Pu(∇F3(u)) with ξ = −u1

2 , η = 0, and v2 = 1.

A direct computation implies that the third B̂
(1)
2 -KdV flow, ut = [∂x + b+
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u, Pu(∇F3(u))], is

(5.22)

{

(u1)t = −1
2u

(3)
1 + 3

2u1(u1)x + 3(u2)x,

(u2)t = u
(3)
2 − 3

2u1(u2)x.

6. The Â
(2)
2n - and Â

(2)
2n -KdV hierarchies

In this section, we give the constructions of the Â
(2)
2n - and the Â

(2)
2n -KdV

hierarchies and their Hamiltonian theory.
Let θ be the involution of sl(2n+ 1,C) defined by

θ(y) = −ρ−1
n ytρn,

where ρn is defined by (1.1). Note that sl(2n+ 1,R) is invariant under θ. Let
K and P be the +1 and −1 eigenspaces of θ on sl(2n+ 1,R) respectively,
i.e.,

K = {y ∈ sl(2n+ 1,R) | − ρ−1
n ytρn = y} = o(n+ 1, n),

P = {y ∈ sl(2n+ 1,R) | ρ−1
n ytρn = y}.

Then we have

(6.1) [K,K] ⊂ K, [K,P] ⊂ P, [P,P] ⊂ K.

The affine Kac-Moody algebra Â
(2)
2n is the algebra of ξ(λ) ∈ sl(2n+ 1,C)

satisfying the Â
(2)
2n -reality condition,

(6.2) ξ(λ̄) = ξ(λ), θ(ξ(−λ)) = ξ(λ).

We have the following simple facts.

1) ξ(λ) =
∑

i ξ
i
λ lies in Â

(2)
2n if and only if ξi is in K for even i and in P

for odd i.

2) Let

(6.3) J(λ) = e1,2n+1λ+ b.

Then J2j−1 are in Â
(2)
2n for all j ≥ 1 and

(6.4) J2n+1(λ) = λI2n+1.
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Theorem 6.1. ([3], [15]) Let q ∈ C∞(R,B+
n ), and J as in (6.3). Then

there exists a unique

S(q, λ) = e1,2n+1λ+
∑

i≤0

S1,i(q)λ
i

in Â
(2)
2n satisfying

(6.5)

{

[∂x + J + q, S(q, λ)] = 0,

S2n+1(q, λ) = λI2n+1.

Moreover, S1,i(q) is a differential polynomial of q for all i.

Write

(6.6) S2j−1(q, λ) =
∑

i≤[ 2j−1

2n+1
]+1

S2j−1,i(q)λ
i.

Since S(q, ·) satisfies (6.2), S2j−1(q, ·) also satisfies (6.2). So we have

(6.7) S2j−1,i(q) ∈
{

K, for even i,

P, for odd .

It follows from [∂x + J(λ) + q, S(q, λ)] = 0 that we have

(6.8) [∂x + J(λ) + q, S2j−1(q, λ)] = 0.

Compare the constant coefficient of (6.8) as a power series in λ to get

(6.9) [∂x + b+ u, S2j−1,0(q)] = [S2j−1,−1(q), e1,2n+1].

It follows from (6.7) that the left hand side of (6.9) lies in K = o(n+ 1, n)
and the right hand side is upper triangular. So the left hand side lies in
C∞(R,B+

n ) and we have the following flows:

Definition 6.2. For j ̸≡ 0(mod(n)), the (2j − 1)-th Â
(2)
2n -flow is the follow-

ing flow on C∞(R,B+
n ),

(6.10) qt = [∂x + b+ q, S2j−1,0(q)].

Remark 6.3. If q = (qij) ∈ C(R2,Bn) is a solution of (6.10), then by (6.9)
we have qij(x, t) = qij(0, 0) for i+ j ≤ 2n+ 1 and i ̸= 1. In other words,
(6.10) is a flow on C∞(R, Xn), where Xn = {[e1,2n+1, y] | y ∈ P} ⊂ B+

n .
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Definition 6.4. The (2j − 1)-th Â
(2)
2n -KdV flow is the following flow on

C∞(R, Vn),

(6.11) ut = [∂x + b+ u, Pu(π0(S2j−1,0(u)))],

where Pu is the operator defined as in Corollary 3.5.

Remark 6.5. Let b2n denote the subalgebra of upper triangular matrices
in sl(2n+ 1,R), N+

2n the subgroup of upper triangular matrices y = (yij) in
SL(2n+ 1,R) with yii = 1 for all 1 ≤ i ≤ 2n+ 1,

Y2n : = ⊕2n
i=1Rei,2n+1,

Z2n : = Vn ⊕ (⊕n
i=1Rei,2n+2−i).

It is known (cf. [3], [17]) that C∞(R, Y2n) is a cross section of the gauge ac-
tion of C∞(R,N+

2n) on C
∞(R, b+2n). Use a proof similar to the one given for

Proposition 5.6 to see that C∞(R, Z2n) is also a cross section of this gauge

action. So we obtain two Â
(1)
2n -KdV hierarchies. One on C∞(R, Y2n), which

is the Gelfand-Dickey hierarchy. The second is a hierarchy on C∞(R, Z2n).

They look different but are gauge equivalent. Moreover, the Â
(1)
2n -KdV hier-

archy on C∞(R, Z2n) leaves C
∞(R, Vn) invariant and the restriction of the

Â
(1)
2n -KdV hierarchy to C∞(R, Vn) is the Â

(2)
2n -KdV hierarchy.

The following two propositions can be proved by similar argument as for

the B̂
(1)
n case.

Theorem 6.6. If u ∈ C∞(R, Vn) and j ≥ 1, then

(6.12) η̃j(u) := S2j−1(u)− Pu(π0(S2j−1,0(u)))

is a N+-valued differential polynomial of u.

Proposition 6.7.

1) q : R2 → B+
n is a solution of the (2j − 1)-th Â

(2)
2n -flow if and only if the

following linear system is solvable for h : R2 → O(n+ 1, n),

(6.13)

{

h−1hx = b+ q,

h−1ht = S2j−1,0(q).
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2) u : R2 → Vn is a solution of the (2j − 1)-th Â
(2)
2n -KdV flow if and only

if the following linear system is solvable for g : R2 → O(n+ 1, n),

(6.14)

{

g−1gx = b+ q,

g−1gt = Pu(π0(S2j−1,0(u))).

Proposition 6.8. Let q be a solution of the (2j − 1)-th Â
(2)
2n -flow, and △ :

R2 → N+
n such that △(·, t) ∗ q(·, t) is in C∞(R, Vn) for all t. Then u = △ ∗ q

is a solution of the (2j − 1)-KdV flow. Moreover, if h is a solution of (6.13),
then g = h△−1 is a solution of (6.14).

Remark 6.9. It follows from similar arguments as for the B̂
(1)
n -KdV hier-

archy that we obtain two compatible Poisson structures on C∞(S1, Vn) for

the Â
(2)
2n -KdV hierarchy:

{F1, F2}a1(u) =
∮

⟨[Pu(∇F1(u)), e1,2n+1], Pu(∇F2(u))⟩dx,

{F1, F2}a2(u) =
∮

⟨[∂x + b+ u, Pu(∇F1(u))],∇F2(u)⟩dx.

We claim that { , }a1 = 0. To see this, first note that e1,2n+1 ∈ P, K = o(n+
1, n), [K,P] ⊂ P, and ⟨P,K⟩ = 0. Since Pu(∇F (u)) ⊂ Vn ⊂ K, we have
[Pu(∇F (u)), e1,2n+1] ⊂ P. Hence

{F1, F2}a1(u) =
∮

⟨[Pu(∇F1(u)), e1,2n+1], Pu(∇F2(u))⟩dx = 0.

This proves the claim.
It is known (cf. [14], [17]) that { , }a1 and { , }a2 generate a sequence of

compatible Poisson structures { , }j defined by

{F1, F2}aj (u) =
∮

⟨(Ja
j (∇F1(u))),∇F2(u)⟩dx, where

Ja
j = Ja

2 ((J
a
1 )

−1Ja
2 )

j−2

for j ≥ 1 (cf. [14], [17]). Although { , }a2i−1 = 0, { , }a2i defines a Poisson struc-

ture for the Â
(2)
2n -KdV hierarchy. Hence ({ , }a2, { , }a4) is a bi-Hamiltonian

structure for the Â
(2)
2n -KdV hierarchy. Note also that { , }a2 is the same Pois-

son structure { , }2 defined by (5.20) for the B̂
(1)
n -KdV.
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Theorem 6.10. ([3], [17]) Let u, and S(u, λ) be as in Theorems 6.1, and
S2j−1,0(u) defined by (6.6). Let k2j−1(u) = −tr(S2j−1,−1(u)β), and

(6.15) G2j−1(u) =

∮

h2j−1(u)dx = −
∮

tr(S2j−1,−1(u)e1,2n+1)dx.

Then

1) ∇G2j−1(u) = π0(S2j−1,0(u)), where π0 is the projection onto V t
n de-

fined by (3.5),

2) the Hamiltonian flow for G2j−1 with respect to { , }2 defined by (5.20)

is the (2j − 1)-th Â
(2)
2n -KdV flow (6.11),

3) the Hamiltonian flow for G2j−1 for j > 2n with respect to { , }a4 defined

by (5.20) is the (2(j − 2n)− 1)-th Â
(2)
2n -KdV flow.

Example 6.11 (The fifth Â
(2)
2 -KdV flows). For the Â

(2)
2 -KdV hierar-

chy, we have u = q(e12 + e23) and S
3(u, λ) = λI3. Hence S5,−1(u) = S2,−1(u).

Note that the leading term of S2(u, λ) is btλ. Write S2(u, λ) = btλ+
∑

i≤0 S2,i(u)λ
i. Compare coefficients of Giλ

j of

{

[∂x + b+ u, btλ+
∑

i≤0 S2,i(u)λ
i] = 0,

(btλ+
∑

i≤0 S2,i(u)λ
i)3 = λ2I

to obtain k5(u) = −1
9(q

2
x +

8
3q

3) and

G5(u) = −1

9

∮ (

q2x +
8

3
q3
)

dx.

A direct computation implies that ∇G5(u) =
1
9(qxx − 4q2)βt1. Use (3.6) to

compute Pu(∇G5(u)) and see that the fifth Â
(2)
2 -KdV is the KK equa-

tion (1.6).

Example 6.12 (The third Â
(2)
4 -KdV flows). We have β1 = e23 + e14,

β2 = e14 + e25, and u = u1β1 + u2β2. We first compare both sides of the
Giλ

j component of (6.5) to obtain S1,−i(u) for 0 ≤ i ≤ 2, then use these to
compute the coefficient of (2n+ 1, 1)-th entry of the coefficient of λ−1 of
T 3(u, λ). We see that k3(u) = 2u2 +

4
5u

2
1 and

G3(u) =

∮ (

2u2 +
4

5
u21

)

dx
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on M3,2(S
1). Moreover,

d(G3)u(v) =

∮ (

8

5
u1v1 + 2v2

)

dx =

∮ 〈

4

5
u1β

t
1 + β2, v1β1 + v2β2

〉

dx.

So we have ∇G3(u) =
4
5u1β

t
1 + βt2. Use (3.7) to get Pu(∇G3(u)). Then a

direct computation implies that the third Â
(2)
4 -KdV flow is

{

(u1)t = 3u′2 − 2u
(3)
1 + 12

5 u1u
′
1,

(u2)t = u
(3)
2 − 3

5u
(5)
1 + 6

5u1u
(3)
1 + 3

5u
′
1u

′′
1 +

7
5u

′
1u2 − 6

5u1u
′
2.

7. Isotropic curve flows on Mn+1,n of type B and A

In this section, we use Sections 4, 5, and 6 to write down isotropic curve
flows on Mn+1,n of type B and A respectively, and their relations to the

B̂
(1)
n - and Â

(2)
2n -flows.

It follows from Theorems 4.1, 5.17 and 6.10 that we have the following:

Theorem 7.1. Let F2j−1, G2j−1 be the functionals on C∞(S1, Vn) defined
by (5.21) and (6.15) respectively, F̂2j−1 = F2j−1 ◦Ψ, Ĝ2j−1 = G2j−1 ◦Ψ,
where Ψ is the isotropic curvature map from Mn+1,n(S

1) to C∞(S1, Vn).
Then the Hamiltonian flows for F̂2j−1 and Ĝ2j−1 with respect to the Pois-
son structure { , }∧ on Mn+1,n defined by (4.2) are

γt = gPu(π0(T2j−1,0(u)))e1,(7.1)

γt = gPu(π0(S2j−1,0(u)))e1,(7.2)

respectively, where g(·, t) and u(·, t) are the isotropic moving frame and cur-
vature along γ(·, t).

Definition 7.2. Equations (7.1) and (7.2) on Mn+1,n are called the (2j −
1)-th isotropic curve flow of type B and A respectively.

It follows from Theorem 4.5 (1) that we have

Corollary 7.3. If γ(x, t) is a solution of flow (7.1) ( (7.2) resp.), then its

isotropic curvature u(·, t) is a solution of the (2j − 1)-th B̂
(1)
n -KdV (Â

(2)
2n -

KdV resp.) flow.
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It follows from Theorems 5.9 and 6.6 that the (2j − 1)-th isotropic curve
flows on Mn+1,n of B-type and A-type can be written as

γt = gT2j−1,0(u)e1,(7.3)

γt = gS2j−1,0(u)e1..(7.4)

Proposition 7.4. If q is a solution of the (2j − 1)-th B̂
(1)
n -flow (Â

(2)
2n -flow

resp.) and h is a solution of (5.15) ( (6.13) resp.), then γ := he1 is a solution
of the (7.1) ( (7.2) resp.). Moreover, let △(x, t) ∈ N+

n such that △(·, t) ∗
q(·, t) ∈ C∞(R, Vn). Then the isotropic curvature of γ is △−1 ∗ q.

Proof. By Proposition 5.12, u := △−1 ∗ q is a solution of the (2j − 1)-th

B̂
(1)
n -KdV flow and g := h△−1 is a solution of (5.16). It follows from Theo-

rem 4.5 that γ := ge1 is a solution of (7.1) with u as its isotropic curvature.
Since △ ∈ N+

n , ge1 = h△−1e1 = he1. □

Example 7.5 (The trivial solution of isotropic curve flows). Note

that u = 0 is a solution of the (2j − 1)-th B̂
(1)
n - (Â

(2)
2n - resp.) flow respectively,

and h(x, t) = exp(bx+ b2j−1t) is a solution of (5.15). So by Proposition 7.4,

γ(x, t) = exp(bx+ b2j−1t)e1

is the solution of (7.1) ((7.2) resp.) with zero isotropic curvature.

Example 7.6 (The third isotropic curve flow of B-type on M2,1).
For n = 1, we have seen in Example 5.18 that ∇F3(u) = −qβt1 for u = qβ1.
Formula (3.6) implies that the first column of Pu(∇F3(u)) is (qx,−q, 0)t.
Hence the third isotropic curve flow on M2,1 is (1.7).

Example 7.7 (The third isotropic curve flow of B-type on M3,2).
We have seen in Example 5.19 that for u = u1β1 + u2β2, we have ∇F3(u) =
1
2u1β

t
1 + βt2. So (3.7) implies that the first column of Pu(∇F3(u)) is

(

0,−1

2
u1, 0, 1, 0

)t

.

So the third isotropic curve flow of B-type on M3,2 is

γt = (γ, γx, γxx, p4, p5)Pu(∇F3(u))e1 = −1

2
u1γx + p4, by (2.7),

= −3

2
u1γx + γxxx.
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Example 7.8 (The fifth isotropic curve flow of A-type on M2,1).
For u = qβ1, we have seen in Example 6.11 that ∇G5(u) =

1
9(qxx − 4q2)βt1.

Use (3.6) to see that the first column of Pu(∇G5(u)) is (−ξx, ξ, 0)t, where
ξ = 1

9(qxx − 4q2). Hence the third isotropic curve flow of A-type on M2,1

is (1.8).

Example 7.9 (The third isotropic curve flow of A-type on M3,2).
For u = u1β1 + u2β2, we have seen in Example 6.12 that ∇G3(u) =

4
5u1β

t
1 +

βt2. The formula (3.7) implies that the first column of Pu(∇G3(u)) is

(

−3

5
(u1)x,−

1

5
u1, 0, 1, 0

)t

.

So the third isotropic curve flow of A-type on M3,2 is

γt = −3

5
(u1)xγ − 1

5
uxγx + p4.

Use formula (2.7) for p4 to see that it can be written as

γt = −3

5
(u1)xγ − 6

5
u1γx + γ(3)x .
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(2)
2n -hierarchy,

preprint.

Dept. of Mathematics, University of California at Irvine

Irvine, CA 92697-3875, USA

E-mail address: cterng@math.uci.edu

School of Mathematics (Zhuhai), Sun Yat-sen University

Zhuhai, Guangdong 519082, China

E-mail address: wuzhiwei3@mail.sysu.edu.cn

Received June 14, 2018

Accepted October 14, 2019


	Introduction
	Moving frames along isotropic curves
	The tangent space of Mn+1, n at 
	Hamiltonian isotropic curve flows
	The n(1)- and n(1)-KdV hierarchies
	The 2n(2)- and 2n(2)-KdV hierarchies
	Isotropic curve flows on Mn+1,n of type B and A
	References

