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Errata to “Smooth convergence away
from singular sets”

SAJJAD LAKZIAN AND CHRISTINA SORMANI

Seven years after the publication of “Smooth convergence away
from singular sets” [LS13], Brian Allen discovered a counter exam-
ple to the published statement of Theorem 1.3. Note that Theorem
4.6 (which is the key theorem cited in other papers) remains cor-
rect. We have added an hypothesis to correct the statement of
Theorem 1.3 and its consequences, and provide a detailed proof
and explanation of the error within as well as presenting Brian
Allen’s example in the Appendix. We have also made corrections
to the arxiv posting of this paper.

1. Introduction

We regret to report that seven years after the publication of “Smooth con-
vergence away from singular sets” [LS13], Brian Allen discovered a counter
example to the published statement of Theorem 1.3. We present his counter
example in the appendix to this errata. Theorem 1.3 is false as stated in
the original publication for smooth convergence g; — goo on M \ S where
the convergence is only uniform on compact sets K C M \ S. We are able to
correct this theorem and its consequences, Theorem 1.2 and Theorem 6.6,
by adding in the assumption that the convergence of g; — g is also uni-
form from below on M \ S in the sense described in the following revision
of Definition 1.1:

Definition 1.1. We will say that a sequence of Riemannian metrics, g;,
on a compact manifold, M, converges smoothly away from S C M to a
Riemannian metric go on M \ S if for every compact set K C M\ S, g;
converge C* smoothly to goo as tensors. In addition we say that it converges
uniformly from below if there exists §; — 0 such that g; > (1 — §;)%goo on
M\ S.

Using this new hypothesis we can prove Theorem 1.2 and Theorem 1.3
stated as follows:
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Theorem 1.2. Let M; = (M,g;) be a sequence of oriented compact Rie-
mannian manifolds with uniform lower Ricci curvature bounds,

(1.1) Riccig, (V,V) > (n— DHg(V,V) ¥V e TM;

which converges smoothly away from S uniformly from below where S is a
submanifold of codimension 2.
If there is a connected precompact exhaustion, W;, of M\ S,

(1.2) Wj C Wj+1 with U Wj =M \ S
j=1
satisfying
(1.4) Voly, (0W;) < Ay,
and
(1.5) Volg, (M \ W;) < V; where lim V; =0,
j—o0
then
(1.6) lim dgu(M;,N) =0,
j—o0

where N is the metric completion of (M \ S, goo)-

Theorem 1.3. Let M; = (M, g;) be a sequence of compact oriented Rie-
mannian manifolds such that there is a submanifold, S, of codimension 2,
and connected precompact exhaustion, W, of M\ S satisfying with g;
converge smoothly to goo on M\ S uniformly from below such that

(1.7) dlali(VVj) < DQ Vi > j,
(1.8) VOlgl.(aWj) < Ao,

and

(1.9) Volg, (M \ W;) < V; where lim V; = 0.

J—00
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Then

(1.10) lim dr(M],N') = 0.

Jj—00
where N’ is the settled completion of (M \ S, goo)-

Note that Brian Allen’s counter example is a counter example to The-
orem 1.3. We conjecture that Theorem 1.2 is true as originally stated, but
we leave that to future mathematicians to study.

The error in the proof of Theorem 1.3 was traced by Brian Allen to a
reversal of indices in limits in the original proof of Theorem 5.2. We find that
by correcting the order of the limits in Definition 5.1 of uniform well embed-
dedness, we can prove Theorem 5.2 as originally stated. This is reviewed in
detail within.

We also correct the proof of Lemma 5.7 to adapt to this new definition
of uniform well embeddedness using the notion of smooth convergence away
from a singular set uniformly from below. Thus Theorem 1.3 and its con-
sequences (Theorem 1.2 and Theorem 6.6) are true assuming this stronger
hypothesis. This is reviewed within as well.

This paper has been cited many times since its publication. We believe
the only paper that needs revision is [L16] by the first author of this paper.
The other papers apply only Theorem 4.6, which remains correct as origi-
nally stated and proven. To make this errata as easy to read as possible, we
break it into the same sections and subsections as the original paper. We
have also posted a version 4 of this article on the arxiv where all these cor-
rections have been made in blue exactly where they belong in the original 63
page article. We apologize for the necessity and for the length of this errata.

2. Background

This section is correct as written in the original paper.

3. Examples

The examples in this section were rechecked carefully and are all correct as
presented in the original paper.
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4. Explicit estimates with isometric embeddings

The work in this section is correct as originally stated and proven including
the essential Theorem 4.6 that has been applied in a number of papers.

5. Intrinsic flat limits

The limits in the following restatement of Definition 5.1 have been reordered
to match what we need to prove Theorem 5.2 with its original proof.

Definition 5.1. Given a sequence of Riemannian manifolds M; = (M, ¢;)
and an open subset, U C M, a connected precompact exhaustion, W;, of U
satisfying (1.2) is uniformly well embedded if

(5.1) Nijh = 5P |dw, g.)(2,Y) = darg) (7, Y)]
I,yer

has

(5.2) lim sup lim sup lim sup A; j , = 0.

Jj—o0 k—o0 1—+00

and thus a uniform upper bound
(5.3) Aijk < Ag <00

This theorem is correct as originally stated using this new definition.
However the proof which appeared after the statement of Lemma has
significant changes which we will describe below after reviewing the material
leading up to it so we include its statement here so that it is easy to follow
the new proof.

Theorem 5.2. Let M; = (M, g;) be a sequence of compact oriented Rie-
mannian manifolds such that there is a closed subset, S, and a uniformly
well embedded connected precompact exhaustion, Wj, of M\ S satisfying
such that g; converge smoothly to goo on each W; with

(5.4) diamM,i(Wj) S D() Vi Z j,

(5.5) VOlgi (8Wj) < A()
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and

(5.6) Volg, (M \ W;) < V; where Jlggovj =0.
Then

(5.7) lim dr (M}, N') =0

j—00
where N’ is the settled completion of N = (M \ S, goo)-

Remark 5.3. This remark about the examples is correct as originally
stated and now we also have the example by Brian Allen in the Appendix
to justify why we changed the definition of uniform well embeddedness.

5.1. Creating spaces from exhaustions: has minor corrections

Proposition 5.4. This proposition is correct as originally stated and the
proof has minor typos at the end of the proof which can be corrected as
follows:

dw, (Ti g, yik) < dw, (T3, 23) + dw, (24, y:) + dw, (i, ¥i,)
< dn(ws,y:) + 3€'/5
< dn(xi,, zi) + dn (i, yi) + dn (i, vi,) + 3€'/5
< dw, (@i, ;) + dn (i, yi) + dw, (i, i, ) + 3€' /5
< dw, (i, i) + dn(xs,y:) + dw, (yi, yi,) + 3€ /5
< dn(xi,yi) +5€ /5 = dn (i, yi) + €.

Since dn (i, Yik) < dw, (Ti g, Yi k), we have

(5.8) ik < dw, (@1, Yik) — AN (Tie, i) < €.

Example 5.5. This example is correct as originally presented.
5.2. Proof of Theorem [5.2] has essential corrections

Lemma 5.6. This lemma is correct as originally stated and proven.

We now present the corrected proof of Theorem starting as in the
original paper, pointing out the error, and continuing with the correction:
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Proof. By hypothesis (j5.6) and Lemma we have:
(5.9) Vol(M;) <V,

Next we prove that (W}, go) satisfy the hypothesis of Proposition Ob-
serve that hypothesis (5.6) and smooth convergence we have

(5.10) VOlgoo (W]) = Zliglo VOlgi(Wj) < Vb,
while ((5.5)) implies
(5.11) Vol,__ (OW;) = Zliglo Voly, (0W;) < Ay.
Finally
(5.12) diamy(N) = lim diamy (W)
]*)OO

. < lim lim di W,
(5.13) < Jliglo kll}n;o diamyy, ) (W;)
(5.14) < ]151;10 kli)ngo Zlgcr)lo diamyy, o) (Wj)
(5.15) < ]liglo klgtgo Zli)rgo diam(Mvgi)(VVj) + Nijk
(5.16) < limsup lim sup lim sup Do + A; j x

J—00 k—o0 1—+00

Thus by Proposition [5.4] we have

5.18 dr((W;, gs0), (N',dso)) = F; where lim F; = 0.
J J J

Jj—o0

Next we will apply Theorem 4.6 to show M; = (W, gs) and My =
(M, g;) are close in the intrinsic flat sense by setting Uy = W; C W}, and
Uy = W; C M for some well chosen j < k Then the values in the hypothesis
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of the theorem are

( ) € =65 where llim €5 = 0,
11— 00
(5.20) Dy, < diamyy 4,y (W;) < Do
(5.21) Dy, < diamy, 4,)(Wj) < Do + Ao
5.22 a=a;; <a;;=2(Dy+ \)arccos(1+ ¢ ;) /m
7‘7 7] 7]
(5.23) A =\, ;. instead of A jx
(5.24)
(5.25)

h=hijr < \/)\;,j,k<D0 A0+ A k/4)

h = Bi,j,k < maX{th’k, \/61273‘ + 2€i,j(DO + )\0)}

(5.26) dr (Wi, 9oo), (M, gi)) < (hijx + aij) (2Vo + 2A0) +2V;.

Brian Allen observed the above estimate was incorrect in the published
version because in (5.23]) we had

Ai,j,k = SU% |d(Wk,gL)(x7y) - d(M,gz)(xay)’ as in "
z,yeh;

but to apply Theorem 4.6 we need

A;,j,k; = Ssup |d(Wk7goo)(J‘" y) - d(M,gi)(ajv y)|
z,yeW;

We observe now that
(N — Nisgikl < ik
where
z,yeW,;
So by the smooth convergence of g; to g, on W), we have

(1+ €i%) %G00 < 9 < (1 + €1)°goo on Wy, where lim e; =0
7 o

Thus for any curve, C, in W we have

(1+ Ei,k)ingm(C) < Lgi(C) <(1+ ei,k>Lgoo (€)
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Applying this to a g;-minimizing curve C; from x to y in W, we have

dWy.g..) (@, y) < Ly (Ci) < (1 + €%) Ly, (Ci)
= (1 + €i6)d(w, g.) (7, Y)
< d(kagi)(‘T7 y) + Ei,k(DO + )\0)

and applying this to a goo,-minimizing curve C'» from z to y in W} we have

d(Wk,gi)($7y) S Lgl(COO) S (1 + Ei,k)Lgoo (COO)
= (1+€ir)daw, g..)(,y)
< dw, g.0) (@, y) + € k(14 €x) (Do + Xo)

because

dwp.g.) (@, 9) < (1 +€ix)dw, g (2, y) < (14 €1) (Do + Ao)

Thus
Nigk < ik = € k(1 + € k) (Do + Ao)(Do + Ao)

and for fixed k,

lim n; ;, = 0.

1— 00
So

zliglo )\;’j’k - zli}lgo Aij s

This leads to the reordering of the limits in our fixed definition of uniformly
well embedded:

lim sup lim sup lim sup A jx =0
Jj—00 k—o0 1—+00

which will imply

lim sup lim sup lim sup )\;-7j7k =0
J—r00 k—o0 1—>00

and thus

lim sup lim sup lim sup h; ;r = 0.
Jj—00 k—oo 1—>00

Combining ([5.26)) with (5.18]) we have for any j < k,

(5:27)  dr((N,goc), (M, 9) < (i + i) (2V0 + 240 ) + 2] + F.
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So now we should take ¢ — oo first. Recall that for any fixed 7, lim; . €; ;
= 0, thus lim; ,oc a; ; = 0 as well.

lim sup dr (N, gso), (M, g:)) < (e +0) (2V0 n 2A0) +2V; + Fj +0.
i—00
where hjj = limsup,_, hi j . Next taking the limsup as k — oo
limsup d- (N, gsc). (M. ) < (B +0) (20 +24) +0+0.
i—00
where l_1j = lim supy_, o Bj,k- Taking the limsup as j — oo
limsup dz (N, gso), (M, gi)) < (0 +0) (2V0 + 2A0) +0+0=0.

i—00

O
5.3. Codimension 2 singular sets has essential corrections

The following lemma combined with Theorem [5.2]is needed to complete the
proof of Theorem Note that it has both a new statement and a new
proof:

Lemma 5.7. Let M be compact, gi = goo smoothly away from S uniformly
from below where S is a closed submanifold of codimension 2, diamg_ (M \
S) < 00, and diamg, (M) < Dg then, any connected precompact exhaustion,
Wj, of M\ S is uniformly well embedded.

With the correction to Definition the original proof of this lemma
is no longer correct. We now prove this lemma using the new definition of
smooth convergence away from S uniformly from below and the adapted
definition of uniformly well embedded. The proof is similar to the original
proof but we must be careful to take the limits in the correct order.

Proof. Observe that

(5.28) Adw,g0) (@ y) — dargy (T, y) 20

because W), C M and so

(5.30) > inf{Ly (C)| C:[0,1] = M, C(0) =z, C(1) =y}
(5.31) = d(ar,g)) (7, Y)-
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Thus

(5.32) Aijk = sup  daw, ¢,)(T,y) — d(arg,) (2, Y)-
z,yeW;

Since Wj is compact, there exists z; j 1, i j.x € VT/] achieving this supremum:
(5.33) Nijk = AW (Tijks Yig k) = d(arg) (Tijiks Yijik)-
Consider a subsequence i’ — oo such that

(5.34) im Ay jp = limsup A; jx

i'—00 i—00
and consider a further subsequence, also denoted ¢’ such that
(5.35) Tirjk = Toojk a0d Yir jk = Yoo ik € Wj.
In particular, as i — oo for fixed j, k, we have
(5.36) dg.o Wi (Tir jkr Too k) — 0 and dg_ w, (Yir j k> Yoo,jk) — 0

Since g; —+ goo on Wy, for fixed k, there exists H; j > 1 such that

_ dg,.w.(p, q)
5.37 H > 920D > [ Ypog € W
( ) 1,5,k dgoo,Wk (p, q) %0y J
where
(5.38) lim H; jj, =1 for fixed j, k.

21— 00

Thus as i’ — oo we have

(5:39)  dgwi (i ks Toojk) < Hir g - dgoo wi (Tir j ks Too jk) = 1-0=10
and

(5.40)  dgw, (Vi gk Yoo,ik) < Hir gk dgo Wi (Yir jiks Yoojk) — 1-0=10
Combining these with the triangle inequality we have

(5.41) [ dwy.g.) @i ks Yir k) — AW g,0) (Too,j ks Yoo,jike)| = 0
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Note in addition that

(5.42) dg, v (p, ) < dg, W, (P, @)

so as i/ — oo for fixed j, k we have

(5.43) dg, M(Zir j iy Too k) — 0 and dg,, v (Yir j ks Yoo,jke) — 0.

Combining these with the triangle inequality we have

(5.44) | d(at,g,) (i ke Yir k) — A(a,g,) (Too,j ks Yoo,jk) | — 0

Thus

(5.45) limsup Ay = Hm dw, g, (Toojks Yso,jik)
1—00 =00

— d(M,g.) (Tooji ks Yoo, jk)-

Let 7, jr be a gy minimizing geodesic in M between To ;i and Yoo j k-
Since S is a submanifold of codimension 2, for any h; € (0, Dy), we can find
a curve Cy ;1 : [0,1] — M \ S between these points such that

(5.46) [Lg, (Cir jk) — dntg, (Too j ks Yoo,jk) | < hir

by sliding v;/ ;1 over slightly to avoid S. By the new definition of smooth
convergence away from S uniformly from below we have

(5.47) gi > (1 —3;)%goo on M\ S.
Thus

(5.48)  dum g, (Toojky Yoo k) = (1

> 6i)Lg.. (Cir j i) — hir
(5.49) > (1

5i)d(M\S,goo) ($oo,j7k> yoo,j,k) — hy.

Since we can choose lim;_,, hiy = 0 and we have §; — 0,
(5.50) Jm di g, (Zoo g Yoo k) 2 A8 g.0) (Too,jikes Yoo, f)-

Since g; — goo uniformly on W, we also have

(5.51) J diw, g, (Too ks Yoo k) = AW g.0) (Too ks Yoo i k)



1766 S. Lakzian and C. Sormani

Combining these we have

(5.52)  limsup Ajjx < diw, g..) (Too,jks Yoo ik) = A(M\S,g.0) (Too,,k Yoo k)
1—00

Now choose a subsequence k' such that

(5.53) limsuplimsup A; j = lim limsup A; ;x
k—oo  i—o0 k'—oo im0

and choose a further subsequence k' such that
(5.54) ZToo,jk —* Too,j C Wj and Yoo,jk — Yoo,j C Wj
By the fact that Wj C Wy € M\ S and the triangle inequality,

(5.55) lim sup limsup A; j < limsup d(Wk/,goo)($oo,jv Yoo,j)
k—o0 i—00 k’—o00

- d(M\S,goo) (‘Too,jv yoo,j)-

For any €; > 0 we have a curve Cj : [0,1] — M \ S running from C;(0) =
Zoo,j t0 Cj(1) = Yoo j such that

(5.56) Ly (Cj) < d(an\8,9..) (Too,js Yoo,j) + €5-

Since Wy, exhaust M \ S, for k' sufficiently large depending on j we have
C5([0,1]) € Wi, so

(5.57) AW,y g9.) (Too s Yoo,j) < Ly (C5).
Thus
(5.58) limsuplimsup A, j 5 < €;.

k—o0 i—00

Finally we apply the fact that we can choose €; — 0 so that

5.59 limsup lim sup limsup A; ; x < €.
’.]7 J
j—oo k—00 i—00

6. Intrinsic flat to GH convergence

The following theorem needs the same stronger hypothesis that Theorems 1.2
and 1.3 needed:
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Theorem 6.1. Let M; = (M, g;) be a sequence of oriented compact Rie-
mannian manifolds with a uniform linear contractibility function, p, which
converges smoothly away from a codimension two submanifold, S, uniformly
from below. If there is a connected precompact exhaustion of M \ S as in
satisfying the volume conditions

(6.1) Volg, (0W;) < Ay

and

(6.2) Volg, (M \ W;) < V; where Jhﬁrgo‘/", =0,
then

(6.3) lim derr(M;, N) =0,

where N is the settled and metric completion of (M \ S, goo)-

It’s proof follows as before applying the following theorem which is now
true using the new definition of uniformly well embedded:

Theorem 6.2. Let M; = (M,g;) be a sequence of compact oriented Rie-
mannian manifolds with a uniform linear contractibility function, p, which
converges smoothly away from a singular set, S. If there is a uniformly well
embedded connected precompact exhaustion of M\ S as in satisfying

the volume conditions and then

(6.4) lim dep (M, N) =0,

J—00

where N is the settled and metric completion of (M \ S, gso)-

This theorem’s proof follows as before.

The rest of the lemmas and theorems in this section are true as originally
stated and proven.

We conjecture that Theorem is true as originally stated.

7. Appendix: Example of Brian Allen

Brian Allen sketched out this example to the second author and we have
filled in the details. This example is highly technical and understanding the
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convergence requires modern methods developed by Brian Allen with the
second author in [AS19].

Example 7.1. Let gy the standard flat metric on M = S' x S! x S!. Let
(7.1) S=5'x {0} x{0}c M

which is a submanifold of codimension 2. Let  : M — [0, 00) be the distance
function from S:

(7.2) r(z) = min{dgy, (z,y) : y € S}

and let h; : [0,00) — [1/2, 1] be a smooth nonincreasing function which sat-
isfies

(7.3) hi(r) =1/2 for r < 1/i and h;(r) =1 for r > 2/i.
Taking
(7.4) 9i = hi(r(z))?go

we have a sequence of Riemannian metrics on M such that g; — go smoothly
on compact sets in M \ S. E|
We claim that

(7.5) the metric completion of (M \ S, dg,) is isometric to (M, dg,).
This can be seen since any geodesics in (M, dy,) can be approximated by

curves in (M \ S,dg,) that are arbitrarily close in length since S has codi-
mension 2. Observe however that by the triangle inequality,

(76) dgi (p7 q) S dgi (pvp/) + dgi (p,a q/) + dgi (q/7 q)a

Since g; < go everywhere and g; = (1/2)%gg on S and S is a convex set with
respect to gg, we have

(7.7) dg,(p,q) < dss(p, q)

1Since supgean s hi(r(z)) —1=1/2for alli € N, we see that g; does not converge
to go on M \ S uniformly from below.
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where

(78) doo(p7 Q) = min{dgo (p7 C.I)7 dgo (p7 p/)
+(1/2)dg, (0, d') + dgo(¢',0) = P/, q" € S}

On the other hand we claim

(7.9) doo(p,q) > dg,(p;q) — 3/3.

To see this take C; a g;-minimizing geodesic from p to ¢, and take p; the first
point on C; where it enters r 1[0, 1/4] and ¢; to be the last point in that set.
Then since g; > (1/2)2go on 7~1[0,1/4] and g; = go elsewhere we have

(7.10) dg, (p,q) = dg.(p, pj) + dg. (Pi, @) + dg, (¢, a)
(7'11) > dgo(p7pz) (1/2) 9o (pw%) +dgo(Qi7Q)

Taking pj, q; € S closest to p;, ¢; respectively, we know

(7.12) dg, (3> pi) < 1/i and dy,(q;,¢;) < 1/i.

So

(7.13) dg, (p,pi) > dg,(p, ;) —1/i

(7'14) dgo (pz’ Ql) Z d (p;, q;) - 2/i

(7.15) dgy (i, q) > dg, (g, q;) — 1/i

Thus we have our claim because

(716) dgi (pv Q) Z dgo (pvpz) (1/2) go (pza qz) + dgo (qza ) + 3/Z
(7.17) > doo(p, q)

So in fact we have d; converges pointwise to ds,. Following the arguments
in the first two papers of Allen-Sormani applying the Appendix to Huang-
Lee-Sormani and the fact that

(7.18) (1/2)dg, (P, q) < dgi(p, q) < dg, (P, q)
we get uniform, intrinsic flat, and Gromov-Hausdorff convergence of

which according to (7.5)) is not the metric completion of (M \ S, gg) even
though g; — go on compact sets away from S.
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Remark 7.2. This example is a counter example to the original statement
of Theorem because M; = (M, g;) is a sequence of compact oriented
Riemannian manifolds such that S is a codimension 2 submanifold and we
can choose a connected precompact exhaustion,

(7.20) W; =r"12/j,00) C M\ S

satisfying ((1.2)

(7.21) W C Wyp with | JW; =M\ S
j=1

with g; converge smoothly to gg on each Wj, in fact g; = go for i > j. Fur-
thermore

(7.22) diamyy, (W;) < diamg, (M) = Dg Vi > 7,
(7.23) Volg, (0W;) < Volg, (0W;) = 4xw(2/4)m
and

(7.24) Voly, (M \ W;) < Vol,, (M \ W;)
= (4/3)7(2/j)*r =V; where lim V; = 0.

J—00

However

(7.25) lim dr(M},N') = 0.

Jj—00
where N’ is the settled completion of (M \ S, go).

Remark 7.3. This example is not a counter example to Theorem be-
cause of the highly negative sectional and Ricci curvature near S.

Remark 7.4. This example is not a counter example to Theorem be-
cause M/S is not uniformly well embedded as defined in the new Defini-
tion Consider a pair of points p,q € M \ S and p/,¢’ € S such that

(7.26)  doo(p,q) = dg, (P, pi) + (1/2)dy, (0, ¢') + dyg,(i5 q) < dg, (P, q)-

Taking any connected precompact exhaustion W; of U = M \ S, we can take
J > k sufficiently large that p,q € W; C Wj. We can take ¢ sufficiently large
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depending on j > k such that

(7.27) W Nr0,1/(2i4)] = 0.

Then

(728) )‘i,j,k = Ssup ’d(Wkagi)(x7 y) - d(M,gL)(x7y)’
x,yEWj

(7.30) > dg,(p,q) — dg,(p, q)-

By the pointwise convergence proven in the example we have

(7.31) lim sup Ai j k. = dg, (P, 4) — doo(p; q)
1—>00
SO
(7.32) lim sup lim sup limsup A; j 1 > dg, (P, q) — deo (P, q) > 0

Jj—00 k—o0 1—+00

and we fail to satisfy (5.2)).
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