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1. Introduction

In this paper we consider smooth solutions to Ricci flow, ∂
∂tg(t) = −2Rc(g(t))

for all t ∈ [0, T ), on closed, connected four manifolds without boundary. We
assume that T <∞ and that the scalar curvature satisfies supM×[0,T ) |R| ≤
1. In a previous paper, see Theorem 3.6 in [Si1], we showed that this implies

(i) Integral bounds for the Ricci and Riemannian curvature

sup
t∈[0,T )

∫

M
|Riem(·, t)|2dµg(t) ≤ c1 <∞

∫ T

0

∫

M
|Rc|4(·, t)dµg(t)dt ≤ c2 <∞

for explicit constants c1 = c1(M, g(0), T ) and c2(M, g(0), T ). An estimate of
the first type was independently first proved, using different methods, in the
arxiv preprint version of [BZ] (see Theorem 1.8 in [BZ]), which appeared a
few months before the arxiv preprint version of [Si1].

In this paper we show the following.

(ii) Estimates for the singular and regular regions

A point p ∈M is said to be regular, if there exists an r > 0 such that
∫

tBr(p)
|Riem |2(·, t)dµg(t) ≤ ε0

for all t ∈ (0, T ), for some fixed small ε0 (not depending on p) which is spec-
ified in the proof of Theorem 4.5. In Definition 4.7, an alternative definition
of regular is given. The singular points are those which are not regular. In
Theorem 4.5 (and the Corollaries 4.9 and 4.10 thereof) and Theorem 5.1 we
obtain estimates for the evolving metric in the singular and regular regions
of the manifold.

(iii) Uniform continuity of the distance function in time.

Using the estimates mentioned in (ii) we show the following (see Theo-
rem 5.6). For all ε > 0 there exists a δ > 0 such that

(1.1) |d(x, y, t)− d(x, y, s)| ≤ ε

for all x, y ∈M for all t, s ∈ [0, T ) with |t− s| ≤ δ.
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(iv) Convergence of (M,d(g(t))) to a C0 Riemannian orbifold (X, d)
as t↗ T .

Using the estimates mentioned in (i),(ii) and (iii), we show that
(M,d(g(t)) → (X, dX) as t↗ T in the Gromov-Hausdorff sense, where
(X, dX) is a C0-Riemannian orbifold with finitely many orbifold points, and
that the Riemannian orbifold metric on X is smooth away from the orbifold
points. Also: the convergence is smooth away from the orbifold points (see
Lemma 6.2 and Theorems 6.5, 6.6, 8.3).

In [BZ], which appeared a few months before the arxiv preprint version
of this paper, the authors also considered Ricci flow of four manifolds with
bounded scalar curvature, and they also prove results about the structure
of the limiting space one obtains by letting t↗ T : see Theorem 1.8 and
Corollary 1.11 of [BZ] (arxiv version 1).

Note added, March 2018. In the latest version (version 3 on arxiv) of [BZ],
which appeared several months after the arxiv preprint version of this paper,
the authors have added a proof (see the proof of Corollary 1.11 in version
3 of the arxiv preprint [BZ]) which also shows, using the estimates of their
paper and an ε-regularity result of Anderson and a method similar to the
one given in the paper [BKN], that the Gromov-Hausdorff limiting space
one obtains by letting t↗ T is a C0 Riemannian orbifold.

(v) The flow may be continued past time T using the orbifold Ricci
flow.

There exists a smooth solution (N, h(t))t∈(0,T̂ ) to the orbifold Ricci flow,

such that(N, d(h(t))) → (X, dX) in the Gromov-Hausdorff sense as t↘ 0
(see Theorem 9.1).

In order to achieve (v), we find it necessary to explain in depth how
the convergence in (iv) is occuring, and to give a detailed description of
the structure of the metric space near orbifold points. See Theorem 7.4 and
Theorem 8.1. In order to flow the limiting orbifold metric, we require not
only the description of the orbifold space coming from Theorem 8.1, but also
information on how the maps occuring in this description were constructed.
This information is contained in Section 8, which in turn uses Theorem 7.4
coming from Section 7.
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2. Setup, background, previous results and notation

In this paper we often consider solutions (M4, g(t))t∈[0,T ) which satisfy the
following basic assumptions.

(a) M4 is a smooth, compact, connected four dimensional manifold with-
out boundary

(b) (M4, g(t))t∈[0,T ) is a smooth solution to the Ricci flow ∂
∂tg(t) =

−2Ricci(g(t)) for all t ∈ [0, T )

(c) T <∞
(d) supM4×[0,T ) |R(x, t)| ≤ 1

If instead of (d) we only have supM×[0,T ) |R(x, t)| ≤ K <∞ for some con-

stant 1 < K <∞, then we may rescale the solution g̃(·, t̃) := Kg(·, t̃
K ) to

obtain a new solution (M, g̃(t̃))t∈[0,T̃ ), where T̃ := KT , which satisfies the
basic assumptions. As we mentioned in the introduction, any solution satis-
fying the basic assumptions also satisfies

sup
t∈[0,T )

∫

M
|Riem(·, t)|2dµg(t) ≤ K0 <∞(2.1)

∫ T

0

∫

M
|Rc|4(·, t)dµg(t)dt ≤ c2 <∞.(2.2)

See Theorem 3.6 in [Si1].
The estimate (2.1) was independently first obtained in the preprint [BZ],

which appeared several months before the preprint version of [Si1], (see
Theorem 1.8 of that paper), using different methods to those used in [Si1].

There are many papers in which conditions are considered which imply
that the solution to Ricci flow defined on [0, T ) may be extended. Gener-
ally, in the real case, this extension is a smooth extension, and the con-
ditions imply that the solution may be smoothly extended to a time in-
terval [0, T + ε) for some ε > 0: that is, the solution does not form a sin-
gularity as t↗ T . Here we list some of these conditions. This is by no
means an exhaustive list and further references may be found in the pa-
pers we have listed here. In the following we assume that (Mn, g(t))t∈[0,T )

is a smooth solution to Ricci flow on a compact n−dimensional manifold
without boundary, and we write the condition which guarantees, that one
can extend the solution past time T , followed by an appropriate refer-
ence. supMn×[0,T |Riem | <∞ [HaThree]. supMn×[0,T ) |Ricci| <∞ [Sesum].
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lim supt↗T |g(t)− h| ≤ ε(n) for some smooth metric h [SimC0] (see also
[KL]). sup(x,t)∈Mn×[0,T ) |Riem(x, t)|(T − t) + |R(x, t)| <∞ [TME] (see also
[SesumLe]).

∫ T

0

∫

Mn

|Rm |α(·, t))dµg(t)dt <∞ for some α ≥ (n+ 2)

2
[Wang1].

∫ T

0

∫

Mn

|Weyl |α(·, t) + |R|α(·, t)dµg(t)dt <∞, where α ≥ (n+ 2)

2
[Wang1].

See also [Wang1], [Wang2], [ChenWang] for further results on extending
Ricci flow.

If one considers solutions to the Kähler Ricci flow, ∂
∂tgij̄ = −2Ricij̄ , then

the following is known: If supMn×[0,T ) |R| <∞, then one can extend the flow
smoothly past time T [Zhang].

The situation in this paper is somewhat different. We consider solutions
with bounded scalar curvature, and we do not rule out the possibility that
singularities can form as t↗ T . However, using our integral curvature esti-
mates (and other estimates) we show that there is a singular limiting space
as t↗ T , and that this singular space is a C0 Riemannian orbifold which can
then be evolved by the orbifold Ricci flow: the limiting space is immediately
smoothed out by the orbifold Ricci flow.

The possibility of flowing to a singular time and then continuing with
another flow (for example orbifold Ricci flow or a weak Kähler Ricci flow)
has been considered in other papers. In the real case, see for example [CTZ].

In the Kähler case see for example Theorem 1.1 in [SongWeinkove2]
(see also [SongWeinkove1], [EGZ] and [EGZII] for related papers). Further
references can be found in the papers mentioned above.

In [ChenWang], the authors investigate the moduli space of solutions to
Ricci flow which have: bounded curvature in the Ln/2 sense, bounded scalar
curvature and are non-collapsed.

There are examples of solutions to Ricci flow which are smooth on [0, T ),
singular at time T , and then become immediately smooth again after this
time: see the neck-pinching examples given in [ACK]. See also [KlLo] and
[FIK]. Here, the flow remains the same, but a change in the topology of
the manifold occurs at the singular time. This notion of extending the flow
is once again different to the one we are considering, and different to the
notion of smooth extension discussed above

The Orbifold Ricci flow and related flows has been studied in many
papers. Here is a (by no means exhaustive) list of some of them: [CTZ],



✐

✐

“6-Simon” — 2020/12/3 — 0:20 — page 1688 — #6
✐

✐

✐

✐

✐

✐

1688 Miles Simon

[ChenYWangI], [ChenYWangII], [ChowII], [ChowWu], [HaThreeO], [KLThree],
[LiuZhang], [WuLF], [Yin], [YinII].

Notation. We use the Einstein summation convention, and we use the
notation of Hamilton [HaThree].

For i ∈ {1, . . . , n}, ∂
∂xi denotes a coordinate vector, and dxi is the corre-

sponding one form.
(Mn, g) is an n-dimensional Riemannian manifold with Riemannian met-

ric g.
gij = g( ∂

∂xi ,
∂
∂xi ) is the Riemannian metric g with respect to this coordi-

nate system.
gij is the inverse of the Riemannian metric (gijgik = δjk).
dµg is the volume form associated to g.
Rm(g)ijkl =

g Riemijkl = Riem(g)ijkl = Rijkl is the full Riemannian cur-
vature Tensor.

Weyl(g)ijkl is the Weyl Tensor.
gRcij = Ricciij = Rij := gklRikjl is the Ricci curvature.
R := Rijklg

ikgjl is the scalar curvature.
g∇T = ∇T is the covariant derivative of T with respect to g. For ex-

ample, locally ∇iT
s
jk = (∇T )( ∂

∂xi ,
∂

∂xj ,
∂

∂xk , dxs) (the first index denotes the

direction in which the covariant derivative is taken) if locally T = T s
jkdx

j ⊗
dxk ⊗ ∂

∂xs .
|T | = g|T | is the norm of a tensor with respect to a metric g. For example

for T = T s
jkdx

j ⊗ dxk ⊗ ∂
∂xs . |T |2 = gimgjngksT

s
ijT

k
mn.

Sometimes we make it clearer which Riemannian metric we are consid-
ering by including the metric in the definition. For example R(h) refers to
the scalar curvature of the Riemannian metric h.

We suppress the g in the notation used for the norm, |T | = g|T |, and
for other quantities, in the case that is is clear from the context which
Riemannian metric we are considering.

A ball of radius r > 0 in a metric space (X, d) will be denoted by

dBr(z) := {x ∈ X | d(x, z) < r}.

An annulus of inner radius 0 ≤ s and outer radius r > s on a metric
space (X, d) will be denoted by

dBr,s(z) := {x ∈ X | s < d(x, z) < r}.

Note then that dB0,s(z) := {x ∈ X | 0 < d(x, z) < r} = dBs(z)\{z}.
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The sphere of radius r > 0 and centre point p in a metric space (X, d)
will be denoted by

dSr(p) := {x ∈ X | d(x, p) = r}.

Dr,R ⊆ R
n is the standard open annulus of inner radius r ≥ 0 and outer

radius R ≤ ∞, (r < R) centred at 0:Dr,R = {x ∈ R
n | |x| > r, |x| < R}.Dr

represents the open disc of radius r centred at 0 : Dr := {x ∈ R
n | |x| < r}.

Note D0,R = {x ∈ R
n | |x| > 0, |x| < R} = DR\{0}.

Sn−1
r (c) := {x ∈ R

n | |x− c| = r} is the (n− 1)-dimensional sphere of
radius r > 0 and centre point c ∈ R

n in R
n.

ωn is the volume of a ball of radius one in R
n with respect to the Lebesgue

meaure.
If Γ is a finite subgroup of O(n) acting freely on R

n\{0}, then
((Rn\{0})/Γ, g) is the quotient manifold with the induced (flat) metric
coming from π : Rn\{0} → (Rn\{0})/Γ, π(x) := {[x] | x ∈ R

n\{0}}, where
[x] := {Gx | G ∈ Γ}.

(gBr,s(0), g) ⊆ ((Rn\{0})/Γ, g) refers to the setgBr,s(0) := {π(x) | x ∈
Dr,s} with the Riemannian metric g.

3. Volume control, and the Sobolev inequality

In [Ye] and [Zhang1, Zhang2] the first inequality appearing below was proved,
and in [Zhang3] (and in [ChenWang]) the second inequality appearing below
was proved.

Theorem 3.1 (R. Ye [Ye], Q. Zhang [Zhang1, Zhang2, Zhang3] (see
[ChenWang] also)). Let (Mn, g(t))t∈[0,T ), T <∞, be a smooth solution
to Ricci flow on a closed manifold with supM×[0,T ) |R(x, t)| ≤ 1 <∞. Then
there exist constants 0 < σ0, σ1 <∞ depending only on (M, g0) and T such
that

(3.1) σ1 ≤
vol(tBr(x))

rn
≤ σ2 for all x ∈M, 0 ≤ t < T and r ≤ 1.

We use the following notation in this paper which was introduced by Q.
Zhang. A solution which satisfies the first inequality is said to be σ1 non-
collapsed on scales less than 1. This condition is similar to but stronger than
Perelman’s non-collapsing condition (see [Pe1]), as we make no requirements
on the curvature within the balls Br(x) appearing in (3.1). A solution which
satisfies the second inequality is said to be σ2 non-inflated on scales less
than 1.



✐

✐

“6-Simon” — 2020/12/3 — 0:20 — page 1690 — #8
✐

✐

✐

✐

✐

✐

1690 Miles Simon

Remark 3.2. Let (Mn, g(t))t∈[0,T ) be be a smooth solution to Ricci flow

which satisfies the inequalities (3.1), and define g̃(t̃) := cg(·, t̃c) for a constant
c > 0. Then

(3.2) σ1 ≤
ṽol(t̃B̃r̃(x)

r̃n
) ≤ σ2 for all x ∈M, 0 ≤ t̃ < T̃ := cT and r̃ ≤ √

c,

that is (M, g̃(t̃))t̃∈[0,T̃ ) is σ1 non-collapsed and σ2 non-inflated on scales less

than
√
c. This is because: ṽolB̃r̃(x,t̃)

r̃n = volBr(x,t)
rn for r̃ :=

√
cr and t̃ := ct, and

r = r̃√
c
≤ 1 for r̃ ≤ √

c. Hence, we can’t say if the solution (M, g̃(t̃))t̃∈[0,T̃ ) is

σ1 non-collapsed and σ2 non-inflated on scales less than 1, if we scale by a
constant c < 1, but the scale improves if we multiply by constants c > 1.

In the papers [Ye] and [Zhang1, Zhang2] it is also shown that for any
Ricci flow satisfying the basic assumptions a Sobolev inequality holds in
which the constants may be chosen to be time independent. Here, we only
write down the four dimensional version of their theorem.

Theorem 3.3 (R. Ye [Ye], Q. Zhang [Zhang1, Zhang2]).
Let (M4, g(t))t∈[0,T ), T <∞, be a smooth solution to Ricci flow satisfying
the basic assumptions. Then there exists a constant A = A(M, g0, T ) <∞
such that

(3.3)

(
∫

M
|f |4dµg(t)

)
1

2

≤ A

(

∫ g(t)

M
|∇f |2dµg(t) +

∫

M
|f |2dµg(t)

)

for all smooth f :M → R

Note that this Sobolev inequality is not scale invariant, as the last term
scales incorrectly. However, we have a scale-invariant version for small balls,
as we see in the following:

Corollary 3.4. Let (M4, g(t))t∈[0,T ), T <∞ be a smooth solution to Ricci
flow satisfying the basic assumptions. Then there exists a constant r2 =
r2(M, g(0), T ) = 1

2
√
σ2A

> 0 such that

(3.4)

(
∫

M
|f |4dµg(t)

)
1

2

≤ 2A

∫

M

g(t)|∇f |2dµg(t)

for all smooth f :M → R whose support is contained in a ball tBr(x), for
some x ∈M , where A is the constant occurring in the Sobolev inequality
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(3.3) above. If g̃(·, t̃) := cg(·, t̃c) is a scaled solution with c ≥ 1 then the esti-
mate

(3.5)

(
∫

M
|f |4dµg̃(t̃)

)
1

2

≤ 2A

∫

M

g(t)|∇f |2dµg̃(t̃)

holds for all f :M → R whose support is contained in a ball t̃Br̃(x) where
r̃ := r

√
c ≥ r.

Proof. Let r be chosen so that r2
√
σ2 ≤ 1

2A , where A is the constant occur-
ring in the Sobolev inequality and σ2 is the non-inflating constant defined
above. Using Hölder’s inequality and the above Sobolev inequality we get

(
∫

M
|f |4dµg(t)

)
1

2

≤ A

∫

M
|∇f |2dµg(t) +A

∫

M
|f |2dµg(t)

≤ A

∫

M
|∇f |2dµg(t) +A

(
∫

M
|f |4dµg(t)

)
1

2

(volBr(x, t))
1

2

≤ A

∫

M
|∇f |2dµg(t) +A

(
∫

M
|f |4dµg(t)

)
1

2

(
√
σ2r

2)

≤ A

∫

M
|∇f |2dµg(t) +

1

2

(
∫

M
|f |4dµg(t)

)
1

2

(3.6)

which implies the result, after subtracting 1
2(
∫

M |f |4dµg(t))
1

2 from both sides
of this inequality. The second inequality follows immediately from the fact
that

(
∫

M
|f |4dµg̃(t̃)

)
1

2

− 2A

∫

M
|∇̃f |2dµg̃(t)(3.7)

= c

(
∫

M
|f |4dµg(t)

)
1

2

− 2A

∫

M
|∇f |2dµg(t))

if we scale as in the statement of the theorem. □

It is well know that, for a solution satisfying the basic assumptions, the
volume of M is changing at a controlled rate:

(3.8) vol(M, g(t)) ≥ −
∫

M
Rdµg(t) =

∂

∂t
vol(M, g(t)) ≥ − vol(M, g(t))

(−
∫

M Rdµg(t) =
∂
∂t vol(M, g(t)) was shown in [HaThree]). Integrating in time

we see that eT vol(M, g(0)) ≥ vol(M, g(t)) ≥ e−T vol(M, g(0)).
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Notice that the estimates of Peter Topping (see [Topping]) and these
volume bounds combined with the non-inflating estimate guarantee that
the diameter is bounded from above and below:

Lemma 3.5 (Topping, P. [Topping], Zhang, Q. [Zhang1, Zhang2])).
Let (M4, g(t)))t∈[0,T ) be a solution to Ricci flow satisfying the basic assump-
tions (in particular T <∞ and |R| ≤ 1 at all times and points). Then there
exists d0 = d0(M, g0, T ) > 0 such that

(3.9) ∞ > d0 ≥ diam(M, g(t)) ≥ 1

d0
> 0

for all t ∈ [0, T ).

Proof. The diameter bound from above follows immediately from Theorem
2.4 ( see also Remark 2.5 there) of [Topping] combined with the fact that
∫

M |R| 32 ≤ vol(M, g(0))eT for a solution satisfying the basic assumptions.
The diameter bound from below is obtained as follows. Assume that there are
times ti ∈ [0, T ) with εi := diam(M, g(ti)) → 0 as i→ ∞. Due to smooth-
ness, we must have ti ↗ T . From the volume estimates above, we must have
vol(M, g(t)) ≥ e−T vol(M, g(0)) =: v0 > 0 for all t ∈ [0, T ). Combining this
with the non-inflating estimate we get:

v0 ≤ vol(M, g(ti)) = vol(tiBεi(x0)) ≤ σ2(εi)
4 → 0

as i→ ∞, which is a contradiction. □

4. The regular part of the flow

We wish to show that the limit as t↗ T (in some to be characterised sense)
of (M, g(t)) is an C0 Riemannian orbifold (X, dX) with at most finitely many
orbifold points and that (X, dX) is smooth away from the orbifold points. In
the static case, M. Anderson showed results of this type for sequences of Ein-
stein manifolds whose curvature tensor is bounded in the Ln/2 sense: see for
example Theorem 1.3 in [And1]. Similar results were shown independently
by [BKN] (see Theorem 5.5 in [BKN]). See also [Tian]. In the paper [AnCh],
the condition that the manifolds have Ricci curvature bounded from above
and below or bounded Einstein constant was replaced by the condition that
the Ricci curvature is bounded from below. To deal with this situation the
authors introduced the W 1,p harmonic radius, which we also use here.

To prove the convergence to an orbifold and to obtain information
on the orbifold points we require regularity estimates for regions where
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∫

tBr(x)
|Riem(g(t))|2dµg(t) is small. Regularity estimates in the static case

(for example the Einstein case) were shown for example in Lemma 2.1 in
[And2]. We show that for certain so called good times t < T , which are close
enough to T , that if

∫

tBr(t)(x)
|Riem(g(t))|2dµg(t) ≤ ε0 is small enough, where

r(t) = R
√
T − t for some large R > 0, then we will have time dependent

bounds on the metric on the ball tBr(t)/2(x) for later times s, t ≤ s < T : see
Theorem 4.5 below for the explicit bounds (the constants ε0, R appearing
above, will not depend on x). That is, we have a fixed set tBr(t)/2(x) where
we obtain our estimates for later times s ∈ [t, T ) (that is, the set
tBr(t)/2(x) doesn’t depend on s). Furthermore, we show that the metric
g(s) on the ball tBr(t)/2(x) is C0 close to the metric g(l) on tBr(t)/2(x) if
s, l ∈ [t, T ) and |s− l| is small enough.

In order to obtain our regularity estimates we require a number of ingre-
dients. The estimates from the previous section, a slightly modified version
of a result from [And1] and [AnCh] on the W 1,p harmonic radius (see also
Lemma 4.5 of [Petersen]), a Nash-Moser-de Giorgi argument, and the Pseu-
dolocality result of G. Perelman (see Theorem 10.1 of [Pe1]) being the main
ones. The Nash-Moser-de Giorgi argument which we use is a modified ver-
sion of that given in the paper [Li]. The proofs in the paper of [Li] are written
for a four dimensional setting, and can be adapted to our setting.

Before stating the theorem we introduce some notation, which we will
also use in the subsequent sections of this paper.

Let (M4, g(t))t∈[0,T ) be a solution to Ricci flow satisfying the basic as-
sumptions. In Theorem 3.6 of [Si1], it was shown that

(4.1)

∫ R

S

∫

M
|Rc|4(·, t)dµg(t)dt ≤ K0 = K0(M, g0, T ) <∞

for S < R ≤ T . In particular, for any 0 < r < T
4 , and 1 ≥ σ > 0, we can find

a t ∈ [T − (1 + σ)r, T − r] such that

(4.2)

∫

M
|Rc|4(·, t)dµg(t) ≤

2K0

σr

If not, then we can find σ and r such that
∫

M |Rc|4(·, t)dµg(t) > 2K0

σr for all
t ∈ [T − (1 + σ)r, T − r], and hence

∫ T−r

T−(1+σ)r

∫

M
|Rc|4(·, t)dµg(t) > σr

2K0

σr
= 2K0

which contradicts equation (4.1).
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If t := T − r < T is given, where r < T
10 , then the argument above shows

that we can always find a (nearby) t̃ ∈ [T − 2r, T − r] such that

(4.3)

∫

M
|Rc|4(·, t̃)dµg(t̃) ≤

2K0

r
=

2K0

T − t
≤ 4K0

T − t̃
.

A time t̃ which satisfies (4.3) will be known as a 4K0 good time. More
generally, we make the following definition.

Definition 4.1. Let (M, g(t))t∈[0,T ) be a smooth solution to Ricci flow.
Any t ∈ [0, T ) which satisfies

(4.4)

∫

M
|Rc|4(·, t)dµg(t) ≤

C

T − t

(C > 0) shall be called a C-good time. If C = 1, then we call such a t a
good time.

By modifying the above argument we see that the following is true.

Lemma 4.2. Let (M4, g(t))t∈[0,T ) be a solution to Ricci flow satisfying the
basic assumptions and let C > 0 be given. Then there exists an r̃ > 0 such
that for all 0 < r < r̃ the following holds. For any t̃ ∈ [0, T ) with r := T − t̃
there exists a t ∈ [t̃− r, t̃] = [T − 2r, T − r] which is a C good time.

Remark 4.3. r̃ will possibly depend on C, (M, g(0)) and T as can be seen
in the proof below.

Proof. Fix C > 0 and assume the conclusion of the theorem doesn’t hold.
Then we can find a sequence ri → 0 and t̃i := T − ri ↗ T such that every
t ∈ [T − 2ri, T − ri] is not a C good time. That is

∫

M |Rc|4(·, t)dµg(t) > C
T−t

for all t ∈ [T − 2ri, T − ri]. Integrating in time from T − 2ri to T − ri we
get

∫ T−ri

T−2ri

∫

M
|Rc|4(·, t)dµg(t)dt > C

∫ T−ri

T−2ri

1

T − t
dt ≥ C

2ri

∫ T−ri

T−2ri

dt =
C

2
.
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Without loss of generality the intervals [T − 2ri, T − ri]i∈N are pairwise dis-
joint (since ri → 0). Summing over i ∈ N we get

∫ T

0

∫

M
|Rc|4(·, t)dµg(t)dt ≥

∞
∑

i=1

∫ T−ri

T−2ri

∫

M
|Rc|4(·, t)dµg(t)dt

≥
∞
∑

i=1

C

2
= ∞

which contradicts the fact that
∫ T
0

∫

M |Rc|4(·, t)dµg(t)dt <∞. □

Let 0 < ti ↗ T , i ∈ N be a sequence of times approaching T from below. We
wish to show that (M, g(ti)) → (X, d) as i→ ∞ in some to be characterised
sense, where (X, d) is a C0 Riemannian orbifold with only finitely many
orbifold points. These orbifold points will be characterised by the fact that
they are points where the L2 integral of curvature concentrates as ti ↗ T .
To explain this more precisely we introduce some notation.

Definition 4.4. Let (M4, g(t))t∈[0,T ) be a solution to Ricci flow with T <
∞ satisfying the basic assumptions. A point p ∈M is a regular point in M
(or p ∈M is regular) if there exists an r = r(p) > 0 such that

∫

tBr(p)
|Riem |2(·, t)dµg(t) ≤ ε0

for all times t ∈ [0, T ), where ε0 > 0 is a small fixed constant depending on
(M4, g(0)) and T , which will be specified in the proof of Theorem 4.5 below.
A point p ∈M is a singular point inM (or p ∈M is singular) if p ∈M is not
a regular point. In this case, due to smoothness of the flow on [0, T ), there
must exist a sequence of times si ↗ T and a sequence of numbers 0 < ri ↘ 0
as i→ ∞ such that

∫

siBri
(p) |Riem |2 > ε0 for all i ∈ N. We denote the set

of regular points in M by Reg(M) := {p ∈M | p is regular } and the set of
singular points in M by Sing(M) := {p ∈M | p is singular }.

In this section we obtain information about regular points. In particular
we will give another characterisation of the property regular. This character-
isation is implied by the following theorem (see the Corollary directly after
the statement of the Theorem).

Theorem 4.5. Let k ∈ N be fixed, and let (M, g(t))t∈[0,T ) be a solution to
Ricci flow satisfying the basic assumptions. There exists a (large) constant
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R > 0, and (small) constants v, ε0 > 0, and constants c1, . . . , ck such that if

(4.5)

∫

tBR
√

T−t(p)
|Riem |2(·, t)dµg(t) ≤ ε0

for a good time t which satisfies |T − t| ≤ v, then p is a regular point. We
also show that if p, t satisfy these conditions, then

exp

(

−8|r 1

4 − s
1

4 |
(T − t)

1

4

)

g(r) ≤ g(s) ≤ exp

(

8|r 1

4 − s
1

4 |
(T − t)

1

4

)

g(r), and(4.6)

1

2
g(r) ≤ g(s) ≤ 2g(t) ∀ t ≤ r, s < T, on tB R

2

√
T−t(p)(4.7)

|∇j Riem(x, s)|2g(s) ≤
cj

(T − t)j+2
(4.8)

∀ t+ (T − t)

2
≤ s < T, x ∈ tB R

2

√
T−t(p),(4.9)

∀ j ∈ {0, . . . , k}.(4.10)

The constants ε0, R and v depend only on σ0, σ1 from (3.1), A from (3.5),
and c(g(0), T ) from Theorem 4.5, the constants cj depend only on j, σ0, σ1, A
and c(g(0), T ). That is, all constants depend only on (M, g(0)) and T .

For such p and t we therefore have: all x ∈ tBR
√
T−t/2(p) are also regular

(see the proof for an explanation), and there is a limit in the smooth sense
(and hence also in the Cheeger-Gromov sense) of (tB R

2

√
T−t(p), g(s)) as

s↗ T .

Remark 4.6. The condition
∫

tBR
√

T−t(p)
|Riem |2(·, t)dµg(t) ≤ ε0 for a good

time t which satisfies |T − t| ≤ v (v , ε0 as in the statement of the Theorem
above) therefore implies that p is regular (see the proof for an explanation).
This new condition contains however more information, namely that the
estimates appearing in the statement of Theorem 4.5 hold. Furthermore: to
show that a point p ∈M is regular, we only need to find one good time
t with |T − t| < v for which

∫

tBR
√

T−t(p)
|Riem |2(·, t)dµg(t) ≤ ε0. We do not

need to show that
∫

tBr(p)(p)
|Riem |2(·, t)dµg(t) ≤ ε0 for all t < T for some

fixed r(p) > 0.
This characterisation is useful when it comes to showing that a limit

space (in a sense which will be explained later in this paper) (X, dX) :=
limt↗T (M, g(t)) exists and when it comes to describing its structure.
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Definition 4.7. Let t ∈ (0, T ). We say p ∈ Regt(M) if

∫

tBR
√

T−t(p)
|Riem |2(·, t)dµg(t) ≤ ε0,

where ε0, R are from the above theorem.

Remark 4.8. Notice that this condition is scale invariant: if (M, g̃(t̃))t̃∈[0,T̃ )

is the solution we get by setting g̃(t̃) := cg( t̃c), T̃ := cT , t̃ = ct, then

(4.11)

∫

t̃B
R
√

T̃−t̃
(p)

| ˜Riem|2(·, t̃)dµg̃(t̃) =
∫

tBR
√

T−t(p)
|Riem |2(·, t)dµg(t) ≤ ε0

Corollary 4.9. Theorem 4.5 above shows us that Regt(M) ⊆ Reg(M) for
all good times t ∈ (T − v, T ). From the definition of Reg(M) we also see:
for all p ∈ Reg(M) there exists a T − v < S(p) < T such that p ∈ Regt(M)
for all good times t with t ∈ (S(p), T ). Furthermore, Theorem 4.5 above also
tells us, that for every good time t ∈ (T − v, T ), and for all ε > 0, there exists
a δ > 0 (depending on t), such that

(1− ε)g(p, s) ≤ g(p, r) ≤ (1 + ε)g(p, s)

∀p ∈ Regt(M), for all r, s ∈ (t, T ) with |r − s| ≤ δ.(4.12)

Corollary 4.10. For all good times t ∈ (T − v, v) for all p ∈ Regt(M),
where v and Regt(M) are as above, we have

1

8
d(x, y, r) ≤ d(x, y, s) ≤ 8d(x, y, r)

for all r, s ∈ [t, T ), for all x, y ∈ tB R

200

√
T−t(p)(4.13)

Proof of Theorem 4.5. Let ti ↗ T be a sequence of good times. We scale
(blow up) and shift (in time) the solution g as follows: gi(t) :=

1
T−ti

g(·, T +

t(T − ti)). Then we have a solution which is defined for t ∈ [−Ai := − T
T−ti

, 0)
and Ai → ∞ as i→ ∞. Furthermore, using the fact that the ti are good
times (for the solution before scaling), we see that

∫

M
|Rc(gi(−1))|4dµgi(−1) = (T − ti)

2

∫

M
|Rc(g(ti)|4(t)dµg(ti)

≤ δi := (T − ti) → 0(4.14)

as i→ ∞. The scale invariant inequalities (3.1) are also valid for gi(−1).
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Let BR(p) =
gi(−1)BR(p) ⊆M be an arbitrary ball with

∫

gi(−1)BR(p)
|Riem |2dµgi(−1) ≤ ε0 and R ≥ 4 > 0.

Scaling by δ = 4
R2 < 1 (*), (that is g̃i(t̃) := δgi(

t̃
δ ): we call the solution g̃i(t̃)

once again gi(t)) we see that

(a)
∫

gi(−δ)B2(p)
|Riem |2dµgi(−δ) ≤ ε0 and

∫

M |Rc|4dµgi(−1) ≤ δ̃i, where δ̃i :=

δi/δ
2 = (T − ti)/δ

2 → 0 as i→ ∞
(b) we have control over non-inflating constants and non-decreasing con-

stants: σ0r
4 ≤ vol(gi(−δ)Br(x)) ≤ σ1r

4 for all r ≤ ri → ∞ and for all
x ∈ gi(−δ)B2(p).

The works of Anderson [And1] and Deane Yang [YangD] imply that B1(p) is
in some C0,α sense close to euclidean space if ε0 is small enough, and i ∈ N

is large enough (that is if δi = (T − ti) is small enough). This is a fact about
smooth Riemannian manifolds satisfying (a) and (b), and has nothing to do
with the Ricci flow.

We state below a quantitative version of this fact.

Theorem 4.11. Let (M4, g) be a smooth connected manifold without bound-
ary (not necessarily complete) and B2(p) ⊆M be an arbitrary ball which is
compactly contained in M . Assume that

(a)
∫

B2(p)
|Riem |2dµg ≤ ε0 and

∫

M |Rc|4dµg ≤ 1,

(b) σ0r
4 ≤ vol(Br(x)) ≤ σ1r

4 for all r ≤ 1, for all x ∈ B2(p),

where ε0 = ε0(σ0, σ1) > 0 is sufficiently small. Then there exists a constant
V = V (σ0, σ1) > 0 and an α = α(σ0, σ1) > 0 ∈ (0, 1) such that the follow-
ing is true. For any y ∈ B3/2(p), we can find coordinates ϕ : U ⊆ gB1(0) →
δBV (0) ⊆ R

n, such that |gij(x)− δij | ≤ |x|α for all x ∈ δBV (0).

Proof. The claim of the Theorem follows from the fact that harmonic coor-
dinates can be constructed in this setting. See Appendix B of [SiArxiv], for
example, for the details. □

Using Perelman’s definition of almost euclidean (see Theorem 10.1 in
[Pe1] for the definition of almost euclidean) we see that there is a constant
1 > a = a(V ) = a(σ0, σ1) > 0 such that gi(−δ)Ba(y) is almost euclidean if
(T − ti)/δ

2 ≤ 1. Notice that a doesn’t depend on δ and hence, without loss
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of generality δ ≪ a: δ = 4
R2 and R > 0 was arbitrary up until this point, so

we choose R2 ≫ 1
4a . Perelman’s first Pseudolocality result (Theorem 10.1 in

[Pe1]) now tells us that

(4.15) |Riem(gi)(x, t)| ≤
1

δ + t
, for all t ∈ (−δ, 0), x ∈ gi(t)Bã(y)

for some constant ã = ã(a) > 0, for all y ∈ −δB1(p). Here we use that δ ≪ a
that is 0 < δ = δ(V ) ≪ a(V ) is chosen small so that the Pseudolocality The-
orem applies on the whole time interval (−δ, 0). Without loss of generality
δ ≪ ã also. Now δ = δ(V ) is fixed (and small), that is R = R(V ) = 2√

δ
≫ 1

is fixed (and large). Scaling back to t = −1 (that is we set g̃i(t̃) =
R2

4 gi(
4t̃
R2 )

so that we are dealing with the solution we had before blowing down at the
point (*) of the argument above: we call the solution g̃i(t̃) once again gi(t)
for ease of reading) we have

(4.16) |Riem(gi)(x, t)| ≤
1

1 + t
, for all t ∈ (−1, 0), x ∈ gi(t)BRã

2
(y)

for all y ∈ gi(−1)BR

2
(p). Using Shi’s estimates (see [Shi]), the non-inflating

and non-collapsing estimates, the evolution equation ∂
∂tg = −2Rc, and the

injectivity radius estimate of Cheeger-Gromov-Taylor (Theorem 4.3 in
[CGT]), we get

(4.17) |∇j Riem(gi)(y, t)| ≤ Aj , for all t ∈
(

−1

2
, 0

)

,

for all 0 ≤ j ≤ K where K ∈ N is fixed and large and Aj <∞ is a constant,
for all y ∈ −1B R

2
(p), as long as Rã is sufficiently large: as we chose δ ≪ ã, this

is without loss of generality the case. Translating in time and scaling back
to the original solution, we obtain the claimed curvature estimates (4.8).

We explain why all y ∈ gi(−1)BR/2(p), are regular (in particular, p is regu-

lar). Choose t close to 0 and 0 < r ≤ 1 small, so that tB104r(y)⊆ gi(−1)B R

2
(p) :

for every t < 0 such an r must exist in view of the fact that the solu-
tion is smooth. Then |Riem(·, t)| ≤ 10 on tB104r(y) ⊆ gi(−1)B R

2

(p) due to

(4.16). Then sBr(y) remains in tB104r(y) ⊆ gi(−1)B R

2
(p) for all s ∈ [t, 0) due

to (4.16) and the fact that the metric evolves according to the equation
∂
∂tg = −Rc(g), and t is close to 0. Hence

∫

sBr(y)
|Riem(g)|2(·, s)dµg(s) ≤ ε0

for all s ∈ [t, 0), if r is small enough, in view of (4.16) and the non-expanding
estimate.
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Although these estimates show us that p is a regular point, they do not
tell us that

∫

tBR/2(p)
|Riem |2(·, t)dµg(t) ≤ ε0

for all t ∈ (−1, 0): as t gets closer to −1 from above, our estimates on the
curvature, (4.16), blow up. However by appropriately modifying the argu-
ments in [Li] we can show that the Riemannian metrics remain close in a
C0 sense to one another on some fixed time independent region within these
balls. This fact is useful when it comes to describing (X, dX) , the limit as
t↗ T (before scaling) of the solution (M, g(t))t∈[0,T ), and how this limit is
obtained.

Examining the setup considered in the first part of the paper [Li] of Ye
Li, we see that we are almost in the same setup: Scale back down to t = −δ
(that is do the step (*) in the argument above again), call the solution gi
again, and consider an arbitrary y ∈ gi(−δ)B1(p) as above.

From the argument above we have

(4.18) |Riem(gi)(x, t)| ≤
1

δ + t
, for all t ∈ (−δ, 0) for all x ∈ gi(t)Bã(y)

for some constant ã = ã(a) > 0, and δ ≪ ã < a.
In order to see that we are almost in the same situation as Ye.Li, we

shift in time by δ: that is fix i and define g(t) = gi(t+ δ). This means that
the old time 0 (where the flow possibly becomes singular) is now time δ and
the old good time −δ is now the good time 0. Then we have

(i)

(4.19) |Riem(g)(x, t)| ≤ 1

t
, for all t ∈ (0, δ) for all x ∈ g(t)Bã(y),

for all y ∈ gi(0)B1(p), where ã depends only on a which depends only on
σ0, σ1, and we have chosen δ so that δ ≪ ã ≤ a. Without loss of generality,
we may assume ã = 2 for this argument. If not, then scale so that it is: we
still have 0 < δ ≪ ã is still as small we we like (but fixed).

This solution also satisfies

(ii)
∫

M |Rc|4(,̇0)(g0) ≤ δ̂i, with δ̂i → 0 as i→ ∞ (by scaling we have

changed the constants δ̃i above by a fixed factor: δ̂i =
δ̃i

(10ã)2 ).

(iii) (1/2)dµg(r) ≤ dµg(t) ≤ 2dµg(s) for all 0 ≤ r ≤ t ≤ s < δ in view of the
fact that we are dealing with a solution satisfying the basic assump-
tions (see the inequalities (3.8)),
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(iv) we have a bound on the Sobolev constant (
∫

Br(z)
f4)1/2≤A

∫

Br(z)
|∇f |2

for all tBr(z) ⊆ tB2(y) for all f : Br(z) → R which are smooth and
have compact support in tBr(z), for all 0 ≤ t < δ: see (3.4) and (3.5).

(v)

(4.20)

(

∫

tB2(y)
|Riem |3

)
1

3

≤ 1

t
1

3

(
∫

M
|Riem |2

)
1

3

≤ 1

t
1

3

(K0)
1/3

for all 0 ≤ t < δ in view of (i) and the bound
∫

M |Riem |2 ≤ K0 :=
c(g(0),M, T ) from (2.1).

Examining Lemma 1, Lemma 2, Lemma 3 and Theorem 2 of [Li], we see
that this is exactly the setup of that paper, call µ := (K0)

1

3 , except for the
condition 1/2g0 < g(t) < 2g(s) for all 0 < t < s < δ, which is also assumed
there. We are considering the case that u and f of the paper by Ye Li
are u := |Riem | and f := |Rc|. The argument in the paper of [Li] is a Nash-
Moser type iteration argument applied to the parabolic equation satisfied by
the function f = |Rc|. The extra assumption 1/2g0 < g(t) < 2g(s) for all 0 <
t < s < δ is used in [Li] to construct a time independent cut-off function (in
Lemma 3 of [Li], which is also used in Lemma 1 and Lemma 2 of [Li]) for 0 <
r′ < r. This cut-off function ϕ :M → R is smooth and satisfies ϕ|Br′ (y) = 1,

ϕ = 0 on (Br(y))
c, |∇ϕ|g0 ≤ 2

r−r′ and |∇ϕ|g(t) ≤ 2|∇ϕ|g0 ≤ 4
r−r′ . We will

only consider 1 ≥ r, r′ ≥ 1
4 . In order to obtain the results of Ye Li, we replace

this function by a time dependent cut-off function ϕ(x, t) using the method
of Perelman. This new ϕ satisfies

∂

∂t
ϕ ≤ ∆ϕ+

c

(r − r′)2
+
cϕ

t

|∇ϕ|2g(t) ≤
c

(r − r′)2

ϕ|tBr′ (y) = 1,

ϕ|(tBr(y))c = 0,(4.21)

for all t ≤ S(c1), wherever the function differentiable is, where S(c1) > 0 and
c = c(c1), where c1 is a constant satisfying |Riem | ≤ c1

t on tB4(y) : in our
case c1 = 1. Using this new ϕ in the argument given in [Li], we obtain, after
making necessary modifications, the following:

(4.22) |Rc(·, t)| ≤ δ4

t3/4
on tB3/4(y), for all t ∈ (0, δ),
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as long as (T − ti) ≤ α(σ0, σ1, c(g(0), T ), A) is small enough. See Appendix
A in [SiArxiv] for the details. In particular, translating and scaling back to
the solution we had before we performed the step (*), we see that |Rc(y, t)| ≤

δ
(t+1)3/4 for all y ∈ gi(−1)BR/2(p), for all t ∈ (−1, 0). Hence, integrating the

evolution equation ∂
∂tg(y, s) = −2Rc(g)(y, s), we get

(4.23) g(y, s)e−8δ|s 1
4 −r

1
4 | ≤ g(y, r) ≤ g(y, s)e8δ|s

1
4 −r

1
4 |

for all r, s ∈ [−1, 0), for all y ∈ gi(−1)BR/2(p), where δ > 0 is small. Translat-
ing in time and scaling back to the original solution, we obtain (4.6). Before
scaling back, note that it also implies

(4.24)
1

2
g(y, s) ≤ g(y, r) ≤ 2g(y, s)

for all r, s ∈ [−1, 0), for all y ∈ gi(−1)BR/2(p). This condition is scale invari-
ant, so translating and scaling back to the original solution, we obtain (4.7).

For later, notice, that (4.23) implies that: for all σ > 0, there exists a
δ̃ > 0 such that,

(4.25) g(·, s)(1− σ) ≤ g(·, r) ≤ g(·, s)(1 + σ)

for all r, s ∈ (−1, 0] with |r − s| ≤ δ̃ on −1B R

2
(p). Examining the argument

above, we see that the results are correct for any good time ti ∈ (0, T ), as
long as (T − ti) ≤ v(σ0, σ1, A, c(g(0), T )) is small enough. This finishes the
proof. □

Proof of the Corollary 4.10. Let x, y t, s be as in the statement of the corol-
lary. Scale to the situation as in the proof of Theorem 4.5. Let γ : [0, 1] →
M be a length minimising geodesic between x and y with respect to the
metric g(−1). The curve doesn’t leave −1B R

10
(p), and hence, using (4.24),

d(x, y, s) ≤ Ls(γ) ≤ 2L−1(γ) = 2d(x, y,−1). Now let σ : [0, 1] →M be a
length minimising geodesic between x and y with respect to g(s). If σ
doesn’t leave −1B R

10
(p), then d(x, y,−1) ≤ L−1(σ) ≤ 2Ls(σ) = 2d(x, y, s),

and hence d(x, y, s) ≥ 1
2d(x, y,−1) in this case. If σ leaves −1B R

10
(p), then

let m be the first point at which it does so: σ(m) ∈ ∂(−1B R

10
(p)), σ(r) ∈

−1B R

10
(p) for all r < m, and consider α = σ|[0,m]. Then d(x, y, s) = Ls(σ) ≥
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Ls(α) ≥ 1
2L−1(α) ≥ 1

100R = 1
2
2R
100 ≥ 1

2d(x, y,−1). Hence

d(x, y, s) ≥ 1

2
d(x, y,−1)

in this case as well. □

5. Behaviour of the flow near singular points

In this section we examine the behaviour of the flow near singular points
p. We consider a sequence of good times ti ↗ T . We will show that the
singular set Sing(M) can be covered by L balls (tiBR(ti)(

ipj))
L
j=1 (L being

independent of ti) of radius R(ti) = C
√
T − ti (C a large fixed constant,

which is determined in the proof of Theorem 5.1 below) at time ti, where ti
are good times close enough to T , and that the balls tBR(ti)(

ipj) with t ∈
(ti, T ) also cover Sing(M). We say nothing at this stage about the topology
of these regions, or how they geometrically look. In the next sections we give
more information on how singular regions look like in the limit (as t↗ T ).

The results of this section are used at the end of this section to show that
distance is uniformly continuous in the following sense: For all ε > 0 there
exists a δ(ε) > 0 such that |d(x, y, t)− d(x, y, s)| ≤ ε for all x, y ∈M for all
t, s ∈ [0, T ) with |t− s| ≤ δ. The singular set and the regular set were defined
in the previous section: Reg(M) := {p ∈M | p is regular} was defined in
Definition 4.4 and Regt(M) was defined in Definition 4.7. Sing(M) := {p ∈
M | p is not regular}. The theorem that we prove in this section is

Theorem 5.1. Let (M, g(t))t∈[0,T ) be a solution to Ricci flow satisfying the
basic assumptions. Then there exist (large) constants 0 < J0, J1, J2 <∞, a
(small) constant 0 < w <∞, and a constant L ∈ N such that for all good
times s < T with |s− T | ≤ w, there exist p1(s), . . . , pL(s) ∈M such that

Sing(M) = (Reg(M))c

⊆ (Regs(M))c

⊆ ∪L
j=1

tBJ0

√
T−s(pj(s))

⊆ ∪L
j=1

sBJ1

√
T−s(pj(s))

⊆ ∪L
j=1

rBJ2

√
T−s(pj(s))(5.1)

for all s ≤ t, r < T .
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Remark 5.2. Notice that for fixed s, the sets sBJ1

√
T−s(pj(s)) in the

statement of the theorem don’t depend on t or r (s ≤ t, r < T ), but
tBJ0

√
T−s(pj(s)) and

rBJ2

√
T−s(pj(s)) do.

Remark 5.3. Using the estimates of the previous section and this cover-
ing, we will obtain as a corollary, that the distance function is uniformly
continuous in time (see Theorem 5.6).

Proof. Let (M,h) be a Riemannian manifold with
∫

M |Riem(h)|2 ≤
K0 <∞. Let R > 0 be given fixed. Assume there is some point p1 with
∫

BR(p1)
|Riem |2 ≥ ε0. Then we look for a ball BR(p2) which is disjoint from

BR(p1) and satisfies
∫

BR(p2)
|Riem |2 ≥ ε0. We continue in this way as long

as it is possible to do so. This leads to a family of pairwise disjoint balls
(BR(pj))j∈{1,...,L} such that

∫

BR(pj)
|Riem |2 ≥ ε0 for all j ∈ {1, . . . , L}. We

define

BR := BR(h) := ∪L
j=1B2R(pj)

ΩR := ΩR(h) :=M\BR(h) =M\ ∪L
j=1 B2R(pj).(5.2)

From the definition of ΩR it follows that
∫

BR(x) |Riem |2 ≤ ε0 for all x ∈ ΩR.

Using
∫

M |Riem |2(h)dµh ≤ K0, we see that we have an upper bound

L ≤ K0

ε0
for the number of balls constructed in this way.

Notice that for fixed R this construction is not unique: by choosing the
balls in the construction differently we obtain a different BR, respectively
ΩR.

If (M, g(t))t∈I is a solution to Ricci flow, I an interval, then tΩR will
denote ΩR(g(t)) and

tBR will denote BR(g(t)) for any t ∈ I. Take a sequence
of good times ti ↗ T , and assume we have scaled as in the proof Theorem
4.5 above, to obtain a solution (M, g(t))t∈(−Ai,0). Using the characterisation
of the regular set given in Theorem 4.5, and using the R appearing there, we
see that −1ΩR ⊆ Reg(M) and hence Sing(M) =M\Reg(M) ⊆M\−1ΩR.

We wish to show that distance is not changing too rapidly near and in
BR(g(t = −1)).

In order to explain this statement more precisely, and to explain the
argument which proves the statement, we assume for the moment that there
is only one ball −1B2R(

ip1) coming from the above construction of BR(g(−1))
and we call this ball −1B2R(p). Note that for each i, we may obtain a different
point ip1 depending on i. For the moment we drop the i and the 1 from our
notation and simply denote the point ip1 by p.
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We defineG := −1B2J(p), for some large J≫R fixed, andH := −1BJ(p).
It follows, that Hc⊆(−1B2R(p))

c = (M\−1B2R(p))⊆Reg−1(M)⊆Reg(M).
Hence, using (4.24), we have 1

8g(x, t) ≤ g(x,−1) ≤ 8g(x, t) for all x ∈ Hc ∩G
for all t ∈ [−1, 0).

We may assume that dist(g(t = −1))(∂G, ∂H) = J (we are scaling a con-
nected solution to Ricci flow with diameter larger than 1

d0
> 0 (see (3.9))

by constants ci which go to infinity, and hence the diameter of the resulting
solution is as large as we like at all times).

Note by construction G ∩Hc ̸= ∅ as the diameter of the solutions we
are considering is as large as we like, as we just noted. We have J8 ≥
dist(g(t))(∂G, ∂H) ≥ J

8 for all t ∈ (−1, 0) as we explain now. Any smooth
regular curve γ : [0, 1] →M (γ′(s) ̸= 0 for all s ∈ [0, 1]) going from ∂H to ∂G
which lies completely inHc ∩ Ḡ and satisfies Lg(t)(γ) ≤ dist(g(t))(∂G, ∂H) +
ε must satisfy the following:

Lg(t)(γ) =

∫ 1

0

√

g(γ(r), t)(γ′(r), γ′(r))dr

≥ 1

8

∫ 1

0

√

g(γ(r), t = −1)(γ′(r), γ′(r))dr

≥ 1

8
dist(g(t = −1))(∂G, ∂H) =

J

8
(5.3)

in view of the definition of G and H. Hence

(5.4) dist(g(t))(∂G, ∂H) ≥ J

8

for all t ∈ [−1, 0). Notice that this means

(5.5) tBJ/8(p) ⊆ G,

since p ∈ H implies that

dist(g(t))(p, ∂G) ≥ dist(g(t))(H, ∂G) = dist(g(t))(∂H, ∂G)

which is larger than or equal to J/8 in view of equation (5.4). Similarly,
for z ∈ Hc ∩G, let γ : [0, 1] →M be the radial geodesic with respect to the
metric at time t = −1 coming out of p, starting at z and stopping at ∂G.
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We have γ([0, 1]) ⊆ Hc ∩ Ḡ and hence

dist(g(t))(z, ∂G) ≤ Lg(t)(γ) =

∫ 1

0

√

g(γ(r), t)(γ′(r), γ′(r))dr

≤ 8

∫ 1

0

√

g(γ(r), t = −1)(γ′(r), γ′(r))dr

≤ 8Lg(−1)(γ) ≤ 8J(5.6)

That is,

dist(g(t))(z, ∂G) ≤ 8J for all z ∈ Hc ∩G, t ∈ [−1, 0) and

dist(g(t))(∂G, ∂H) ≤ 8J for all t ∈ [−1, 0)(5.7)

We wish to show that dist(p, ∂G, t) is bounded by a constant independent
of time.

Claim: dist(p, ∂G, t) ≤ J5.

Assume that there is some time t ∈ (−1, 0) with dist(p, ∂G, t) = N ≥ J5.
Choose q ∈ ∂G such that d(p, q, t) = N . This part of the argument was
inspired by the argument given in the proof of Claim 5.1 in the paper
[Topping]. Take a distance minimising geodesic γ : [0, N ] →M from p to
q, at time t, which is parameterised by arclength. Consider points

z0 := γ(0), z1 := γ(1), z2 := γ(2), . . . , zN := γ(N) = q.

Without loss of generality J ∈ N. From the above, we see that the first
N − 16J points z0, . . . , zN−16J must lie in H, as we now explain. If not, then
let zi = γ(i) be the first point with i ≤ N − 16J such that zi /∈ H. Then we
could join the point zi−1 = γ(i− 1) to ∂G by a geodesic whose length w.r.t
to g(t) is less than 8J + 2, in view of (5.7). This would result in a path from
p to ∂G at time t whose length is less than N which is a contradiction. Also,
using equation (5.4), we see that tB1(zi) ⊆ G for all 0 ≤ i ≤ N − 16J − 1
(zi ∈ H for such i, so to reach ∂G we must first reach ∂H and then reach
∂G: any such path must have length larger than J/8 ≫ 1).

For i ∈ {1, . . . , N − 1}, the ball tB1(zi) is disjoint from all other balls
tB1(zj), for all j ∈ {0, . . . , N} except for its two immediate neighbours
tB1(zi−1) and

tB1(zi+1), since γ is distance minimising implies γ|I is distance
minimising for all intervals I ⊆ [0, N ]. Hence: for i ̸= 0 we have tB1(zi) ∩
tB1(zj) = ∅ as long as j ̸= i− 1 and j ̸= i+ 1, where i ∈ 1, . . . , N − 16J .
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Using the non collapsing estimate we see that

vol(G, g(t)) ≥ vol(∪N−16J−1
i=1 (tB1(zi)) )

≥ vol(∪(N−16J−1)/2
i=1 (tB1(z2i)) )

=

(N−16J−1)/2
∑

i=1

vol(tB1(z2i))

≥
(N−16J−1)/2

∑

i=1

σ0 = σ0(N − 16J − 1)/2(5.8)

On the other hand, vol(G, g(t)) ≤ e2 vol(G, g(−1)) = e2 vol(−1B2J(p)) ≤
e2σ164J

4 in view of the non-expanding estimate and the fact that G is
defined independently of time (here we used the fact that ∂

∂tdµg(t) ≤ dµg(t)).

This leads to a contradiction since, N = J5 > 16J + e2σ1128J4

σ0
if J is large

enough and ti is close enough to time T before scaling: we need ti close to T
to guarantee that the non-expanding and non-collapsing estimates hold for
balls (after scaling) of radius 0 ≤ r ≤ 2J .

This finishes the proof of the claim.

Note, that this estimate and (5.5) imply that

(5.9) tBJ/8(p) ⊆ G = t=−1B2J(p) ⊆ rB J5

104
(p)

for all t, r ∈ [−1, 0). Repeating the argument for J5

104 instead of J , we get

tBJ/8(p) ⊆ G = t=−1B2J(p) ⊆ tB 1

105
J5(p)

⊆ G̃ := t=−1B2J5(p) ⊆ rBJ25(p),(5.10)

for all t, r ∈ [−1, 0), and Sing(M) ⊆ G. This implies

Sing(M) = (Reg(M))c ⊆ (Reg−1(M))c

⊆ t=−1B2J(p) ⊆ tB 1

105
J5(p)

⊆ G̃ = t=−1B2J5(p) ⊆ rBJ25(p)(5.11)

for all t, r ∈ [−1, 0).
The general case is as follows. We wish to cluster those points ipk (the

centre points of the balls appearing in the construction of BR(g(−1))) to-
gether if they satisfy the condition: dist(g(t = −1))(ipk,

ipl) remains bounded
as i→ ∞. We assume that for each ti, we obtained L balls (independent
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of i) in the construction of BR(g(−1)) : if not, pass to a subsequence so
that this is the case. Remember, that the solutions (M, g(t) = gi(t))t∈(−Ai,0)

are obtained by translating (in time) and scaling the original solution

(M, g(t))t∈[0,T ) at good times ti ↗ T by gi(·, t̃) := (T − ti)g(·, ti + t̃
T−ti

) .
So the points in the construction of BR(g(−1)) could depend on i. We can
guarantee, after taking a subsequence in i if necessary, that there are L̃ ≤ L
sets, (clusters of points) iT j , j ∈ {1, . . . , L̃} and some large constant Λ <∞
such that: for all i large enough, for all k, l ∈ {1, . . . , L}, exactly one of the
following two statements is true:

• dist((g(t = −1))(ipk,
ipl) ≤ Λ if ipk,

ipl ∈ iT s for some s ∈ {1, . . . , L̃},
or

• dist(g(t = −1))(ipk,
ipl) → ∞ as i→ ∞ if ipk ∈ iT s and ipl ∈ iT v and

s ̸= v, s, v ∈ {1, . . . , L̃}.

We explain now how the sets iT s are constructed. Fix k, l ∈ {1, . . . , L}. If
there is a subsequence in i such that after taking this subsequence dist((g(t =
−1))(ipk,

i pl) → ∞ as i→ ∞, then take this subsequence. Do this for all
k, l ∈ {1, . . . , L}. As the index set {1, . . . , L} is finite, after taking finitely
many subsequences, we will arrive at the following situation: there exists a
constant Λ <∞ such that for all k, l ∈ {1, . . . , L} one of the following two
statements is true:

• dist((g(t = −1))(ipk,
i pl) → ∞ for all i or

• dist((g(t = −1))(ipk,
i pl) ≤ Λ for all i

Now we define iT1 as the set of all ipk, k ∈ {1, . . . , L}, such that
dist((g(t = −1))(ipk,

i p1) ≤ Λ for all i. iT2 is the set of all
ipk, k ∈ {1, . . . , L},

such that dist((g(t = −1))(ipk,
i p2) ≤ Λ for all i. And so on. This gives us

sets iT1, . . . ,
i TL. Each set contains finitely many points, and for arbitrary

k, l ∈ {1, . . . , L} either iTk ∩ iT l = ∅ for all i ∈ N or iTk = iT l for all i ∈ N.
For fixed i ∈ N: if a set appears more than once, we throw away all copies of
the set except for one. This completes the construction of the sets T1, . . . , TL̃
(we drop the index i again for the moment).

Take one of these sets, for example T1. BB1 will denote the union of the
balls B2R(z) where z ∈ T1. Let

ip1 ∈ BB1 be arbitrary : we are rechoosing
the points ipj (we choose exactly one point ipj , arbitrarily, with

ipj ∈ BBj ,
and we do this for each j ∈ {1, . . . , L̃}). Define G1 :=

t=−1B2J(
ip1), H1 :=

t=−1BJ(
ip1) where J ≫ max(Λ, R) is large but fixed (independent of i).
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Arguing as in the case of one point as above, we see that (for i large enough)

G1 :=
t=−1B2J(p) ⊆ tB 1

105
J5(p)

⊆ G̃1 =
t=−1B2J5(p) ⊆ rBJ25(p)(5.12)

for all p ∈ BB1 (the choice of ip1 ∈ BB1 was arbitrary), for all t, r ∈ [−1, 0).
Note that we need i large enough here, to guarantee that all other sets
T2, . . . , TL̃ do not interfere with the arguments presented above: that is, we

can guarantee that Hc
1 ∩G1 ⊆ Reg−1(M) and H̃c

1 ∩ G̃1 ⊆ Reg−1(M). Now
do the same for the other sets BBj , j ∈ {1, . . . , L̃}.

We call the constant L̃ once again L. Hence,

Sing(M) ⊆ (Reg−1(M))c

⊆ ∪L
j=1(

tBJ0
(ipj))

⊆ G̃ = ∪L
j=1(

−1BJ1
(ipj))

⊆ ∪L
j=1(

rBJ2
(ipj))(5.13)

for all t, r ∈ [−1, 0), where J0 :=
1

105J5, J1 := 2J5,J2 := J25.
Note, that by construction we have d(−1)(−1BJ1

(ipj),
−1BJ1

(ipk)) → ∞
as i→ ∞ for j ̸= k.

Scaling and translating back to the original solution, we get

Sing(M) ⊆ (Regt(M))c

⊆ ∪L
j=1(

tBJ0

√
T−ti

(ipj))

⊆ G = ∪L
j=1(

t=tiBJ1

√
T−ti

(ipj))

⊆ ∪L
j=1(

rBJ2

√
T−ti

(ipj))(5.14)

for all t, r ∈ [ti, T ).
The proof of the claim of the theorem is as follows. Assume the conclu-

sion of the theorem is false. Then for any constants J0, J1, J2, we can find
good times ti ∈ (T − wi, T ), where wi → 0, such that we cannot find points
p1(ti), . . . , pL(ti), with L ≤ K0

ε0
for which (5.1) holds. Taking a subsequence,

as above, and choosing p1(ti) =
ip1, . . . , pL(ti) =

ipL leads to a contradiction
if i is large enough. Note at first that it could be that L = L(s) ≤ LK0

ε0
de-

pends on s. But by adding regular points pL(s)+1(s), . . . , pK0
ε0

(s) which are

in Regs(M), and satisfy dist(s)(pi(s), pj(s)) ≥ σ0 > 0, for all i ≥ L(s) + 1,
for all j ∈ {1, . . . , K0

ε0
}, the conclusion of the theorem is still correct, and the

comments which follow this proof are still valid. □
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Remark 5.4. Note, that in the construction above,

d(−1)(−1BJ1
(ipj),

−1BJ1
(ipk)) → ∞

as i→ ∞ for all j ̸= k (before scaling back). Hence, any smooth curve γ :
[0, 1] →M which lies in (∪L

j=1(
−1BJ1

(ipj)))
c and has γ(0) ∈ ∂(−1BJ1

(ipj))

and γ(1) ∈ ∂(−1BJ1
(ipk)) must have Lt(γ) ≥ N(i) for all t ∈ [−1, 0) with

N(i)→∞ as i→∞ (in (∪L
j=1(

−1BJ1
(ipj)))

c we have 1
10g(t)≤g(−1)≤10g(t)

for all t ∈ [−1, 0). Hence d(t)(−1BJ1
(ipj),

−1BJ1
(ipk)) ≥ N(i) for all t ∈

[−1, 0) with N(i) → ∞ as i→ ∞. Hence, without loss of generality we can
assume that the pj(s) in the statement of the Theorem satisfy

(5.15) d(t)(sBJ1

√
T−s(pj(s)),

sBJ1

√
T−s(pk(s))) ≥ N(s)

√
T − s

for all t ∈ (s, T ) for all j ̸= k, where N(s) → ∞ as s↗ T . That is: the new
claim is the claim of the Theorem 5.1, but with the extra claim 5.15. The
proof is: repeat the contradiction argument at the end of the proof above
for this new claim, using the information mentioned at the beginning of this
remark.

Remark 5.5. Note that in the conclusion of the theorem, we may also
assume, that

tBJ5
√
T−s(pj(s)) ⊆ sB16J5

√
T−s(pj(s))

⊆ rBJ25
√
T−s(pj(s))(5.16)

for all r, t ∈ [s, T ), for all j ∈ {1, . . . , L} holds (not just for the union of the
balls). Repeating this part of the proof for larger J , but keeping the same
pj(s), we see that in fact the following is also true:

(5.17) tBK
√
T−s(pj(s)) ⊆ sB16K

√
T−s(pj(s)) ⊆ rBK5

√
T−s2

(pj(s))

for all r, t ∈ [s, T ), for all j ∈ {1, . . . , L} for all K ≥ J5 ∈ R
+ as long as

|T − s| ≤ w(K) is small enough, for all good times s, in view of Remark 5.4
from above.

As a corollary we obtain that the distance is uniformly continuous in
time. We explain this in the following.

Let x, y ∈M and t ∈ [ti, T ) and γ : [0, 1] →M be a distance minimising
curve with respect to g(t) from x to y, dt(x, y) = Lt(γ), ti a good time close
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to T . We use the notation Lt(σ) = Lg(t)(σ) here, to denote the length of a
curve σ with respect to g(t).

We modify the curve γ to obtain a new curve γ̃ : [0, 1] →M in the follow-
ing way: if γ reaches the closure of the ball tBJ0

√
T−ti

(ipk) (here,
ipk = pk(ti),

k ∈ {1, . . . , L} and J0, J1, J2 are from the above construction) at a first
point γ(r) then let γ(r̃) be the last point which is in the closure of the
ball tBJ0

√
T−ti

(ipk) (it could go out and come in a number of times). Re-
move γ|(r,r̃) from the curve γ. In doing this we obtain the finite union of at
most L+ 4 curves γ̃j . Call this finite union γ̃ and consider it as a curve with
finitely many discontinuities.

The new γ̃ has

(5.18) Lt(γ̃) ≤ Lt(γ) = d(x, y, t)

Now (∪L
k=1

tBJ0

√
T−ti

(pik))
c ⊆ Regti(M) (J0 coming from (5.1) above),

as we saw above, and the Riemannian metric is uniformly continuous (in
time) on Regti(M) for good times ti. That is, for all ε > 0 there exists a
δ(ε, ti) > 0 such that

(5.19) (1− ε)g(y, t) ≤ g(y, s) ≤ (1 + ε)g(y, t)

for all y ∈ (∪L
k=1

tBJ0

√
T−ti

(pik))
c for all ti ≤ t, s ≤ T , |t− s| ≤ δ in view

of (4.12) and the fact that y ∈ (∪L
k=1

tBJ0

√
T−ti

(pk))
c ⊆ Regti(M). Hence

Lt(γ̃) ≥ Ls(γ̃)− cε for all T − δ ≤ t, s ≤ T in view of the fact that the di-
ameter of the manifold is bounded: more precisely, Lt(γ̃) ≥ 1

1+εLs(γ̃) = (1−
ε

1+ε)Ls(γ̃) ≥ Ls(γ̃)− εLs(γ̃), and Ls(γ̃) ≤ (1 + ε)Lt(γ̃) ≤ (1 + ε)d(x, y, t) ≤
2D, in view of (5.18) and (5.19), and hence

(5.20) Lt(γ̃) ≥ Ls(γ̃)− 2Dε

for all T − δ ≤ t, s ≤ T as claimed. Putting (5.18) and (5.20) together we
get

d(x, y, t) ≥ Lt(γ̃)

≥ Ls(γ̃)− 2Dε

≥ d(x, y, s)− 2Lε− 2Dε.(5.21)

The last inequality can be seen as follows: when γ̃ reaches a ball
tBJ0

√
T−ti

(ipk), it must also be in sBJ2

√
T−ti

(ipk), by estimate (5.16). So
the two points of discontinuity on γ̃ may be joined smoothly by a curve
with length (with respect to g(s)) at most 2J2

√
T − ti, which is without loss
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of generality less than ε. Doing this with all of the points of discontinuity
(that is with all the balls), we obtain a new continuous curve γ̂ from x to
y with length Ls(γ̂) ≤ 2Lε+ Ls(γ̃), which implies Ls(γ̃) ≥ Ls(γ̂)− 2Lε ≥
d(x, y, s)− 2Lε as claimed.

Swapping s and t in this argument gives us

(5.22) |d(x, y, t)− d(x, y, s)| ≤ Cε

for all T − δ ≤ t, s ≤ T , where x, y ∈M are arbitrary, and the constant C
appearing here does not depend on the choice of x, y ∈M . Smoothness of
the flow (and bounded diameter of M) for t < T implies that:

Theorem 5.6. Let (M, g(t))t∈[0,T ) be a smooth solution on a compact man-
ifold satisfying the basic assumptions. For all ε > 0 there exists a δ > 0 such
that

(5.23) |d(x, y, t)− d(x, y, s)| ≤ ε

for all x, y ∈M for all t, s ∈ [0, T ) with |t− s| ≤ δ.

6. Convergence to a length space

The results of the previous sections imply that (M,d(g(t))) → (X, dX) in
the Gromov-Hausdorff sense as t↗ T , where (X, dX) is a metric space, and
that away from at most finitely many points x1, . . . , xL ∈ X we have that
X\{x1, . . . , xL} is a smooth Riemannian manifold with a natural metric
and that the convergence is in the Ck Cheeger-Gromov sense. Furthermore,
(X, dX) is a length space (we explain all of this below).

In the paper [BZ], the authors also showed independently, with the help
of estimates proved in their paper, a similar result to the result mentioned
above (see Corollary 1.11 of their paper).

The previous sections of this paper give us lots of information on how well
the limit (X, d) will be achieved and what the limit looks like, geometrically
and topologically, near singular points. We will use the results of the previous
sections combined with a method of G. Tian (in [Tian]) to show somewhat
more than the result mentioned at the start of this section: namely, we will
show that (X, dX) is a C0 Riemannian orbifold, smooth away from its
singular points (this is shown in Section 8). In the last section of this paper
we explain how it is possible to flow C0 Riemannian orbifolds of this type
using the orbifold Ricci flow and results from the paper [SimC0].
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We construct the limit space (X, dX) directly using the following Lemma,
which relies on the uniform continuity of the distance function (in the sense
of Theorem 5.6).

Lemma 6.1. Let (M, g(t))t∈[0,T ) be a solution to Ricci flow satisfying the
standard assumptions. Then

X := {[x] | x ∈M}
where [x] = [y] if and only if d(x, y, t) → 0 as t↗ T.(6.1)

X is well defined. Furthermore, the function dX : X ×X → R
+
0 ,

(6.2) dX([x], [y]) := lim
t↗T

d(x, y, t)

is well defined and defines a metric on X.

Proof. If d(x, y, ti) → 0 for some sequence ti ↗ T , then d(x, y, si) → 0 for
all sequences si ↗ T , in view of Theorem 5.6. This means that [x] is well
defined, and hence X is well defined. Define dX([x], [y]) = limi→∞ d(x, y, ti)
where ti ↗ T is any sequence of times approaching T . The limit on the right
hand side is well defined in view of the theorem on the uniform continuity
of distance (Theorem 5.6) and dX is then also well defined, due to the the-
orem on the uniform continuity of distance (Theorem 5.6) and the triangle
inequality on d(·, ·, t).

From the definition, we see that dX([x], [y]) = 0 if and only if [x] = [y].
The triangle inequality of, and symmetry of dX follows from the triangle
inequality of, and symmetry of d(·, ·, t). □

This (X, dX) is the limiting metric space of (M,d(g(t)))t∈[0,T ) in view of the
theorem on the uniform continuity of distance, as we now show.

Lemma 6.2. Let everything be as in Lemma 6.1 above. The function f :
M → X is defined by

(6.3) f(x) := [x].

f : (M, g(t)) → (X, dX) is a Gromov-Hausdorff approximation in the sense
that

|dX(f(x), f(y))− d(g(t))(x, y)| ≤ ε(|T − t|)
X := f(M),(6.4)
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where ε(r) → 0 as r ↘ 0. f is continuous and surjective and hence (X, dX) is
compact, precompact, connected and complete. In particular (M,d(g(t))) →
(X, dX) as t↗ T .

Proof. The first claim of the theorem follows immediately from the theorem
on the uniform continuity of distance and the definition of X. Now we show
that f is continuous. Let U be open in X and dXBε(p) ⊆ U . Due to the
uniform continuity of the distance function, we know the following: for all
ε > 0 there exists a δ > 0 such that f(d(t)Bε/2(q)) ⊆ dXBε(p) for all |T −
t| < δ where q is an arbitrary point with f(q) = p (there could be lots of
such points). Hence d(t)Bε/2(q) ⊆ f−1(U). Since p ∈ U was arbitrary, and q
with f(q) = p was arbitrary, we have shown the following: for any point q ∈
f−1(U) there exists an ε(q) and a tε,q < T such that d(tε,q)Bε(q)(q) ⊆ f−1(U).
So we can write

f−1(U) = ∪q∈f−1(U)
d(tε,q)Bε(q)(q).

Each of the sets contained in the union is an open set in (M,d(t)) for any
t < T and hence, f is continuous. Hence (X, dX) is compact, being the con-
tinuous image of a compact space, and hence complete and precompact as
it is a metric space. □

We have shown f :M → X is a continuous surjective map, where the topol-
ogy on X comes from dX and that on M is the initial topology of the man-
ifold M , which agrees with that coming from the metric space (M,d(g(t)))
for any t < T . Note that the map f :M → X is not necessarily injective:
it could be that a set Ω containing more than two points is all mapped onto
one point in X by f .

Let ip1, . . . ,
ipL be the points constructed in the previous section (in the

possibly singular region) for large i. Taking a subsequence we can assume
that f(ipk) → xk as i→ ∞ for all k ∈ {1, . . . , L} for some fixed x1, . . . , xL.
We do not rule out the case xj = xk for j ̸= k. After renumbering the x′js we
have finitely many (we use the symbol L again) distinct points x1, . . . , xL,
and xi ̸= xj for all i ̸= j, i, j ∈ {1, . . . , L}.

Definition 6.3. Let [x] ∈ X, x ∈M . We say [x] is a regular point in X if
[x] contains only one point, and [x] is a singular point in X, if [x] contains
more than one point.

Remark 6.4. Notice that the notion of singular point and regular point
differs depending on whether the point is in X orM . The following theorem
gathers together properties that we have already proved and shows that
there is a connection between the different notions of singular and regular.
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Theorem 6.5. Let (M, g(t))t∈[0,T ) be a solution to Ricci flow satisfying the
basic assumptions, and (X, dX), x1, x2, . . . , xL ∈ X as above. Then

(i) X\{x1, . . . , xL}⊆f(Reg(M))⊆Reg(X)and f(Sing(M))⊆{x1, . . . , xL}.
(ii) V := f−1(X\{x1, . . . , xL}) ⊆ Reg(M), V is open and f |V : V → X is

an open, continuous, bijective map, and hence f |V : V → f(V ) :=
X\{x1, . . . , xL} is a homeomorphism.

Proof. (i) Take a point x /∈ {x1, . . . , xL}. Then dX(x, xj) ≥ ε > 0 for all
j ∈ {1, . . . , L} for some ε > 0. Let [z] = x. Remembering that [ipj ] → xj
as i→ ∞, we see that dX([z], [ipj ]) ≥ ε

2 > 0 for all j ∈ {1, . . . , L} if i is
large enough. Fix i large. Then we can find a t̃(i) such that d(z, ipj , t) ≥
ε/4 for all t̃(i) ≤ t < T near enough to T , for some t̃(i) ≥ ti, for all j ∈
{1, . . . , L} in view of the definition of dX . Scaling as in the proof of Theo-
rem 5.1 (and using the notation of the proof), we see that d(z, ipj ,−ŝi) →
∞ for all j ∈ {1, . . . , L}, for some 0 ≤ ŝi ≤ 1 as i→ ∞, and hence z ∈
Reg−1(M) ⊆ Reg(M) due to (5.13), and hence x = [z] = f(z) ⊆ f(Reg(M)).
This shows that X\{x1, . . . , xL} ⊆ f(Reg(M)) and hence we have shown the
first inclusion of (i). Let z ∈ Reg(M) be arbitrary. Then z ∈ Regt(M) for t
close enough to T by definition. Choose a good time t and scale the so-
lution by 1

T−t and translate the the solution in time (as in the proof of

Theorem 4.5 above). Then z ∈ Reg−1(M). Hence d(z, y, t) ≥ 1
10d(z, y,−1)

for all y ∈ −1B R

200
(z) for all t ∈ (−1, 0) in view of (4.13), and d(z, p, t) ≥

infy∈∂(−1B R
200

(z)) d(z, y, t)≥ε0>0 for all t∈(−1, 0), for all p∈(−1BR/200(z))
c

for the same reason. That is f(z) = [z] is not singular, since limt↗0 d(z, y, t) >
0 for all y ̸= z, y ∈M . That is f(Reg(M)) ⊆ Reg(X). This shows the second
inclusion of (i). Now we prove the last statement of (i). Let p ∈ Sing(M). As-
sume f(p) ∈ X\{x1, . . . , xL}. Then we know that there exists a x ∈ Reg(M)
such that f(x) = f(p) in view of the set inclusions just proved. But then
[x] = [p] and x ̸= p (since Reg(M) and Sing(M) are disjoint). Furthermore
[x] ∈ Reg(X) due to the set inclusions just shown. This contradicts the def-
inition of Reg(X). Hence, we must have [p] = f(p) ∈ {x1, . . . , xL}. This fin-
ishes the proof of (i).

(ii) Let z ∈ f−1(X\{x1, . . . , xL}). Then f(z) ∈ X\{x1, . . . , xL}. If z ∈
Sing(M) were the case, then we would have f(z) ∈ {x1, . . . , xL} from (i),
which is a contradiction. Hence z ∈ Reg(M). That is

V := f−1(X\{x1, . . . , xL}) ⊆ Reg(M).
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V is open, since f is continuous, und X\{x1, . . . , xL} is open. From the
above, f |V : V → X is injective: assume there exists x, y ∈ V with f(x) =
[x] = [y] = f(y). x ∈ V implies [x] ∈ X\{x1, . . . , xL} and hence [x] ∈ Reg(X)
from (i). Combining this with [x] = [y], we see that x = y in view of the
definition of Reg(X), that is f |V : V → X\{x1, . . . , xL} is injective. Let
(f |V )−1 : X\{x1, . . . , xL} → V be the inverse of f |V : V → X\{x1, . . . , xL}.
Then (f |V )−1 : N := X\{x1, . . . , xL} →M is continuous as we now show.
Assume [zk] → [z] in f(V ) = X\{x1, . . . , xL} as k → ∞. Using the fact that
f |V : V → X is injective, we see that there are unique points zk, z ∈ V
such that f(zk) = [zk] and f(z) = [z]. Furthermore, zk, z ∈ Reg(M): if zk
respectively z were in Sing(M), then we would have f(zk) respectively
f(z) ∈ {x1, . . . , xL} which is a contradiction.

Assume zk does not converge to z. z ∈ Reg(M) and hence we can find a
good time ti near T such that z ∈ Regti(M). Fix this ti. zk doesn’t converge
to z means: we can find a an ε(i) = ε(ti) > 0 and a subsequence (zk,i)k∈N
of (zk)k∈N (depending possibly on i), such that d(ti)(zk,i, z) ≥ ε(i) for all
k ∈ N. Scale at a time ti and translate as above to t = −1 (as in the proof
of Theorem 4.5). Then we have z ∈ Reg−1(M) and d(−1)(zk,i, z) ≥ ε̃(i) > 0
for all k ∈ N.

Hence (arguing as above) d(z, zk,i, s) ≥ 1
10d(z, zk,i,−1) ≥ ε(i) > 0 for

all zk,i ∈ −1B R

200
(z) for all s ∈ (−1, 0) in view of (4.13),and d(z, zk,i, s) ≥

infy∈∂(−1B R
200

(z)) d(z, y, s)≥ε0>0 for all s∈(−1, 0), for all zi,k∈(−1B R

200
(z))c

for the same reason.
Taking a limit s↗ 0, we see dX([zk,i], [z]) ≥ ε̂(i) > 0 for all k ∈ N , which

contradicts the fact that [zk] → [z] as k → ∞. □

These facts allows us to give X\{x1, . . . , xL} a natural manifold structure,
as we now explain.

Proposition 6.6. Let everything be as in Lemma 6.5 above. N = X\
{x1, . . . , xL} has a natural manifold structure and with this structure f |V :
V → N is a diffeomorphism, V := f−1(N). There is a natural Riemannian
metric l on N defined by l := limt↗T f∗g(t).

Proof. For x ∈ N , let x̃ ∈ V ⊆M be the unique point in V with f(x̃) = x.
Let ψ : Ũ ⊂⊂ V ⊆M → R

4 be a smooth chart on M with x̃ ∈ Ũ , and let
U := f(Ũ). U is open from the above. Define a coordinate chart ϕ : U ⊆
N → R

4 by ϕ = ψ ◦ (f |V )−1. Clearly these maps define a C∞ atlas on N
(the topology induced by f : V → N on N is the same as that induced by dX
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on N). Using this atlas on N , f |V : V → N is then a smooth diffeomorphism
per definition.

Also, we can define a limit metric l on N in a natural way: let l :=
limt↗T f∗(g(t)). This metric is well defined. Let [z] ∈ N and z be the corre-
sponding point in V . z ∈ Reg(M) because of (ii) above. Hence z ∈ RegtM
for all good times t near enough T and hence, after rescaling as in the proof of
Theorem 4.5, z ∈ Reg−1(M). Fix coordinates ψ : Ũ ⊂⊂ V → Û ⊆ R

4 with
Ũ ⊆ −1BR/2(z). Let gij(·, t) refer to the metric g(·, t) with respect to the co-

ordinates ψ. Then gij(t) → lij as t↗ 0 for some smooth metric l on ψ(Ũ), in
view of the estimates in the statement of Theorem 4.5 (see for example the
arguments in Section 8 of [HaForm]). Noting that f∗(g(t))ij(·, t) = gij(·, t)
in the coordinates ϕ = ψ ◦ (f |V )−1 : U → R

4, we see that this limit is well
defined. □

Notice that for each x, y ∈ X we can find a z with dX(x, z) = dX(z, y) =
1
2dX(x, y): this follows by using the Gromov-Hausdorff approximation f ,
and the fact that this is true for d(g(ti)) (for a sequence of times ti ↗ T ),
and using the compactness of M and X. Hence, since (X, dX) is complete,
we have that (X, dX) is also a length space. We include the statement of
this fact and others, some of which appeared already in this section, in the
following theorem.

Theorem 6.7. Let everything be as in Proposition 6.6, and let p1, . . . , pL ∈
M be arbitrary points with f(pj) = xj for all j ∈ {1, . . . , L}. (X, dX) is a
compact length space, with length function LX , and (N, l) = (X\{x1, . . . ,
xL}, l) is a smooth Riemannian manifold with

(a) supx,y∈M |d(g(t))(x, y)− dX(f(x), f(y)| → 0 as t↗ T , and hence

(6.5) sup
r∈[0,D]

dGH(d(g(t))Br(xi),
dXBr(pi)) → 0 as t↗ T,

for arbitrary pj ∈M with f(pj) = xj.

(b) Let N̂ be a component of N and dN̂,l the metric induced by (N̂ , l) on N̂ .
Then, for all x ∈ N , there exists an open set U ⊂⊂ N with x ∈ U , such
that dX |U = dN̂,l|U and voll(E ∩ U) = dµX(E ∩ U) for all measurable
E ⊆ N , where dµX refers to n-dimensional Hausdorff-measure with
respect to the metric space (X, dX), and voll is the volume form coming
from l on N . Hence, dµX |N = voll if we restrict to measurable sets
in N .
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(c) LX(γ) = Ll(γ), in the case where γ is a piecewise smooth curve which
lies completely in N = X\{x1, . . . , xL}.

Proof. (a) follows directly from Lemmata 6.3, 6.5 and 6.6. As we men-
tioned above, for each x, y ∈ X we can find a z with dX(x, z) = dX(z, y) =
1
2dX(x, y): this follows by using the Gromov-Hausdorff approximation f , and
the fact that this is true for d(g(ti)), and using the compactness of M and
X. Hence, since (X, dX) is complete, we have that (X, dX) is also a length
space, see Chapter 2 and in particular Theorem 2.4.16 of [BBI]: in the proof
of Theorem 2.4.6 in [BBI], it is shown, that one can construct a continuous
curve γ : [0, l := dX(x, y)] → X such that dX(γ(s), γ(t)) = |t− s| for all 0 <
s, t ≤ l, and hence dX(x, y) = LX(γ) where, for σ : [a, b] → R a continuous
curve, LX(σ) is the supremum of the sums Σ(Y ) =

∑N
i=1 dX(σ(yi−1), σ(yi))

over all finite partitions Y = {y1, . . . , yN}, N ∈ N of [a, b]. Hence all points
x, y can be joined by a continuous geodesic curve γ : [0, s] → X such that
LX(γ|[a,b]) = dX(γ(b), γ(a)) for all 0 ≤ a, b ≤ s. We are using the notation
of [BBI]: a geodesic in a length space is a continuous curve whose length
realises the distance.

Let q ∈ N = X\{x1, . . . , xL}. Then q ∈ N̂ , the unique connected compo-
nent of N containing q. For the proof of (b), dl will refer to dl,N̂ the distance

function associated to (N̂ , l).
From the above (Lemmata 6.5 and 6.6), there exists a unique q̂ ∈M such

that f(q̂) = q, and we can find a neighbourhood Z ⊂⊂ U ⊂⊂ N and coordi-
nates ϕ : U → R

4, with x ∈ U , Ũ := ϕ(U), Z̃ := ϕ(Z), ϕ(q) = p. By choos-
ing ε > 0 small enough, we can guarantee that dlB100ε(q) and dXB100ε(q)
are compactly contained in Z. Using the fact that gij(t) → lij in the Ck

norm on Ũ = ϕ(U), we see that every smooth, regular curve γ : I → Ũ
with γ(0) ∈ ϕ(dlB2ε(q) ∩ dXB2ε(q)) which leaves Z̃ must have length larger
than 10ε with respect to gij(t) if |t− T | ≤ δ (and with respect to lij),
in view of the fact that (1− ε̃)lij ≤ gij(t) ≤ (1 + ε̃)lij in Ũ if |t− T | ≤ δ,
δ small enough. Hence, for x, y ∈ dlB2ε(q) ∩ dXB2ε(q), we have dl(x, y) =
dl̃,Ũ (ϕ(x), ϕ(y)), where Ũ = ϕ(U), l̃ = ϕ∗(l) = (lij)i,j∈{1,...,n} and dl̃,Ũ is the

distance on the Riemannian manifold (Ũ , l̃). Similarly, dg(t)(f
−1(x), f−1(y))

= dg̃(t),Ũ (ϕ(x), ϕ(y)), g̃(t) = ψ∗(g(t)) = (gij(t))i,j∈{1,...,n} if |T − t| ≤ ε̃,

where we are using the coordinates ϕ = ψ ◦ f−1, introduced in Proposi-
tion 6.6 [Explanation. Without loss of generality, |dg(t)(f−1(x), f−1(y))−
dX(x, y)| ≤ ε for |T − t| ≤ ε̃, and hence dg(t)(f

−1(x), f−1(y)) ≤ 3ε. If γ is
any curve in M between f−1(x) and f−1(y) whose length is less than 4ε,
then γ must lie in f−1(Z): otherwise, pushing down to Ũ with the coordi-
nates ψ, we would obtain a part of the curve having length larger than 10ε,
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which is a contradiction. End of the explanation]. This shows us

dX(x, y) = lim
t↗T

dg(t)(f
−1(x), f−1(y))

= lim
t↗T

dg̃(t),Ũ (ϕ(x), ϕ(y)) = dl̃,Ũ (ϕ(y), ϕ(y)) = dl(x, y),

as claimed. Furthermore, since l is smooth, we can assume that ε > 0 is
so small, that voll |dlBε(q) = Hn

dl
|dlBε(q), and hence voll |lBε(q) = Hn

dX
|dlBε(q),

since dX = dl on
dlBε(q), where here Hn

dl
is Hausdorff-measure on (N̂ , dl).

This finishes the proof of (b).It follows, that LX(σ) = Ll(σ) for any piece-
wise smooth σ : [0, 1] → X\{x1, . . . , xL} curve: we cover the image by small
balls for which on each of the balls dX = dl, and use the fact that lo-
cally, Ll(σ) is the supremum of the sums Σ(Y ) =

∑N
i=1 dl(σ(yi−1), σ(yi)) =

∑N
i=1 dX(σ(yi−1), σ(yi)) over all finite partitions Y ,Y = {y1, . . . , yN},N ∈ N

of [a, b] (without loss of generality, σ[yi, yi+1] lies in a small ball on which
dX = dl). This is (c). □

7. Curvature estimates on and near the limit space

Let dµX denote Hausdorff-measure on the metric space (X, dX). This is an
outer measure and defined for all sets in X. See for example Chapter 2 of
[AT]. Let dµl = voll refer to the measure on N = X\{x1, . . . , xL} coming
from the Riemannian metric l. From (b) in Theorem 6.7 above, we saw that
dµl = (dµX)|N when we restrict to measurable sets in N . Hence for any
measurable set E in N , we have

(i) dµl(E) = dµX(E) = limε↘0 dµX(E\dXBε(p))
= limε↘0 dµl(E\dXBε(p))

(ii) By construction l is the limit of the pull back of the metrics g(t) by
f−1, and hence, c0r

4 ≤ dµl(
dXBr/2,r(xi)) ≤ c1r

4 for all r ≤ diam(X),
where c0, c1 are fixed constants. This can be seen as follows. Let
U := dXBr/2,r(xj). Then tBr/4(pj) ⊆ Û := f−1(U) ⊆ tB2r(pj) for all
t with |T − t| ≤ δ small enough, in view of the definition of f , and the
uniform continuity in time of the distance function (here pj is an arbi-
trary point with f(pj) = xj), and hence c0r

4 ≤ volg(t)(Û) ≤ c1r
4. Let-

ting t↗ T and using volg(t)(Û) = volf∗(g(t))(U) → voll(U) = dµl(U)
implies the claimed estimate.

(iii) Hence the non-collapsing/non-expanding estimates σ̃0r
4≤dµl(dXBr(z))

≤ σ̃1r
4 must also hold on X for some constants 0 < σ̃0, σ̃1 <∞, for all

r ≤ diam(X) .We denote the constants 0 < σ̃0, σ̃1 <∞ once again by
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0 < σ0, σ1 <∞. That is, the non-collapsing / non-expanding estimates
survive into the limit.

In view of the results of the previous sections we have

Theorem 7.1. Let everything be as in the previous section (X, x1, . . . , xL
are defined in Lemma 6.5 and l is defined in Lemma 6.6). Then,

(i)

(7.1)

∫

X
|Riem(l)(x)|2dµX ≤ K0 := c0(g0, T )

where c0(g0, T ) is the constant appearing in (2.1), and we define
|Riem(l)(x)| = 0 for x ∈ {x1, . . . , xL} (this is a measurable function,
since dµX(S) = 0 for any finite set S ⊆ X).

(ii) The following flatness estimates are also true. Let (ai)i∈N be any se-
quence with ai ↗ ∞, and let li = a2i l, di =

√
aidX . Then for all 0 <

σ < N <∞, K ∈ N , we have

|∇k Riem(li)(x)| ≤ ε(i, σ,N,K) on diBσ,N (xj)(7.2)

where ε(i, σ,N,K) → 0 as i→ ∞ for fixed N, σ,K, and j ∈ {1, . . . , L}.

Remark 7.2. Note that we obtain the result (7.2) for all sequences. It is
not necessary to pass to a subsequence in order to obtain the result.

Remark 7.3. Compare the estimates with those stated in Corollary 1.11
in [BZ], which were obtained independently.

Proof. (i) Using the theorem on monotone convergence (see for example
Theorem 2 Section 1.3 in [EG]) and the fact that dµX(∪L

i=1Bε(xi)) → 0 as
ε↘ 0, we see that

∫

X
|Riem(l)(x)|2dµX(x)

= lim
ε↘0

∫

X\(∪L
i=1Bε(xi))

|Riem(l)(x)|2dµX

= lim
ε↘0

lim
t↗T

∫

f−1(X\(∪L
i=1Bε(xi)))

|Riem(g(t))(x)|2dµt ≤ K0(7.3)

This finishes the proof of (i).
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(ii) Let ci :=
1

T−ti
where ti is a sequence of good times. Scale and trans-

late in time (M, g(t))t∈[0,T ) as in Theorem 4.5, we call the resulting solution
also (M, g(t))t∈(−Ai,0), and scale dX by di =

√
cidX . Notice that di(xk, xl) →

∞ as i→ ∞ and we will only be concerned with these blow ups near one
point xk: without loss of generality xk = x1. Assume x1 ∈ f(Sing(M)), and
let p1 ∈ Sing(M) be a point with f(p1) = x1. If x1 ∈ f(Reg(M)), then the
theorem follows by blowing up the region around x1, which has a Rie-
mannian manifold structure. From the estimates of Theorem 5.1, we have
Sing(M) ⊆ (Reg−1(M))c ⊆ ∪L

k=1(
−1BJ1

(ipk)) and hence p1 ∈ −1BJ1
(ipk) for

some k ∈ {1, . . . , L}: renaming the (ipk)
′s we can assume p1 ∈ −1BJ1

(ip1)
and hence

(7.4) |∇j Riem(gi(t̃))| ≤ Cj on (∪L
k=1(

−1B2J1
(ipk)))

c if t̃ ∈
(

−1

2
, 0

)

,

in view of the estimates (4.17), where ip1 = p1. From Remark 5.5, we see
that, without loss of generality, tB2J1

(p1) ⊆ −1B32J1
(p1) ⊆ tB25J5

1
(p1) for

all t ∈ (−1, 0] and tBN (p1) ⊆ −1B16N (p1) ⊆ tBN5(p1) for all t ∈ (−1, 0] if
i is large enough. Hence, using the fact that d(−1)(ipj ,

ipk) → ∞ as i→
∞ (see Remark 5.4) for all j ̸= k, we see that tBN (p1) ∩ (tB25J5

1
(p1))

c ⊆
−1B16N (p1) ∩ (−1B32J1

(p1))
c and

|∇j Riem(gi(t̃))| ≤ Cj

on −1B16N (p1) ∩ (−1B32J(p1))
c ⊇ tBN (p1) ∩ (tB25J5

1
(p1))

c

if t̃ ∈
(

−1

2
, 0

)

,(7.5)

and hence, taking a limit t↗ T , we see that

(7.6) |∇j Riem(li)| ≤ Cj on diBN (x1) ∩ (diBJ4
(x1))

c,

where li = cil, J4 := 25J5
1 . Using that

∫

dXBr(x1)
|Riem(l)(x)|2dµX(x) → 0 as

r → 0, we see that

(7.7)

∫

diBJ4,N (x1)
|Riem(li)(x)|2dµ(i)X(x) → 0 as i→ ∞,

where dµ(i)X is Hausdorff-measure on (X, di), and hence

|Riem(li)(x)| ≤ ε(i) → 0 as i→ ∞ on diBJ4+1,N−1(x1)
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in view of the fact that |∇j Riem(li)| ≤ Cjfor all j ≤ K on the same set
(Cj not depending on i). In fact we may assume smallness for all gradients
up to a fixed order. This can be seen as follows. Introduce geodesic coordi-
nates at a point mi ∈ diBJ5+1,N−1(x1). The injectivity radius at mi is larger
that β > 0 for all metrics independent of i in view of the injectivity radius
estimate of Cheeger-Gromov-Taylor, Theorem 4.3 in [CGT], and the non-
collapsing/non-inflating estimates. Now using Theorem 4.11 of [HaComp],
and writing li in these geodesic coordinates, we get |Dkli|Bβ(0 ≤ C(K) for
all k ∈ {1, . . . ,K}. Hence taking a subsequence, we get a limit metric in
Ck−1(Bβ(0)), which is equal to δ, by Theorem 4.10 of [HaComp].

That is, without loss of generality,

(7.8) |∇k Riem(li)(x)| ≤ ε(i) → 0 as i→ ∞ on diBJ4+1,N−1(x1)

for all k ≤ K ∈ N0, where K is fixed but as large as we like, for li = cil,
ci =

1
(T−ti)

, where ti ↗ T is a sequence of good times, where we took vari-

ous subsequences to achieve this. In fact the equation (7.8) is true for any
sequence ci ↗ ∞: it is not necessary to take a subsequence, and it is not
necessary that ci has the form ci =

1
(T−ti)

, where ti are good times. We ex-
plain this now. First, the statement is true for any sequence of the form
ci =

1
(T−ti)

: if not, then take a sequence for which it fails. Taking a subse-
quence, if necessary, in the proof above, we arrive at a contradiction.

Now let ci → ∞ be arbitrary. We can always write ci =
αi

(T−ti)
for some

sequence of good times ti ↗ T and αi ∈ (1/4, 4), in view of Lemma 4.2. Now
(7.8) holds for the metrics l̃i =

1
(T−ti)

l, as we have just shown, and hence,

for li =
αi

(T−ti)
l = αi l̃i, we get

(7.9) |∇k Riem(li)(x)| ≤ ε(i) → 0 as i→ ∞ on diB2(J4+1), 1
2
(N−1)(x1)

Now let ai be an arbitrary sequence going to infinity, and l̃i = ail. Writing
li = cil with ci =

4(J4+1)
σ2 ai, we see that l̃i =

σ2

4(J4+1) li, and hence, using the

fact that N was arbitrary (but large), we get,

(7.10) |∇k Riem(li)(x)| ≤ ε(i) → 0 as i→ ∞ on diBσ,N (x1) □

So we see that the manifold is becoming very flat away from singular
points, in the sense just described, after scaling. Using these flatness esti-
mates we will show that X is a generalised C0 Riemannian orbifold. We wish
also to show that at each possible orbifold point there is only one component:
that is, that X is actually a C0 Riemannian orbifold with only finitely many
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orbifold points. To do this, it will be necessary to obtain approximations of
the blow ups (diBσ,N (x1)) (constructed in the proof above) by Riemannian
manifolds which have certain nice properties.

This is the content of the next theorem.

Theorem 7.4. (Approximation Theorem) Let l and X, x1, . . . , xL, be as
in Lemma 6.5 and Lemma 6.6. There exist smooth metrics gi on M , and
points pj ∈M for j ∈ {1, . . . , L} such that

dGH(giBN(i)(pj),
diBN(i)(xj)) ≤ αi

|∇k Riem(li)|2 ≤ αi on
diBσ(i),N(i), and

(diBσ(i),N(i)(xj), li), is αi close to (giBσ(i),N(i)(pj), gi)(7.11)

in the Ck sense, and
∫

M
|Ricci(gi)|4dµgi → 0, as i→ ∞,(7.12)

where di(·, ·) = aidX(·, ·), li = a2i l and ai, σ(i), ai, N(i) ∈ R
+ are numbers

satisfying 0 < αi, σ(i) → 0 as i→ ∞, ai, N(i) ↗ ∞ as i→ ∞.
The condition ε close in the Ck sense, is made precise in the proof of the

theorem, and the approximations are always achieved with f .

Proof. Let xj be fixed. If xj ∈ f(Reg(M)) then the theorem follows directly
using the definition of Ck close and Theorem 4.5 (see below). So assume
xj = x1 /∈ f(Reg(M)) and let f(p1) = x1.

Let ti be a sequence of good times and scale by ai :=
1

T−ti
and translate

as in the proof of (ii) Theorem 7.1.
First we use a similar argument to that given at the end of Section 5 to

show that |dt(·, ·)− ds(·, ·)| ≤ C(J1) for all t, s ∈ (−δ(N, J1), 0] for all x, y ∈
tBN/4(p1). We use the notation from the proof of (ii) Theorem 7.1 in this
argument, and we take various subsequences when necessary.

Let x, y ∈ tBN/4(p1) be arbitrary in, and γ a distance minimising curve
between these two points w.r.t to g(t) (γ must lie in tBN (p1) and we have
Lt(γ) ≤ N).

We modify the curve γ to obtain a new curve γ̃ : [0, 1] →M in the fol-
lowing way: if γ reaches the closure of the ball tB2J1

(p1) at a first point γ(r)
then let γ(r̃) be the last point which is in the closure of the ball tB2J1

(p1)
(it could go out and come in a number of times). Remove γ|(r,r̃) from the
curve γ. In doing this we obtain the finite union of at most 2 curves γ̃1 and
γ̃2. Call this finite union γ̃ and consider it as a curve with finitely many
discontinuities.
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The new γ̃ has

(7.13) Lt(γ̃) ≤ Lt(γ) = d(x, y, t) ≤ N

From equation (7.5) in the proof above, we see that for all ε > 0 there
exists a δ(ε) > 0 such that

(7.14) (1− ε)g(y, t) ≤ g(y, s) ≤ (1 + ε)g(y, t)

for all y ∈ tBJ4,N (p1) =
tB25J5

1 ,N
(p1) ⊆ −1B32J,16N (p1) for all t, s ∈ (−δ, 0]

(δ independent of i: use (7.5) and the evolution equation ∂
∂tg = −2Ricci(g)).

Hence Lt(γ̃) ≥ Ls(γ̃)− εLt(γ̃) ≥ Ls(γ̃)− εN for all t, s ∈ (−δ, 0], which,
when combined with (7.13), gives us

d(x, y, t) ≥ Lt(γ̃)

≥ Ls(γ̃)− εN

≥ d(x, y, s)− εN − J6
4 .(7.15)

The last inequality can be seen as follows: when γ̃ reaches the ball tBJ4
(p1),

it must also be in sBJ5
4
(p1) in view of Remark 5.5. So the two points of

discontinuity on γ̃ may be joined smoothly by a curve with length (with
respect to g(s)) at most 2J5

4 . Call this curve γ̂. Hence Ls(γ̂) ≤ 2J5
4 + Ls(γ̃),

which implies Ls(γ̃) ≥ Ls(γ̂)− 2J5
4 ≥ d(x, y, s)− J6

4 as claimed. So we have
d(x, y, t) ≥ d(x, y, s)− J7

4 if we choose ε = 1
N . Swapping s and t, we see that

(7.16) |d(x, y, t)− d(x, y, s)| ≤ J7
4

if t, s ∈ (−δ, 0], and x, y ∈ tBN/4(p1) where δ = δ(N, J) and may depend on
the solution, but does not depend on i, as long as i is large enough.

In particular, tBJ100,N
8
(p1) ⊆ sBJ50,N

4
(p1) ⊆ tBJ5,N (p1) for all N > J100

and i large enough, for all t, s ∈ (−δ, 0] where δ = δ(N, J) and may depend
on the solution, but does not depend on i. Notice, by taking a limit s↗ 0,
we see f(tBJ100,N

8
(p1)) ⊆ diBJ50,N

4
(x1) (*).

Using (7.5), and the evolution equation for the curvature as in Section 8
of [HaForm], we see that

(7.17) |f∗(g(t))− li|Ck(diBJ50,N (x1),g(t)) ≤ ε̂

if t ∈ (−δ(k, ε̂), 0]. We explain now why Inequality (7.17) is true. To see this,
work with fixed geodesic coordinates ϕ : Bi0(z) → Bi0(0) of radius larger
i0 > 0 at any point in z ∈ diBJ50,N (p1) (these exist because of the curvature
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estimates of the previous theorem, Theorem 7.1, and the non-collapsing es-
timates). Writing li in these coordinates, (we drop the i in these coordinates
and call f∗(g(t)) also g(t) in the coordinates) we have 1

C δij ≤ lij(·) ≤ Cδij ,
∑K

j=0 |Djl|2(·) ≤ C on Bi0(0) for some C not depending on i, where here
D is the standard euclidean derivative (the manifolds are non-collapsed
and satisfy the curvature bounds of Theorem 7.1: see Corollary 4.12 in
[HaComp] for example). Using the evolution equation for g(t) and the cur-
vature bounds, and the fact that g(0)− l = 0 we see, using arguments simi-
lar to those of Section 8 in [HaForm], e−C|t|l ≤ g(t) ≤ eC|t|l, |D(g(t)− l)| ≤
C|t|, |D2(g(t)− l)| ≤ Ct and so on. This implies

∑k
j=0 |g(t)∇j(l − g(t))|2g(t) +

|l∇j(l − g(t))|2l ≤ ε on Bi0(z) if |t| ≤ δ(C, ε), where δ is chosen near enough
to 0. This finishes the explanation of why Inequality (7.17) is true. For a
tensor T and a metric l defined on U , we have used the following notation:

|T |2Ck(U,l) :=

k
∑

j=0

sup
x∈U

|l∇j
T |2l (x),

where l∇j
refers to the jth covariant derivative with respect to l, if j ∈ N,

and l∇0
T := T . Note that this δ doesn’t depend on i. In fact, what we have

shown, is
∑k

j=0 |g(t)∇j(f∗(li)− g(t))|2gi(t)(f
−1(z)) + |li∇j(li − f∗g(t))|2li(z) ≤

ε for all t ∈ (−δ, 0) if z ∈ diBJ50,N (p1). Hence, using (*), we have also shown
∑k

j=0 |g(t)∇j(f∗(li)− g(t))|2g(t)(w) + |di∇j(li − f∗g(t))|2li(f(w)) ≤ ε for all t ∈
(−δ, 0) if w ∈ tBJ100,N

8
(p1).

Scaling the solution by ( σ
J100 )2, and assuming N = 8ÑJ100

σ we see that
|g(t)− f∗(li)|Ck(tBσ,Ñ (p1),g(t)) ≤ σ and |f∗(g(t))− li|Ck(diBσ,Ñ (p1),l̃i)

≤ σ if t ∈
(−δ̂, 0] (the original ε̂ is as small as we like) and |d(x, y, t)− d(x, y, s)| ≤ σ
if t, s ∈ (−δ̂, 0] and x, y ∈ tBÑ (p1). Choosing i large enough, and a time

t1 ∈ (−δ̂,− δ̂
4) which corresponds to a good time of the original solution,

we see that we may assume without loss of generality, that g1 := g(t1)
satisfies

∫

M |Ricci(g1)|4dµg1 ≤ σ. g1 is our first metric. It satisfies

|g1 − f∗(li)|Ck(g1Bσ,Ñ (p1),li) ≤ α1,

|f∗(g1)− li|Ck(diBσ,Ñ (x1),li) ≤ α1

and |di(f(x), f(y))− dg1(x, y)| ≤ α1

on g1BÑ (p1), where α1 = σ, and
∫

M |Ricci(g1)|4dµg1 ≤ α1.
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Repeating the procedure, but scaling by ( (σ)
2

J100 )2, at the end, with N =
2×8ÑJ100

σ2 leads to our second metric g2, and g2 satisfies (for a new larger i)

|g2 − f∗(li)|Ck(g2Bσ2,2Ñ (p1),g2) ≤ α2,

|f∗(g2)− li|Ck(diBσ2,2Ñ (x1),li) ≤ α2

and |di(f(x), f(y))− dg2(x, y)| ≤ α2

on g2B2Ñ (p1), where α2 = σ2, and
∫

M |Ricci(g2)|4dµg2 ≤ α2.
And so on. Choosing σi to be an arbitrary sequence with σi ≫ σi and

σi → 0 as i→ ∞ completes the proof. □

For convenience we introduce some notation which will help us describe
the phenomenon of metric annulli being Ck-close, as described in the the-
orem above. This phenomenon occurs at a number of points in the rest of
the paper.

Definition 7.5. Let (X, dX), (Y, dY ) be complete, connected metric spaces.
We assume also that these spaces have a given Riemannian structure with
at most finitely many (possible) singularities in the following sense: N :=
X\{x1, . . . , xL} and V := Y \{y1, . . . , yL} are smooth manifolds, and l is a
Riemannian metric on N and v on V . For 0 < r < R ≤ ∞, E ⊆ X an open
set(E = X is allowed), and x0 ∈ {1, . . . , xL}, y0 ∈ {y1, . . . , yL} we say that

(7.18) dCk(E ∩ dXBr,R(x0),
dYBr,R(y0)) ≤ ε

(we always assume ε≪ min(r,R− r)) if

(i) E ∩ dXBr,R(x0) ⊆ N and dYBr,R(y0) ⊆ V , and

(ii) there exists a Ck+1 map f : E ∩ dXBr,R(x0) → V , such that f is a Ck+1

diffeomorphism onto its image, dYBr+ε,R−ε(y0) ⊆ f(E ∩ dXBr,R(x0))

(iii) |dX(w, x0)− dY (f(w), y0)| ≤ ε for all w ∈ E ∩ dXBr,R(x0): in particu-
lar dYBs+ε,m−ε(y0) ⊆ f(E ∩ dXBs,m(x0)) ⊆ dYBs−ε,m+ε(y0) for all 0 <
r ≤ s < m ≤ R with s+ ε < m− ε.

(iv) |f∗(v)− l|2Ck(E∩dXBr,R(x0),l)

:=
∑k

j=0 supx∈E∩dXBr,R(x0) |l∇
j
(f∗(v)− l)|2l (x) ≤ ε

and |v − f∗l|2Ck(dY Br+ε,R−ε(y0),v)
≤ ε.

Remark 7.6. Note that in the Approximation Theorem above, Theo-
rem 7.4, the f that occurs there is also a Gromov-Hausdorff approximation



✐

✐

“6-Simon” — 2020/12/3 — 0:20 — page 1727 — #45
✐

✐

✐

✐

✐

✐

Extending 4D Ricci flow 1727

when considered as a map on the balls being considered (and E =M). Here
we only require condition (iii), which is weaker.

Remark 7.7. The definition of Ck close is coordinate free. This allows us
to compare elements of sequences of Annuli in a coordinate invariant way.

Remark 7.8. From the definition we see, that if (X, dX), (Y, dY ), are met-
ric spaces of the type occurring in the theorem then

dCk(dXBr,R(x0),
dYBr,R(y0)) ≤ ε

implies

dCk(dYBr+4ε,R−4ε(y0),
dXBr+4ε,R−4ε(x0)) ≤ ε (almostsymmetry)

8. Orbifold structure of the limit space

The flatness estimate (7.2) of the previous section, along with the non-
collapsing and non-expanding estimates (which survive into the limit, as
explained in (iii) at the beginning of Section 7) guarantee that X is ac-
tually a so called generalised C0 Riemannian orbifold with only finitely
many isolated orbifold points : points q ∈ X for which there exists a neigh-
bourhood q ∈ U ⊆ X and a smooth diffeomorphism ϕ : U → R

4 are called
manifold points, all other points in X are called orbifold points. These ob-
jects have been studied in [Tian], [And1], [BKN] . In the papers [HM, HM2],
the authors also used generalised Riemannian orbifolds (they refer to them
as multifolds: see section 3 of [HM2]) to prove an orbifold compactness result
for solitons. They were introduced and used in the static (for example the
Einstein) setting by M. Anderson [And1] (see also [BKN]), to describe non-
collapsing limits of Einstein manifolds. The estimates required to show that
X is a generalised C0 Riemannian orbifold are contained in the previous sec-
tion. Generalised Riemannian orbifolds can have a number of components
at each orbifold type point. In our case we will see that there is exactly one
component at each singular point. Before showing this, we state the gen-
eral result which follows from the argument for example in [Tian] (see also
[And1], [BKN]).

We use the following notation in the statement of the theorem and in the
rest of the paper: Dr,R ⊆ R

4 is the standard open annulus of inner radius
r ≥ 0 and outer radius R ≤ ∞, (r < R) centred at 0: Dr,R = {x ∈ R

4 | |x| >
r, |x| < R}. Dr represents the open disc of radius r centred at 0: Dr := {x ∈
R
4 | |x| < r}. Note D0,R = {x ∈ R

4 | |x| > 0, |x| < R} = DR\{0}.
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Theorem 8.1. X is a generalised C0 Riemannian orbifold in the following
sense.

(i) X\{x1, . . . , xL} is a manifold, with the structure explained above in
Lemmata 6.5 and 6.6.

(ii) There exists an r0 > 0 small, and an N <∞ such that the follow-
ing is true. Let xi ∈ X be one of the singular points. Then the num-
ber of connected components (Ei,j(r))j∈{1,...,Ñi} of dXBr(xi)\{xi} in

X\{x1, . . . , xL} is finite and bounded by N (that is Ñi ≤ N) for r ≤ r0,
where N = N(σ0, σ1) <∞.

(iii) Fix i ∈ {1, . . . , L}, j ∈ {1, 2, . . . , Ñi}, and let E = Ei,j(r0) be one of the
components from (ii). Then there exists a 0 < r̃ ≤ r0 and a diffeomor-
phism k : D0,r̃ → k(D0,r̃) ⊆ Ẽ where Ẽ is the universal covering space
of E ∩ (∪Ni

j=1Ei,j(r̃(1 + ε)), such that the covering map πE : Ẽ → E is
finite and for r ≤ r̃ we have

(8.1) sup
D0,r

|(πE ◦ k)∗l − δ|C0(D0,r) ≤ ε1(r)

where ε1(r) ≥ 0 is a decreasing function with limr↘0 ε1(r) = 0, δ is the
standard euclidean metric on R

4 or subsets thereof, | · |C0(L) is the stan-
dard euclidean norm on two tensors, |v|2C0(L) := supx∈L

∑n
i,j=1 |vij(x)|2

for any set L ⊆ R
4 and any two tensor v = vijdx

idxj.

Proof. (i) was shown above. (ii) follows from the non-expanding and non-
collapsing estimates, exactly as in the proof of Lemma 3.4 in [Tian].

(iii) Follows as in the proof of Lemma 3.6 in [Tian] using the flatness
estimates, (7.2), and the non-collapsing and non-expanding estimates. □

Remark 8.2. Some of the proofs of the Lemmata mentioned here (Lemma
3.6 and Lemma 3.4 of [Tian]) can be simplified at certain points, by using
that inj(Br(p)) ≥ c0r for all balls Br(p) which are compactly contained in
(D,h) where (D,h) is any smooth, open flat (Riem(h) = 0) non-collapsed,
non-inflated (on all scales) manifold without boundary: this follows from
the injectivity radius estimate of Cheeger-Gromov-Taylor, Theorem 4.3 in
[CGT], whose proof is local.

The construction of this k in [Tian] (see Lemma 3.6 in [Tian]) is achieved
by pasting together maps ϕi : D 1

2i+2 ,
1

2i
→ π−1(B 1−ε

2i+2 ,
1+ε

2i
) where i ∈ N. That

is ϕ1, ϕ2, . . . are first constructed, and then ϕ1 is pasted to ϕ2 and ϕ2 to ϕ3
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and so on. This leads to a map k with the properties given in the theorem
above: see the proof of Lemma 3.6 in [Tian]. We construct a ϕ here using
the method described in the proof of Lemma 3.6 in [Tian] with some minor
modifications. The explicit construction we present here will be used in
later sections. That is, in later sections we will use the maps ϕi used here
to construct ϕ along with properties of the ϕ′

is. For this reason, we present
details of this construction.

As shown in the proof of Lemma 3.6 of [Tian]: if we scale, li = (2i+2)2l,
di = 2i+2dX , then

dCk((g(i)B1/2,4(0), g(i)), (
diB1/2,4(x1) ∩ E, li)) ≤ ε(i) → 0 as i→ ∞,

where (g(i)B1/4,4(0), g(i)) ⊆ ((R4\{0})/Γ(i), g(i)), and g(i) is the standard
metric on (R4\{0})/Γ(i), and Γ(i) is some finite subgroup of O(4) with
finitely many elements (less than or equal to N elements, N independent of
i) acting freely on R

4\{0}. Hence there exists a diffeomorphism

(8.2) vi : (
g(i)B1/2,4(0), g(i)) → (diB1/2−ε(i),4+ε(i)(0) ∩ E, li) ⊆ (E, li),

such that

|v∗i li − g(i)|Ck(g(i)B1/2,4(0),g(i)) + |(vi)∗g(i)− li|Ck(diB1/2+ε(i),4−ε(i)(0)∩E,li) ≤ ε(i)

In the following, ε(i) > 0 will refer to positive numbers with the prop-
erty that ε(i) → 0 as i→ ∞. As the notation suggests, in fact this Γ(i)
(and hence g(i)) could depend on the sequence we take, and could depend
on i ∈ N. However, inj((R4\{0})/Γ(i), g(i))(x) ≥ |x|i0 for some fixed i0 > 0,
where |x| = |x̃|R4 is the euclidean norm of the point x lifted to x̃ ∈ R

4 (any
such x̃ has the same euclidean distance from the origin, regardless of which
x̃, covering x, we choose) [Explanation 1: this follows in view of the construc-
tion: for any ball diBr(x) ⊆ diB1,4(x1) ∩ E we have r4σ1 ≥ vol(diBr(x)) ≥
r4σ0, and the norm of the curvature tensor on diB1,4(x1) goes to zero as
i→ ∞. Hence inj(diB1/100(0), li)(x) ≥ i0 for any x ∈ diB 5

4
,3(x1), for some

i0 > 0, if i is large enough, in view of the injectivity radius estimate of
Cheeger-Gromov-Taylor contained in Theorem 4.3 in [CGT]). Hence, using
dCk((g(i)B1/2,4(0), g(i)), (

diB1/2,4(x1) ∩ E, li)) ≤ ε(i), we see that we have

inj(g(i)B1/100(x), g(i))(x) ≥ i0/2 for some i0 > 0 for any x ∈ (g(i)B 3

2
,2(0), g(i)),

if i is large enough. ]
Let πi : R

4\{0} → (R4\{0})/Γ(i) be the standard projection, and x ∈
(R4\{0})/Γ(i), (πi)−1(x) = {x1, . . . , xN}. πi is a covering map and a local
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isometry, and using the fact that inj(R4\{0}/Γ(i), g(i))(x) ≥ |x|i0, we see
that dR4(xk, xl) ≥ (i0|x|)/20 > 0 in R

4 for xk, xl ∈ (πi)
−1(x), k ̸= l.

Let ψi : D1,4 → E be the natural map ψi = vi ◦ πi|D1,4
where vi :

(g(i)B1/2,4(0), g(i)) → (diB1/2−ε(i),4+ε(i)(0) ∩ E, li) ⊆ (E, li) is the map de-
fioned in (8.2) above, and πi : R

4\{0} → (R4\{0})/Γ(i), the standard pro-
jection, is as above. Define ϕi(x) = ψi(2

i+2x) for x ∈ D 1

2i+2 ,
1

2i
: this is the

unscaled version of ψi. Later we will paste the ϕi’s together. To do this, it
is conveniant to work at the scaled level. We will require that neighbours
ϕi and ϕi+1 are close to one another for all i ∈ N, in a Ck sense (to be de-
scribed) on their common domain of definition, at least at the scaled level.
To show this, we have to compare neighbours ϕi and ϕi+1, for all i ∈ N ,
on their common domain of definition D 1

2i+2 ,
1

2i+1
. We do this at the scaled

level: ψi : D1,4 → E is as defined above, ψi(x) = ϕi(
1

2i+2x), and we define
ηi+1 : D 1

2
,2 → E by ηi+1(x) = ϕi+1(

x
2i+2 ) = ψi+1(2x)

Notice that in defining the ψ′
is, we have the freedom to change the

coverings πi by a deck transformation, that is by an element A ∈ O(4).
Also, in view of the definitions, and the notion of convergence introduced
in Definition 7.5, we have (ψi)

∗(li) is Ck close to δ on D1+ε(i),4−ε(i) and

(ηi+1)
∗(li) is Ck close to δ on D1/2+ε(i),2−ε(i), in view of the fact that

(ηi+1)
∗(li)(x) = (ψi+1)

∗(li+1)(2x)

Step 1. For all i ≥ N ∈ N the following is true: By changing the map
πi+1 by an element A ∈ O(4), if necessary, we can assume that the pair
ψi and ηi+1 are, for sufficiently large i ∈ N, Ck close to one another on their
common domain of definition, in a sense which we now describe: take any
arbitrary ball δBs(y) ⊆ D1+δ/2,2−δ/2 with some fixed s > 0 s ≤ i0

10 , s ≤ δ
10

where y ∈ D1+δ,2−δ, is in the common domain of definition of ψi and ηi+1,
where δ > 0 is some fixed small number. Then di(ψi(x), ηi+1(x)) ≤ ε(i) for
all x ∈ D1+δ/2,2−δ/2 and, ψi(Bs(y)) ∪ ηi+1(Bs(y)) ⊆ diB2s(ỹ), |θ ◦ ψi − θ ◦
ηi+1|Ck(Bs(y),R4) ≤ ε(i), where θ : diB2s(ỹ) → δBs(0) ⊆ R

4 are geodesic co-
ordinates on(M, li) centred at the point ỹ = ηi+1(y) (note these coordinates
exist, in view of the fact that dCk((diB1,4(x1) ∩ E, li), (g(i)B1,4(0), g(i))) ≤
ε(i)).

Proof of Step 1. Assume this is not the case. Then we find a sequence
for which this is not true. Taking a subsequence (we denote the subse-
quence of the pairs ψi, ηi+1 also by ψi, ηi+1), we see that (g(i)B1,2(0), g(i)),
and (g(i+1)B1,2(0), g(i+ 1)) converge to the same limit space, (B1,2(0), g) ⊆
(R4\{0}, δ)/Γ (in the sense of Ck convergence described above in Defini-
tion 7.5), where Γ is a finite subgroup of O(4) with finitely many (bounded
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by N) elements acting freely on R
4\{0} : the argument in the beginning of

the proof of Lemma 3.6 in [Tian], for example, gives us this fact.
Let us denote by Zi : (

g(i)B1,2(0), g(i)) → (B1−ε(i),2+ε(i)(0), g)and Zi+1 :

(g(i+1)B1,2(0), g(i+ 1)) → (B1−ε(i),2+ε(i)(0), g) the natural maps which are

diffeomorphisms and almost Ck local isometries onto their images: these
must exist in view of this convergence.

Let us denote by Ri : (E ∩ diB1,2(x1), li) → (B1−ε(i),2+ε(i)(0), g) the nat-
ural map, which is also a diffeomorphism onto its image and almost an
local isometry, that arises in this way: Ri = Zi ◦ (vi)−1 (if ε(i) changes in
the proof, but the new constant ε̃(i) → 0 as i→ ∞, then we denote ε̃(i)
by ε(i) again). Then Ri ◦ ψi converges (after taking a subsequence) to a
map π̂ : D1,2 → (B1,2(0), g) ⊆ ((R4\{0}, δ))/Γ which is a covering map, with
(π̂)∗g = δ and Ri ◦ ηi+1 converges (after taking a subsequence) to a map
π̃ : D1,2 → (B1,2(0), g) which is a covering map with π̃∗g = δ, and the con-
vergence is in the usual Ck sense of convergence of maps between fixed
smooth Riemannian manifolds1. Hence the two maps differ only by a deck
transformation, which is an element A in O(4): π̃ = π̂ ◦A. Before taking a
limit, we can change ηi+1 by this element, η̂i+1 := ηi+1 ◦A. Remembering the
definitions of ηi+1 and ψi+1, we see that we have η̂i+1(x) = (ηi+1 ◦A)(x) =
ψi+1(A(2x)) = (ψi+1 ◦A)(2x) = ((vi+1) ◦ (πi+1) ◦A)(2x). That is we change
the covering map πi+1 to the covering map π̂i+1 = πi+1 ◦A, and then de-
fine η̂i+1 := (vi+1) ◦ π̂i+1(2x): we have this freedom in the choice of our
πi+1’s. Now both Ri ◦ ψi and Ri ◦ η̂i+1 = Ri ◦ ηi+1 ◦A converge to π̃ in the
sense explained above. In particular, returning to (diB1,2(x1), li) with (Ri)

−1

and writing things in geodesic coordinates, we see that η̂i+1 is arbitrar-
ily close to ψi, which leads to a contradiction. Here we used the following
fact. In geodesic coordinates β : Bs(p) ⊆ (B1+ε(i),2−ε(i)(0), g) → Bs(0) ⊆ R

4,

1Explanation: Ri ◦ ψi, Ri ◦ ηi+1 : D1+ε(i),2−ε(i) → (B1−2ε(i),2+2ε(i)(0), g), have
(Ri ◦ ψi)

∗g and (Ri ◦ ηi+1)
∗(g) are ε(i) close in the Ck norm to δ, and hence, taking

a subsequence, we obtain maps π̂, π̃ : D1,2 → (B1,2(0), g) with π̂∗(g) = π̃∗(g) = δ.
We work now with π̂: the same argument works for π̃. For any x ∈ D1,2 we
can find a small neighbourhood U ⊂⊂ D1,2 with x ∈ U such that π̂(U) ⊆ gBs(p)
where gBs(p) ⊆ (gB1,2(0), g) is a geodesic ball and there exist geodesic coordinates
β : gBs(p) → δBs(0) (s small enough). Then β ◦ π̂ : U → R

4 is well defined, and
has det(D(β ◦ π̂)) = 1 and hence π̂ : D1,2 → gB1,2(0) is a local diffeomorphism. The
map is, per construction, surjective (here the definition of the convergence of annuli
from Definition 7.5 is used). It is also proper, since by construction, Dr,s ⊆ D1,2 is
mapped onto (Br,s(0), g) ⊆ (B1,2(0), g(0)) (here the definition of the convergence
of annuli from Definition 7.5 is used). Hence, π̂ is a covering map (see, for example,
Proposition 2.19 in [Lee]).
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the metric is δ. Hence for geodesic coordinates γ : diBs/2(z) ⊆ diB1,2(x1) →
Bs/2(0) ⊆ R

4 with Ri(z) = p, we see β ◦Ri ◦ γ−1 : Bs/2(0) → R
4 is Ck close

to an element in O(4), in view of, for example, Corollary 4.12 in [HaComp].
End of the Explanation]. We assume in the following, that we have made
the necessary modifications to the ϕ′

is (note, that in changing πi by a deck
transformation, we are also changing the ϕ′

is and hence the ψi’s), so that
the above Ck closeness of neighbours ψi, ηi+1 for all i ∈ N large enough is
guaranteed. These modifications are made inductively: for i ∈ N sufficiently
large, first change πi+1 by a deck transformation if necessary, then πi+2 by
a deck transformation if necessary, then πi+3 by a deck transformation if
necessary, and so on. End of Step 1.

Now, Step 2, we explain how to join ϕi and ϕi+1, assuming we have
made the necessary modifications to the ϕ′

is, as explained in Step 1. The
resulting map, at the unscaled level will be ϕ.

For large i ∈ N, we know that (v−1
i ◦ ψi) : D1+ε(i),4−ε(i) → (B1,4(0), g(i))

and (v−1
i ◦ ηi+1) : D1/2+ε(i),2−ε(i) → (B1,4(0), g(i)) are well defined smooth

maps which are Ck close to one another on the common domain of def-
inition D1+ε(i),2−ε(i) and Ck close to πi : D1+ε(i),2−ε(i) → (B1,2(0), g(i)) on
D1+ε(i),2−ε(i) in the sense just described. Lifting these maps to D0,4(0) ⊆ R

4

with respect to the covering πi : D0,4(0) → (B0,4(0), g(i)), we see that we ob-
tain maps ψ̃i : D1+ε(i),4−ε(i) → D1,4(0) and η̃i+1 : D1/2+ε(i),2−ε(i) → D1,2(0)

(these maps are lifts with respect to πi, that is πi ◦ ψ̃i = (v−1
i ◦ ψi), πi ◦

η̃i+1 = (v−1
i ◦ ηi+1), and these lifts exist, since the domain of the maps we

are lifting are simply connected: see Corollary 11.19 in [Lee2]) which are Ck

close to the same element in O(4) on D1+ε(i),2−ε(i), which is without loss

of generality the identity (transform the lifts ψ̃i, η̃i+1 by the inverse of this
element in the target space: the resulting maps are still lifts). Also ψ̃∗

i (δ)
and η̃∗i+1(δ) are Ck close to δ, on their domains of definition, and hence

ψ̃i is C
k close to an element in O(4) on D1+ε(i),4−ε(i) and η̃i+1 is Ck close

to an element in O(4) on D1/2+ε(i),2−ε(i), and using the information in the
previous line, this element is the identity in each case.

Defining

ϕ̃i : D1/2+ε(i),4−ε(i) → diB1/2,4(x1),

ϕ̃i := vi ◦ πi ◦ (ηψ̃i + (1− η)η̃i+1)(8.3)

where η : R4 → R
+
0 is a smooth cutoff function, with 0 ≤ η ≤ 1, η = 0 on

D0,2−2δ, η = 1 on D2−δ,∞, (**) we obtain a smooth map, which is equal to
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ηi+1 on D1/2+ε(i),2−2δ and equal to ψi on D2−δ,4−ε(i), and for which (vi)
−1 ◦

ϕ̃i : D1/2+2ε(i),4−2ε(i) → g(i)B1/2,4(0) is C
k close to πi. The map ϕ̃i satisfies

(1− ε(i))|x| ≤ di(ϕ̃i(x), x1) ≤ (1 + ε(i))|x|(8.4)

on D1/2+ε(i),4−ε(i), by construction. We can now define ϕ : D0,ε → X\{x1}.
For x ∈ [1−7δ

2i+1 ,
1−4δ
2i ] and i ∈ N large, we define ϕ(x) := (ϕ̃i)(2

i+2x). This map
is smooth and well defined: fix i ∈ N, and let x ∈ [1−7δ

2i+1 ,
1−2δ
2i+1 ]. Then ϕ(x) =

ϕ̃i(2
i+2x) = ηi+1(2

i+2x) = ϕi+1(x), and if x ∈ [ 1
2i+1 ,

1−4δ
2i ], then ϕ(x) =

ϕ̃i(2
i+2x) = ψi(2

i+2x) = ϕi(x). This finishes Step 2.
We examine, in the following, various properties of ϕ.
By construction, ϕ : D0,ε → X satisfies: |dX(ϕ(x), x1)− |x|| ≤ ε(|x|)|x|,

where ε(|x|) → 0 as |x| → 0: this follows from (8.4) and the definition of ϕ.
We consider Ṽ := ϕ−1(ϕ(D0,ε)) and V := ϕ(D0,ε). We claim that ϕ|Ṽ : Ṽ →
V is a covering map if ε > 0 is small enough. Note: we do not claim that V or
Ṽ have smooth boundary. We first note, that the cardinality of (ϕ|Ṽ )−1(x)

for x ∈ Ṽ is bounded if ε is small enough. Assume there are points z1, . . . , zK ,
zs ̸= zj for all s ̸= j ∈ {1, . . .K}, with ϕ(z1) = ϕ(z2) = · · ·ϕ(zK) = m. We
can always find an i ∈ N with z1 ∈ [1−5δ

2i+1 ,
1−5δ
2i ], and hence

(1− ε(i))|z1| ≤ dX(m,x1) ≤ (1 + ε(i))|z1|

implies

(1− ε(i)
1− 5δ

2i+1
≤ dX(m,x1) ≤ (1 + ε(i))

1− 5δ

2i

and hence

(1− ε(i))

(1 + ε(i))

(1− 5δ)

2i+1
≤ |zj | ≤

(1− 5δ)

2i
(1 + ε(i))

(1− ε(i))
for j = 1, . . . ,K.

Hence, after scaling by 2i+2, we have z̃1, . . . , z̃K ∈ [2− 11δ, 4− 19δ] with
ϕ̃i(z̃1) = ϕ̃i(z̃2) = · · · ϕ̃i(z̃K). At the scaled level, we know that, (vi)

−1 ◦ ϕ̃i :
D1/2+2ε(i),4−2ε(i) → (B1/2,4, gi(0)) is C

k close to πi, the standard projection,

and the pull back of g(i) with this map is Ck close to δ on D1/2+2ε(i),4−2ε(i).

In fact (vi)
−1 ◦ ϕ̃i = πi ◦ hi where hi : D1/2+ε(i),4−ε(i) → R

4 is Ck close to
the identity. In particular, (vi)

−1 ◦ ϕ̃i(Bs/2(z)) ⊆ Bs((vi)
−1 ◦ ϕ̃i(z)) for any

z ∈ [2− 11δ, 4− 19δ] for 0 < s ≤ i0
10 fixed and small. Let ψ : g(i)Bs(ẑj) →

Bs(0) ⊆ R
4 be geodesic coordinates in (B1/2,4, gi(0)), where ẑj = (vi)

−1 ◦
ϕ̃i(z̃j). The map ψ ◦ (vi)−1 ◦ ϕ̃i : Bs/2(z̃j) → R

4 is Ck close to an isom-
etry B(i, j) = A(i, j) + τz̃jof R

4, where A(i, j) ∈ O(4) and τz̃j is τz̃j (x) =
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x− z̃j , and hence after a rotation in the geodesic coordinates and a trans-
lation, Ck close to the identity. In particular, this map is a diffeomorphism
when restricted to Bs/2(z̃j), and hence z̃i /∈ Bs/2(z̃j) for all j ̸= i. Hence,

vol(D1/2,4) ≥
∑K

j=1 vol(Bs/2(z̃j)) ≥ Kω4(s/2)
4 which leads to a contradic-

tion if K is too large.
If we scale the map ϕ : D[ 1−7δ

2i+1 ,
1−4δ

2i
] → X by 2i+2, that is let ϕ̂ :

D[2−14δ,4−16δ] → X be defined by ϕ̂(x) = ϕ( x
2i+2 ), then we obtain the map

ϕ̃i: ϕ̂ = ϕ̃i|[2−14δ,4−16δ]. The argument above, shows that (vi)
−1 ◦ ϕ̃i|Bs/2(z) :

Bs/2(z) → R
4 is a diffeomorphism for all |z| ∈ [2− 10δ, 4− 18δ] if s≪ δ,s <

i0
100 , i sufficiently large. That is ϕ̂|Bs/2(z) = ϕ̃i|Bs/2(z) : Bs/2(z) → X is a dif-
feomorphism for all |z| ∈ [2− 10δ, 4− 18δ] and hence ϕ̂|D(2−10δ,4−18δ)

is a local
diffeomorphism, which tells us, scaling back, that ϕ : D( 1−5δ

2i+1 ,
1−(9/2)δ

2i
) → X is

a local diffeomorphism.
That is, ϕ : D0,ε → X is a local diffeomorphism, if ε > 0 is small enough.
Hence V := ϕ(D0,ε) is open if ε > 0 is small enough (this corresponds to i

being sufficiently large), and ϕ : Ṽ := ϕ−1(V ) → V is a local diffeomorphism
and an open map. V is connected, as it is the image under a continuous map
of a connected region. In fact Ṽ is also connected: this will be shown below.

ϕ : Ṽ → V is proper: Let (xk)k∈N be a sequence in K ⊆ V , where K is
compact in V . This means, there is a subsequence of xi (also denoted xi)
such that xi → x ∈ K ⊆ V, x = ϕ(m) for somem ∈ D0,ε. Let z1, z2, . . . , zN ∈
ϕ−1(x) be the finitely many points in Ṽ with ϕ(zj) = m. We can choose a
small neighbourhood Uj of each one, such that Ui ⊂⊂ Ṽ and ϕ|Uj

: Uj →
ϕ(Uj) is a diffeomorphism, and without loss of generality ϕ(Uj) = U ⊂⊂ V
for all j, and ϕ(m) ∈ U . Hence any sequence yk ∈ ϕ−1(K) with ϕ(yk) = xk
has a convergent subsequence, yk → zi as k → ∞ for some zi ∈ {z1, . . . , zN}.
Hence (ϕ|Ṽ )−1(K) is sequentially compact in Ṽ . That is ϕ : Ṽ → V is proper.

That is, ϕ : Ṽ → V is a proper, surjective, local diffeomorphism. In partic-
ular lifts γ̃ : I → Ṽ of curves γ : I → V , I = [a, b] ⊆ R, always exist and are
uniquely determined by their starting points γ̃(0) which is an arbitrary point
in ϕ−1(γ(0)).

Ṽ is also connected. Let x̂ and ŷ be points in Ṽ and x = ϕ(x̂) ∈ V ,
y = ϕ(ŷ) ∈ V . x = ϕ(x̂) ∈ ϕ(D0,ε) implies x = ϕ(x0) for an x0 ∈ D0,ε. Let
x1 be the point x1 = x0/4. Then x1 ∈ D0,ε/4 and ϕ−1(ϕ(x1)) ∈ D0,ε/3 if i is
sufficiently large, in view of the construction of ϕ (see the above).

Joining x0 to x1 with a ray α : I → D0,ε (w.r.t to the euclidean metric)
which points into 0 and pushing this down to V again with ϕ, we obtain
a continuous map σ = ϕ ◦ α : I → V with σ(0) = ϕ(x0) = ϕ(x̂) and σ(1) =
ϕ(x1). Taking the lift of this map, and using the starting point x̂, we obtain a
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continuous curve σ̃ : I → Ṽ with σ̃(0) = x̂ and σ̃(1) ∈ ϕ−1(ϕ(x1)) ∈ D0,ε/3.
We may perform the same procedure with y to get a continuous curve
β̃ : I → Ṽ with β̃(0) = ŷ and β̃(1) ∈ D0,ε/3. We may join β̃(1) to σ̃(1) in

D0,ε/3 ⊆ Ṽ with a curve T : I → D0,ε/3, as this space is connected. Hence,

following the curve σ̃ from σ̃(0) = x̂ to σ̃(1) in Ṽ and then from σ̃(1) to β̃(1)
with T and then from β̃(1) to β̃(0) by going backwards along the curve β̃,
we see that we have constructed a continuous curve in Ṽ from x̂ to ŷ as
required.

Hence Ṽ is also connected.
That is, ϕ : Ṽ → V is a proper, surjective, local diffeomorphism, between

two path connected spaces, and hence ϕ : Ṽ → V is a covering map (see
Proposition 2.19 in [Lee]).

In fact, Ṽ is simply connected if ε > 0 is sufficiently small, and hence
Ṽ is the universal covering space of V . We explain this now. Let i be suffi-
ciently large, and we consider the map ϕ̃i : D1/2+ε(i),4−ε(i) → X from above.

vi ◦ ϕ̃i : D1/2+ε(i),4−ε(i) → (B1/2,4, g(i)) is Ck close to π(i) as shown above.
In particular, ϕ̃i|Bs(x) : Bs(x) → X is a diffeomorphism onto its image and
ϕ̃i(Bs/8(x)) ⊆ Bs/4(z) and Bs/4(z) ⊆ ϕ̃i(Bs(x)) for all x ∈ D2,5/2(0) for all

z with z = ϕ̃i(x), for a fixed s > 0, s independent of i, and (ϕ̃i)
∗(li) is Ck

close to δ, as shown above. Let p ∈ D2,5/2(0) and let p = p1, p2, . . . , pN ∈
D2−ε(i),(5/2)+ε(i) be the distinct points with ϕ̃i(pj) = ϕ̃i(p) for all j = 1, . . . ,

N . θj := (ϕ̃i)
−1
Bs(p)

◦ ϕ̃i : Bs/8(pj) → Bs(p) is C
k close to an element in O(4),

and has θj(pj) = p. θj is Ck close to an element in O(4) means θj(x) = Aj ·
x+ βi,j(x) for all x ∈ Bs/8(pj), where |βi,j |C1(Bs/8(pj)) ≤ ε(i) and Aj ∈ O(4),
and hence Aj(pj) = p+ βij(pj) where |βij(pj)| ≤ ε(i). In particular,

∂r(θj((1− r)pj)) = −Dθj((1− r)pj) · pj
= −Aj · pj −Dβi,j((1− r)pj) · pj
= −p+ vj(r)(8.5)

where |vj(r)| ≤ ε(i). That is, using θj(pj) = p ∈ D2,5/2(0), we see that
θj((1− r)pj) ∈ D2−s,5/2(0) for all r ∈ [0, s/100].

That is (1− r)pj ∈ (θj)
−1(D2−s,5/2(0)) ⊆ (ϕ̃i)

−1(ϕ̃i(D2−s,5/2)) for all r ∈
[0, s/100]:

θj((1− r0)pj)− p = θj((1− r0)pj)− θj(pj)

=

∫ r0

0
∂r(θj((1− r)pj))dr = −r0p+ r0ṽj ,
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with |ṽj | ≤ ε(i) implies θj((1− r0)pj) = (1− r0)p+ r0ṽj and hence |θj((1−
r)pj)| = |(1− r0)p+ r0ṽj | ≤ (5/2)(1− r0) + ε(i)r0 < (5/2) (respectively ≥
(1− r0)2− r0ε(i) ≥ 2− s)

As p ∈ D2,5/2 was arbitrary, we see (1− r)q ∈ (ϕ̃i)
−1(ϕ̃i(D2−s,5/2)) for

all r ∈ [0, s/100] for all q ∈ (ϕ̃i)
−1(ϕ̃i(D2,5/2)) for large enough i. Further-

more (1− s/100)q ∈ D2−s,(5/2)−(s/200) ⊆ D2−s,5/2 for large enough i. We as-

sume that this i corresponds to ε: that is ε = (52) · ( 1
2i+2 ). Then, we have

just shown that (1− r)q̃ ∈ ϕ−1(ϕ(D0,ε)) for all r ∈ [0, s/100], for all
q̃ ∈ ϕ−1(ϕ(D0,ε)), and we also know that (1− s/100)q ∈ D0,ε ⊆ Ṽ :=
ϕ−1(ϕ(D0,ε)). That is, there exists a smooth map c : [0, s/100]× Ṽ → Ṽ ,
c(r, x) = (1− r)xη(x) + (1− η(x))x, where η is a rotationally symmetric cut
off function on D0,ε with, 0 ≤ η ≤ 1, η = 1 on Dε/2,ε and η = 0 on D0,ε/4,

such that c(0, ·) = Id and (c(s/100, ·))(Ṽ ) ⊆ D0,ε, und D0,ε is a simply con-
nected space. Hence Ṽ is itself simply connected.

Notice also, that E ∩Br(x1) is contained in V for r small enough (***).
We explain this now. There is some x ∈ E ∩Br(x1) with x ∈ V by con-
struction. Let γ : [0, 1] → lBr(x1)\{x1} be a smooth path of finite length
in lBr(x1)\{x1} with γ(0) = x ∈ E ∩ V ∩Br(x1), and |γ′(·)|l ≤ C. Let s be
a value for which γ(t) ∈ E ∩ V for all t < s and γ(s) ∈ E ∩ (V )c. Lifting
γ : [0, s) → X with ϕ, we get a curve γ̃ : [0, s) → D0, 3

2
r with r ≪ ε. Clearly,

γ̃(t) → d ∈ D0,2r as t↗ s. Hence γ(t) = ϕ(γ̃(t)) → ϕ(d) ∈ V. On the other
hand, γ(t) → γ(s) as t→ s. Hence γ(s) = ϕ(d) ∈ V , per definition of V ,
which is a contradiction. Hence γ is also a curve in V , that is E ∩Br(x1) is
contained in V .

Also, V ⊆ E if ε > 0 is small enough in the definition of V := ϕ(D0,ε)
[Explanation. As we noted above, V is connected. Furthermore, V ∩ E ̸= ∅
by definition of V , and E is a connected component of Br0(x1)\{x1}, and,
without loss of generality, ε≪ r0. This means that we have: V is connected,
V ⊆ Br0(x1)\{x1}, and E is a connected component of Br0(x1)\{x1}, and
V ∩ E ̸= ∅. Hence V is contained in E].

We will see that for r0 small enough in the above theorem, that in
fact dXBr(xi)\{xi} ⊆ X has exactly one component for all r ≤ r0. This will
follow by considering the manifolds (M, gi, p1), which approximate a blow
up (X, di :=

√
cidX , x1) in the sense explained above in the Approximation

Theorem, Theorem 7.4.
The approximations and the blow ups of X itself will converge to a

metric cone of the form R
4\{0}/Γ for some Γ, where Γ is a finite subgroup

of O(4) acting freely on R4\{0}, and the number of elements in Γ is bounded
by C(σ0, σ1) <∞. That is, each blow up near a singular point consists of
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exactly one cone. This will show us that for each i, Br0(xi)\{xi} ⊆ X has
exactly one component. These facts are collected in the following theorem

Theorem 8.3. X is a C0 Riemannian orbifold in the following sense.

(i) X\{x1, . . . , xL} is a manifold, with the structure explained above in
Lemmata 6.5 and 6.6.

(ii) There exists an r0 > 0 small such that the following is true. Let xi ∈ X
be one of the singular points. Then Br(xi)\{xi} is connected for all
r ≤ r0.

(iii) There exists a 0 < r̃ ≤ r0 and a smooth map ϕ : D0,r̃ → X\{x1, . . . , xL}
such that ϕ : Ṽ → V is a covering map, V and Ṽ are connected sets,
Ṽ is simply connected, and, for all r ≤ r̃, we have

ϕ(S3
r (0)) ⊆ dXBr(1−ε1(r)),r(1+ε1(r)),

and

sup
D0,r

|(ϕ)∗l − δ|δ ≤ ε1(r)(8.6)

where ε1(r) ≤ r̃
100 is a decreasing function with limr↘0 ε1(r) = 0, and

V := ϕ(D0, r̃
2
), Ṽ := ϕ−1(V ) ⊆ D0,r̃, and S

3
r (0) := {x ∈ R

4 | |x| = r},
and here δ is the standard euclidean metric on R

4 or subsets thereof.

Remark 8.4. Using the facts *** mentioned at the end of the construction
of ϕ, we see that Br(x1) ⊆ V ∪ {x1} for all r ≤ r0 small enough, and hence
V ∪ {x1} is an open neighbourhood of x1 in X.

Proof. Fix x1 ∈ {x1, . . . , xL} and assume that Br0(x1)\{x1}, r0 as above,
contains more than one component: Br0(x1)\{x1} = ∪N

i=1Ei with Ei ∩ Ej =
∅ for all i, j ∈ {1, . . . , N}, i ̸= j, and N ≥ 2. Let E,G denote two distinct
components, E := E1 ̸= E2 =: G. We use the following notation: for p ∈ E ∩
Br0/4(x1) and q ∈ G ∩Br0/4(x1), q̂, p̂ will denote the unique points inM with
f(q̂) = q, f(p̂) = p: these points are unique since p, q are not singular in X.

Our proof is essentially a modified version of the Neck Lemma, Lemma
1.2 of [AnCh2], of M. Anderson and J. Cheeger adapted to our situation.
Note that we do not have Ricci bounded from below (as they do) for our
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approximating sequences, but we do know that they all satisfy

∫

M
|Rc|4(gi)dµgi → 0 as i→ ∞.

Hence we can use the volume estimates of P. Petersen G.-F. Wei, [PeWe], in
place of the Bishop-Gromov volume estimates. The estimates we require do
not appear in [PeWe], although they follow after making minor modifications
to the proof of their estimates. See Appendix C in [SiArxiv]. for example,
for more details.

Let (M, gi) and (X, di) be as in the Approximation Theorem, Theorem
7.4. Let E be as above, and let zi ∈ E ∩ diB1/4,10(x1) satisfy di(x1, zi) = 1
and vi ∈ TziE be a vector such that there is a length minimising geodesic γi :
[0, 1] → X on (X, di) with γi(0) = zi, γi(1) = x1, γ

′
i(0) = vi, and |γ′i(t)|li = 1

for all t ∈ [0, 1) (γ′i makes sense on E, since xi /∈ E for all i ∈ {x1, . . . , xL},
and (X\{x1, . . . , xL}, li) is a smooth Riemannian manifold). We define ẑi :=
f−1(zi) ∈M , the corresponding point inM , and v̂i := f∗vi, the correspond-
ing vector in TẑiM , where (M, gi) are as in the Approximation Theorem.(TT)

We remember, that inj(b) > i0/1000 for all b ∈ E ∩ diB1/4,10(x1) due
to the injectivity radius estimate of Cheeger-Gromov-Taylor ( Theorem
4.3 in [CGT]) and the non-inflating/non-collapsing estimates. For any i,
(TẑiM, gi(ẑi) = g(i)) is isometric (as a vector space) to (R4, δ). We will make
this identification in the following, sometimes without further mention.

Let Si ⊆ S3
1(0) denote the set of vectors ŵ in S3

1(0) ⊆ (R4, δ) =
(TẑiM, g(ẑi)) (using the isometry above) which satisfy ∠(v̂i, ŵ) ≤ α with
respect to the euclidean metric, where α > 0 is a small but positive angle.
We claim

Claim 1. There exists a small ε̃(α)>0 such that any geodesic exp(gi)ẑi(·m) :
[0, 100] →M does not go through giBε(p1) if m ∈ S3

1(0) ∩ (Si)
c and 0 < ε ≤

ε̃(α) is small enough, and i ≥ N large enough.

Proof of Claim 1. Let α > 0 be fixed. We assume we can find ŵi ∈ (Si)
c ∩

S3
1(0) ⊆ R

4 = TẑiM and ri ∈ (0, 100] such that gi(ẑi)(ŵi, v̂i) > α, and
exp(gi)(riŵi) ∈ ∂(giBε(p1)) but exp(gi)(sŵi) ∈ (giBε(p1))

c for all 0 ≤ s < ri
for i arbitrarily large. We shall see, that this leads to a contradiction, if
ε ≤ ε̃(α) is chosen small enough. Let wi be the push forward back to X,
wi := f∗(ŵi).

For any δ > 0, we know that E ∩ diBδ,1/δ(x1) converges, after taking
a subsequence if necessary, to (gBδ,1/δ(0), g) ⊆ R

4\{0})/Γ in the sense of
convergence given in Definition 7.5, in view of Lemma 3.6 of [Tian]: there
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exist diffeomorphisms Fi :
diBδ,1/δ(x1) ∩ E → (R4\{0})/Γ for i large enough,

such that (Fi)∗li → g in the Ck sense, where g is the Riemannian metric on
(R4\{0})/Γ and |di(F−1

i ([x]), x1)− |x|| ≤ ε(i) → 0 as i→ ∞ for all [x] ∈
B2δ, 1

2δ
(0)/Γ, where |x| = d([x], [0]) here refers to the standard norm in R

4

of x, and [x] = {Γi(x) | Γi ∈ Γ}. In particular, the curves Fi ◦ f ◦ exp(·v̂i) :
[0, 1− 3δ] → (R4\{0})/Γ and Fi ◦ f ◦ exp(·ŵi) : [0, ri] → (R4\{0})/Γ, are
well defined and converge smoothly to geodesic curves γ : [0, 1− 3δ] →
(R4\{0})/Γ respectively γ̃ : [0, r]→(R4\{0})/Γ, r ≤ 100, with γ(0) = γ̃(0) =
z with d(z, [0]) = 1, and g(γ′(0), γ̃′(0)) ≥ α and γ(1− 3δ) ∈ gB0,3δ(0) and
γ̃(r) ∈ gB0,3ε(0). Here, we can choose δ > 0 arbitrarily small. By considering
the lift of the curve γ to to R4\{0} (which must be a straight line in R

4\{0}),
and using that δ is arbitrarily small, we see that γ : [0, 1− 3δ] → (R4\{0})/Γ
is arbitrarily close to the projection of a ray coming out of 0 (in R

4) on
[0, 1− σ] for σ > 0 as small as we like (choose δ ≪ σ). Now lifting γ̃ to a
curve in R

4\{0} (which is also a straight line in R
4\{0}), and using the

fact that g(γ′(0), γ̃′(0)) ≥ α (which is also true for the lift), we see that
γ̃(r) ∈ (B0,ε̃(α)(0))

c , for some ε(α) > 0. This leads to a contradiction to the

fact that γ̃(r) ∈ gB0,3ε(0) if ε > 0 is chosen smaller than say ε̃(α)
6 . End of

the proof of Claim 1.

Claim 2. For all z ∈ f−1(E ∩ diB 1

4
,2(x1)) and w ∈ f−1(G ∩ diB 1

4
,2(x1)), any

length minimising geodesic from z to w must go through giBε(i)(p1), where
ε(i) → 0 as i→ ∞.

Proof of Claim 2. Assume we can find i arbitrarily large, and points ẑi ∈
f−1(E ∩ diB 1

4
,2(x1)) and ŵi ∈ f−1(G ∩ diB 1

4
,2(x1)) and a length minimising

geodesic γ̂i : [0, ri] →M (w.r.t. gi), parameterised by arclength, such that
γ̂i(0) = ẑi and γ̂i(ri) = ŵi, for which γ̂i doesn’t go through diBσ(p1) for some
σ > 0 (*) .

Note, the Approximation Theorem, Theorem 7.4, guarantees that ẑi, ŵi ∈
f−1(diB 1

4
,2(x1)) ⊆ giB10(p1)).Hence γ̂i([0, ri]) ⊆ giB40(p1)), and hence, once

again using the Approximation Theorem, f(γ̂i([0, ri])) ⊆ diB41(x1).
Let γi : [0, ri] → X be the curve γi := f ◦ γ̂i. The Approximation Theo-

rem guarantees that γi([0, ri]) ⊆ diB41(x1) as we just noted (*).
There must be a first value r0(i) ∈ [0, ri] with γi(r0(i)) = x1: the curve is

continuous and goes from E to G, and so there must be some point r0(i) with
γ(r0(i)) ∈ ∂E. γ(r0(i)) must be equal to x1, since di(∂E\{x1}, x1) → ∞ as
i→ ∞ and γi([0, ri]) ⊆ diB41(x1).
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By assumption, γ̂i(r) /∈ giBσ(p1) for all r ∈ [0, ri]. But then, once again
by the Approximation Theorem, f ◦ γ̂i([0, ri]) ∩ diBσ/2(x1) = ∅, which con-
tradicts the fact that f ◦ γ̂i(r0(i)) = x1. End of the proof of Claim 2.

Let zi ∈ E ∩ (diB 1

4
,2(x1)), ẑi, Si vi v̂i be as above (see (TT) above):

Si ⊆ S3
1(0) denotes the set of vectors ŵ in S3

1(0) ⊆ R
4 = TẑiM which satisfy

∠(v̂i, ŵ) ≤ α, where we have identified vectors TẑiM and vectors in R
4 using

the isometry between (TẑiM, gi(0)) and (R4, δ) explained above.
Let Wr := {exp(gi)ẑi(tŵ) | t ∈ [0, r], ŵ ∈ Si}, Vr := {exp(gi)ẑi(sŵ) | s ∈

[0, r], ŵ ∈ Si and exp(gi)ẑi(·ŵ) : [0, s] →M is a minimising geodesic }. Er

is the set in Euclidean space which corresponds to Wr: Er := {tβ | β ∈
Si,∠(β, e1) ≤ α, t ≤ r}

Claim 3. Let Ẑ := f−1(G ∩ diB1/2,1(x1)). Then Ẑ ⊆ V3, if i is large enough.

Proof of Claim 3. Let γ(·) := exp(gi)ẑi(·mi) : [0, ri] →M be a length min-
imising geodesic from ẑi to a point âi ∈ f−1(G ∩ diB1/2,1(x1)) parameterised
by arclength. Using the Approximation Theorem, Theorem 7.4, we must
have âi, ẑi ∈ giB1+ε(i)(p1), since di(zi, x1) = 1 and hence we must have ri =
d(gi)(âi, ẑi) ≤ 5/2. Assume mi ∈ (Si)

c. Claim 1 tells us that the curve does
not go through Bε(α)(p1) for some ε(α) > 0 if i is large enough. But this

contradicts Claim 2, if i is large enough. Hence mi ∈ Si and hence Ẑ ⊆ V3
in view of the definition of these two sets. End of the proof of Claim 3.

Note for later, that vol(gi)(Ẑ) ≥ θ > 0 for i large enough, where this θ is
independent of α, i, and independent of which subsequence we take, in view
of the fact that (Ẑ, gi) converges to (B1,1/2(0)/Γ) in the sense of Ck manifold
convergence given in Definition 7.5 (this follows from the Approximation
Theorem 7.4 and Lemma 3.6 of [Tian]), and we have bounds on the number
of elements of Γ, and this gives as a non-collapsing estimate.

The volume comparison of Peterson/Wei shows (see Appendix C in
[SiArxiv]) that

(8.7)

(

volV3
vol(E3)

)1/8

−
(

volV1/2

vol(E1/2)

)1/8

≤ c

α3/8

(
∫

M
|Rc|4

)1/8

where we have used that the volume of Si ⊆ S3
1(0) on the sphere S3

1(0) with
respect to the the metric on the sphere dθ is α3c where c is a universal
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constant. Multiplying everything by vol(E3)
1/8(≤ (ω43

4)1/8) we get

(volV3)
1/8 − (volV1/2)

1/8

(

vol(E3)

vol(E1/2)

)1/8

≤ c

α3/8
(vol(E3)

1/8)

(
∫

M
|Rc|4

)1/8

.(8.8)

The quantities vol(E3) and vol(E1/2) are fixed and positive and depend on
α (they are uniformly bounded above by the volume of B3(0) for every α).

The quantity vol(E3)
vol(E1/2)

is a fixed positive constant which don’t depend on

α, so we may write c∗ = ( vol(E3)
vol(E1/2)

)1/8, where c∗ is independent of α and i.

Using this in equation (8.8) we get

(8.9) (volV3)
1/8 ≤ c∗(volV1/2)

1/8 +
c

α3/8

(
∫

M
|Rc|4

)1/8

.

From Claim 3 above, we see that

vol(V3) ≥ vol(Ẑ) ≥ θ

for some fixed θ > 0 since on each component the metric approaches the
euclidean metric divided out by a finite subgroup of O(4) acting freely on
R
4\{0}. Recall that diBδ, 1

δ
∩ E converges to (gBδ, 1

δ
, g) ⊆ (R4\{0})/Γ in the

sense of Definition 7.5 using a map Fi :
diBδ, 1

δ
∩ E → gBδ, 1

δ
, and giBδ, 1

δ
(p1)

is ε(i) Ck close to diBδ, 1
δ
in the sense of Definition 7.5, using the map f , in

view of the Approximation Theorem, Theorem 7.4. Since Vr ⊆Wr, we have
vol(V1/2) ≤ volW1/2 ≤ cα3 which goes to zero as α→ 0 [Explanation. Let
Fi ◦ f(ẑi) =: xi. xi is at a distance 1± ε(i) away from 0. We use the fact that
f(W1/2) ⊆ E in the following without further mention: this follows from the
fact that f(W1/2) ∩ {x1, . . . , xL} = ∅, which follows from the Approximation
Theorem.

Using the fact that (Fi ◦ f)∗(gi) → g on gBδ−ε(i), 1
δ
+ε(i) as i→ ∞, we

see that (Fi ◦ f)∗(Si) ⊆ S̃i, where S̃i := {v ∈ Txi
(R4\{0}/Γ) | g(xi)(ni, v) ≤

α+ ε(i), |v|g ∈ (1− ε(i), 1 + ε(i))} and ni := (Fi ◦ f)∗(v̂i) = (Fi) ∗ (vi) is a
vector of length almost one. Hence, using a compactness argument,

Fi ◦ f(W1/2) ⊆ { exp(xi)(rm) | r ∈ [0, 1/2 + δ],m ∈ Txi
(R4\{0}/Γ),

∠(m,ni) ≤ α+ δ, ||m|g − 1| ≤ ε(i)}
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for all δ > 0, for i ≥ I(δ) ∈ N large enough, and hence

volW1/2 ≤ (1 + δ(i)) vol
(

{exp(xi)(rm) | r ∈ [0, 1/2 + δ(i)],

m ∈ Txi
(R4\{0}/Γ), ||m|g − 1| ≤ ε(i),

∠(m,ni) ≤ α+ δ(i)}, g
)

→ vol(W̃1/2) as i→ ∞
≤ vol(π−1(W̃1/2)),

where W̃1,2 = {exp(rm) | r ∈ [0, 1/2], m ∈ Tx(R
4\{0}/Γ), ∠(m,n) ≤ α,

|m|g = 1} and π is the standard projection from R
4\{0} to (R4\{0})/Γ.

That isvol(V1/2) ≤ vol(W1/2) ≤ vol(π−1(W̃1/2)) + δ(i) ≤ cα3 since geodesics
in R

4 are straight lines, and π−1(W1/2) is a cone of angle α and length 1/2
in R

4\{0}. End of the Explanation].
Using these two facts in (8.9), gives us

(8.10) (θ)1/8 ≤ (volV3)
1/8 ≤ c∗c

1/8α3/8 +
c

α3/8

(
∫

M
|Rc|4

)1/8

.

This leads to a contradiction if α is chosen small enough and then i is chosen
large enough, since (

∫

M |Rc|4)1/2 goes to zero as i→ ∞.
That is, there cannot be two distinct components E and G as described

above. □

9. Extending the flow

Since (X, dX) is a C0 Riemannian orbifold, it is possible to extend the flow
past the singularity using the orbifold Ricci flow. We have

Theorem 9.1. Let everything be as above. Then there exists a smooth orb-
ifold, X̃, with finitely many orbifold points, v1, . . . , vL, and a smooth so-
lution to the orbifold Ricci flow, (X̃, h(t))t∈(0,S) for some S > 0, such that

(X̃, d(h(t))) → (X, dX) in the Gromov-Hausdorff sense as t↘ 0.

Proof. Fix xi ∈ {x1, . . . , xL} ⊆ X, where {x1, . . . , xL} are defined in Theo-
rem 6.5. On dXBε(x1) we have a potentially non-smooth orbifold structure
given by the map ϕ: the non-smoothness may also be present without con-
sidering the Riemannian metric, as we now explain. As explained above,
if we consider Ṽ := ϕ−1(ϕ(D0,ε)) and V := ϕ(D0,ε), then ϕ|Ṽ : Ṽ → V is a
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covering map, Ṽ ,V are connected, and Ṽ is simply connected, if ε > 0 is
small enough.

Let x ∈ Ṽ be fixed, and G1, . . . , GN : Ṽ → Ṽ the deck transformations,
which are uniquely determined by Gi(x) = xi, where x1, x2, . . . , xN ∈ Ṽ are
the distinct points with ϕ(xi) = ϕ(xj) for all i, j ∈ {1, . . . , N}.

We can extend G1, . . . , GN to maps G1, . . . , GN : Ṽ ∪ {0} → Ṽ ∪ {0} by
defining Gi(0) = 0 for all i ∈ {1, . . . , N}. Then the maps Gi : Ṽ ∪ {0} →
Ṽ ∪ {0} are homeomorphisms, but not necessarily smooth at 0. In this sense,
the structure of the orbifold may not be smooth. Also, as we saw above,
we can extend the metric to a continuous metric on Ṽ ∪ {0} by defining
gij(0) = δij , but this extension is not necessarily smooth. In order to do Ricci
flow of this C0 orbifold, we will proceed as follows: Step 1.modify the metric
g and the maps G1, . . . , GL : Ṽ → Ṽ inside D0, 1

2i
to obtain a new metric g̃

on Ṽ and new maps G̃1, . . . , G̃L : Ṽ → Ṽ which are isometries of Ṽ with
respect to g̃, and such that these new objects can be smoothly extended to
0. We do this in a way, so that the metric and maps are only slightly changed
(see below for details). With the help of g̃ and G̃1, . . . , G̃L we will define a
new smooth Riemannian orbifold: essentially this construction smooths out
the G′

is near the cone tips (the points x1, . . . , xL ∈ X) in such a way, that a
group structure is preserved, and the rest of the orbifold is not changed. For
i ∈ N, i→ ∞, we denote the smooth Riemannian orbifolds which we obtain
in this way by (Xi, di). The construction will guarantee that (Xi, di) →
(X, d) in the Gromov-Hausdorff sense, actually in the Riemannian C0 sense:
see below. In Step 2, we flow each of these spaces (Xi, di) by Ricci flow,
and we will see, that the solution exists on a time interval [0, T ) with T > 0
being independent of i, and that each of the solutions satisfies estimates,
independent of i. In Step 3, we take an orbifold limit of a subsequence
of the solutions constructed in Step 2 to obtain a limiting smooth orbifold
solution to Ricci flow (X̃, h(t))t∈(0,T ) which satisfies (X̃, d(h(t))) → (X, dX)
as t↘ 0, in the Gromov-Hausdorff sense.

Step 1. Let G1, . . . , GN : Ṽ → Ṽ be the deck transformations of ϕ : Ṽ →V ,
let g := ϕ∗(l), and ϕ̂ : V̂ → V be ϕ̂(x̂) = ϕ( x̂c ), where V̂ := cṼ . We use,
in the following, the notation x̂ = cx. Then ϕ̂ is a covering map, with
deck transformations H1, . . . , HN : V̂ → V̂ , Hi(x̂) = cGi(

x̂
c ). We know that

G1, . . . , GN : Ṽ → Ṽ are isometries with respect to g. Let l̂ := c2l and ĝ :=
(ϕ̂)∗(l̂). Then ĝij(x̂) = gij(x), and H1, . . . , HN : V̂ → V̂ are local isometries
w.r.t. ĝ, and hence global isometries w.r.t.

ĝ : ĝ(x̂)(DHi(x̂)(v), DHi(x̂)(w)) = g(x)(DGi(x)(v), DGi(x)(w))

= g(x)(v, w).
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Scaling with c = 2i+2 we see ϕ̂|[2−14δ,4−16δ] = ϕ̃i|[2−14δ,4−16δ], as shown above.
We go back to the construction of the map ϕ̃i. Remember that ϕ̃i :

D1/2+ε(i)δ,4−ε(i)→X\{x1} was defined by ϕ̃i :=vi ◦ πi ◦ (ηψ̃i + (1− η)η̃i+1) :

D1/2+ε(i),4−ε(i) → diB1/2,4(x1), where η : R4 → R
+
0 is a smooth cutoff func-

tion, with η = 1 on D2−δ,∞ and η = 0 on D0,2−2δ and ηψ̃i + (1− η)η̃i+1 is C
k

close to the identity on D1/2+ε(i),4−ε(i) (see (8.3)). As we pointed out dur-
ing the construction of ϕ̃i, this means that (vi)

−1 ◦ ϕ̃i : D1/2+ε(i),4−ε(i) →
(g(i)B1/2,4(0), g(i)) is C

k close to

πi : D1/2+ε(i),4−ε(i) → (g(i)B1/2+ε(i),4−ε(i)(0), g(i)).

We define

αi : D0,4−ε(i) → (g(i)B0,4(0), g(i))

αi := πi ◦ (ηψ̃i + (1− η)Id)(9.1)

Then αi is C
k close to πi : D0,4−ε(i) → (g(i)B0,4−ε(i)(0), g(i)), and equal πi

on D0,2−2δ. Hence, using the same argument we used above to show that

ϕ : Ṽ → V was a covering map, and Ṽ is simply connected, we have αi : Ẑ :=
(αi)

−1(αi(D0,4−ε̃)) → Z := αi(D0,4−ε̃) is a covering map, if i is large enough
(ε̃ > 0 fixed and small), Ẑ is simply connected, and Z, Ẑ are connected. We
also have vi ◦ αi = ϕ̃i on the set D2−δ,4−ε̃. In particular, αi has the same
number of deck transformations as ϕ̃i and hence as ϕ2.

The Riemannian metric li on X can be pulled back to (B1/2+ε(i),4−ε(i),

g(i)) with vi: hi := (vi)
∗(li). This metric hi is C

k close to g(i). We interpolate
between h(i) and g(i) on (B1+δ,2−4δ, g(i)) by

β(i) := η̂hi + (1− η̂)g(i)

where η̂ ≥ 0 is a smooth cut-off function on (B1,4, g(i)) with η̂ = 0 on B0,1+2δ

and η̂ = 1 on (B1+4δ,∞, g(i)). Note that β(i) = hi on D2−δ,4−ε̃.

Let Ĥ1, . . . , ĤN : Ẑ → Ẑ be the deck transformations of the covering
map αi : Ẑ → Z. These maps are isometries w.r.t. k̂(i) := (αi)

∗(β(i)) on
Ẑ. Scaling these maps leads to maps Hk : Z̃ → Z̃, Hk(x) :=

1
2i+2 Ĥk(x2

i+2)

2Explanation: α̂i := vi ◦ αi : Ẑ → vi(Z) is a covering map. Choose w ∈ D5/2,3

and let w = w1, w2, . . . , wÑ be the distinct points in Ẑ with αi(wj) = αi(w) for
all j = 1, . . . , Ñ . Then w1, . . . , wÑ ∈ D2,7/2 and furthermore α̂i(wj) = α̂i(w) for

all j = 1, . . . , Ñ , and hence ϕ̃i(wj) = ϕ̃i(w) for all j = 1, . . . , Ñ . Hence Ñ ≤ N .
Similarly, by considering the distinct points w = w̃1, . . . , w̃N ∈ D5/2,3 such that

ϕ̃i(w) = ϕ̃i(w̃j) for all j = 1, . . . , Ñ , we see Ñ ≥ N .
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for k ∈ {1, . . . , N}, Z̃ := { x
2i+2 | x ∈ Ẑ}. These maps are isometries w.r.t.

k(x) := k(i)(x) := k̂(i)(x̂) on Z̃ (see the beginning of the proof).
Note that k(x) := k(i)(x) = k̂(i)(x̂) = (αi)

∗(β(i))(x̂) = (αi)
∗(hi)(x̂) =

(vi ◦ αi)
∗(li)(x̂) = (ϕ̃i)

∗(li)(x̂) = ϕ∗(l)(x) = g(x) on Z̃ ∩D 2−δ

2i+2 ,
4−ε̃

2i+2
. Where

we used the fact that vi ◦ αi is equal to ϕ̃i on the set D2−δ,4−ε̃. Hence the
Riemannian metric g̃, which is defined to be the metric k on D0, 1

2i+1
and g on

D 1

2i+1 ,∞ ∩ Ṽ , is smooth and well defined. It satisfies: g̃(x) = k(x) = k̂(x̂) = δ

for |x| ≤ c(i) small enough. Furthermore, |g̃ − δ|C0(Ṽ ) ≤ σ where σ > 0, can

be made as small as we like, by choosing ε > 0 (in the definition of Ṽ ) small.
Using the fact that vi ◦ αi is equal to ϕ̃i on the set D2−δ,4−ε̃ again, we see

that Ĝ1, . . . , ĜN are the same as Ĥ1, . . . , ĤN when all of these transforma-
tions are restricted toD2−δ+4ε̃,4−4ε̃ (we assume ε̃≪ δ). Let w ∈ D2−δ+4ε̃,4−4ε̃

and w = w1, w2, . . . , wN ∈ D2−δ+2ε̃,4−2ε̃ be the distinct points with ϕ̃i(w1) =
· · · = ϕ̃i(wN ). Let 0 < s≪ min(ε̃, i0/100) be a fixed small number and i
large enough. Then we have

Ĝk|Bs(w) = ((ϕ̃i)|Bs(wk))
−1 ◦ (ϕ̃i)Bs(w)

= (ϕ̃i|Bs(wk))
−1 ◦ (vi)−1 ◦ vi ◦ (ϕ̃i)Bs(w)

= (vi ◦ ϕ̃i|Bs(wk))
−1 ◦ (vi ◦ (ϕ̃i)Bs(w))

= (αi|Bs(wk))
−1 ◦ (αi)Bs(w))

= Ĥk|Bs(w)

This means the maps Hi can be extended smoothly to all of Ṽ ∪ {0}, by
defining Hi = Gi on Ṽ ∩ (Z̃)c and Hi(0) = 0 : call these new maps G̃i. Note
that these maps are now smooth. Near 0, k(x) = δ, and Hj(D0,s) ⊆ D0,2s,
Hj : Z̃ → Z̃ are isometries, and hence Hj |D0,s

∈ O(4) for s small enough.

Note also, that for x ∈ Z̃, we always have G̃j(x) = Hj(x) ∈ Z̃, and for
y ∈ Ṽ ∩ (Z̃)c, we have G̃j(y) ∈ Ṽ ∩ (Z̃)c. To see that the last statement is
true, assume that G̃j(y) ∈ Z̃ holds for some y ∈ Ṽ ∩ (Z̃)c. Then we must
have y = (G̃j)

−1(G̃j)(y)) ∈ Z̃ in view of the fact that (G̃j)
−1(Z̃) ⊆ Z̃, and

this is a contradiction to the fact that y ∈ Ṽ ∩ (Z̃)c. This shows also that the
G̃′

js are diffeomorphisms, with (G̃i)|Z̃ = Hi and (G̃i)|(Z̃)c∩Ṽ = Gi|(Z̃)c∩Ṽ for

all i ∈ {1, . . . , N}. In particular, {G̃1, . . . G̃N} forms a subgroup of the family
of diffeomorphisms on Ṽ ∪ {0}. The metric g̃ agrees with k on Z̃ and agree
with g on (Z̃)c ∩ Ṽ Also, the G̃i’s are isometries on (Z̃, k) = (Z̃, g̃), since
G̃i = Hi on Z̃, and the G̃i’s are isometries on ((Z̃)c ∩ Ṽ , g) = ((Z̃)c ∩ Ṽ , g̃)
since G̃i = Gi on (Z̃)c ∩ Ṽ . Hence {G̃1, . . . G̃N} are global isometries on Ṽ ∪
{0}, each with one fixed point, 0. The orbifold structure can now be defined
as follows: let W̃ := Ṽ ∪ {0}. (W̃ , G̃1, . . . , G̃N ) determines one orbifold chart
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ψ : W̃ → W̃/{G̃1, . . . , G̃L}, where ψ(x) := [x] = {G̃i(x) | i = 1, . . . , N}. On
X\(dXBε/100(x1) ∪ dXBε/100(x2) ∪ · · · ∪ dXBε/100(xL)), we take a covering
by the inverse of K manifold charts, for example, geodesic coordinates:

(θα) :
lBε̃0(0) → lBε̃0(yα) ⊆ (X\(dXBε/1000(x1) ∪ dXBε/1000(x2) ∪ · · ·

∪ dXBε/1000(xL))), α ∈ {1, . . . ,K}

(for orbifold charts the maps always go from an open set in R
4 to an open set

in the orbifold). These are fixed for this construction and don’t depend on
i. Since we don’t change anything on X\(dXBε/1000(x1) ∪ dXBε/1000(x2) ∪
· · · ∪ dXBε/1000(xL)), these charts, along with g̃, define an Riemannian orb-

ifold (X̂, g̃). To be a bit more specific: define

X̂ = X\(dXBε/100(x1) ∪ dXBε/100(x2) ∪ · · ·
∪ dXBε/100(xL)) ∪ W̃/{G̃1, . . . , G̃L}

where we identify points

z ∈ X\(dXBε/100(x1) ∪ dXBε/100(x2) ∪ · · · ∪ dXBε/100(xL))

with points [v] ∈ W̃/{G̃1, . . . , G̃L} if z ∈ ϕ(Ṽ ) and [ϕ−1(z)] = [v]. The topol-
ogy is defined by saying xi → x ∈ X̂ if and only if x, xi ∈ W̃/{G̃1, . . . , G̃L}
for all i ≥ N(x) ∈ N and xi → x in W̃/{G̃1, . . . , G̃L}, or x, xi ∈ X\
(dXBε/100(x1) ∪ dXBε/100(x2) ∪ · · · ∪dXBε/100(xL)) for all i ≥ N(x) ∈ N and

xi → x in X\(dXBε/100(x1) ∪ dXBε/100(x2) ∪ · · · ∪dXBε/100(xL)). The charts
are given above.

Call the resulting orbifold space (Xi, g̃i).
This finishes the construction of the modified orbifolds and metrics.

Step 2. Now we have a smooth orbifold and a smooth metric, so we may
evolve it with the orbifold Ricci flow, to obtain a smooth solution
(Xi, Zi(t))t∈(0,Ti) to the orbifold Ricci flow: see Section 2 of [HaThreeO]
and Section 5 [KLThree]. The new metric gi(0) at time zero on Dσ is ε away
from δ, and smooth. In particular,

(9.2) |gi(0)− gj(0)|C0(Dσ,gj(0)) ≤ 2ε for all i, j ∈ N.

if σ > 0 is small enough. One method to construct a solution to the orbifold
Ricci flow is using the so called DeTurk trick ([DeT]). We can use any valid
smooth background metric h to do this: taking h = gj(0) for a fixed j ∈ N,
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we have |gi(0)− h|C0(Dσ,h) ≤ ε on the whole of (Xi, gi(0)). Now we use the
h-flow in place of the Ricci-flow, that is locally the equation looks like,

∂

∂t
gi = (gi)

αβ∇2
αβgi +Riem(h) ∗ (gi) ∗ (gi)−1 ∗ (h)−1

+ (gi)
−1 ∗ (gi)−1 ∗ (∇gi) ∗ (∇gi),(9.3)

where here, ∇ = h∇. Using the estimates contained in the proof of Theo-
rem 5.2 in [SimC0], we see that the solution gi(t)t∈[0,Ti) can be extended to
gi(t)t∈[0,S) for some fixed S = S(h) > 0 and that the solution satisfies

|gi(t)− h|C0(Xi,h) ≤ 2ε

|h∇k
gi(t)|2C0(Xi,h)

≤ c(K,h)

tk
for all 0 ≤ t ≤ S(9.4)

for all k ≤ K ∈ N, as long as t ≤ S, where c(K,h) doesn’t depend on i ∈ N.
We also have

(9.5) |gi(t)− gi(0)|C0(X,h) ≤ c(h, t) ≤ 2ε for all 0 ≤ t ≤ S

where c(h, t) → 0 as t↘ 0, and c(h, t) doesn’t depend on i ∈ N, in view
of the inequalities (5.5) and (5.6) in [SimC0] (the ε > 0 appearing in (5.5)
and (5.6) there is arbitrary: see the proof of Theorem 5.2 in [SimC0]). In
particular,

(9.6) dGH((Xi, d(gi(t))), (Xi, d(gi(0)))) ≤ c(t)

with c(t) → 0 as t↘ 0. Using the smooth time dependent orbifold vector
fields V k(·, t) = −gi(·, t)sm(Γk

sm(gi)(·, t)− Γk
sm(h)(·)) and the orbifold diffeo-

morphisms ϕt : Xi → Xi with
∂
∂tϕt = V , ϕ0 = Id we obtain a solution to the

orbifold Ricci flow, Zi(t) := ϕ∗
t gi(t) which satisfies

dGH((Xi, d(Zi(t))), (Xi, d(Zi(0)))) ≤ c(t)

|∇j Riem(Zi)|(·, t) ≤
c(j, h)

t1+(j/2)
for all 0 ≤ t ≤ S,(9.7)

see for example [Shi] for details. This finishes Step 2. In Step 2 we obtained
various estimates which are necessary for Step 3.

Step 3. Using the Ricci flow orbifold compactness theorem, see [Lu] and
Section 5.3 in [KLThree], we can now take a limit in i→ ∞ for t ∈ (0, S) ,
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and we obtain an orbifold solution (X̃, Z(t))t∈(0,S) to the Ricci flow with

dGH((X, dX), (X̃, dZ(t))) ≤ c(t)

|∇j Riem(Z)|(·, t) ≤ c(j, h)

t1+(j/2)
for all 0 < t ≤ S(9.8)

where c(t) → 0 as t↘ 0. Here we used, that (Xi, d(Zi(0))) → (X, dX) in the
Gromov-Hausdorff sense, which follows by the construction of the spaces
(Xi, d(Zi(0)). Hence we have a found a solution (X̃, Z(t))t∈(0,S) to the orb-
ifold Ricci flow, with initial value (X, dX(0)) in the sense that

dGH((X, dX), (X̃, dZ(t))) → 0 as t↘ 0.

In this sense we have extended the flow (M, g(t))t∈(0,T ) through the singular
limit (X, dX). □

Remark 9.2. Some of the estimates above can be obtained using Perel-
man’s first pseudolocality theorem and Shi’s estimates. However, the esti-
mate on the Gromov-Hausdorff distance, which we require when showing
that the initial value of the limit solution is (X, dX), does not immedi-
ately follow from the pseudolocality theorem. We use the estimates given in
[SimC0] to show that the initial value of the solution is (X, dX).
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