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We prove nonlinear stability for a large class of solutions to the
Einstein equations with a positive cosmological constant and com-
pact spatial topology in arbitrary dimensions, where the spatial
metric is Einstein with either positive or negative Einstein con-
stant. The proof uses the CMC Einstein flow and stability follows
by an energy argument. We prove in addition that the development
of non-CMC initial data close to the background contains a CMC
hypersurface, which in turn implies that stability holds for arbi-
trary perturbations. Furthermore, we construct a one-parameter
family of initial data such that above a critical parameter value
the corresponding development is future and past incomplete.

1 Introduction 1533

2 The CMC-Einstein flow 1539

3 One-parameter family of initial data with collapsing
and expanding regimes 1549

4 Nonlinear stability 1555

References 1574

1. Introduction

Understanding the long time behavior of the Einstein flow and the global
geometry of the resulting spacetimes has been a major field of interest in
General Relativity for the past 30 years. A particularly successful area con-
cerns the nonlinear stability problem for explicit solutions to Einstein’s field
equations. The first general results are due to Friedrich [Fr86] for deSit-
ter space-time and Christodoulou-Klainerman [ChKl93] for the Minkowski
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space-time. Since then several results of a similar nature for different back-
grounds have been established. In this paper we focus on the Einstein-flow
with a positive cosmological constant.

1.1. The positive cosmological constant

The late time asymptotics of homogeneous cosmological models in the pres-
ence of a cosmological constant have been first analyzed by Wald [Wa83].
Following Friedrich’s work on the stability problem [Fr86, Fr86-1] for the
3+1-dimensional case, Anderson generalized the stabilty result to asymptot-
ically de Sitter space of arbitrary even dimension [An05]. Later, Ringström
was able to find conditions on the initial data, such that the global evolu-
tion problem can be localized to a coordinate neighborhood [Ri08]. Using
this local result he showed stability and future completeness for large classes
of initial data on arbitrary spatial topologies. This implies that the spatial
topology itself cannot be deduced from the long time behavior of the Ein-
stein flow in the presence of a positive cosmological constant. A result of this
nature had also been established by Friedrich in [Fr86-1]. Ringström’s re-
sults hold for the Einstein-scalar field system and he later generalized them
to the Einstein-Vlasov-scalar field system in [Ri13]. Similar results have been
obtained by Svedberg for the Einstein-Maxwell system [Sv11].

In the case of the Einstein-Euler system questions of long-time existence
are complicated by the likely appearance of shocks. However, in the pres-
ence of a positive cosmological constant it has been shown by Rodnianski
and Speck that the accelerated expansion is sufficiently strong to avoid shock
formation in the non-vacuum setting for the irrotational Einstein-Euler sys-
tem [RoSp13] and by Speck for the general Einstein-Euler system [Sp12].

1.2. The CMC-Einstein Flow on compact manifolds

In the study of nonlinear stability of expanding solutions to the vacuum
Einstein-flow with vanishing cosmological constant CMC (constant mean
curvature) foliations have been proven to be very beneficial. The study of
the CMC Einstein flow was initiated by the work of Andersson, Moncrief
and Tromba on the global existence of CMC foliations of vacuum solutions
of the Einstein equations in 2+1 dimensions [AnMoTr97]. Fischer and Mon-
crief [FiMo01, FiMo02] studied the Einstein flow in CMC gauge for the
higher dimensional case, which eventually led to the proof of stability for
FLRW(Friedmann-Lemâıtre-Robertson-Walker) type solutions in 3+1 di-
mensions by Andersson and Moncrief [AnMo04] and finally to the stability
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of a large class of spatial Einstein geometries of negative scalar curvature
in arbitrary dimensions by the same authors in 2011 [AnMo11]. The proof
in [AnMo11] is based on a carefully adjusted energy argument which shows
the asymptotic convergence of the perturbed solution to the spatial Einstein
metric.

The motivation for the present paper is the study of the CMC Einstein
flow with a positive cosmological constant, which has so far only been con-
sidered for the 2+1 dimensional case by Andersson, Moncrief and Tromba
in [AnMoTr97].

1.3. Main Results

Our main result is the nonlinear stability for a large class of solutions to
the Einstein equation with positive cosmological constant. The background
solutions are homogeneous model solutions for the CMC-Einstein flow with
positive cosmological constant where the spatial metric is an Einstein metric
with positive or negative Einstein constant on a compact manifold with ar-
bitary dimension n ≥ 2. The main theorem in the case of a negative Einstein
constant is the following.

Theorem 1.1. Let M be a smooth compact n-dimensional manifold (n ≥ 2)
without boundary and γ be an Einstein metric satisfying Ric(γ) = −(n−
1)γ. Then for s > n/2 + 2, s′ > n/2 + s and ε > 0 there exists a δ(ε) > 0
s.t. for initial data (g0, k0) satisfying

(1.1) ∥g0 − γ∥Hs′ +
∥∥∥k0 +

√
2γ

∥∥∥
Hs′−1

< δ

its maximal globally hyperbolic development under the Einstein flow with pos-
itive cosmological constant Λ = n(n−1)

2 can be foliated by CMC-hypersurfaces
Mt, t ∈ [arcsinh(1),∞) such that the induced metrics gt satisfy

(1.2)
∥∥sinh−2(t)gt − γ

∥∥
Hs < ε.

In particular, all corresponding homogeneous solutions are orbitally stable
and the future developments of small perturbations are future geodesically
complete.

In the case of positive Einstein constant, the main theorem is the following.

Theorem 1.2. Let M be a smooth compact n-dimensional manifold (n ≥ 2)
without boundary and γ be an Einstein metric satisfying Ric(γ) = (n− 1)γ
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which does not admit Killing vector fields and such that −2(n− 1) is not an
eigenvalue of the Laplacian. Then for s > n/2 + 2, s′ > n/2 + s and ε > 0
there exists a δ(ε) > 0 s.t. for initial data (g0, k0) satisfying

(1.3) ∥g0 − γ∥Hs′ + ∥k0∥Hs′−1 < δ

its maximal globally hyperbolic development under the Einstein flow with
positive cosmological constant Λ = n(n−1)

2 can be globally foliated by CMC-
hypersurfaces Mt, t ∈ R such that the induced metrics gt satisfy

(1.4)
∥∥cosh−2(t)gt − γ

∥∥
Hs < ε.

In particular, all corresponding homogeneous solutions are orbitally stable
and the future- and past developments of small perturbations are future- and
past geodesically complete, respectively.

Note that we do not assume that the initial data satisfies the CMC
constraints. In fact, we show that the maximal development of a small but
arbitrary perturbation contains a CMC hypersurface so that we can start
the CMC Einstein flow with the initial data induced on that hypersurface.
During this process, we loose regularity which requires the initial data to lie
in a small neighbourhood of higher regularity.

The idea of the proof is based on an energy argument, which makes use
of the elliptic hyperbolic structure of the Einstein flow in CMCSH gauge
(constant mean curvature spatial harmonic gauge) and which is inspired by
the ideas of Andersson and Moncrief in [AnMo11]. The presence of the posi-
tive cosmological constant yields a specific asymptotic hierarchy of the terms
appearing in the CMCSH equations, which needs to be taken into account
by choosing an appropriate rescaling of the evolving geometry. The eventual
energy estimate does not contain a decay inducing negative term on the
right hand side as exploited by a correction mechanism in [AnMo11]. Here,
another crucial observation allows to obtain a sufficient energy estimate in
the small data setting. The idea is as follows. The energy is essentially the
sum of a geometric Sobolev norm of the difference between the rescaled spa-
tial metric and the Einstein background geometry and that of a geometric
Sobolev norm of the trace free part Σ of the rescaled second fundamental
form. The Sobolev norms are defined w.r.t. a Laplace-type operator on ten-
sors corresponding to the background geometry and the perturbed spatial
metric. Straightforward energy estimates for this norm contain a negative
term on the right hand side, which is a multiple of the Sobolev norm of Σ.
This term on its own cannot be exploited to gain additional decay for the
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energy - also a correction mechanism fails in this case. However, a careful
analysis of all additional perturbation terms on the right hand side of the
energy estimate allows to use this term to absorb all perturbation terms
with insufficient decay properties under the assumption that we are in a
small data scenario. We obtain a strong energy estimate with an exponen-
tially decaying coefficient under the smallness condition. Global existence
and stability then follow by a bootstrap argument. Using boundedness for
the highest order of regularity an isolated energy estimate for the second fun-
damental form in lower regularity is then obtained which yields improved
decay properties for this norm. In turn, taking the rescaling into account,
the asymptotics of the solution imply the desired completeness.

The main theorem which we prove partly contains results of previous papers
mentioned above. In [Ri08] Ringström proves nonlinear stability of the same
background solutions in the case of positive curvature in dimensions n ≥ 3
and that of negative curvature in dimension 3. However, for these solutions
the existence of CMC foliations has not been proven. A major advantage of
our proof is that it works in arbitrary dimensions and does not rely on local
coordinates. Its key feature is that it reduces the stability problem to a single
energy estimate (given in Lemma 4.8) and thereby identifies the essence
of the stability mechanism for those solutions. The method also appears
sufficiently robust to generalize the result to the non-vacuum setting.

Besides, we construct a one-parameter family of initial data, such that
there is a critical parameter value above which the corresponding future and
past development recollapses, while for smaller values the developement is
future and past complete. This family illustrates the variety of scenarios
which might occur despite the presence of a cosmological constant. In par-
ticular, the threshold solution between both regimes is a new example for
an unstable solution to the Einstein equations.

1.4. Overview of the paper

In Section 2 we introduce our notations and recall the equations for the
Einstein flow in CMCSH gauge with positive cosmological constant. In Sub-
section 2.4 we construct homogeneous solutions for the cases of positive and
negative spatial Einstein manifolds. In Subsection 2.5 we prove the existence
of CMC surfaces in the MGHD (maximal globally hyperbolic development)
of non-CMC initial data and also the generality of the spatial harmonicity
condition. In Section 3 we construct the family of initial data containing
both data with expanding and recollapsing asymptotics. Section 4 contains
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the proof of the main theorem. In Subsection 4.2 we address the problem of
local existence for the data we consider. The proof of the main theorem is
divided into the analysis of the elliptic system in Subsection 4.3, the main
energy estimate in Subsection 4.4, an improved decay estimate in Subsec-
tion 4.5 and the bootstrap argument which establishes global existence in
Subsection 4.6.
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1.5. Notations and Conventions

We collect all relevant further notations used in this paper in the following.
We define the scalar product of two tensors u, v w.r.t. γ by

(1.5) ⟨u, v⟩ ≡ uijvklγ
ikγjl.

In addition, we define the mixed L2-scalar product by

(1.6) (u, v)L2(g,γ) ≡
∫

M
⟨u, v⟩µg.

The corresponding L2-scalar product where also the volume form is taken
w.r.t. γ is denoted by (. , .)γ .

We denote the standard Sobolev spaces on M by Hs, where the norm
is defined w.r.t. a fixed metric on M . We do not distiguish the notation
for Sobolev spaces of different types of tensors. We denote the Hs-norm
by ∥.∥Hs . The ball in the Hs topology of radius ε > 0 around a tensor h is
denoted by Bs

ε(h). The covariant derivative of a certain metric g is denoted by
∇[g]. If it is clear from the context, the reference to the metric is suppressed.
The curvature tensor is defined with the sign convention such that RijklX

k =
∇j∇iXl −∇i∇jXl. The Laplacians are defined with the sign convention
such that all eigenvalues are nonpositive.
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2. The CMC-Einstein flow

2.1. Background solutions

Throughout the paper, we put the cosmological constant to Λ = n(n−1)
2

where n is the spatial dimension. Then Einstein’s equations are equivalent to
Ricg̃ = ng̃. Assume that (M,γ) is a compact Riemannian Einstein manifold
with negative scalar curvature R(γ) = −n(n− 1). Then, the metric

(2.1) γ̃ = −dt2 + sinh2(t)γ

solves Einsteins equation on (0,∞)×M . This solution is future geodesi-
cally complete and the mean curvature of the slices Mt = {t} ×M is τ(t) =

−n cosh(t)
sinh(t) which is strictly monotonically increasing on (0,∞) and tends from

−∞ as t → 0 to −n as t → ∞. Introducing τ as a new time variable, γ̃ is a
solution of the CMCSH flow we will introduce in the next section. Similarly,
if γ is Einstein but of positive scalar curvature R(γ) = n(n− 1),

(2.2) γ̃ = −dt2 + cosh2(t)γ

solves the Einstein equation on R×M which is future and past geodesi-
cally complete. If (M,γ) is the sphere, we recover the de-Sitter metric and
therefore these models are called generalized de-Sitter spaces. The mean cur-
vature of Mt is τ(t) = −n sinh(t)

cosh(t) which is strictly monotonically decreasing.

We have limt→∞ τ(t) = −n and limt→−∞ τ(t) = n. The metric γ̃ cannot be
regarded as a solution of the CMCSH flow, but as a solution of the reversed
CMCSH flow if we put the time variable to −τ .

Remark 2.1. If γ is a Ricci-flat metric, γ̃ = −dt2 + e2tγ also solves the
Einstein equation. Unfortunately, the mean curvature of any slice Mt is
constantly −n and therefore, we cannot handle this solution with our gauge
conditions.

2.2. ADM Einstein equations

We consider a space-time of the form R×M , where M is a smooth compact
n-dimensional manifold without boundary. For the Lorentzian metric we
choose the ADM-Ansatz

(2.3) (n+1)g̃ = −N2dt⊗ dt+ gij(dx
i +Xidt)⊗ (dxj +Xjdt),
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where g̃ = (N,X, g) denote the lapse function, shift vector field and the
spatial metric, respectively. The Einstein equations in CMCSH gauge,

(2.4)
trgk =: τ = t,

gij(Γk
ij − Γ̂k

ij) =: V k = 0,

where Γk
ij , Γ̂

k
ij denote the Christoffel symbols w.r.t g and γ, respectively,

with positive cosmological constant Λ = n(n−1)
2 read

(2.5)

R(g)− |Σ|2g + τ2
(
n− 1

n

)
= n(n− 1),

∇iΣij = 0,

∂tgij = −2N(Σij + τ/ngij) + LXgij ,

∂tΣij = N(Rij + τΣij − 2ΣikΣ
k
j + (τ2/n− n)gij)

+ LXΣij −
1

n
gij −

2Nτ

n
Σij −∇i∇jN,

∆N = −1 +N

[
|Σ|2g +

τ2

n
− n

]
,

∆Xi +Ri
mXm − LXV i = 2∇jNΣji + τ(2/n− 1)∇iN

− (2NΣmn − (LXg)mn)(Γi
mn − Γ̂i

mn),

where the second fundamental form k has been decomposed into

(2.6) k = Σ+
τ

n
g,

where Σ denotes the tracefree part. Note it is assumed that N > 0. We
have used the following standard notations. R(g) denotes the Ricci scalar
curvature of g, LX denotes the Lie derivative w.r.t. the shift, Rij denotes the
Ricci tensor of the metric g. The Laplacian ∆ is understood to be defined
w.r.t. g.

Finally, we remark that in the case of an reversed CMC-gauge, t = −τ ,
which we use for spatial Einstein metrics of positive curvature, one has the
lapse equation in the form

(2.7) ∆N = 1 +N

[
|Σ|2g +

τ2

n
− n

]
.
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The equation for the trace free part of the second fundamental form in this
case reads

∂tΣij = N(Rij + τΣij − 2ΣilΣ
l
j + (τ2/n− n)gij)(2.8)

+ LXΣij +
1

n
gij −

2Nτ

n
Σij −∇i∇jN

and the other equations remain the same.

2.3. The Einstein operator

The fundamental property of the CMCSH-Einstein flow lies in its elliptic-
hyperbolic structure given by the decomposition of the spatial Ricci tensor
into the Einstein-operator and perturbation terms as given in the following
lemma.

Lemma 2.2 ([AnMo11, Lemma 6.2]). Let γ be an Einstein metric, then
we have the expansion

(2.9) Rij − δij −
R(γ)

n
gij =

1

2
Lg,γ(g − γ)ij + Jij ,

where

(2.10) Lg,γh = −∆g,γh− 2
◦

Rγh

is the Einstein operator. The Laplacian has the local formula

(2.11) ∆g,γhij =
1

µg
∇[γ]m(gmnµg∇[γ]nhij),

the curvature action is given by
◦

Rγ(h)ij = Rikjl(γ)h
kl for some 2-tensor h,

δij ≡ 1
2(∇iVj +∇jVi) and J is an error term which satisfies the estimate

(2.12) ∥J∥Hs−1 ≤ C∥g − γ∥2Hs .

2.4. Homogeneous solutions of the CMC-Einstein flow

We recover the background solutions discussed before in the present gauge
by assuming homogeneity. In the homogeneous setting, meaning a vanishing
trace free part of the second fundamental form, a spatially constant lapse
function and vanishing shift vector we obtain the following solutions.
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Standard CMC-gauge. For the standard CMC-gauge, t = τ , we deduce
from the lapse equation that

(2.13) N =
n

τ2 − n2

and since N > 0, τ2 > n2. Then the evolving physical metric is given by

(2.14) g(τ) = g(τ0)
τ20 − n2

τ2 − n2
,

where the metrics have the property that the Ricci tensor is given by Rij =
−n−1

nN gij . We recover the metric (2.1) written in CMC time. In particular,
the scalar curvature of the Einstein manifold is negative.

Reversed CMC-gauge. Suppose now, we have the reversed CMC-gauge,
i.e. t = −τ . Then

(2.15) N =
n

n2 − τ2

and therefore, τ2 < n2. The solution for curve of the physical metric is the
same as above, where Rij =

n−1
nN gij , i.e. the scalar curvature is positive. We

recover (2.2).

2.5. Universality of the gauge conditions

An important issue arising in the context of the CMCSH gauge concerns the
generality of perturbations which can be evolved by the CMCSH Einstein
flow. Considering CMC initial data induced by a background solution which
admits a CMC foliation one would prefer to consider general perturbations
of this initial data, i.e. solutions to the general constraint equations without
the CMC condition. But such non-CMC initial data cannot be evolved by
the CMCSH Einstein flow.

This problem can be overcome by the following construction. Assuming
non-CMC initial data close to the initial data induced by the background
solution, which is CMC, general theory assures the existence of a maximal
globally hyperbolic development of this initial data. Under the smallness
condition it is possible to show that this development contains a CMC sur-
face. Starting the evolution from this CMC surface one can analyze the
geometry of the corresponding future development and eventually treat all
perturbations by considering the equations in CMCSH gauge.
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A similar question arises for the spatial harmonic gauge, which also is
shown to apply to general initial data. We discuss these aspects of the gauges
in the following.

2.5.1. Spatial Harmonicity. Let M be the set of smooth Riemannian
metrics on M . Fix a metric γ ∈ M and let H be the set of metrics g ∈ M
such that id : (M, g) → (M,γ) is a harmonic map. In other words,

H =
{
g ∈ M | V k

g = gij(Γ[g]kij − Γ[γ]kij) = 0
}
,(2.16)

where Γ[g],Γ[γ] are the Christoffel symbols of g, γ, respectively. Our aim
in this section is to prove that under certain conditions on the background
metric γ, H is a smooth submanifold of M and a local slice of the action of
the diffeomorphism group through γ. By the first variation of the Christoffel
symbols (see e.g. [Be08, Theorem 1.174]), the differential of the map Φ : g 7→
Vg is given by

dΦ(h)i = ∇jh i
j − 1

2
∇itrgh,(2.17)

where h is a symmetric 2-tensor and ∇ is the covariant derivative w.r.t. g.

Lemma 2.3. Let (M,γ) be an Einstein manifold such that −2/n ·R(γ) is
not an eigenvalue of the Laplacian ∆γ and γ does not admit Killing vector
fields. Then the operator

P : Xi 7→ ∆γX
i +Ri

j [γ]X
j(2.18)

is an isomorphism which preserves the decomposition

X(M) = {gradf | f ∈ C∞(M)} ⊕ {X ∈ C∞(TM) | divX = 0} .(2.19)

Proof. We suppress the dependance on γ in the following notation. By a
standard argument using commutators of covariant derivatives, we have

∆∇if +Ri
j∇jf = ∇i∆f + 2Ri

j∇if = ∇i∆f +
2R

n
· ∇if(2.20)

which shows that because of the eigenvalue assumption, P maps the first
factor bijectively onto itself. By self-adjointness of P , the second factor is
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also preserved. We define maps L and L∗ by

L : X 7→ 1

2
(∇iXj +∇jXi), L∗ : h 7→ −∇jh i

j .(2.21)

Note that L∗ is the adjoint map of L with respect to the L2-scalar product
induced by γ. Now for any vector field X with divX = 0, we have

(L∗LX)i = ∇j∇jX
i +∇j∇iXj(2.22)

= ∆Xi +∇j∇iXj −∇i∇jXj = ∆Xi +Ri
jX

j = (PX)i.

Thus, PX = 0 implies LX = 0. But the kernel of L contains precisely the
Killing vector fields, and hence, X = 0. Therefore, P is injective and by
self-adjointness, P is also surjective. □

Lemma 2.4. Let (M,γ) be an Einstein manifold such that −2/n ·R(γ) is
not an eigenvalue of the Laplacian ∆γ and γ does not admit Killing vector
fields. Then, dΦγ : C∞(S2M) → C∞(TM) is surjective. Moreover, we have
the splitting

C∞(S2M) = ker(dΦγ)⊕ im(L).(2.23)

Here, S2M denotes the bundle of symmetric 2-tensors.

Proof. To prove the first assertion, we consider a vector field X and compute

dΦγ ◦ L(X)i =
1

2
(∇j∇jX

i +∇j∇iXj)−
1

2
∇i∇jX

j(2.24)

= ∆Xi +Ri
jX

j = (PX)i.

Due to Lemma 2.3, P is an isomorphism, so dΦγ is surjective even when
restricted to Lie derivatives. This calculation also shows that ker(dΦγ) ∩
im(L) = 0. To prove that the direct sum spans all of C∞(S2M), we first
note that

ker(dΦγ)⊕ im(dΦ∗

γ) = C∞(S2M)(2.25)

so it suffices to prove that

im(dΦ∗

γ) ⊂ ker(dΦγ)⊕ im(L).(2.26)
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If h ∈ im(dΦ∗
γ), there is a vector field X such that

h = dΦ∗

γ(X) = −LX +
1

2
div(X) · γ.(2.27)

We may use an arbitrary vector Y field to rewrite this expression as

h = −L(X + Y ) + LY +
1

2
div(X) · γ(2.28)

We are done with the proof if we can find Y such that

LY +
1

2
div(X) · γ ∈ ker(dΦγ).(2.29)

Thus, we have to solve

0 = dΦγ

(
LY +

1

2
div(X) · γ

)
= PY +

1

2
dΦγ(div(X) · γ)(2.30)

where we used (2.24). This can be done due to Lemma 2.3. □

For our purposes, it is more convenient to work on neighbourhoods with
Sobolev regularity. We therefore use Hs-norms with s > n

2 + 1 for the fol-
lowing theorem. We remark that the above lemmas also hold, if we descend
to Hs-regularity. Let Ms be the space of Hs-metrics on M and let Hs be
the set of all g ∈ Ms satisfying the condition in (2.16).

Theorem 2.5. Let (M,γ) be an Einstein manifold such that −2/n ·R(γ) is
not an eigenvalue of the Laplacian ∆γ and γ does not admit Killing vector
fields. Then in a small Hs-neighbourhood U ⊂ Ms of γ, Hs is a smooth
submanifold of Ms with tangent space

TγHs =

{
h ∈ Hs(S2M) | dΦ(h)i = ∇jhij −

1

2
∇itrh = 0

}
.(2.31)

Moreover, for any g ∈ U there exists an isometric metric g̃ ∈ Hs which is
Hs-close to γ, i.e. there exists φ ∈ Hs(Diff(M)) such that g = φ∗g̃.

Proof. The first assertion follows from the first assertion of Lemma 2.4.
The second assertion follows from the implicit function theorem for Banach
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manifolds applied to the map

Ψ : Hs ×Hs(Diff(M)) → Ms(2.32)

given by Ψ(g, φ) = φ∗g. Since there are no Killing fields, dΨ(γ,id) is injective
and its image is

im(dΨ(γ,id)) = TγHs ⊕ {LXγ | X ∈ Hs(TM)} = ker(dΦγ)⊕ im(L),(2.33)

which equals Hs(S2M) = TγMs by (2.23). Therefore, Ψ is a diffeomor-
phism from a Hs-neighbourhood of (γ, id) in Hs ×Hs(Diff(M)) to a Hs-
neighbourhood of γ in Ms. □

Remark 2.6. The assertions of Theorem 2.5 hold for any Riemannian
metric γ where the operator P is an isomorphism.

2.5.2. Constant mean curvature hypersurfaces. Let us now consider
the CMC-gauge. Let M be a compact manifold, I ⊂ R an open and bounded
interval and M̃k,α the set of Ck,α-Lorentz metrics on I ×M , such that the
induced metrics on the hypersurfaces Mt = {t} ×M are all Riemannian. A
Banach manifold structure on this set is induced by the norm

∥g̃∥Ck,α =
∥∥N2

∥∥
Ck,α + ∥X∥Ck,α + ∥gt∥Ck,α ,(2.34)

where we identify g̃ according to the foliation by submanifolds Mt with the
triple (N,X, gt) of the Lapse function, the shift vector and the induced
metrics gt = g̃|Mt

. The norms of the right hand side are taken with re-
spect to the Riemannian metric dt2 + γ on I ×M . Let Ck,α(M, I) the set of
Ck,α-functions f : M → I endowed with the natural Banach manifold struc-
ture. Each such function defines naturally an embedding ıf : M → I ×M
by ıf (x) = (f(x), x). We define a map

H : M̃k,α × Ck+1,α(M, I) ⊃ D → Ck−1,α(M),(2.35)

which associates to each pair (g̃, f) the mean curvature along the embedding
ıf : M → I ×M induced by the metric g̃. Here, D is the open subset of pairs
(g̃, f) such that (ıf )

∗g̃ is a Riemannian metric.
This is a smooth map between Banach manifolds. To see this, it suf-

fices to consider a local expression of this map: Using local coordinates
on M , we see that T(f(x),x)im(ıf ) is spanned by the vectors dıf (∂i) = ∂if ·
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∂t + ∂i. Let F (t, x) = t− f(x) and the matrix (gf )ij be defined by (gf )ij =
g̃(dıf (∂i), dıf (∂j)). Then the mean curvature is

(2.36) Hg̃,f = (gf )
ij g̃(∇̃dıf (∂i)ν, dıf (∂j)), ν =

gradg̃F

|gradg̃F |g̃
,

where ν is the timelike unit normal and (gf )
ij is the inverse of (gf )ij . This

expression contains second derivatives of the function f and first derivatives
of g̃. We use an implicit function theorem applied to the map H to prove
the following lemma.

Lemma 2.7. Let (M,γ) be a compact Einstein manifold with scalar curva-
ture R(γ) = −n(n− 1) and let I be an arbitrary open and bounded interval
around 0. Let ℓ ≥ 1 and consider the metric

γ̃ = −dt2 + cosh2(t)γ

whose initial data induced on the hypersurface {0} ×M is (γ, 0). Then for
any Cℓ,α × Cℓ−1,α-neighbourhood U of (γ, 0), there exists a neighbourhood

V ⊂ M̃ℓ,α of γ̃ such that any g̃ ∈ V admits a hypersurface such that the
pair (g, k) of the metric and the second fundamental form induced on this
hypersurface is in U and trgk ≡ 0.

Proof. Consider the mapH of above and note thatH(γ̃, 0) = 0. We compute
its differential at the tupel (γ̃, 0) restricted to the second argument. By the
variational formula of the mean curvature in [BaBrCa08, Proposition 2.2],

dHγ̃,0(0, w) =
1

n
[∆γw − (Ricγ̃(∂t, ∂t) + |k|2γ)w] =

1

n
[∆γw + nw].(2.37)

Because we excluded the case of the sphere, the operator ∆γ + n :
Cℓ+1,α(M) → Cℓ−1,α(M) is an isomorphism [Ob62, Theorem 1 and Theo-
rem 2]. Due to the implicit function theorem for Banach manifolds, we have

neighbourhoods U ′ ⊂ Cℓ,α(M̃) of γ̃, V ′ ⊂ Cℓ+1,α(M, I) of 0 and a smooth
function F : U ′ → V ′ such thatH(g̃, F (g̃)) = 0, i.e. F associates to each met-
ric g̃ a minimal Riemannian hypersurface given by the graph of the function
F (g̃). Moreover, F (g̃) is the only function in V ′ such that H(g̃, F (g̃)) = 0.
The proof is finished by the remark that the map g̃ → (g, k) associating to
g̃ the metric and the second fundamental form of graph(F (g̃)) is continuous
from D to Cℓ,α × Cℓ−1,α. □
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Lemma 2.8. Let (M,γ) be an Einstein manifold with scalar curvature
R(γ) = −n(n− 1) and let I be an arbitrary open and bounded interval in
(0,∞) around t0 = arcsinh(1). Let ℓ ≥ 1 and consider the metric

γ̃ = −dt2 + sinh2(t)γ

whose initial data induced on the hypersurface {arcsinh(1)}×M is (γ,−
√
2γ).

Then for any Cℓ,α × Cℓ−1,α-neighbourhood U of (γ,−
√
2γ), there exists a

neighbourhood V ⊂ Cℓ,α(M̃) of γ̃ such that any g̃ ∈ V admits a hypersur-
face such that the pair (g, k) of the metric and the second fundamental form
induced on this hypersurface is in U and trgk ≡ −

√
2n.

Proof. The proof is analogous as above. In this case, we consider the map
H̄ = H +

√
2n. We have H̄(γ̃, t0) = 0 and we compute

dH̄γ̃,t0(0, w) =
1

n
[∆γw − (Ricγ̃(∂t, ∂t) + |k|2γ)w] =

1

n
[∆γw − nw],(2.38)

which is always an isomorphism from Cℓ+1,α(M) to Cℓ−1,α(M). □

Theorem 2.9. Let γ be an Einstein manifold of scalar curvature R(γ) =
n(n− 1) (resp. R(γ) = −n(n− 1)) and let s > n/2 + 1, s′ > n/2 + s. Then
for any Hs ×Hs−1-neighbourhood U ∋ (γ, 0) (resp. U ∋ (γ,−

√
2γ)) of CMC

initial data sets, there exists a Hs′ ×Hs′−1-neighbourhood V ∋ (γ, 0) (resp.
U ∋ (γ,−

√
2γ)) of general initial data sets such that any development of ini-

tial data in V admits a CMC-hypersurface such that the initial data induced
on the hypersurface lies in U .

Proof. Let (gi, ki) be an initial data set converging to (γ, 0) in Hs′ ×Hs′−1.
By the proof of [Ri09, Theorem 15.10], one obtains a sequence of solutions
of Einsteins equations g̃i such that for each slice {t} ×M , t ∈ I, the data
(Ni, Xi, (gi)t) converges in Hs′ to the corresponding data of the background
solution γ̃. Moreover, we have Hs′−1-convergence of the time derivatives
(∂tNi, ∂tXi) by the choice of the gauge used in the proof of the above men-
tioned theorem. Moreover, we have Hs′−1-convergence of ∂tgi to the corre-
sponding quantity of γ̃.

By Sobolev embedding, we obtain convergence of (Ni, Xi, (gi)t) in Cs,α

and convergence of their time-derivatives (∂tNi, ∂tXi, ∂tgi) in Cs−1,α on each
slice {t} ×M . Using the gauge condition and the Einstein equation, we also
obtain convergence of higher time-derivatives of the above quantities so that
g̃i converges to γ̃ in Cs,α(I ×M). For i large enough, the metrics g̃i admit
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hypersurfaces of constant mean curvature due to the lemmas above and the
initial datas (ḡi, k̄i) induced on the hypersurfaces converge in Cs,α × Cs−1,α,
hence also in Hs ×Hs−1. This proves the theorem. □

3. One-parameter family of initial data with collapsing

and expanding regimes

This section is concerned with the construction of a one-parameter family of
initial data such that for a parameter value strictly above a certain thresh-
old, the future and past development recollapses while for the critical value
and below the corresponding future and past development expands for all
time. The initial data consists of a product of positive Einstein metrics with
identical Einstein constants while both metrics are multiplied by a large re-
spectively by a small constant - yielding non-equilibrium initial data, where
the small factor recollapses. For parameter values close to 1 the Einstein
metrics are initially of almost similar volume and expand both for infinite
time. The initial data corresponding to the threshold value of the parameter
yields a solution where one factor remains constant in time while the second
metric expands for infinite time. We proceed with the explicit construction.

We consider a product manifoldM ×N such that gM and gN be Einstein
metrics of positive scalar curvature onM and N , respectively, with dimM =
dimN = m. Let n = 2m. The Einstein constants are chosen such that

(3.1) RicgN = (n− 1)gN and RicgM = (n− 1)gM .

Given s ∈ (12 ,∞), let

(3.2) gM (s) = s · gM and gN (s) =
s

2s− 1
· gN .

We consider now a Lorentzian metric

(3.3) g̃ = −dt2 + a(t)2gM (s) + b(t)2gN (s)

on I ×M ×N , where I ⊂ R is some interval. g̃ is supposed to be a solution
of the Einstein equations

(3.4) Ricg̃ = ng̃

with initial conditions

(3.5) a(0) = b(0) = 1 and a′(0) = b′(0) = 0,
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which are compatible with the constraints. Furthermore, we define the new
variables, x = log a and y = log b. Einstein equations then imply the system
of ODE’s

(3.6)

x′′ = n− 1

s
(n− 1)e−2x − n

2
[(x′)2 + x′y′]

y′′ = n−
(
2− 1

s

)
(n− 1)e−2y − n

2
[y′2 + x′y′]

with initial data x(0) = y(0) = x′(0) = y′(0) = 0. The equation R̃00 = ng̃00
yields

(3.7)
n

2

(
a′′

a
+

b′′

b

)
= n

and equivalently

(3.8) x′′ + y′′ + x′2 + y′2 = 2.

If s = 1, we recover the generalized de-Sitter metric since a(t) = b(t) =
cosh(t) in this case.

Theorem 3.1. Let s ∈ (12 ,∞). Consider initial data (gM (s)⊕ gN (s), 0) on
M ×N where gM (s), gN (s) are as in (3.1) and (3.2). Then, for n−1

n−2 < s or

s < n−1
n , the future and past development is geodesically incomplete. For s ∈

[n−1
n , n−1

n−2 ] the future and past development is geodesically complete. More-

over, if s ∈ (n−1
n , n−1

n−2), we have a limit

(3.9) Cs = lim
t→±∞

vol(M,a(t)2gM (s))

vol(N, b(t)2gN (s))
.

Proof. Let us prove the first assertion. Without loss of generality, we restrict
to the case s > n−1

n−2 . By Lemma 3.2 below, there exists a time T0 > 0 such
that limt→T+

y(t) = −∞ which in turn implies that the scale factor of the
metric gN (s) satisfies limt→T+

b(t) = 0. By choice of the initial values, a and b
are time-symmetric, hence limt→−T+

b(t) = 0 as well. Clearly, these solutions
are geodesically incomplete in the future and the past.

Let us now prove the second assertion. The case s = 1 is the case of the
de-Sitter space, so there is nothing to prove. We may restrict to the case
1 < s ≤ n−1

n−2 . Then by Lemma 3.3, the functions x, y hence the scale factors
a, b exist for all t > 0. By time-symmetry, they exist for all t ∈ R. All these
solutions are future- and past geodesically complete. Finally, the existence
of (3.9) follows from (3.20). □
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3.1. Evolution of non-equilibrium initial data

We consider first the case of non-equilibrium initial data, which we define
by

(3.10) s >
n− 1

n− 2
.

If s < n−1
n the roles of gM (s) and gN (s) interchange, so we may restrict to

the first case. We prove the following lemma.

Lemma 3.2. For non-equilibrium initial data initial data, the solution
(x(t), y(t)) of the system (3.6) with initial data x(0) = y(0) = x′(0) = y′(0) =
0 does not exist for all time. More precisely, there exists a time T+ > 0 such
that limt→T+

y(t) = −∞.

Proof. The condition on s implies

(3.11) y′′(0) = n−
(
2− 1

s

)
(n− 1) < 0

and

(3.12) x′′(0) = n− 1

s
(n− 1) > 2.

We show that x and y are strictly monotonically increasing (decreasing,
respectively) on the interval of existence.

Since x′′(0) > 0, we have x′ > 0 for small t > 0. Let t0 > 0 denote the
first time, such that x′(t0) = 0. Then (3.6) implies

(3.13) x′′(t0) = n− 1

s
(n− 1)e−2x(t0) > 2 > 0,

which in turn implies x′(t) < 0 for t ∈ (t1 − ε, t1). Therefore x′ > 0 as long
as it exists. Analogously one can show that y is strictly monotonically de-
creasing on the interval of existence. Next we show, that x exists at least as
long as y′′ und y′. By (3.8) and the monotonicity of x and y we obtain

x′′ − y′′ = (n− 1)

[(
2− 1

s

)
e−2y − 1

s
e−2x

]
− n

2
[(x′)2 − (y′)2](3.14)

≤ 2(n− 1)− n

2
[(x′)2 − (y′)2].
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Using (3.8), x′′ can be eliminated from this inequality. Elementary manipu-
lations yield

(3.15) (x′)2 ≤ 4 +
4

n− 1
y′′ +

n

n− 2
(y′)2,

which proves the claim. We show in the following that y is unbounded from
below. Assume the contrary. Then by the strict monotonicity of y the exis-
tence of a limit limt→∞ y(t) =: y(∞) follows, so does limt→∞ y′(t) = 0. Then

(3.16)

∫
∞

0
y′′(t)dt = lim

t→∞
y′(t)− y′(0) = 0,

so either limt→∞ y′′(t) = 0 or there is a sequence si → ∞ such that y′′(si) = 0
for all i ∈ N. Using (3.6) would then imply x′(t) diverges for t → ∞, which
however is a contradiction to (3.15).
Finally, we show that y blows up in finite time. Addition of both equations
in (3.6) yields

x′′ + y′′ = 2n− 1

s
(n− 1)e−2x(3.17)

−
(
2− 1

s

)
(n− 1)e−2y − n

2
(x′ + y′)2.

By monotonicity of x and y and the unboundedness of y from below there
is a constant C > 0 and a time t1 > 0 such that the differential inequality

(3.18) x′′ + y′′ ≤ −C − n

2
(x′ + y′)2

holds for all t ≥ t1. Here t1 > 0 is arbitrary. The corresponding ODE is solved
by the tangens. Therefore x′ + y′ blows up in finite time (say t2 > t1) towards
−∞. As x′ > 0, y′ blows up. In addition, we also have y(t2) =

∫ t2
0 y′(t)dt =

−∞, which implies that y diverges. □

3.2. Equilibrium initial data

We consider now equilibrium initial data given by

(3.19) 1 < s ≤ n− 1

n− 2
.
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Lemma 3.3. For equilibrium initial data initial data, the solution
(x(t), y(t)) of the system (3.6) with initial data x(0) = y(0) = x′(0) = y′(0) =
0 exists for all t > 0. Moreover, if s < n−1

n−2 , we have a limit

(3.20) Cs = lim
t→∞

(x(t)− y(t)).

Proof. We consider the case of 1 < s < n−1
n−2 . Then

(3.21) y′′(0) = n−
(
2− 1

s

)
(n− 1) ∈ (0, 1)

and

(3.22) x′′(0) = n− 1

2
(n− 1) ∈ (1, 2).

Both x and y are strictly monotonically increasing. We have x′(t) > 0 for
small t. Let t0 be the first time, where x′(t0) = 0. Then by (3.8) we obtain

(3.23) x′′(t0) = n− 1

s
(n− 1)e−2x(t0) > 0,

as long as y′(t0) exists. Thus x
′ < 0 on (t0 − ε, t0), which causes the contra-

diction. Analogously one shows that y is strictly monotonically increasing.
From (3.17) and monotonicity we deduce

(3.24) 2− n

2
(x′ + y′)2 ≤ x′′ + y′′ ≤ 2n− n

2
(x′ + y′)2.

The solution of the corresponding ODE is tanh. This implies 0 < x′ + y′ < C
for all t > 0. Due to the positivity of x′ and y′ these statements hold for x′

and y′ individually. In particular, x and y exist for all times. In addition
we have x′(t) + y′(t) > C1 > 0 for all t ≥ t1 and x(t) + y(t) > C2t for all
t ≥ t1 and C2 > 0. Using what we have seen so far we obtain the following
estimates.

x′′ − y′′ = (n− 1)

[(
2− 1

s

)
e−2y − 1

s
e−2x

]
− n

2
[(x′)2 − (y′)2](3.25)

≤ (n− 1)

(
2− 1

s

)
e−2(x+y) − n

2
(x′ − y′)(x′ + y′)

≤ (n− 1)

(
2− 1

s

)
e−2C2t − C3(x

′ − y′)
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This differential inequality holds for t > t1. On the other hand, we also have

(3.26) x′′ − y′′ ≥ −(n− 1)
1

s
e−2C2t − C4(x

′ − y′).

From these inequalities we deduce that x′ − y′ decays exponentially and
converges to 0 as t → ∞. The exponential decay implies the existence of the
limit

(3.27) lim
t→∞

(x(t)− y(t)) =

∫
∞

0
(x′(t)− y′(t))dt.

In the boundary case s = n−1
n−2 , y

′′(0) = 0. Thus, y ≡ 0 and the system re-
duces to the initial value problem

(3.28) x′′ = n− (n− 2)e−2x − n

2
(x′)2, x(0) = x′(0) = 0.

By similar arguments as above, one shows that x is strictly monotonically
increasing. An immediate implication is x′′ < n, which implies that x grows
at most quadratically. Therefore, it it exists for all time. □

3.3. Products of negative curvature

Finally, we address the case of products of negative Einstein metrics. We
consider an analogous construction as in the previous sections. Let gM and
gN be two compact m-dimensional Einstein metrics with

(3.29) RicgM = −(n− 1)gM and RicgN = −(n− 1)gN ,

where n = 2m. Let s ∈ (12 ,∞) and

(3.30) gM (s) = s · gM , gN (s) =
s

2s− 1
· gN .

We consider a Lorentzian metric of the form

(3.31) g̃ = −dt2 + a(t)2gM (s) + b(t)2gN (s),

and demand Ricg̃ = n · g̃. We have the conditions a(0) = b(0) = 1 and a′(0) =
b′(0) =

√
2 compatible with the constraints. Defining the variables x = log(a)
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and y = log(b) yields the system of ODE’s

(3.32)

x′′ = n+
1

s
(n− 1)e−2x − n

2
[(x′)2 + x′y′]

y′′ = n+

(
2− 1

s

)
(n− 1)e−2y − n

2
[(y′)2 + x′y′]

with initial conditions x(0) = y(0) = 0, x′(0) = y′(0) =
√
2. Due to R̃00 =

n · g̃00, we have

(3.33)
n

2

(
a′′

a
+

b′′

b

)
= n,

or equivalently,

(3.34) x′′ + y′′ + (x′)2 + (y′)2 = 2.

In the case s = 1, we recover the background metric

(3.35) − dt2 + sinh2(t− arcsinh(1))(gM ⊕ gN ).

For this system we obtain the following result.

Theorem 3.4. Let s ∈ (12 ,∞). Consider initial data (gM (s)⊕ gN (s),

−
√
2(gM (s)⊕ gN (s))) on M ×N where gM (s), gN (s) are as in (3.29) and

(3.30). Then, the future development is geodesically complete. Moreover, we
have a limit

(3.36) Cs = lim
t→∞

vol(M,a(t)2gM (s))

vol(N, b(t)2gN (s))
.

Proof. For any s ∈ (12 ,∞), an analogoue of Lemma 3.3 can be proven by
the same arguments. Then the theorem follows as in the second part of
Theorem 3.1. □

4. Nonlinear stability

We turn now to the main part of the paper, presenting the proof of the non-
linear stability results, Theorem 1.1 and Theorem 1.2. The proof consists of
four steps: a rescaling of the system, local stability results, elliptic estimates
for lapse and shift and a uniform energy estimate for the evolving data g and
Σ. The steps distinguish formally between the cases of positive and negative
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curvature of the background geometry. However, both cases can be handled
more or less similarly, so that we present most of the arguments only for one
case explicitly and in detail.

4.1. CMC-Einstein flow in rescaled time

Let us relabel the solution (g,Σ, B,X) of the elliptic-hyperbolic system by
g̃, Σ̃, Ñ , X̃. We now introduce new scale-invariant variables by

(4.1) g = s(τ)g̃, N = s(τ)Ñ , Σ = s(τ)1/2Σ̃, X = s(τ)1/2X̃,

where s(τ) is defined below.

4.1.1. Rescaling of the CMC flow. In the CMC case, we define the
scale factor as s(τ) = ( τn)

2 − 1. In these variables, the constraint equations
read

(4.2) R(g)− |Σ|2g = −(n− 1)n, ∇iΣij = 0.

Furthermore we define a new time-variable T by the equation τ = −n cosh(T)
sinh(T) .

This time coincides with the time of the solution (2.1). We now rewrite
this system in the rescaled variables and the time variable T. The defining
equations for lapse and shift are

(4.3)

∆gN = −1 +N(|Σ|2g + n),

∆gX
i +Ri

mXm = 2∇jNΣij − cosh(T)(2− n)∇iN

− (2NΣmn − (LXg)mn)(Γi
mn − Γ̂i

mn).

Here we additionally used that ∇jΣ
ij = 0 and V i = gij(Γk

ij − Γ̂k
ij) = 0. The

evolution equations are

(4.4)

∂Tgij =− 2
cosh(T)

sinh(T)
(1− nN)gij −

n

sinh(T)
(2NΣij − LXgij),

∂TΣij =− n2 cosh(T)

sinh(T)

(
1

n2
+N − 2N

n

)
Σij

+
n

sinh(T)
N(Rij + ngij − 2ΣikΣ

k
j )

+
n

sinh(T)

(
LXΣij −

1

n
gij −∇i∇jN

)
.
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4.1.2. Rescaling of the reversed CMC flow. In the reversed CMC
case, we rescale with s(τ) = 1− ( τn)

2. Then, some signs change. The con-
straints are

(4.5) R(g)− |Σ|2g = (n− 1)n, ∇aΣab = 0.

The defining equations for lapse and shift are

(4.6)

∆gN = 1 +N(|Σ|2g − n),

∆gX
i +Ri

mXm = 2∇jNΣij − sinh(T)(2− n)∇iN

− (2NΣmn − (LXg)mn)(Γi
mn − Γ̂i

mn)

and the evolution equations are

(4.7)

∂Tgij = −2
sinh(T)

cosh(T)
(1− nN)gij −

n

cosh(T)
(2NΣij − LXgij),

∂TΣij = −n2 sinh(T)

cosh(T)

(
1

n2
+N − 2N

n

)
Σij

+
n

cosh(T)
N(Rij + ngij − 2ΣikΣ

k
j )

+
n

cosh(T)

(
LXΣij +

1

n
gij −∇i∇jN

)
.

4.2. Local existence

We have the following local existence theorem in CMCSH gauge, for the
initial data, which we consider in this paper. We distinguish between the
cases of positive and negative curvature beginning with the latter.

Lemma 4.1 (Analogous to [AnMo03, Theorem 5.1]). Let γ be a fixed
Einstein metric on M such that γ is a metric of negative scalar curvature
and s > n/2 + 1. Furthermore, let (g0, k0) be CMCSH initial data on M such
that

(4.8) ∥g0 − γ∥Hs + ∥Σ∥Hs−1 < ε

with ε sufficiently small. Then the CMCSH Cauchy problem is strongly lo-
cally well-posed in Ck(Hs), k = ⌊s⌋ and the corresponding Lorentz metric ḡ
is a vacuum solution of the Einstein equations. The following continuation
principle holds. There exists a δ > 0 such that for [T0, T+) being the maximal
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future existence interval to the given initial data at T0 in the rescaled time
T , then either [T0, T+) = [arcsinh(1),∞) or

(4.9) lim sup(∥g − γ∥Hs + ∥Σ∥Hs−1) ≥ ε+ δ

for T → T+.

The positive case is a bit more subtle due fact that the elliptic operators
for lapse and shift are not necessarily isomorphisms. Recall the definition of
Bs
ε(γ, 0) in Section 1.5.

Lemma 4.2. Let γ be a fixed Einstein metric on M such that γ is a metric
of positive scalar curvature, −2(n− 1) /∈ Spec(∆γ) and γ admits no Killing
vector fields and let s > n/2 + 1. Furthermore, let (g0, k0) be CMCSH initial
data on M such that

(4.10) ∥g − γ∥Hs + ∥Σ∥Hs−1 < ε

with ε sufficiently small to assure that the conditions on γ hold for all
(g,Σ) ∈ Bs

ε(γ, 0). Then the CMCSH Cauchy problem is strongly locally well-
posed in Ck(Hs), k = ⌊s⌋ and the corresponding Lorentz metric ḡ is a vac-
uum solution of the Einstein equations. The following continuation princi-
ple holds. There exists a δ > 0 such that for (T−,T+) being the maximal
existence interval to the given initial data at T0 in rescaled time T, either
(T−,T+) = (−∞,∞) or

(4.11) lim sup(∥g − γ∥Hs + ∥Σ∥Hs−1) ≥ ε+ δ

for T → T+ or T → T−.

Proof. The lemma for the negative case follows straightforward by the same
methods as in [AnMo03], which would even yield a more general result with-
out the smallness assumptions.

In the case of positive curvature in the second lemma one has to as-
sure that the elliptic operators defining the lapse and shift equation are in
fact isomorphisms to use the relevant structure of the elliptic system as in
Lemma 3.2 of [AnMo03]. The conditions we impose on the Einstein met-
ric assure that these operators are isomorphisms, c.f. Section 2.5. As the
perturbations are chosen to be small we can assure that the isomorphism
property holds also for the perturbed data as long as we remain in an ε-ball.
This justifies the continuation criterion, which automatically covers the case
implied by the analysis in [AnMo03]. □
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Remark 4.3. The local existence results mentioned above hold under more
general conditions on the initial data (cf. [AnMo03]). We have stated a
concise version which covers the case which is needed in the present paper. It
is also understood that we choose the bootstrap assumptions in the proof of
global existence such that the solution is contained inside the corresponding
ε-ball of the corresponding local existence criterion.

4.3. Elliptic system

We derive the elliptic estimates for lapse and shift in the case of positive
and negative Ricci-curvature of the spatial metric.

Lemma 4.4. Let s > n/2 + 2 and (g,Σ) ∈ Bs
δg
(γ)× Bs−1

δΣ
(0) for some suf-

ficiently small δg, δΣ > 0, then

(4.12)

∥N − 1

n
∥s ≤ C(δg, δΣ)∥Σ∥2s−2,

∥N∥L∞ ≤ 1

n
,

∥X∥s ≤ C(δg, δΣ)

[
∥2∇jNΣij − 2NΣmn(Γi

mn − Γ̂i
mn)∥s−2

+ n cosh(T)

(
1− 2

n

)
∥∇iN∥s−2

]
.

In combination with the first inequality this implies for X,

∥X∥s ≤ C(δg, δΣ)

[
∥Σ∥3s−2 + ∥N∥s−2∥Σ∥s−2∥g − γ∥s−1(4.13)

+ n cosh(T)

(
1− 2

n

)
∥Σ∥2s−2

]
.

In the case of positive curvature, cosh(T) is replaced by sinh(T) in the esti-
mate.

Proof. We prove the estimates in the case of negative Ricci curvature. The
positive case is analogous.

The lapse equation in the negative case reads

(4.14) ∆gN = −1 +N(|Σ|2g + n).
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The maximum principle immediately yields the second estimate. Rewriting
the lapse equation, we obtain

(4.15) ∆g

(
N − 1

n

)
− n

(
N − 1

n

)
= N |Σ|2g,

which in combination with the point wise estimate on N and elliptic regu-
larity for the operator ∆g − n yields the first estimate.

Finally, we consider the estimate for the shift vector. We write the equa-
tion for the shift in the form

(4.16) ∆gX
i +Ri

mXm = FX + (LXg)mn(Γi
mn − Γ̂i

mn),

where

(4.17) FX ≡ 2∇jNΣij − n cosh(T)

(
1− 2

n

)
∇iN − 2NΣmn(Γi

mn − Γ̂i
mn).

Elliptic regularity applied to the equation for the shift then implies

(4.18) ∥X∥Hs ≤ C(δg)
[
∥FX∥Hs−2 + ∥(LXg)mn(Γi

mn − Γ̂i
mn)∥Hs−2

]
.

Using the smallness of g − γ we estimate

(4.19) ∥(LXg)mn(Γi
mn − Γ̂i

mn)∥Hs−2 ≤ C(δg)∥X∥Hs−1∥g − γ∥Hs−1 .

By choosing the δg sufficiently small we can estimate the RHS by 1
2∥X∥Hs−1

and absorb it into the LHS above yielding

(4.20) ∥X∥Hs ≤ 2C(δg)∥FX∥Hs−2 .

This finishes the proof. □

4.4. Energy estimate

We restrict in the remainder to the case of negative curvature, the positive
case is analogous. Before defining the total energy of the system, we cast
the evolution equations into a form where the terms are ordered according
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to their eventual asymptotic behavior. This reads as follows.

(4.21)

∂Tgij = − n

sinh(T)
2NΣij +

cosh(T)

sinh(T)
A+

n

sinh(T)
B,

∂TΣij = −cosh(T)

sinh(T)
(n− 1)Σij

+
n

sinh(T)
N

(
−1

2
∆g,γ(g − γ)− R̊γ(g − γ)

)

+
1

sinh(T)
(LXΣij) +

n

sinh(T)
C +

cosh(T)

sinh(T)
D.

Lemma 4.5. Let s > n
2 + 1 and (g,Σ) ∈ Bs

δg
(γ)× Bs−1

δΣ
(0) for some δg, δΣ >

0 sufficiently small. Then for the perturbation terms, the following estimates
hold.

(4.22)

∥A∥s ≤ C(δg, δΣ)
[
∥Σ∥2s−2(∥g − γ∥s + ∥γ∥s)

]
,

∥B∥s ≤ 2∥∇X∥s,
∥C∥s ≤ C(δg, δΣ)

[
∥Σ∥2s + ∥N∥s∥Σ∥2s + ∥Σ∥2s(∥g − γ∥s + ∥γ∥s),

+ ∥N∥s∥g − γ∥2s+1

]

∥D∥s ≤ C(δg, δΣ)
[
∥Σ∥2s−2∥Σ∥s

]
.

Proof. The perturbation terms have the explicit form

(4.23)

A = −2(1− nN)(gij − γij + γij),

B = LXgij = ∇iXj +∇jXi,

C = −∇i∇jN − 2NΣikΣ
k
j +

(
N − 1

n

)
(gij − γij + γij) +NJij ,

D = −(n− 2)(Nn− 1)Σij .

Note that J is the perturbation term given in Lemma 2.2 with the corre-
sponding estimate (2.12). Now, the lemma follows from the estimates from
Lemma 4.4, . □

We define the main total energy.
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Definition 4.6. Let s > n/2 + 1, then we denote

Es(g,Σ) ≡ ∥g − γ∥2L2(γ) +

s−1∑

k=0

(−1)k(Σ,∆k
g,γΣ)L2(g,γ)(4.24)

+
1

4

s∑

k=1

(−1)k(g − γ,∆k
g,γ(g − γ))L2(g,γ)

≡ I + II + III.

Remark 4.7. Note that the energy is equivalent to the Hs ×Hs−1-norm
of (g,Σ).

Lemma 4.8. Let s > n/2 + 1 and (g,Σ) ∈ Hs ×Hs−1 be a solution to
(4.3)–(4.4). Then there exists an ε > 0 such that for

(4.25) (g,Σ) ∈ Bs
ε(γ)× Bs−1

ε (0),

the estimate

(4.26) ∂TEs(g,Σ) ≤
C(ε)

sinh(T)
Es(g,Σ)

holds in the case of negative curvature of γ. The analogous estimate with
sinh(T) replaced by cosh(T) holds in the case of positive curvature of γ.

Proof. We consider the negative curvature case for the proof. The case of
positive curvature is analogous.

We take the time derivatives of the three individual terms.

∂T∥g − γ∥2L2(γ) = 2

∫

M
⟨∂Tg, (g − γ)⟩γµγ(4.27)

= 2

∫

M

〈
− n

sinh(T)
2NΣ+

cosh(T)

sinh(T)
A+

n

sinh(T)
B, (g − γ)

〉

γ

µγ

= − 4n

sinh(T)

∫

M
N⟨Σ, (g − γ)⟩γµγ + 2

cosh(T)

sinh(T)

∫

M
⟨A, (g − γ)⟩γµγ

+
2n

sinh(T)

∫

M
⟨B, (g − γ)⟩γµγ ,
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where A and B are given in (4.23). In particular, we have an estimate of the
form

|∂T∥g − γ∥2L2(γ)| ≤ C

[
1

sinh(T)
∥N∥L∞Es(g,Σ)(4.28)

+
cosh(T)

sinh(T)
∥A∥L2

√
Es(g,Σ)

+
1

sinh(T)
∥B∥L2

√
Es(g,Σ)

]
.

We order the terms according to their appearance in the energy estimate,
substitute the expressions for A and B.

|∂T∥g − γ∥2L2(γ)| ≤ C

[
1

sinh(T)
nEs(g,Σ)(4.29)

+ C(δg, δΣ)
cosh(T)

sinh(T)

[
∥Σ∥2L2(∥g − γ∥s + ∥γ∥s)

]√
Es(g,Σ)

+
2

sinh(T)

(
C(δg, δΣ)

[
∥Σ∥3s−2 + ∥N∥s−2∥Σ∥s−2∥g − γ∥s−1

+ cosh(T)

(
1− 2

n

)(
2

n
− 1

)
∥Σ∥2s−3

])√
Es(g,Σ)

]

We sort the terms on the RHS into two different categories, where C is a
new constant and we make use of the fact that Es(g,Σ) ≤ 1. Then we obtain

|∂T∥g − γ∥2L2(γ)| ≤
C

sinh(T)
nEs(g,Σ) + C

cosh(T)

sinh(T)
∥Σ∥2L2

√
Es(g,Σ)(4.30)

+ C
cosh(T)

sinh(T)
∥Σ∥2s−3

√
Es(g,Σ).

Remark 4.9. The two terms on the RHS contribute either to the estimate
to be proven or will be absorbed by a large negative term as demonstrated
further below.

We proceed with the evaluation of the next time derivative.

∂T

s−1∑

k=0

(−1)k(Σ,∆k
g,γΣ)L2(g,γ) =

s−1∑

k=0

(−1)k

{∫

M
2⟨∂TΣ,∆k

g,γΣ⟩(4.31)

+ ⟨Σ, [∂T,∆k
g,γ ]Σ⟩µg +

∫

M
⟨Σ,∆k

g,γΣ⟩∂Tµg

}
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=

s−1∑

k=0

(−1)k

{
− 2

cosh(T)

sinh(T)
(n− 1)

∫

M
⟨Σ,∆k

g,γΣ⟩µg

− 1

sinh(T)

∫

M
⟨N(∆g,γ(g − γ)),∆k

g,γΣ⟩µg

− 2

sinh(T)

∫

M
⟨N(R̊γ(g − γ)),∆k

g,γΣ⟩µg

+
2

sinh(T)

∫

M
⟨(LXΣ),∆k

g,γΣ⟩µg

+
2

sinh(T)

∫

M
⟨C,∆k

g,γΣ⟩µg + 2
cosh(T)

sinh(T)

∫

M
⟨D,∆k

g,γΣ⟩µg

+

∫

M
⟨Σ, [∂T,∆k

g,γ ]Σ⟩µg +

∫

M
⟨Σ,∆k

g,γΣ⟩∂Tµg

}

Before we further evaluate the previous term, we compute the time derivative
of the last term of the energy and evaluate both terms in combination.

The time derivative of the last term reads

∂T
1

4

s∑

k=1

(−1)k⟨g − γ,∆k
g,γ(g − γ)⟩L2(g,γ)(4.32)

=
1

4

s∑

k=1

(−1)k

{∫

M
2⟨∂T (g − γ),∆k

g,γ(g − γ)⟩

+ ⟨g − γ, [∂T,∆
k
g,γ ](g − γ)⟩µg

+

∫

M
⟨(g − γ),∆k

g,γ(g − γ)⟩∂Tµg

}

=
1

4

s∑

k=1

(−1)k

{
− 4

sinh(T)

∫

M
N⟨Σ,∆k

g,γ(g − γ)⟩µg

+ 2
cosh(T)

sinh(T)

∫

M
⟨A,∆k

g,γ(g − γ)⟩µg

+
2

sinh(T)

∫

M
⟨B,∆k

g,γ(g − γ)⟩µg

+

∫

M
⟨g − γ, [∂T,∆

k
g,γ ](g − γ)⟩µg

+

∫

M
⟨(g − γ),∆k

g,γ(g − γ)⟩∂Tµg

}
.
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In both previous computations there are commutator terms arising. We do
an intermediate discussion of those terms in the following. The commutator
operator can also be written as

(4.33) [∂T,∆
k
g,γ ](h) = (∂T∆

k
g,γ)(h) =

k−1∑

l=0

(∆l
g,γ ◦ (∂T∆g,γ) ◦∆l−k−1

g,γ )(h)

for some 2-tensor h. Recall that the Laplacian appearing here has the local
formula

(4.34) ∆g,γhij =
1

µg
∇[γ]m(gmnµg∇[γ]nhij).

This shows that the variation of the operator with respect to the metric can
be written schematically as

(∂T∆g,γ)(h) = ∂Tg ∗∆g,γh+
1

µg
∇[γ]m(µg∂Tg ∗ ∇[γ]nh)(4.35)

= ∂Tg ∗ ∇2[γ]h+ ∂Tg ∗ ∇[γ]g ∗ ∇[γ]h

+∇[γ]∂Tg ∗ ∇[γ]h,

where ∗ is Hamilton’s notation of a combination of tensor products with con-
tractions with respect to g. Therefore, by (4.33) and (4.35) and by suitable
integration by parts, one can see that

(4.36)

∣∣∣∣∣

s−1∑

k=0

(−1)k
∫

M
⟨Σ, [∂T,∆k

g,γ ]Σ⟩µg

∣∣∣∣∣ ≤ C ∥Σ∥2Hs−1(g) ∥∂Tg∥Hs−2(g)

and similarly,

∣∣∣∣∣

s∑

k=1

(−1)k
∫

M
⟨g − γ, [∂T,∆

k
g,γ ](g − γ)⟩µg

∣∣∣∣∣(4.37)

≤ C ∥g − γ∥2Hs(g) ∥∂Tg∥Hs−1(g)

and for ∂Tg, we have good estimates which make this terms to be of higher
order.
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Before we continue, we note the following estimate for the norm of the
time derivative of g, which follows straightforward from the previous esti-
mates. We have

∥∂Tg∥Hs−1(g) ≤ C

[
1

sinh(T)
∥N∥Hs−1(g)∥Σ∥Hs−1(g)(4.38)

+
cosh(T)

sinh(T)
∥Σ∥2Hs−1(g)

(
1 + ∥g − γ∥Hs(g)

)

+
1

sinh(T)

(
∥Σ∥3Hs−1(g) + ∥N∥Hs−1(g)∥Σ∥Hs−1(g)∥g − γ∥Hs−1(g)

)]
.

We have evaluated both commutator terms arising in (4.31) and (4.32) and
proceed by combining the terms on the corresponding RHS into two different
classes. We rearrange the terms.

∂T(II + III) = −2
cosh(T)

sinh(T)
(n− 1)

s−1∑

k=0

(−1)k
∫

M
⟨Σ,∆k

g,γΣ⟩µg(4.39)

−
s−1∑

k=0

(−1)k
2

sinh(T)

∫

M
⟨N(∆g,γ(g − γ)),∆k

g,γΣ⟩µg

−
s∑

k=1

(−1)k
2

sinh(T)

∫

M
N⟨Σ,∆k

g,γ(g − γ)⟩µg

+

s−1∑

k=0

(−1)k

{
− 2

sinh(T)

∫

M
⟨N(2R̊γ(g − γ)),∆k

g,γΣ⟩µg

+
2

sinh(T)

∫

M
⟨(LXΣ),∆k

g,γΣ⟩µg

+
2

sinh(T)

∫

M
⟨C,∆k

g,γΣ⟩µg + 2
cosh(T)

sinh(T)

∫

M
⟨D,∆k

g,γΣ⟩µg

+

∫

M
⟨Σ, [∂T,∆k

g,γ ]Σ⟩µg +

∫

M
⟨Σ,∆k

g,γΣ⟩∂Tµg

}

+
1

4

s∑

k=1

(−1)k

{
2
cosh(T)

sinh(T)

∫

M
⟨A,∆k

g,γ(g − γ)⟩µg

+
2

sinh(T)

∫

M
⟨B,∆k

g,γ(g − γ)⟩µg

+

∫

M
⟨g − γ, [∂T,∆

k
g,γ ](g − γ)⟩µg

+

∫

M
⟨(g − γ),∆k

g,γ(g − γ)⟩∂Tµg

}
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≤ − 2
cosh(T)

sinh(T)
(n− 1)

s−1∑

k=0

(−1)k
∫

M
⟨Σ,∆k

g,γΣ⟩µg

︸ ︷︷ ︸
(∗)

+ C
√

Es(g,Σ)∥Σ∥2Hs−1︸ ︷︷ ︸
(∗∗)

+
C

sinh(T)
Es(g,Σ)

We still have to justify the last inequality. Therefore we have to analyze
all terms on the right hand side above and estimate them by one of the
three terms given in the last two lines of (4.39). Before we do this, we first
argue, why this estimate implies the result. The first term on the right hand
side, (∗), has a negative sign and its absolut value bounds the Hs−1-norm of
Σ up to a multiplicative positive constant from above. Therefore choosing√

Es(g,Σ) sufficiently small by choosing the g close to γ we can ensure that
the second term, (∗∗), is always bounded from above by the absolut value
of the first term and thereby the sum of both terms is negative and can be
estimated from above by 0 yielding the desired estimate.

To complete the proof we need to justify the last estimate in (4.39). We
proceed term by term.

The second and third line of the RHS of (4.39) contain leading terms of
too high regularity to close the estimate - these terms cancel pairwise using
integration by parts. The resulting term can then be estimated as follows.

∣∣∣∣∣−
2

sinh(T)

s−1∑

k=1

(−1)k
∫

⟨[∆k
g,γ(g − γ), N ]∆g,γ(g − γ),Σ⟩µg

∣∣∣∣∣(4.40)

≤ C

sinh(T)
∥N∥Hs(g)∥g − γ∥Hs(g)∥Σ∥Hs−1(g)

This term contributes to the last term on the RHS of (4.39).

The term in the fourth line is evaluated using
◦

Rγ(g − γ)ij = Rikjl(γ)(g −
γ)kl. We estimate

∣∣∣∣∣
−4

sinh(T)

s−1∑

k=1

∫
⟨N

◦

Rγ(g − γ),∆k
g,γΣ⟩µg

∣∣∣∣∣(4.41)

≤ C

sinh(T)
∥N∥Hs(g)∥g − γ∥Hs(g)∥Σ∥Hs−1(g),

which contributes again to the last term on the right hand side of (4.39).
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To evaluate the term in the fourth line one needs to observe the sym-
metry when using the integration by parts. This yields an estimate of the
form

(4.42)

∣∣∣∣∣
2

sinh(T)

s−1∑

k=1

∫

M
⟨LXΣ,∆k

g,γΣ⟩µg

∣∣∣∣∣ ≤
C

sinh(T)
∥X∥Hs(g)Es(g,Σ).

The sixth and seventh line can be evaluated straightforwardly using the
estimates for the Hs norms of C and D as defined in (4.23). As the second
term containing D does not contain a good time factor it is important to
note that this term contains a factor quadratic in the Hs−1-norm of Σ.
Precisely, we have

∣∣∣∣∣

s−1∑

k=1

2

sinh(T)

∫

M
⟨C,∆k

g,γΣ⟩µg + 2
cosh(T)

sinh(T)

∫

M
⟨D,∆k

g,γΣ⟩µg

∣∣∣∣∣(4.43)

≤ 2

sinh(T)
∥C∥Hs−1(g)∥Σ∥Hs−1(g) + 2

cosh(T)

sinh(T)
∥D∥Hs−1(g)∥Σ∥Hs−1(g)

≤ 2C

sinh(T)
∥Σ∥Hs−1(g)

[
Es(g,Σ)(1 + ∥N∥Hs(g) +

√
Es(g,Σ))

]

+ 2C
cosh(T)

sinh(T)
∥Σ∥4Hs−1(g),

which contributes to the second term and the third term on the RHS. Note,
that by smallness of Σ we can absorb terms with higher exponents into the
explicitly given one.

The first term in the sixth line has been evaluated in (4.36) and clearly
is quadratic in the Hs−1-norm of Σ. The other factors yield the necessary
energy factor.

We recall the estimate

(4.44)

∣∣∣∣∣

s−1∑

k=1

∫

M
⟨Σ, [∂T,∆k

g,γ ]Σ⟩µg

∣∣∣∣∣ ≤ C ∥Σ∥2Hs−1(g) ∥∂Tg∥Hs−2(g) ,

which in combination with the estimate for the last factor, (4.38) shows that
the terms can be estimated as claimed contributing to the second and third
term on the RHS of (4.39).

The second term in the eigth line is determined by the time derivative
of the volume form. We use the identity

(4.45) ∂Tµg =
1

2
gij∂Tgijµg = n

(
cosh(T)

sinh(T)

(
N − 1

n

)
+

1

sinh(T)
∇iX

i

)
µg
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and estimate

∣∣∣∣∣

s−1∑

k=1

∫

M
⟨Σ,∆k

g,γΣ⟩∂Tµg

∣∣∣∣∣(4.46)

≤ C

[
cosh(T)

sinh(T)

∥∥∥∥N − 1

n

∥∥∥∥H
s−1(g) +

1

sinh(T)
∥X∥Hs(g)

]
∥Σ∥2Hs−1(g).

These terms can be estimated by the second and third term in (4.39).
The terms in the lines nine to twelve of (4.39) are of the same type as the

terms above. We briefly describe the way to estimate them in the following.
The ninth and tenth line can be estimated as follows

∣∣∣∣∣

s∑

k=1

(−1)k
cosh(T)

sinh(T)

∫

M
⟨A,∆k

g,γ(g − γ)⟩µg(4.47)

+
1

sinh(T)

∫

M
⟨B,∆k

g,γ(g − γ)⟩µg

∣∣∣∣∣

≤ C

[
cosh(T)

sinh(T)
∥A∥Hs(g)∥g − γ∥Hs(g)

+
1

sinh(T)
∥B∥Hs(g)∥g − γ∥Hs(g)

]
.

In combination with the estimates for A and B we can estimate these terms
by the terms on the right hand side of (4.39). The commutator term in the
eleventh line has been already evaluated in (4.37), which yields an estimate
of the form as treated above. Finally, the last line simply contains the time
derivative of the metric and can be treated as the corresponding term above.

We have analyzed all relevant terms in the estimate, which in combina-
tion with the argument following (4.39) finishes the proof. □

4.5. Improved decay

We proceed by deriving an energy estimate for the Sobolev norm of the
trace free part of the second fundamental form in one order of regularity
below the maximal regularity. This estimate holds under the condition that
boundedness of the total energy of maximal regularity is given. The structure
of this estimate is such that it eventually leads to decay of the trace free
part of the second fundamental form in this regularity.
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Lemma 4.10. Let

(4.48) Hs−2(Σ) ≡
s−2∑

k=0

(−1)k(Σ,∆k
g,γΣ)L2(g,γ).

Assume for some 0 < ε < 1

(4.49) Es(g,Σ) ≤ ε.

Then

∂THs−2(Σ) ≤ −2(n− 1)
cosh(T)

sinh(T)
Hs−2(Σ)(4.50)

+ C
cosh(T)

sinh(T)

(
Hs−2(Σ)

)2

+
C

sinh(T)

[
∥X∥Hs−1(g)Hs−2(Σ)

+ (1 + ∥N∥Hs−1(g) +
√
ε)
√
ε
√

Hs−2(Σ)
]
.

Proof. The proof follows from the identical computations in the proof of
Lemma 4.8. The higher order term containing the Laplacian is estimated
using integration by parts and Hölder’s estimate. □

In combination with the elliptic estimates for lapse and shift (4.4) we obtain
the following corollary.

Corollary 4.11. Under the assumptions of Lemma 4.10 the following es-
timate holds.

∂THs−2(Σ) ≤ −2(n− 1)
cosh(T)

sinh(T)
Hs−2(Σ) + C

cosh(T)

sinh(T)

(
Hs−2(Σ)

)2
(4.51)

+
C

sinh(T)

[(
Hs−2(Σ) +

√
ε(C +Hs−2(Σ))

)(
Hs−2(Σ)

)3/2

+ (1 +Hs−3(Σ) +
√
ε)
√
ε
√

Hs−2(Σ)
]
.

As in particular

(4.52) Hs−2(Σ) < ε
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this simplifies to

∂T
√

Hs−2(Σ) ≤ −(n− 1)
cosh(T)

sinh(T)

√
Hs−2(Σ)(4.53)

+ C
cosh(T)

sinh(T)

(
Hs−2(Σ)

)3/2
+

C
√
ε

sinh(T)
.

In the following we deduce an estimate for Hs−2(Σ).

Lemma 4.12. Under the same assumptions as in the previous lemmas and
if n > 2,

(4.54)
√

Hs−2(Σ) ≤
C
√
ε

sinh(T)
.

If n = 2, the estimate is

(4.55)
√

Hs−2(Σ) ≤
C
√
ε

sinh1/2(T)
.

Proof. If n > 2, we have

(4.56) ∂T
√

Hs−2(Σ) ≤ −cosh(T)

sinh(T)

√
Hs−2(Σ) +

C
√
ε

sinh(T)
.

and if n = 2, we have

(4.57) ∂T
√

Hs−2(Σ) ≤ −1

2

cosh(T)

sinh(T)

√
Hs−2(Σ) +

C
√
ε

sinh(T)
,

provided that ε is small enough. These differential inequalities immediately
imply the desired decay. □

Lemma 4.13. Under the same assumptions as above, the shift vector ad-
mits the estimates

∥X∥s ≤ Cε · sinh−1(T)(4.58)

if n > 2 and

∥X∥s ≤ Cε · sinh−1/2(T),(4.59)

if n = 2.
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Proof. This follows from the previous lemma and (4.13). □

Remark 4.14. From the decay of X and Σ, we also get an exponential
decay of ∂Tg in the Hs−2-norm, i.e. the rescaled metrics converge to a limit
metric in Hs−2 as T → ∞. This follows from (4.21) and (4.22).

4.6. Proof of the main theorem

Using the previous lemmas we are now able to state the proof of Theorem 1.1
and Theorem 1.2. We give the explicit proof for Theorem 1.1, the positive
case is analogous.

Proof of Theorem 1.1. Let ε > 0 be fixed. Before we consider δ-small
CMCSH-initial data at initial time

√
2, assume we start with arbitrary ini-

tial data. By Theorem 2.9 we have a small Hs′ ×Hs′−1 neighbourhood V
in the set of arbitrary initial data such that the MGHD of any data in V
admits a hypersurface of constant mean curvature −

√
2 and the induced

data (g0,Σ0) stays in a small Hs ×Hs−1 neighbourhood U of the initial
data of the background. By Theorem 2.5 we can pull back the data along a
diffeomorphism φ such that (φ∗g0, φ

∗Σ0) satisfies the CMCSH gauge and is
δ-close to the initial data of the background solution. From now on, we let
the data evolve under the Einstein-flow and the corresponding solution will
be isometric to the MGHD of the initial data we started with.

Without loss of generality, assume that ε is so small that (4.26) holds as
long as Es(g(t),Σ(t)) < 2ε. Let Tmax be the maximal existence time of the
solution and suppose that Tmax < ∞. By the Gronwall inequality,

Es(g(Tmax),Σ(Tmax)) ≤e
C(2ε)

∫ Tmax√
2

dT

sinh(T) · Es(g(
√
2),Σ(

√
2))(4.60)

≤e
C(2ε)

∫ ∞√
2

dT

sinh(T) · Es(g(
√
2),Σ(

√
2)),

which shows that the left hand side is bounded by some arbitrarily small
ε1 supposed that δ was chosen small enough. Due to local existence, this
contradicts the maximality of the existence time. Therefore, Tmax = ∞ and
since the energy is equivalent to the Hs ×Hs−1-norm of the data, we also
obtained the desired bound on the solution.

To complete the proof we show global hyperbolicity and future- and null
geodesic completeness. For this purpose, some properties of the lapse, the
shift, the second fundamental form and the family of Riemannian metrics
have to be checked. At first, by the estimate of the main energy, Lemma 4.4
and Lemma 4.13, we can choose for any ε > 0 a neighbourhood of the initial
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data such that

(4.61)

∥g − γ∥C0(γ) ≤ ε,

∥∥∥∥N − 1

n

∥∥∥∥
C0

≤ ε sinh−1(T),

∥∇N∥C0(g) ≤ ε sinh−1(T), ∥Σ∥C0(g) ≤ ε sinh−1/2(T),

∥X∥C0(g) ≤ ε sinh−1/2(T)

for all T ≥ T0. Recall that the non-rescaled metrics g̃ satisfy g̃ = s(τ)−1g =
sinh2(T)g which implies that for all tangent vectors v, we have

γijv
ivj ≤ Cgijv

ivj ≤ C sinh−2(T)g̃ijv
ivj ,(4.62)

which implies that the metrics g̃ are uniformly bounded from below by γ.
For Σ̃ = s−1/2(τ)Σ, we have

|Σ̃|g̃ ≤ sinh−1(T) · |Σ|g ≤ sinh−3/2(T) · ε.(4.63)

For the original shift vector X̃ = sinh(T)X, we have

∥∥∥X̃
∥∥∥
C0(g̃)

≤ ε sinh3/2(T).(4.64)

However, this is the shift vector from the CMC-gauge and we have to define
the shift vector which corresponds to the time function T:

X̄♭ :=

〈
∂

∂T
, .

〉
=

n

sinh2(T)

〈
∂

∂τ
, .

〉
=

n

sinh2(T)
X̃♭.(4.65)

Here, X̄♭ and X̃♭ are the 1-forms which are equivalent to X̄ and X̃ via the
metric g̃. Now we immediately get

∥∥X̄
∥∥
g̃
≤ εn · sinh−1/2(T).(4.66)

For the original Lapse function Ñ we have Ñ = s(τ)−1N = sinh2(T)N , which
yields

∥∥∥∥sinh
−2(T)Ñ − 1

n

∥∥∥∥
C0

≤ ε sinh−1(T),
∥∥∥∇̃Ñ

∥∥∥
C0(g̃)

≤ ε.(4.67)
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However, as for the shift vector, Ñ was obtained by the CMC-gauge. We
now compute the lapse-function N̄ according to the time T. We have

N̄2 := −
〈

∂

∂T
,
∂

∂T

〉
+ |X̄|2g̃(4.68)

= −
(

n

sinh2(T)

)2(〈 ∂

∂τ
,
∂

∂τ

〉
− |X̃|2g̃

)
=

(
n

sinh2(T)

)2

Ñ2,

which immediately implies

∥∥N̄ − 1
∥∥
C0 ≤ ε · n sinh−1(T),

∥∥∥∇̃N̄
∥∥∥
C0(g̃)

≤ ε · n sinh−2(T).(4.69)

By [ChCo02, Theorem 2.1], global hyperbolicity follows from (4.62), (4.69)
and (4.66). Causal completeness of the solutions follows from (4.63) and
(4.69) by using [ChCo02, Theorem 3.2 and Corollary 3.3]. □
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