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This article considers the quasi-local conserved quantities with re-
spect to a reference spacetime with a cosmological constant. We
follow the approach developed by the authors in [7, 26, 27] and
define the quasi-local energy as differences of surface Hamiltoni-
ans. The ground state for the gravitational energy is taken to be
a reference configuration in the de Sitter (dS) or Anti-de Sitter
(AdS) spacetime. This defines the quasi-local energy with respect
to the reference spacetime and generalizes our previous definition
with respect to the Minkowski spacetime. Through an optimal iso-
metric embedding into the reference spacetime, the Killing fields
of the reference spacetime are transplanted back to the surface in
the physical spacetime to complete the definitions of quasi-local
conserved quantities. We also compute how the corresponding to-
tal conserved quantities evolve under the Einstein equation with a
cosmological constant.
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1. Introduction

In [7, 26, 27], the authors developed the theory of quasi-local energy (mass)
and quasi-local conserved quantities in general relativity with respect to
the Minkowski spacetime reference. In view of recent astronomical observa-
tions, the current article embarks on the study of the corresponding theory
with respect to a reference spacetime with a non-zero cosmological con-
stant. In particular, the quasi-local energy and quasi-local conserved quan-
tities with respect to the dS or AdS spacetime are defined in this article.
The construction, similar to the Minkowski reference case, is based on the
Hamilton-Jacobi analysis of the gravitational action and optimal isometric
embeddings. However, the result, not only is more complicated, but also
reveals new phenomenon due to the nonlinear nature of the reference space-
time. The construction employs ideas developed by the authors in [25] (see
also [23]) for quasi-local mass with respect to the hyperbolic reference.

In the following, we review the definition of the quasi-local energy-
momentum in [26, 27] with respect to the Minkowski spacetime. The main
motivation of this definition is the rigidity property that surfaces in the
Minkowski spacetime should have zero mass. As a result, all possible iso-
metric embeddings X of the surface into R

3,1 are considered and an energy
is assigned to each pair (X,T0) of an isometric embedding X and a constant
future timelike unit vector field T0 in R

3,1.
Let Σ be a closed embedded spacelike 2-surface in a spacetime. We as-

sume the mean curvature vector H of Σ is spacelike and the normal bundle
of Σ is oriented. The data used in the definition of the Wang-Yau quasi-local
mass is the triple (σ, |H|, αH), in which σ is the induced metric of Σ, |H| is
the norm of the mean curvature vector and αH is the connection one-form
of the normal bundle with respect to the mean curvature vector

αH(·) =
〈
∇N

(·)

J

|H| ,
H

|H|

〉
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where J is the reflection of H through the incoming light cone in the normal
bundle.

Given an isometric embedding X : Σ → R
3,1 and a constant future time-

like unit vector field T0 in R
3,1, let X̂ be the projection of X onto the

orthogonal complement of T0. We denote the induced metric, the second
fundamental form, and the mean curvature of the image by σ̂ab, ĥab, and Ĥ,
respectively. The Wang-Yau quasi-local energy with respect to (X,T0) is

E(Σ, X, T0) =
1

8π

∫

Σ̂
ĤdΣ̂

− 1

8π

∫

Σ

[√
1 + |∇τ |2 cosh θ|H| − ∇τ · ∇θ − αH(∇τ)

]
dΣ,

where θ = sinh−1( −∆τ

|H|
√

1+|∇τ |2
), ∇ and ∆ are the gradient and Laplacian,

respectively, with respect to σ and τ = −⟨X,T0⟩ is the time function.
In [26, 27], it is proved that, E(Σ, X, T0) ≥ 0 if Σ bounds a spacelike

hypersurface in N , the dominant energy condition holds in N , and the pair
(X,T0) is admissible. The Wang-Yau quasi-local mass is defined to be the
minimum of the quasi-local energy E(Σ, X, T0) among all admissible pairs
(X,T0). In particular, for a surface in the Minkowski spacetime, its Wang-
Yau mass is zero. However, for surfaces in a general spacetime, it is not clear
which isometric embedding would minimize the quasi-local energy. To find
the isometric embedding that minimizes the quasi-local energy, we study the
Euler-Lagrange equation for the critical point of the Wang-Yau energy. It is
the following fourth order nonlinear elliptic equation (as an equation for τ)

(1.1) − (Ĥσ̂ab − σ̂acσ̂bdĥcd)
∇b∇aτ√
1 + |∇τ |2

+ divσ

(
∇τ√

1 + |∇τ |2
cosh θ|H| − ∇θ − αH

)
= 0

coupled with the isometric embedding equation for X. (1.1) is referred to as
the optimal isometric embedding equation.

The data for the image surface of the isometric embedding X in the
Minkowski spacetime can be used to simplify the expressions for the quasi-
local energy and the optimal isometric embedding equation. Denote the
norm of the mean curvature vector and the connection one-form in mean
curvature gauge of X(Σ) in R

3,1 by |H0| and αH0
, respectively. Let θ0 =
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sinh−1
(

−∆τ

|H0|
√

1+|∇τ |2

)
. We have the following identities relating the geome-

try of the image of the isometric embedding X and the image surface Σ̂ of
X̂ [6].

√
1 + |∇τ |2Ĥ =

√
1 + |∇τ |2 cosh θ0|H0| − ∇τ · ∇θ0 − αH0

(∇τ)

(Ĥσ̂ab−σ̂acσ̂bdĥcd)
∇b∇aτ√
1 + |∇τ |2

=divσ

(
∇τ√

1+|∇τ |2
cosh θ0|H0|−∇θ0 − αH0

)

The second identity states that a surface inside R3,1 is a critical point of
the quasi-local energy with respect to other isometric embeddings back to
R
3,1. This can be proved by either the positivity of the quasi-local energy

or a direct computation. We substitute these relations into the expression
for E(Σ, X, T0) and the optimal isometric embedding equation, and rewrite
them in terms of a function ρ and a one-form j with

ρ =

√
|H0|2 + (∆τ)2

1+|∇τ |2 −
√

|H|2 + (∆τ)2

1+|∇τ |2√
1 + |∇τ |2

,

ja = ρ∇aτ −∇a

[
sinh−1

(
ρ∆τ

|H0||H|

)]
− (αH0

)a + (αH)a.

In terms of these, the quasi-local energy is

E(Σ, X, T0) =
1

8π

∫

Σ
(ρ+ ja∇aτ)

and a pair (X,T0) of an embedding X : Σ →֒ R
3,1 and an observer T0 sat-

isfies the optimal isometric embedding equation (1.1) if X is an isometric
embedding and

divσj = 0.

In [7], the quasi-local conserved quantity of Σ with respect to a pair
(X,T0) of optimal isometric embedding and a Killing field K is defined to
be

E(Σ, X, T0,K) = − 1

8π

∫

Σ

[
⟨K,T0⟩ρ+ j(K⊤)

]
dΣ

where K⊤ is the tangential part of K to X(Σ).
The article is organized as follows: in Section 2, we gather results for the

geometry of surfaces in the reference spacetime (dS or AdS). In Section 3,
we derive a conservation law for surfaces in the reference spacetime. The
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conservation law is used in Section 4 to define the quasi-local energy. In Sec-
tion 5, the first variation of the quasi-local energy is derived. In Section 6,
the second variation of the quasi-local energy is computed and we prove that
a surface in the static slice of the reference spacetime is a local minimum
of its own quasi-local energy. In Section 7, we define the quasi-local con-
served quantities and evaluate their limits for an asymptotically AdS initial
data, and compute how these conserved quantities evolve under the Einstein
equation with a cosmological constant.

The definition of quasi-local energy is further generalized in [10] to allow
a general static spacetime such as the Schwarzschild spacetime as a reference.
For the reader’s convenience, the notations and symbols used in this article
are summarized in the following table.

σ̃ab ≜ The unit round metric on S2.

∇̃ ≜ Covariant derivative of σ̃ab.

Σ ≜ Surface in a physical spacetime.

σab ≜ Induced metric of Σ.

∇ ≜ Covariant derivative of σab.

H ≜ Mean curvature vector of Σ in the physical spacetime.

{e3, e4} ≜ An orthonormal frame of the normal bundle of Σ in the physical
spacetime.

αe3 ≜ Connection form of the normal bundle of Σ associated to e3.

αH ≜ Connection form of the normal bundle of Σ associated to H
|H| .

X ≜ Isometric embedding of Σ into a reference spacetime.

X̂ ≜ Projection of X onto the static slice of the reference spacetime.

Σ̂ ≜ Image of X̂ in the static slice.

σ̂ab ≜ Induced metric of Σ̂.

∇̂ ≜ Covariant derivative of σ̂ab.

Ĥ ≜ Mean curvature of Σ̂ in the static slice.

ĥab ≜ Second fundamental form of Σ̂ in the static slice.

ϕt ≜ One-parameter family of isometries generated by ∂
∂t

in the refer-
ence spacetime.

C ≜ Image of X(Σ) under ϕt.

ĕ3 ≜ Pushforward of the unit normal of Σ̂ in the static slice by ϕt.

Ω ≜ Static potential of the reference spacetime.

∇̄ ≜ Covariant derivative of the induced 3-metric of the static slice.

Table 1: Table of notations and symbols.
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2. Geometry of surfaces in the reference spacetime

In this section, we gather results for the geometry of surfaces in the reference
spacetime, which refers to the dS spacetime or AdS spacetime throughout
the article. In a static chart (t, x1, x2, x3) of the reference spacetime, the
metric is of the form

(2.1) ǧ = −Ω2dt2 + gijdx
idxj

where gij is the hyperbolic metric for the AdS spacetime, or the round metric
on S3 for the dS spacetime, and Ω is the corresponding static potential. The
metric is normalized such that the scalar curvature of gij is 6κ where κ is 1
or −1. Denote the covariant derivative of the static slice by ∇̄ and that of
the reference spacetime by D.

The static equation reads:

(−∆̄Ω)gij + ∇̄i∇̄jΩ− ΩRicij = 0

where Ricij is the Ricci curvature of the metric gij . In our case, a static slice
is a space form and gij and Ω satisfy

(2.2) ∇̄2Ω = −κΩg.

Consider a surface Σ in the reference spacetime defined by an embedding
X from an abstract surface Σ0 into the reference spacetime. In the static
chart, we denote the components of X by (τ,X1, X2, X3) and refer to τ

as the time function. Let σ be the induced metric of Σ, H0 be the mean
curvature vector of Σ and J0 be the reflection of H0 through the light cone
in the normal bundle of Σ. Denote the covariant derivative with respect to
the induced metric σ by ∇.

Given an orthonormal frame {e3, e4} of the normal bundle of Σ in the
reference spacetime where e3 is spacelike and e4 is future timelike, we define
the connection one-form associated to the frame

(2.3) αe3(·) = ⟨D(·)e3, e4⟩.

We assume the mean curvature vector of Σ is spacelike and consider the
following connection one-form of Σ in the mean curvature gauge

(2.4) αH0
(·) =

〈
D(·)

J0

|H0|
,
H0

|H0|

〉
,
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where J0 is the reflection of H0 through the incoming light cone in the
normal bundle.

Let Σ̂ be the surface in the static slice t = 0 given by X̂ = (0, X1, X2, X3)
which is assumed to be an embedding. The surfaces Σ and Σ̂ are canonically
diffeomorphic. Let σ̂ be the induced metric of Σ̂, and Ĥ and ĥab be the mean
curvature and second fundamental form of Σ̂ in the static slice, respectively.
Denote the covariant derivative with respect to the metric σ̂ by ∇̂.

The Killing vector field ∂
∂t

generates a one-parameter family of isometries
ϕt of the reference spacetime and we have from the form of the metric (2.1)

(2.5) D ∂

∂t

∂

∂xi
=

∂(log Ω)

∂xi
∂

∂t
.

Let C be the image of Σ under the one-parameter family ϕt. The intersection
of C with the static slice t = 0 is Σ̂. By a slight abuse of terminology, we
refer to Σ̂ as the projection of Σ. We consider the following two vector fields
on C. Let va be a coordinate system on Σ0 and consider the pushforward,
X̂∗(

∂
∂va ), of

∂
∂va to Σ̂ by the embedding X̂. The pushforward of X̂∗(

∂
∂va )

to C by the one-parameter family ϕt gives a vector field, still denoted by
X̂∗(

∂
∂va ) on C. X̂∗(

∂
∂va ) is perpendicular to ∂

∂t
everywhere on C. Similarly,

we consider the pushforward of X∗(
∂

∂va ) to C by the one-parameter family
ϕt.

The function τ can be viewed as a function on Σ0 as well. τa = ∂τ
∂va is

a one-form that lives on Σ0, as well as Σ and Σ̂, through the canonical
diffeomorphism.

As tangent vector fields on C, we have

(2.6) X∗

(
∂

∂va

)
= X̂∗

(
∂

∂va

)
+ τa

∂

∂t
.

Finally, let ĕ3 be the outward unit normal of Σ̂ in the static slice t = 0.
Consider the pushforward of ĕ3 by the one-parameter family ϕt, which is
denoted by ĕ3 again. Let ĕ4 be the future directed unit normal of Σ normal
to ĕ3 and extend it along C in the same manner. In particular, X∗(

∂
∂va ) is

perpendicular to ĕ3 and ĕ4, and X̂∗(
∂

∂va ) is perpendicular to ĕ3 and ∂
∂t
.

We derive the formulae for comparing various geometric quantities on
Σ and Σ̂ in the remaining part of this section. Denote ∇τ = σabτa

∂
∂vb and

∇̂τ = σ̂abτa
∂

∂vb , which are identified with the corresponding tangent vector

fields on Σ and Σ̂, respectively.
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We consider σ and σ̂ as two Riemannian metrics on Σ0, which are related
as follows:

σab = σ̂ab − Ω2τaτb(2.7)

σab = σ̂ab +
Ω2∇̂aτ∇̂bτ

1− Ω2|∇̂τ |2
.(2.8)

On Σ0, ∇τ and ∇̂τ are related as follows:

(2.9) ∇aτ =
∇̂aτ

1− Ω2|∇̂τ |2
.

This follows from a direct computation using equation (2.7) and (2.8).
From (2.9), we derive

(2.10) (1− Ω2|∇̂τ |2)(1 + Ω2|∇τ |2) = 1.

As before, we can extend ∇τ and ∇̂τ along C. Along C,

(2.11) ∇τ = (∇aτ)X∗

(
∂

∂va

)
and ∇̂τ = (∇̂aτ)X̂∗

(
∂

∂va

)
.

Note that along C, ∇τ is perpendicular to ĕ3 and ĕ4 and ∇̂τ is perpendicular
to ĕ3 and ∂

∂t
. The following lemma expresses ĕ4 and ∂

∂t
along C in terms of

each other.

Lemma 2.1. Along C, we have

ĕ4 =
√

1 + Ω2|∇τ |2
(

∂
∂t

Ω
+ Ω∇̂τ

)
(2.12)

∂

∂t
= Ω

√
1 + Ω2|∇τ |2ĕ4 − Ω2∇τ,(2.13)

where ∇τ and ∇̂τ are given in (2.11).

Proof. We first prove (2.12). It is easy to see that ∂
∂t

+Ω2∇̂τ is normal

to both X∗(
∂

∂va ) = X̂∗(
∂

∂va ) + τa
∂
∂t

and ĕ3, and thus in the direction of ĕ4.
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Moreover, its length is

√
Ω2 − Ω4|∇̂τ |2 =Ω

√
1− Ω2|∇̂τ |2 = Ω√

1 + Ω2|∇τ |2

where (2.10) is used in the last equality. This proves (2.12). From (2.12),
we derive ⟨ ∂

∂t
, ĕ4⟩ = −Ω

√
1 + Ω2|∇τ |2. This together with ⟨ ∂

∂t
, X∗(

∂
∂vb )⟩ =

−τbΩ
2 implies (2.13). □

In the following proposition, we derive a formula relating the mean cur-
vature Ĥ of Σ̂ to geometric quantities on Σ. All geometric quantities on Σ
and Σ̂ are extended along C by the integral curve of ∂

∂t
. For Ω = 1, this

reduces to equation (3.5) of [27].

Proposition 2.2. Along C,

(2.14) Ĥ = −⟨H0, ĕ3⟩ −
Ω√

1 + Ω2|∇τ |2
αĕ3(∇τ).

Proof. Note that ĕ3 is the unit outward normal of the timelike hypersurface
C. Denote by π(·, ·) = ⟨D(·)ĕ3, ·⟩ the second fundamental form of C with
respect to ĕ3. The idea of the proof is to compute the trace of π along C in

two different tangent frames of C, {X̂∗(
∂

∂va ),
∂

∂t

Ω } and {X∗(
∂

∂va ), ĕ4}. Thus

σ̂abπ

(
X̂∗

(
∂

∂va

)
, X̂∗

(
∂

∂vb

))
− 1

Ω2
π

(
∂

∂t
,
∂

∂t

)
(2.15)

= σabπ

(
X∗

(
∂

∂va

)
, X∗

(
∂

∂vb

))
− π(ĕ4, ĕ4).

By definition,

σ̂abπ

(
X̂∗

(
∂

∂va

)
, X̂∗

(
∂

∂vb

))
= Ĥ and

σabπ

(
X∗

(
∂

∂va

)
, X∗

(
∂

∂vb

))
= −⟨H0, ĕ3⟩.

On the other hand, by (2.5)

(2.16)

π

(
∂

∂t
,
∂

∂t

)
= − ĕ3(Ω)

Ω
, π

(
X̂∗

(
∂

∂va

)
, X̂∗

(
∂

∂vb

))
= ĥab,

and π

(
∂

∂t
, X̂∗

(
∂

∂va

))
= 0.
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We use (2.12) and (2.13) to compute:

1

Ω2
π

(
∂

∂t
,
∂

∂t

)
− π(ĕ4, ĕ4) =

1

Ω2
π

(
∂

∂t
,
∂

∂t

)
− Ω√

1 + Ω2|∇τ |2
π(∇τ , ĕ4)

− 1

Ω
√

1 + Ω2|∇τ |2
π

(
∂

∂t
, ĕ4

)

=− Ω√
1 + Ω2|∇τ |2

⟨D∇τ ĕ3, ĕ4⟩ − π

(
∂

∂t
, ∇̂τ

)
.

π( ∂
∂t
, ∇̂τ) vanishes by (2.16). □

In addition, we derive an identity for the connection one-form αĕ3 on Σ
that relates it to the second fundamental form of Σ̂.

Proposition 2.3. Along C, the connection one-form αĕ3 on Σ satisfies

(2.17) (αĕ3)a =
√

1 + Ω2|∇τ |2(Ω∇̂bτ ĥab − ĕ3(Ω)τa)

where ĥac on the right hand side is the extension of the second fundamental
form of Σ̂ to C by the one-parameter family ϕt.

Proof. By definition, (αĕ3)a is

π

(
X∗

(
∂

∂va

)
, ĕ4

)
= π

(
X̂∗

(
∂

∂va

)
+ τa

∂

∂t
,

√
1 + Ω2|∇τ |2

Ω

∂

∂t

+Ω
√

1 + Ω2|∇τ |2∇̂τ

)

= −ĕ3(Ω)τa
√

1 + Ω2|∇τ |2 +Ω
√

1 + Ω2|∇τ |2(∇̂bτ)ĥab.

(2.12) is used in the first equality, and (2.5) and (2.9) are used in the second
equality. □

We have the following lemma for the restriction of the static potential to
surfaces in the static slice.

Lemma 2.4. Let Σ be a surface in the static slice. Let ∆ be the Laplace
operator of the induced metric, ĕ3 be the unit outward normal, H0 be the
mean curvature, and hab be the second fundamental form. We have

(∆ + 2κ)Ω = −H0ĕ3(Ω)(2.18)

∇aĕ3(Ω) = hab∇bΩ.(2.19)
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Proof. Both equations are simple consequences of (2.2) and the definition
of the second fundamental form. □

3. A conservation law

Proposition 2.2 leads to the following conservation law for surfaces in the
dS or AdS spacetime. This generalizes Proposition 3.1 of [27].

Proposition 3.1. For any surface Σ in the reference spacetime, we have
the following conservation law:

∫
ΩĤdΣ̂ =

∫ [
−Ω
√

1 + Ω2|∇τ |2⟨H0, ĕ3⟩ − Ω2⟨D∇τ ĕ3, ĕ4⟩
]
dΣ.

Proof. Multiply (2.14) by Ω and integrate over Σ. By (2.7), the two area
forms satisfy

(3.1) dΣ̂ =
√

1 + Ω2|∇τ |2dΣ. □

To define the quasi-local energy, the right hand side of the conservation law is
rewritten in terms of the mean curvature gauge in the following proposition.

Proposition 3.2. In terms of the connection one-form in mean curvature
gauge αH0

, the conservation law in Proposition 3.1 reads

∫
ΩĤdΣ̂ =

∫ [√
(1 + Ω2|∇τ |2)|H0|2Ω2 + div(Ω2∇τ)2

+ div(Ω2∇τ)θ − αH0
(Ω2∇τ)

]
dΣ,

where

(3.2) θ = − sinh−1 div(Ω2∇τ)

|H0|Ω
√

1 + Ω2|∇τ |2
.

Proof. Let θ be the angle between the oriented frames
{
− H

|H| ,
J
|H|

}
and

{ĕ3, ĕ4}, i.e.

− H0

|H0|
= cosh θĕ3 + sinh θĕ4

J0

|H0|
= sinh θĕ3 + cosh θĕ4.

(3.3)
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In particular, we have

(3.4)
⟨H0, ĕ4⟩ = |H0| sinh θ, −⟨H0, ĕ3⟩ = |H0| cosh θ,
and αH0

= αĕ3 + dθ.

To compute ⟨H0, ĕ4⟩, we start with ⟨Dea
∂
∂t
, ea⟩ = 0 and then use (2.13) to

derive

Ω
√

1 + Ω2|∇τ |2⟨Dea ĕ4, ea⟩ = ⟨DeaΩ
2∇τ, ea⟩.

The right hand side is precisely div(Ω2∇τ). As a result,

−⟨H0, ĕ4⟩ =
div(Ω2∇τ)

Ω
√

1 + Ω2|∇τ |2

and θ is given by (3.2). The proposition now follows from a direct compu-
tation. □

4. Definition of the quasi-local energy

Now we consider a surface Σ in a general spacetime N . As in [27, 28], a
quasi-local energy is assigned to each pair of an isometric embedding X of
Σ into the reference spacetime, and an observer T0 (a future timelike Killing
field). Isometric embeddings into the dS spacetime and the AdS spacetime
are studied in [18]. The set of observers is simply the orbit of ∂

∂t
under the

isometry group of the reference spacetime. See Section 7.2 for more details
in the AdS case.

Let Σ be a surface in a spacetime N . We assume the mean curvature
vector H of Σ is spacelike and the normal bundle of Σ is oriented. The data
we use for defining the quasi-local energy is the triple (σ, |H|, αH) where σ

is the induced metric, |H| is the norm of the mean curvature vector, and αH

is the connection one-form of the normal bundle with respect to the mean
curvature vector

αH(·) =
〈
∇N

(·)

J

|H| ,
H

|H|

〉
.

Here J is the reflection of H through the incoming light cone in the normal
bundle. For an isometric embeddingX into the reference spacetime, we write
X = (τ,X1, X2, X3) with respect to a fixed static chart of the reference
spacetime. The quasi-local energy associated to the pair (X, ∂

∂t
) is defined
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to be

E

(
Σ, X,

∂

∂t

)
=

1

8π

{∫
ΩĤdΣ̂(4.1)

−
∫ [√

(1 + Ω2|∇τ |2)|H|2Ω2 + div(Ω2∇τ)2

− div(Ω2∇τ) sinh−1 div(Ω2∇τ)

Ω|H|
√

1 + Ω2|∇τ |2
− Ω2αH(∇τ)

]
dΣ

}
.

Using Proposition 3.2, we have

E

(
Σ, X,

∂

∂t

)
=

1

8π

{∫ [√
(1 + Ω2|∇τ |2)|H0|2Ω2 + div(Ω2∇τ)2(4.2)

− div(Ω2∇τ) sinh−1 div(Ω2∇τ)

Ω|H0|
√

1 + Ω2|∇τ |2
− Ω2αH0

(∇τ)

]
dΣ

−
∫ [√

(1 + Ω2|∇τ |2)|H|2Ω2 + div(Ω2∇τ)2

− div(Ω2∇τ) sinh−1 div(Ω2∇τ)

Ω|H|
√

1 + Ω2|∇τ |2
− Ω2αH(∇τ)

]
dΣ

}
.

Remark 4.1. For an isometric embedding into the static slice of the AdS
spacetime,

E

(
Σ, X,

∂

∂t

)
=

∫
Ω(H0 − |H|)dΣ.

Such an expression was studied in [23, 25]. In particular, the positivity of
the above expression was proved in [23] provided the isometric embedding
is convex and |H| > 0.

While the above expression seems to depend on the choice of the static
chart, we can rewrite it purely in terms of the isometric embedding X and
the observer T0. In fact, Ω2 = −⟨T0, T0⟩ and −Ω2∇τ = T⊤

0 , the tangential
component of T0 to X(Σ). Thus
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Definition 4.2. The quasi-local energy E(Σ, X, T0) of Σ with respect to
the pair (X,T0) of an isometric embedding X and an observer T0 is

8πE(Σ, X, T0) =

∫

Σ

[√
−⟨T⊥

0 , T⊥
0 ⟩|H0|2 + div(T⊤

0 )2

− div(T⊤
0 ) sinh−1 div(T⊤

0 )

|H0|
√

−⟨T⊥
0 , T⊥

0 ⟩
+ αH0

(T⊤
0 )

]
dΣ

−
∫

Σ

[√
−⟨T⊥

0 , T⊥
0 ⟩|H|2 + div(T⊤

0 )2

− div(T⊤
0 ) sinh−1 div(T⊤

0 )

|H|
√

−⟨T⊥
0 , T⊥

0 ⟩
+ αH(T⊤

0 )

]
dΣ.

where T⊥
0 is the normal part of T0 to X(Σ).

The quasi-local energy is invariant with respect to the isometry of the
reference spacetime if an isometry is applied to both X and T0. As a result,
in studying the variation of E, it suffices to consider the quasi-local energy
with respect to a fixed T0 =

∂
∂t
.

The quasi-local energy is expressed in terms of the difference of two
integrals. We refer to the first integral in (4.1) as the reference Hamiltonian
and the second integral in (4.1) as the physical Hamiltonian.

5. First variation of the quasi-local energy

In this section, we compute the first variation of the quasi-local energy. It
suffices to consider the variation of the isometric embedding X while fixing
T0 =

∂
∂t
.

Definition 5.1. An optimal isometric embedding for the data (σ, |H|, αH)
is an isometric embedding X0 of σ into the reference spacetime (dS or AdS)
that is a critical point of the quasi-local energy E(Σ, X, ∂

∂t
) among all nearby

isometric embeddings X of σ.

For the Wang-Yau quasi-local energy with the Minkowski reference, the
first variation of the quasi-local energy is computed in Section 6 of [27].
The computation of the variation of the physical Hamiltonian is straight-
forward and the main difficulty is to evaluate the variation of the reference
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Hamiltonian. In [27], this is done by computing the variation of the total
mean curvature of a surface in R

3 with respect to a variation of the metric.
This becomes more complicated here since the isometric embedding equa-
tion also involves the static potential when the reference is either the dS or
AdS spacetime. Instead of following the approach in [27], we derive the first
variation by an alternative approach used in [5]. The idea there is to con-
sider the image X(Σ) in the reference spacetime as a new physical surface
and show that it is naturally a critical point of the quasi-local energy with
respect to other isometric embeddings into the reference spacetime. We first
derive the following result for surfaces in the reference spacetime.

Theorem 5.2. The identity isometric embedding for a surface Σ in the
reference spacetime is a critical point of its own quasi-local energy. Namely,
suppose Σ is in the reference spacetime defined by an embedding X0. Con-
sider a family of isometric embeddings X(s), −ϵ < s < ϵ such that X(0) =
X0. Then we have

d

ds
|s=0E

(
Σ, X(s),

∂

∂t

)
= 0.

Proof. Denote d
ds
|s=0 by δ and set

H1 =

∫
ΩĤdΣ̂

and

H2 =

∫ [√
(1 + Ω2|∇τ |2)|H0|2Ω2 + div(Ω2∇τ)2

− div(Ω2∇τ) sinh−1 div(Ω2∇τ)

Ω|H0|
√

1 + Ω2|∇τ |2
− Ω2αH0

(∇τ)

]
dΣ

.

It suffices to prove that δH1 = δH2, where for the variation of H2, it is
understood that H0 and αH0

are fixed at their values at the initial surface
X0(Σ) and only τ and Ω are varied. We compute the variation of H2, rewrite
it as an integral on the projection Σ̂, and then compare with the variation
of H1 using the identities in Section 2.
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It is convenient to rewrite H1 and H2 in terms of the following two
quantities: A = Ω

√
1 + Ω2|∇τ |2 and B = div(Ω2∇τ). In terms of A and B

H1 =

∫
ĤA dΣ

H2 =

∫ [√
|H0|2A2 +B2 −B sinh−1 B

|H0|A
− αH0

(Ω2∇τ)

]
dΣ.

As a result, we have

δH2 =

∫ [
δA(

|H0|2A√
|H0|2A2 +B2

+
B2

A
√

|H0|2A2 +B2
)

]
dΣ

−
∫ [

(δB) sinh−1 B

|H0|A
+ αH0

(δ(Ω2∇τ))

]
dΣ

= I− II

By (3.4) and sinh θ = − B
|H0|A

, integrating by parts gives

II =

∫
[δB(−θ) + αH0

(δ(Ω2∇τ))]dΣ

=

∫ [
δ(Ω2∇τ) · ∇θ + αH0

(δ(Ω2∇τ))
]
dΣ

=

∫
αĕ3(δ(Ω

2∇τ))dΣ.

On the other hand, we simplify the integrand of I using (3.2),

|H0|2A√
|H0|2A2 +B2

+
B2

A
√

|H0|2A2 +B2
=

√
|H0|2A2 +B2

A
= −⟨H0, ĕ3⟩.

Therefore, by (2.14), I is equal to

∫
(−⟨H0, ĕ3⟩)δAdΣ

=

∫ [
Ĥ +

Ωαĕ3(∇τ)√
1 + Ω2|∇τ |2

]
δAdΣ

=

∫
ĤδAdΣ+

∫ [
(δΩ)Ω3|∇τ |2 +Ω4∇τ∇δτ

1 + Ω2|∇τ |2 (αĕ3(∇τ)) + (δΩ)Ωαĕ3(∇τ)

]
dΣ.
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and

δH2 =

∫
ĤδAdΣ+

∫ [
(δΩ)Ω3|∇τ |2 +Ω4∇τ∇δτ

1 + Ω2|∇τ |2 (αĕ3(∇τ))(5.1)

− αĕ3(ΩδΩ∇τ +Ω2∇δτ)

]
dΣ

=

∫
ĤδAdΣ−

∫
(αĕ3)a(σ

ac − Ω2∇aτ∇cτ

1 + Ω2|∇τ |2 )(ΩδΩτc +Ω2δτc)dΣ

=

∫
ĤδAdΣ+

∫
−(αĕ3)aσ̂

ac(ΩδΩτc +Ω2δτc)dΣ.

Applying Proposition 2.3, the second integral in the last line can be rewritten
as

∫ √
1 + Ω2|∇τ |2(ĕ3(Ω)τa − Ω∇̂bτ ĥab)σ̂

ac(ΩδΩτc +Ω2δτc)dΣ

=

∫
[ĕ3(Ω)σ̂

ab − Ωĥab](ΩδΩτaτb +Ω2τaδτb)dΣ̂

=
1

2

∫
[ĕ3(Ω)σ̂

ab − Ωĥab](δσ̂)abdΣ̂.

On the other hand, as ΩdΣ̂ = AdΣ and δdΣ = 0,

δH1 =

∫
ĤδAdΣ+

∫
ΩδĤdΣ̂.(5.2)

To prove δH1 = δH2, by (5.1) and (5.2), it suffices to show

(5.3)

∫
Ω

[
δĤ +

1

2
ĥab(δσ̂)ab

]
dΣ̂ =

1

2

∫ [
ĕ3(Ω)σ̂

ab(δσ̂)ab

]
dΣ̂.

We decompose δX̂ into tangential and normal parts to Σ̂. Let

δX̂ = αa ∂X̂

∂va
+ βν.

For the first and second variations of the induced metric (see [27, Section 6]
for the Euclidean case), we have

(δσ̂)ab = 2βĥab + ∇̂a(α
cσ̂cb) + ∇̂b(α

cσ̂ca)(5.4)

δĤ = −ĥab(δσ̂)ab − ∆̂β − 2κβ + ĥac∇̂aαc(5.5)

+ βσ̂abσ̂dcĥacĥbd + ∇̂b(αcĥbc).
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We derive from (5.4) and (5.5)

(5.6) δĤ +
1

2
ĥab(δσ̂)ab = −∆̂β − 2κβ + ∇̂b(αcĥcb).

(5.3) is thus equivalent to
∫

Ω[−∆̂β − 2κβ + ∇̂b(αcĥcb)]dΣ̂ =

∫
ĕ3(Ω)[βĤ + ∇̂b(αcσ̂cb)]dΣ̂.

The above equality follows from the following two identities:
∫

ĕ3(Ω)βĤdΣ̂ =

∫
Ω[−∆̂β − 2κβ]dΣ̂(5.7)

∫
ĕ3(Ω)∇̂b(αcσ̂cb)dΣ̂ =

∫
Ω∇̂b(αcĥcb)dΣ̂,(5.8)

which can be derived by integrating by parts and applying (2.18) and (2.19).
□

Definition 5.3. The quasi-local energy density with respect to (X,T0) is
defined to be

ρ =

√
|H0|2 + (divΩ2∇τ)2

Ω2+Ω4|∇τ |2 −
√

|H|2 + (divΩ2∇τ)2

Ω2+Ω4|∇τ |2

Ω
√

1 + Ω2|∇τ |2
.(5.9)

We derive the following formula for the first variation of the quasi-local
energy.

Theorem 5.4. Let Σ be a surface in a physical spacetime with the data
(σ, |H|, αH). Let X0 be an isometric embedding of σ into the reference space-
time and let (|H0|, αH0

) be the corresponding data on X0(Σ). Consider a fam-
ily of isometric embeddings X(s), −ϵ < s < ϵ such that X(0) = X0. Then we
have

d

ds
|s=0E

(
Σ, X(s),

∂

∂t

)
(5.10)

=
1

8π

∫

Σ
(δτ)div

[
Ω2∇ sinh−1 ρdiv(Ω

2∇τ)

|H0||H| − ρΩ4∇τ +Ω2(αH0
− αH)

]
dΣ

+
1

8π

∫

Σ
δXi∇̄iΩ

[
ρΩ(1 + 2Ω2|∇τ |2)− 2Ω∇τ∇ sinh−1 ρdiv(Ω

2∇τ)

|H0||H|

+ (αH − αH0
)(2Ω∇τ)

]
dΣ,

where δτ = d
ds
|s=0τ(s) and δXi = d

ds
|s=0X

i(s).
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Proof. Let A = Ω
√

1 + Ω2|∇τ |2 and B = div(Ω2∇τ). In terms of A and B,

ρ =

√
A2|H0|2 +B2 −

√
A2|H|2 +B2

A2
.

Write

8πE

(
Σ, X(s),

∂

∂t

)
− 8πE

(
X0(Σ), X(s),

∂

∂t

)

=

∫ [√
A2(s)|H0|2 +B2(s)

−B(s) sinh−1 B(s)

|H0|A(s)
− Ω2(s)αH0

(∇τ(s))

]
dΣ

−
∫ [√

A2(s)|H|2 +B2(s)

−B(s) sinh−1 B(s)

|H|A(s) − Ω2(s)αH(∇τ(s))

]
dΣ,

where A(s) = Ω(s)
√

1 + Ω2(s)|∇τ(s)|2 and B(s) = div(Ω2(s)∇τ(s)). By
Theorem 5.2, δE(X0(Σ), X, ∂

∂t
) = 0. Therefore, in terms of A and B,

8πδE(Σ, X, ∂
∂t
) is equal to

∫
(δA)

(√
A2|H0|2 +B2 −

√
A2|H|2Ω2 +B)2

A

)
dΣ

+

∫
(δB)

(
sinh−1 B

|H|A − sinh−1 B

|H0|A

)

+ (αH − αH0
)(2ΩδΩ∇τ +Ω2∇δτ)dΣ

A direct computation shows that

sinh−1 B

|H|A − sinh−1 B

|H0|A

= sinh−1

[
B

|H||H0|A2
(
√

A2|H0|2 +B2 −
√

A2|H|2 +B2)

]
.

On the other hand,

δA = (δΩ)
1 + 2Ω2|∇τ |2√
1 + Ω2|∇τ |2

+
Ω3∇τ∇δτ√
1 + Ω2|∇τ |2

δB = div(2ΩδΩ∇τ +Ω2∇δτ).
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The theorem follows from integration by parts, collecting terms, and δΩ =
δXi∇̄iΩ. □

δXi and δτ are constrained by the linearized isometric embedding equation

δXi∇̄iΩ
2τaτb +Ω2(τaδτb + τbδτa) = gijX

i
aδX

j
b + δXk∂kgijX

i
aX

j
b .

6. Second variation and local minimum of the
quasi-local energy

First, we prove the following lemma about surfaces in the static slice of the
reference spacetime. A similar and related inequality was obtained in [16].

Lemma 6.1. Let Σ be a convex surface in the static slice of the reference
spacetime. Let H0 and hab be the mean curvature and second fundamental
form of Σ. Then for any smooth function f on Σ, the integral

(6.1)

∫ {
[div(Ω2∇f)]2

H0Ω
− Ω3habfafb +Ω2|∇f |2e3(Ω)

}
dΣ

is non-negative and vanishes if and only if f can be smoothly extended to a
smooth function f̄ in the region enclosed by Σ that satisfies

(6.2) ∇̄2(f̄Ω) + κ(f̄Ω)g = 0.

In particular, f̄Ω is another static potential (2.2).

Proof. Let f = F
Ω and ∇f = ∇F

Ω − F∇Ω
Ω2 . We compute

(6.3)

∫ [[
div(Ω2∇f

)
]2

H0Ω

]
dΣ =

∫ [
1

H0Ω
(Ω∆F − F∆Ω)2

]
dΣ.

On the other hand,

−Ω3habfafb = −ΩhabFaFb + habΩb

(
−F 2

Ω
Ωa + 2FFa

)
.

Using (2.19), habΩb = ∇be3(Ω), and integrating by parts on Σ, we obtain
∫

(−Ω3habfafb)dΣ(6.4)

=

∫ {
−ΩhabFaFb + e3(Ω)div

(
F 2∇Ω

Ω
− 2F∇F

)}
dΣ.
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Let M be the region on the static slice enclosed by Σ. We need the
following Reilly formula with static potential Ω from [24] (see also [17]):

∫

M

Ω[(∆̄F̄ + 3κF̄ )2 − |∇̄2F̄ + κF̄ g|2]

=

∫ {
Ω(2e3(F )∆F +H0e3(F )2 + habFaFb

+ 4κFe3(F )) + e3(Ω)(|∇F |2 − 2κF 2)
}
dΣ,

where F̄ is a smooth extension of F to M . Extending F by solving the
elliptic PDE ∆̄F̄ + 3κF̄ = 0 with boundary data F on Σ = ∂M (see [16] for
the solution of the Dirichlet boundary value problem), we have

−
∫

(ΩhabFaFb)dΣ ≥
∫ {

Ω[2e3(F )∆F +H0e3(F )2

+ 4κFe3(F )] + e3(Ω)(|∇F |2 − 2κF 2)
}
dΣ.

Plugging this into (6.4) and expanding Ω2|∇f |2e3(Ω) by replacing f =
F
Ω , we obtain

∫ {
−Ω3habfafb +Ω2|∇f |2e3(Ω)

}
dΣ(6.5)

≥
∫ {

Ω[H0e3(F )2 + 2e3(F )(∆F + 2κF )]

+ e3(Ω)

[
F 2

Ω
(∆Ω− 2κΩ)− 2F∆F

]}
dΣ.

Replacing e3(Ω) by −∆Ω+2κΩ
H0

by (2.19), we arrive at

e3(Ω)

[
F 2

Ω
(∆Ω− 2κΩ)− 2F∆F

]

=
1

H0Ω
[−F 2(∆Ω)2 + 4κ2Ω2F 2 + 2FΩ∆F∆Ω+ 4κΩ2F∆F ].

Plugging this into (6.5) and recalling (6.3), the integral in question, after
completing squares, is equal to

∫
Ω

H0
[∆F + 2κF +H0e3(F )]2dΣ
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which is non-negative. It is clear that when the equality holds,

∇̄2(F̄ ) + κ(F̄ )g = 0,

and f̄ = F̄
Ω is a smooth extension of f . □

We prove that a convex surface in the static slice of the reference spacetime
is a local minimum of its own quasi-local energy.

Theorem 6.2. Suppose X(s) = (τ(s), Xi(s)), s ∈ (−ϵ, ϵ) is a family of iso-
metric embeddings of the same metric σ into the reference spacetime such
that the image of X(0) is a convex surface Σ0 in the static slice, then

d2

ds2
|s=0E

(
Σ0, X(s),

∂

∂t

)
≥0.

In addition, the equality holds if and only if f = d
ds
|s=0τ(s) can be smoothly

extended to a smooth function f̄ in the region enclosed by Σ0 that satisfies

∇̄2(f̄Ω) + κ(f̄Ω)g = 0.

Proof. Let H0(X(s)) and αH0
(X(s)) be the mean curvature vector and

the connection 1-form in mean curvature gauge of the image of X(s). For
simplicity, set δ|H0| = d

ds
|s=0|H0(X(s))| and δαH0

= d
ds
|s=0αH0

(X(s)). Let

X̂(s) = (0, Xi(s)) be the projection of X(s)(Σ) onto the static slice. X̂(s) is
an isometric embedding of the metric

σ̂(s)ab = σab +Ω2(s)τa(s)τb(s)

into the static slice and δσ̂ = d
ds
|s=0σ̂(s) = 0, as τ(0) = 0.

From the infinitesimal rigidity of the isometric embeddings into space
forms [22] , there is a family of isometries Â(s) of the static slice with
Â(0) = Id such that

δÂ = δX̂

along the surface Σ0. Here we set δÂ = d
ds
|s=0Â(s) and X̂ = d

ds
|s=0X̂(s).

Moreover, there is a family A(s) of isometries of the reference spacetime
whose restriction to the static slice is the family Â(s). Consider the following
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family of isometric embeddings of σ into the reference spacetime:

X̆(s) = A−1(s)X(s).

Suppose X̆(s) = (τ̆(s), X̆i(s)) in the fixed static coordinate, we have

(6.6)
d

ds
|s=0X̆

i(s) = 0.

We claim that

(6.7)
d2

ds2
|s=0E

(
Σ0, X(s),

∂

∂t

)
=

d2

ds2
|s=0E

(
Σ0, X̆(s),

∂

∂t

)
.

Let H0(X̆(s)) and αH0
(X̆(s)) be the the mean curvature vector and the

connection 1-form in mean curvature gauge of the images of X̆(s).

|H0(X(s))| =|H0(X̆(s))|
αH0

(X(s)) =αH0
(X̆(s))

(6.8)

since both are invariant under isometries of the reference spacetime. By
(6.6), is easy to see that

(6.9)
d

ds
|s=0|H̆0(s)| = 0.

Moreover, while τ̆(s) is different to τ(s), we have

(6.10)
d

ds
|s=0τ̆(s) =

d

ds
|s=0τ(s) = f

since τ(0) = 0, A(0) = Id and the static slice is invariant under the action
of A(s).

We apply Theorem 5.4 to each of X(s)(Σ) and X̆(s)(Σ) and use (6.8),
(6.9) and (6.10) to differentiate (5.10) one more time. Only the derivative
of the term 1

8π

∫
Σ(δτ)div(Ω

2αH0
)dΣ survives after the evaluation at s = 0.

We thus conclude that both sides of (6.7) are the same as

− 1

8π

∫
(δαH0

)(Ω2∇f)dΣ.

It suffices to evaluate the second variation with respect to the family
X̆(s). Equivalently, we may assume, for simplicity, that δX̂ = 0. We follow
the computation of δαH0

from [4].
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Let e3 = − H0

|H0|
and e4 =

J0

|H̆0|
. From (3.2), (3.3) and δX̂ = 0, we derive

d

ds
|s=0H0 =

div(Ω2∇f)

Ω2

∂

∂t
(6.11)

d

ds
|s=0e3 = −div(Ω2∇f)

Ω2|H0|
∂

∂t
(6.12)

d

ds
|s=0X∗

(
∂

∂va

)
= fa

∂

∂t
.(6.13)

As a result, we have

d

ds
|s=0e4 = Ω∇f − div(Ω2∇f)

|H0|Ω
e3(6.14)

which follows from solving the linear system

d

ds
|s=0

〈
e4, X∗

(
∂

∂va

)〉
= 0

d

ds
|s=0⟨e4, e3⟩ = 0

along with (6.12) and (6.13).
We are ready to compute the variation of αH0

, which is denoted by α in
the remaining part of the proof.

(δα)a = δ⟨Dae3, e4⟩
=
〈
D ∂(δX)

∂va
e3, e4

〉
+ ⟨Da(δe3), e4⟩+ ⟨Dae3, δe4⟩.

By (6.12) and (6.14), we get

(δα)a = ⟨Dfa
∂

∂t

e3, e4⟩+
〈
Da

(
−div(Ω2∇f)

|H0|Ω

)
e4, e4

〉

+

〈
Dae3,Ω∇f − div(Ω2∇f)

|H0|Ω
e3

〉

= ∇a

(
div(Ω2∇f)

Ω|H0|

)
+Ωhab∇bf − fae3(Ω).
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As a result,

−
∫

(δαH0
)(Ω2∇f)dΣ

=−
∫

Ω2fa[∇a

(
div(Ω2∇f)

Ω|H0|

)
+Ωhab∇bf − fae3(Ω)]dΣ

=

∫ {
[div(Ω2∇f)]2

|H0|Ω
− Ω3habfafb +Ω2|∇f |2e3(Ω)

}
dΣ.

The theorem follows from Lemma 6.1. □

Finally, we evaluate the second variation of the quasi-local energy and
show that for surfaces with spherically symmetric data, namely

σ = r2σ̃, |H| = c > 0 and αH = 0,

there is an isometric embedding into the hyperbolic space H
3 which mini-

mizes the quasi-local energy with AdS spacetime reference.

Theorem 6.3. Let Σ be a surface in spacetime N with data (σ, |H|, αH).
We assume the mean curvature vector H of Σ is spacelike and αH = 0.
Furthermore, we assume that the image of an isometric embedding of σ into
H

3 is convex.

(i) Suppose the mean curvature H0 of the isometric embedding into H
3 sat-

isfies H0 ≥ |H|. Then there is an isometric embedding into H
3 which is

a critical point of the quasi-local energy with AdS spacetime reference.

(ii) Suppose the data on Σ is spherically symmetric. Then the second varia-
tion of the quasi-local energy at the above critical point is non-negative.
Moreover, the second variation is positive if H0 > |H|.

Proof. For an isometric embedding into H
3 as a static slice of AdS, τ = 0

and the quasi-local energy (4.1) is simply

(6.15)
1

8π

∫
Ω(H0 − |H|)dΣ.

The isometric embedding into H
3 is unique up to an isometry of H

3. If
H0 = |H| everywhere, then the integral vanishes for any choice of static po-
tential. Otherwise, the integral depends on the isometry which may pick
up a different choice of the static potential Ω. The choice of the static po-
tential corresponds to choosing a base point on H

3. Hence, the integral
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∫
Ω(H0 − |H|)dΣ becomes a function on H

3. Assuming H0 ≥ |H| and they
are not equal everywhere, this function is positive, proper and convex since
the static potentials approach infinity at the infinity of H3. Hence, there is a
unique choice of Ω that minimizes the quasi-local energy among all the static
potentials. Equivalently, if we pick a fixed static potential, then there is a
unique isometric embedding X0 such that for any other isometric embedding
X into H

3, we have

E

(
Σ, X,

∂

∂t

)
≥ E

(
Σ, X0,

∂

∂t

)
.

In particular, for any family, Â(s), of isometries of H3 with Â(0) = Id, we
have

∫
δÂ(Ω)(H0 − |H|)dΣ =0

∫
δ2Â(Ω)(H0 − |H|)dΣ ≥0

(6.16)

where δÂ = d
ds
|s=0Â(s) and δ2Â = d2

ds2
|s=0Â(s) are vector fields on H

3.
Consider a family of isometric embeddingsX(s) = (τ(s), Xi(s)) of Σ into

AdS where X(0) is the above isometric embedding into H
3. Let

H0(s) and αH0
(s) be the mean curvature vector and connection 1-form

in mean curvature gauge of the image of X(s). For simplicity, let δτ =
d
ds
|s=0X

0(s), δ|H0| = d
ds
|s=0|H0(s)| and δαH0

= d
ds
|s=0αH0(s). Similarly, set

δΩ = d
ds
|s=0Ω(s) and δ2Ω = d2

ds2
|s=0Ω(s).

Let X̂(s) = (0, Xi(s)) be the projection of X(s)(Σ) onto the static slice.
X̂(s) is an isometric embedding of the metric

σ̂(s)ab = σab +Ω2(s)τa(s)τb(s)

into H
3. Set δσ̂ = d

ds
|s=0σ̂(s) and δ2σ̂ = d2

ds2
|s=0σ̂(s). We have

δσ̂ = 0

δ2σ̂ab = Ω2(0)δτaδτb.
(6.17)

The first variation of the quasi-local energy is

d

ds
|s=0E

(
Σ0, X(s),

∂

∂t

)
=

1

8π

∫
(δΩ)(H0 − |H|) + Ω(δ|H0|)dΣ.
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From (6.17) and the infinitesimal rigidity of isometric embeddings into H
3,

there is a family Â(s) of isometries of H3 with Â(0) = Id such that

(6.18) δÂ = δX̂.

We conclude that the first term vanishes from (6.16). We conclude that
δ|H0| = 0 as in the proof of Theorem 6.2. This proves part (i).

For part (ii), it is easy to see that for surfaces with spherical symmetric
data, the mean curvature of the image of isometric embeddings into H

3 is
constant and the critical point obtained in part (i) is precisely such that Ω
is constant on the image.

As in the proof of Theorem 6.2, we consider the family A(s) of isometries
of the AdS spacetime whose restriction to the static slice is the family Â(s)
and consider the following family of isometric embeddings of σ into the AdS
spacetime:

X̆(s) = A−1(s)X(s).

As in the proof of Theorem 6.2, we apply Theorem 5.4 to each ofX(s)(Σ)
and X̆(s)(Σ) and use (6.8), (6.9) and (6.10) to differentiate (5.10) one more
time. In this case, H0 ̸= |H| at s = 0, and we derive that

d2

ds2
|s=0E

(
Σ0, X(s),

∂

∂t

)
=

d2

ds2
|s=0E

(
Σ0, X̆(s),

∂

∂t

)
(6.19)

+
1

8π

∫
δ2Â(Ω)(H0 − |H|)dΣ

and

d2

ds2
|s=0E

(
Σ0, X̆(s),

∂

∂t

)(6.20)

=
1

8π

∫
(δ2X̆i∇̄iΩ)(H0 − |H|)dΣ+

1

8π

∫
Ω3(H0 − |H|)|∇δτ |2dΣ

+
1

8π

∫ (
H0 − |H|
ΩH0|H|

)
[div(Ω2∇δτ)]2dΣ− 1

8π

∫
(δαH0

)(Ω2∇δτ)dΣ.

From (6.16), we conclude
∫

δ2Â(Ω)(H0 − |H|)dΣ ≥ 0.

The second and third term on the right hand side of (6.20) are manifestly
non-negative since H0 ≥ |H|. The last term is non-negative as in the proof
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of Theorem 6.2. It suffices to show that the first term is also non-negative.
We decompose δ2X̆i into its tangential and normal parts to X(0)(Σ). Let

δ2X̆i = αa∂X̂
i(0)

∂va
+ βνi.

Since Ω is a constant on the image of X̂, integrating over Σ gives

∫
(δ2X̆i∇̄iΩ)(H0 − |H|)dΣ =

∫
βν(Ω)(H0 − |H|)dΣ.

In terms of α and β, the second variation of the isometric embedding
equation is

(6.21) 2βhab +∇aαb +∇bαa = 2Ω2δτaδτb.

Taking the trace of (6.21) and integrating, we conclude that

∫
βH0dΣ ≥ 0.

In particular,
∫
βdΣ ≥ 0 since H0 is a constant. It follows that

∫
βν(Ω)(H0 − |H|)dΣ ≥ 0

since ν(Ω), H0 and |H| are all positive constants. This shows that the second
variation is non-negative. It is also easy to see that the second variation is
positive if H0 > |H|. □

7. Quasi-local/total conserved quantities

The reference spacetime admits 10 dimensional Killing fields. In addition to
the quasi-local energy corresponding to observers, a quasi-local conserved
quantity corresponding to each Killing field is defined. We follow the ap-
proach in [7] to use an isometric embedding to transplant Killing fields of
the reference spacetime back to the 2-surface of interest in a physical space-
time. The quasi-local energy can be written in terms of the quasi-local energy
density ρ in (5.9) and the quasi-local momentum density j, see (7.1) below.
In the second subsection, we evaluate the limits of the quasi-local conserved
quantities on an asymptotically AdS initial data set and prove that the lim-
its agree with the total conserved quantities of such an initial data. In the
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third subsection, we show that the limit of the quasi-local energy is the linear
function dual to the total conserved quantities and in the last subsection, we
compute the evolution of the total conserved quantities under the Einstein
equation.

7.1. Quasi-local conserved quantities

We rewrite the quasi-local energy in terms of ρ (5.9) using the expression
(4.2). This is a straightforward computation involving only basic identities
of the inverse hyperbolic functions. For the case Ω = 1, this is carried out in
details in Section 4 of [5] for the Wang-Yau quasi-local energy. After some
simplifications, the quasi-local energy in terms of ρ is

E(Σ, X, T0) =
1

8π

∫

Σ

[
ρ(Ω2 +Ω4|∇τ |2)

+ div(Ω2∇τ) sinh−1

(
ρdiv(Ω2∇τ)

|H0||H|

)

− αH0
(Ω2∇τ) + αH(Ω2∇τ)

]
dΣ

Let j be the quasi-local momentum density one-form:

(7.1) j = ρΩ2dτ − d

[
sinh−1

(
ρdiv(Ω2∇τ)

|H0||H|

)]
− αH0

+ αH .

We are ready to define the quasi-local conserved quantity with respect
to a pair (X,T0) and a Killing field K.

Definition 7.1. The quasi-local conserved quantity of Σ with respect to a
pair (X,T0) and a Killing field K in the reference spacetime is

(7.2) E(Σ, X, T0,K) = − 1

8π

∫

Σ

[
⟨K,T0⟩ρ+ j(K⊤)

]
dΣ

where K⊤ is the tangential part of K to X(Σ), and ρ defined in (5.9) and j

defined in (7.1).

In particular, when K = T0, E(Σ, X, T0, T0) recovers the quasi-local en-
ergy E(Σ, X, T0) since the tangential part of T0 to X(Σ) is −Ω2∇τ and
⟨T0, T0⟩ = −Ω2.
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7.2. Total conserved quantities for an asymptotically
AdS spacetime

In this subsection, we evaluate the large sphere limit of the quasi-local con-
served quantities for asymptotically AdS initial data sets and show that
their limits recover the total conserved quantities for asymptotically AdS
initial data sets considered by previous authors. See for example [1–3, 11–
15, 19, 29, 30].

We first review the AdS spacetime and its Killing fields. Take R
3,2 with

the coordinate system (y0, y1, y2, y3, y4) and the metric

−(dy4)2 +

3∑

i=1

(dyi)2 − (dy0)2.

AdS can be identified with the timelike hypersurface given by

−(y4)2 +

3∑

i=1

(yi)2 − (y0)2 = −1.

Note that the group SO(3, 2) leaves this hypersurface invariant and thus the
isometry group of AdS is SO(3, 2), which is 10 dimensional.

The static chart of AdS comes from the following parametrization:

y0 =
√

1 + r2 sin t

yi = rx̃i

y4 =
√

1 + r2 cos t.

We have the following basis for the Killing vector fields: the time translating
Killing field ∂

∂t
= y4 ∂

∂y0 − y0 ∂
∂y4 , the first set of boost fields

(7.3) pi = yi
∂

∂y0
+ y0

∂

∂yi
,

the second set of boost fields

(7.4) ci = yi
∂

∂y4
+ y4

∂

∂yi
,

and the rotation Killing fields jk = ϵijky
i ∂
∂yj .
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In the static chart of AdS, the metric is of the form

−(1 + r2)dt2 +
dr2

1 + r2
+ r2(dθ2 + sin2 θdϕ2).

The static slice t = 0 is totally geodesic and the induced metric is the hy-
perbolic metric. We consider asymptotically AdS initial data sets as follows:

Definition 7.2. An initial data (M, g, k) is said to be asymptotically AdS
if there exists a compact subset K of M such that M\K is diffeomorphic to
a finite union of ends ∪(H3\Bα) where each Bα is a geodesic ball in H

3. On
each end, under the diffeomorphism, the metric g takes the form:

g = grrdr
2 + 2gradrdu

a + gabdu
adub,

where

grr =
1

r2
− 1

r4
+

g
(−5)
rr

r5
+O(r−6),

gra = O(r−3), gab = r2σ̃ab +
g
(−1)
ab

r
+O(r−2),

and

krr = O(r−5) kra = k(−3)
ra +O(r−4), kab = k

(−1)
ab +O(r−2).

Let Σr be the coordinate spheres on an end of an asymptotically AdS
initial data set. In the following theorem, we evaluate the limit of the quasi-
local conserved quantities in terms of the expansion of g and k.

Theorem 7.3. Let (M, g, k) be an asymptotically AdS initial data set as
in Definition 7.2 and Σr be the coordinate spheres on an end. Let Xr be the
isometric embedding of Σr into the static slice t = 0 of the AdS spacetime
such that yi(Xr) = rx̃i +O(1) and Ω(Xr) = r +O(1). We have

lim
r→∞

E

(
Σr, Xr,

∂

∂t
,
∂

∂t

)
=

1

8π

∫ [
g(−5)
rr +

3

2
trS2g

(−1)
ab

]
dS2(7.5)

lim
r→∞

E

(
Σr, Xr,

∂

∂t
, pi
)

=
1

8π

∫
x̃i
[
g(−5)
rr +

3

2
trS2g

(−1)
ab

]
dS2(7.6)

lim
r→∞

E

(
Σr, Xr,

∂

∂t
, ci
)

= − 1

8π

∫
x̃i∇̃ak(−3)

ra dS2(7.7)

lim
r→∞

E

(
Σr, Xr,

∂

∂t
, ji
)

=
1

8π

∫
x̃i
(
ϵ̃ab∇̃bk

(−3)
ra

)
dS2.(7.8)
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Proof. First, we compute the expansion of (σ, |H|, αH) on Σr in the following
lemma.

Lemma 7.4. On Σr, we have the following expansions:

σab =r2σ̃ab +
g
(−1)
ab

r
+O(r−2)(7.9)

|H| =2 +
1

r2
− g

(−5)
rr + 3

2 trS2g
(−1)
ab

r3
+O(r−4)(7.10)

(αH)a =− k
(−3)
ra

r2
+O(r−3).(7.11)

Proof. The computation of |H| is the same as in Lemma 3.1 of [8] for an
asymptotically hyperbolic initial data set. The only difference is that, in the
asymptotically AdS case, ⟨H, e4⟩ = O(r−3) and does not contribute. For αH ,
we recall from [28] that

(αH)a = −k(e3, ∂a) +∇aθ

where

sinh(θ) =
−⟨H, e4⟩

|H| .

The formula follows since the leading term of e3 is r ∂
∂r
. □

We are now ready to evaluate the limits of the quasi-local conserved quanti-
ties. The static slice t = 0 corresponds to the hypersurface y0 = 0. We have
y4 = Ω,

ρ =
H0 − |H|

Ω
and j = αH .

For the conserved quantities corresponding to ∂
∂t

and pi, we observe that
they are normal to the hypersurface and the term in (7.2) that involves the
quasi-local momentum density j vanishes. As a result,

lim
r→∞

E

(
Σr, Xr,

∂

∂t
,
∂

∂t

)
=

1

8π
lim
r→∞

∫
Ω(H0 − |H|)dΣr

lim
r→∞

E

(
Σr, Xr,

∂

∂t
, pi
)

=
1

8π
lim
r→∞

∫
yi(H0 − |H|)dΣr

since
〈

∂

∂t
,
∂

∂t

〉
= −Ω2 and

〈
∂

∂t
, pi
〉

= Ωyi.
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From (7.9) for σab and the linearized isometric embedding equation, we
conclude that

H0 = 2 +
1

r2
+O(r−4).

(7.5) and (7.6) follow from (7.10).
On the other hand, ci and ji are normal to ∂

∂t
. As a result, for the

conserved quantities corresponding to these vector fields, the term in (7.2)
that involves the quasi-local energy density ρ vanishes. Hence,

lim
r→∞

E

(
Σr, Xr,

∂

∂t
, ci
)

= − 1

8π
lim
r→∞

∫
αH(Ω∇yi − yi∇Ω)dΣr

lim
r→∞

E

(
Σr, Xr,

∂

∂t
, ji
)

= − 1

8π
lim
r→∞

∫
αH(Ωϵkjiy

k∇yj)dΣr.

(7.7) and (7.8) follow from (7.11),

(
∂

∂yi

)⊤

= ∇yi and

(
∂

∂y4

)⊤

= −∇Ω.

□

This leads to the following definition for the total conserved quantities for
an asymptotically AdS initial data set.

Definition 7.5. For an asymptotically AdS initial data set in the sense
of Definition 7.2, the 10 total conserved quantities E, P i, Ci and J i corre-
sponding to ∂

∂t
, pi, ci and ji, respectively, are defined to be

E =
1

8π

∫ [
g(−5)
rr +

3

2
trS2g

(−1)
ab

]
dS2(7.12)

P i =
1

8π

∫
x̃i(g(−5)

rr +
3

2
trS2g

(−1)
ab )dS2(7.13)

Ci =
1

8π

∫
x̃i∇̃ak(−3)

ra dS2(7.14)

J i =
1

8π

∫
x̃i
(
ϵ̃ab∇̃bk

(−3)
ra

)
dS2.(7.15)

Total conserved quantities (or global charges) of asymptotically AdS ini-
tial data sets have been studied extensively using the Hamiltonian of asymp-
totically Killing fields [1, 2, 11–15, 19, 29, 30]. We review the construction
below and prove that they are the same as the total conserved quantities in
Definition 7.5 under the asymptotic assumptions in Definition 7.2.
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Let K be a Killing field of the AdS spacetime. Let V and Y be the
normal component and the tangential component of K to the static slice of
the AdS spacetime, respectively. The Hamiltonian H(V, Y ) corresponding
to K is

(7.16) H(V, Y ) = lim
r→∞

1

8π

∫

Σr

[Ui(V ) + Vi(Y )]νidΣr

where

Ui(V ) = V gjl∂jgil +DjV (gij − gH
3

ij ),

Vi(Y ) = (kij − trk gij)Y
j .

Proposition 7.6. For asymptotically AdS initial data sets with expansion
given in Definition 7.2, the total conserved quantities in Definition 7.5 agree
with the total conserved quantities (global charges) in (7.16).

Proof. In [20], Miao, Tam and Xie compute the limit of the Brown-York
mass and prove that

1

8π
lim
r→∞

∫
r(H0 − h)dΣr = H

(
V

(
∂

∂t

)
, Y

(
∂

∂t

))
,

1

8π
lim
r→∞

∫
rx̃i(H0 − h)dΣr =H(V (pi), Y (pi))

where h is the mean curvature of Σr in M . We conclude that

E = H

(
V

(
∂

∂t

)
, Y

(
∂

∂t

))
,

P i = H(V (pi), Y (pi)),

since h− |H| = O(r−6).
For Ci and J i, we observe that ci and ji are tangent to the static slice

t = 0 and it is easy to see that

Ci = H(V (ci), Y (ci)) J i = H(V (ji), Y (ji)). □

We compare the conserved quantities for asymptotically AdS initial data
sets to the conserved quantities for asymptotically hyperbolic initial data
sets we studied in [8]. (7.12) and (7.13) resemble the total energy-momentum
for the hyperbolic case (see Definition 1.4 of [8]). However, the second fun-
damental form k does not contribute to them in the AdS case. The total
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angular momentum in (7.15) is the same as the total angular momentum for
the hyperbolic case (see Theorem 7.3 of [8]). The total conserved quantity
Ci does not seem to have a good analogy in the hyperbolic case; It is rather
different from the center of mass in Theorem 7.3 of [8].

7.3. Limit of the quasi-local energy

In this subsection, we evaluate the limit of the quasi-local energy at the
infinity of asymptotically AdS initial data sets and show that it converges
to the linear function dual to the total conserved quantities. First, we derive
an expression for the limit of quasi-local energy E(Σr, Xr, T0) for a family of
surfaces Σr and a family of isometric embeddings Xr of Σr into the reference
spacetime. Then we apply the result to the family of coordinate spheres at
the infinity of an asymptotically AdS initial data set.

Theorem 7.7. Let Σr be a family of surfaces and Xr be a family of iso-
metric embeddings of Σr into the reference spacetime. Suppose the mean
curvature vectors H of Σr and H0 of Xr(Σr) are both spacelike for r > R0

and

lim
r→∞

|H|
|H0|

= 1.

Then the limit of E(Σr, Xr, T0) is the same as the limit of

1

8π

∫ [
−
〈
T0,

J0

|H0|

〉
(|H0| − |H|) + (αH0

− αH)(T⊤
0 )

]
dΣr

as long as the limits exist.

Proof. Let x = |H|
|H0|

and

Y =
div(T⊤

0 )

|H0|
√

−⟨T⊥
0 , T⊥

0 ⟩
.

In terms of x and Y , the quasi-local energy is

E(Σr, Xr, T0) =
1

8π

∫

Σr

|H0|
√

−⟨T⊥
0 , T⊥

0 ⟩

×
[√

1 + Y 2 −
√

x2 + Y 2 − Y sinh−1 Y + Y sinh−1 Y

x

]
dΣr

+
1

8π

∫

Σr

(αH0
− αH)(T⊤

0 )dΣr.
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Let

f(x) =
√

x2 + Y 2 − Y sinh−1 Y

x
.

For x close to 1, we have

f(1)− f(x) = (1− x)
√

1 + Y 2 +O((1− x)2).

We compute

lim
r→∞

1

8π

∫

Σr

|H0|
√

−⟨T⊥
0 , T⊥

0 ⟩

×
[√

1 + Y 2 −
√

x2 + Y 2 − Y sinh−1 Y + Y sinh−1 Y

x

]
dΣr

= lim
r→∞

1

8π

∫

Σr

|H0|
√

−⟨T⊥
0 , T⊥

0 ⟩(1− x)
√

1 + Y 2dΣr

= lim
r→∞

∫

Σr

(|H0| − |H|)
√

−⟨T⊥
0 , T⊥

0 ⟩
√

1 +
div(T⊤

0 )2

−⟨T⊥
0 , T⊥

0 ⟩|H0|2
dΣr

Recall that

T⊥
0 =

√
−⟨T⊥

0 , T⊥
0 ⟩ĕ4

and

−
〈
T0,

J0

|H0|

〉
= −

√
−⟨T⊥

0 , T⊥
0 ⟩
〈
ĕ4,

J0

|H0|

〉

=
√

−⟨T⊥
0 , T⊥

0 ⟩
√

1 +
div(T⊤

0 )2

−⟨T⊥
0 , T⊥

0 ⟩|H0|2
,

where (3.2) and (3.3) are used in the last equality. This finishes the proof of
the theorem. □

We are ready to show that for an asymptotically AdS initial data set, the
large sphere limit of the quasi-local energy is the linear function dual to the
total conserved quantities in Definition 7.5.

Theorem 7.8. Let (M, g, k) be an asymptotically AdS initial data set and
Σr be the coordinate spheres. Let Xr be an isometric embedding of Σr into
the static slice t = 0 of the AdS spacetime such that yi(Xr) = rx̃i +O(1)
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and Ω(Xr) = r +O(1). Consider the observer

T0 = A

(
y0

∂

∂y4
− y4

∂

∂y0

)
+Bk

(
yk

∂

∂y0
+ y0

∂

∂yk

)

+Dk

(
yk

∂

∂y4
+ y4

∂

∂yk

)
+ Fkϵijky

i ∂

∂yj
.

We have

lim
r→∞

E(Σr, Xr, T0) = AE +BkP
k +DkC

k + FkJ
k.

where E, P k, Ck and Jk are the total conserved quantities.

Proof. Recall that the static slice t = 0 is the same as the hypersurface
y0 = 0. The Killing fields y0 ∂

∂y4 − y4 ∂
∂y0 and yk ∂

∂y0 + y0 ∂
∂yk are normal to the

hypersurface. On the other hand, ϵijky
i ∂
∂yj and yk ∂

∂y4 + y4 ∂
∂yk are tangent

to the hypersurface. As a result,

−
〈
T0,

J0

|H0|

〉
= −

〈
T⊥
0 ,

J0

|H0|

〉
= r(A+Bix̃

i) +O(1).

It is also easy to verify that

(T⊤
0 )a = r2(Dkx̃

k
a + Fkϵijkx̃

ix̃ja) +O(r).

The theorem follows directly from Theorem 7.3 and Theorem 7.7. □

7.4. Evolution of the total conserved quantities under the
Einstein equation

In this subsection, we study the evolution of the total conserved quantities
for asymptotically AdS initial data sets under the Einstein equation.

We assume that the initial data set (M, g, k) satisfies the vacuum con-
straint equation (with cosmological constant κ = −1)

R(g) + (trgk)
2 − |k|2 = −6

∇̄ikij − ∂j(trgk) = 0
(7.17)

where ∇̄ is the covariant derivative with respect to g.
We shall fix an asymptotically flat coordinate system on M with respect

to (gij(0), kij(0)) and consider a family (gij(t), kij(t)) that evolves according
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to the vacuum Einstein evolution equation (with cosmological constant κ =
−1)

∂tgij = −2Nkij + (Lγg)ij

∂tkij = −∇̄i∇̄jN +N
(
Rij + gij + (trk)kij − 2kilk

l
j

)
+ (Lγk)ij

(7.18)

whereN is the lapse function, γ is the shift vector, and L is the Lie derivative.

Theorem 7.9. Let (M, g, k) be an asymptotically AdS initial data set.
Let (M, g(t), k(t)) be the solution to the vacuum Einstein equation with
g(0) = g and k(0) = k, and with lapse N =

√
r2 + 1 and a vanishing shift

vector. Let E(t), P i(t), Ci(t) and J i(t) be the total conserved quantities for
(M, g(t), k(t)) defined in Definition 7.5. We have

∂tE(t) = 0

∂tP
i(t) = −Ci(t)

∂tC
i(t) = P i(t)

∂tJ
i(t) = 0.

Remark 7.10. The evolution equations for E and P i are proved previously
in [3, Theorem 5.1] with a different convention for Ci.

Proof. Let h(t) be the mean curvature of Σr in the hypersurface (M, g(t))
and H(t) be the mean curvature vector of Σr in the spacetime. We have
|H(t)| = h(t) +O(r−4) and the following formula for h(t) (see for example
[7, 28]) :

h(t) =
∂r ln

√
det(σab)−∇agra√

grr − σabgragrb

where gra is viewed as a 1-form on Σr and ∇ is the covariant derivative with
respect to the induced metric of Σr.

From the Einstein equation (7.18), we derive

∂tgab = −2
√

r2 + 1kab.

As a result,

∂t|H| = ∂th(t) +O(r−4)

= −2r3krr − rσabkab + r2σab∂rkab − 2r2∇akar +O(r−4).
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From the vacuum constraint equation, (7.17) we derive

(7.19) gij∇̄ikjr = ∂r(trgk).

The left hand side of (7.19) is

gij∇̄ikjr = grr∇̄rkrr + gab∇̄akbr +O(r−6)

= r2∂rkrr + 4rkrr +∇akar −
1

r
σabkab +O(r−6)

On the other hand, the right hand side of (7.19) is

∂r(trgk) = r2∂rkrr + 2rkrr + σab∂rkab − 2rσabkab +O(r−6).

As a result, (7.19) implies

∇akar = −2rkrr + σab∂rkab − rσabkab +O(r−6)

and

∂th(t) = −r2∇akar +O(r−4).

This proves the evolution equations for E and P i.
To evaluate ∂tC

i and ∂tJ
i, we start with the evolution equation of the

second fundamental form (7.18), which implies

∂tkar = rRicar +O(r−4).

Let Å be the traceless part of second fundamental form of the surface Σr in
the hypersurface (M, g(t)). The Codazzi equation reads

∇aÅab −
1

2
∇ah = Ricar.

The evolution of Ci follows from taking the divergence of the above equation,
multiplying with r2xi, and integrating over Σr. For the evolution of J i, we
take the curl of the above equation instead. □

From the above theorem, it follows that the rest mass of asymptotically
initial data defined by the authors in [9] is invariant under the Einstein
equation.

Corollary 7.11. Let (M, g, k) be an asymptotically AdS initial data set. Let
(M, g(t), k(t)) be the solution to the vacuum Einstein equation with g(0) = g
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and k(0) = k, and with lapse N =
√
r2 + 1 and a vanishing shift vector. Let

m(t) be the rest mass of the data (M, g(t), k(t)). Then we have

∂tm(t) = 0.

Proof. Let p⃗ = (P 1, P 2, P 3), c⃗ = (C1, C2, C3) and j⃗ = (J1, J2, J3). From
Theorem 6.7 of [9], the rest mass m in terms of the total conserved quantities
is

m2 =
1

2
(α+

√
β)

where
α = E2 + |⃗j|2 − |p⃗|2 − |⃗c|2

β = (E2 − |⃗j|2 − |p⃗|2 − |⃗c|2)2

− 4|⃗j × p⃗|2 − 4|p⃗× c⃗|2 − 4|⃗c× j⃗|2 + 8Ec⃗ · (p⃗× j⃗).

The corollary follows from Theorem 7.9 by a direct computation. □
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