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We give a detailed account of the gauge-theoretic approach to Lie
applicable surfaces and the resulting transformation theory. In par-
ticular, we show that this approach coincides with the classical
notion of Ω- and Ω0-surfaces of Demoulin.
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1. Introduction

In [1, Section 85], Blaschke studies surfaces in Lie sphere geometry using the
hexaspherical coordinate model introduced by Lie [26]. By using an adapted
frame, Blaschke studies the compatibility conditions of such surfaces and in
so doing finds that there are two 1-forms ω1 and ω2 that generically deter-
mine a surface up to Lie sphere transformation (one can alternatively use
the quadratic form ω1ω2 and the conformal class of the cubic form ω3

1 − ω3
2).

Blaschke showed that there exist surfaces that are not determined by these
forms. Following the terminology of [29] we shall call these Lie applicable
surfaces. In [29] it is also shown that these surfaces are the deformable sur-
faces of Lie sphere geometry, that is, the only surfaces in Lie sphere geometry
that admit non-trivial second order deformations.
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The class of Lie applicable surfaces consists only of Ω- and Ω0-surfaces,
the theory of which we shall now recall. Originally discovered by Demoulin
[16–18], Ω-surfaces in R

3 are characterised (using standard notation) by the
equation

(1)

(
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G

κ1,u
κ1 − κ2

)

v

+ ϵ2

(
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E

κ2,v
κ1 − κ2

)

u

= 0

given in terms of curvature line coordinates (u, v), where U is a function of u,
V is a function of v and ϵ ∈ {1, i}. Demoulin showed that Ω-surfaces envelop
a pair of isothermic sphere congruences and gave an alternative characteri-
sation in terms of the existence of an associate Ω-surface, analogous to the
Christoffel transformation of isothermic surfaces. Furthermore, it is shown
that isothermic, Guichard and L-isothermic surfaces are examples of Ω-
surfaces. Eisenhart [19, 20] later developed a Bäcklund-type transformation
for these surfaces. Ω0-surfaces, the Lie geometric analogue of R0-surfaces,
are the surfaces satisfying (1) with ϵ = 0 and are envelopes of a curvature
sphere congruence that is isothermic.

Recent interest in integrable systems has sparked a renewed interest in
Ω- and Ω0-surfaces [8, 9, 13, 22, 23, 29]. Since isothermic surfaces [2, 4, 5,
11, 24, 34], Guichard surfaces [2, 4, 24, 25] and L-isothermic surfaces [27, 28,
30, 33, 35] have all been shown to constitute integrable systems, it comes as
no surprise that Ω- and Ω0-surfaces constitute such systems as well. In [13,
Chapter 4], Clarke develops a gauge-theoretic approach for Lie applicable
surfaces (and, more generally, l-applicable maps) analogous to the approach
used for isothermic surfaces, that is, they are characterised by the existence
of a certain 1-parameter family of flat connections. This approach lends itself
well to the study of transformations of these surfaces:

• local trivialising gauge transformations of these connections give rise
to a spectral deformation,

• parallel sections give rise to Bäcklund-type transformations, and

• analogues of the well known permutability theorems for transforma-
tions of isothermic surfaces [5, 24] hold for these transformations.

Furthermore, certain well known examples of Lie applicable surfaces (e.g.,
linear Weingarten surfaces, see [8, 9]) can be characterised in terms of poly-
nomial conserved quantities of this family of flat connections.

The purpose of this paper is to give a detailed account of the gauge theo-
retic approach for Lie applicable surfaces, revisiting and elaborating further



✐

✐

“5-Pember” — 2020/10/21 — 0:00 — page 1409 — #3
✐

✐

✐

✐

✐

✐

Lie applicable surfaces 1409

on the work of Clarke [13]. Particular attention is given to making clear the
equivalence of this approach and the classical definition of Demoulin [16–18].

In Section 2 we recall the Lie sphere model of [26]. In this setting we
study the Legendre lift of a front in a three dimensional space form. We
recover the invariants of such a lift introduced by Blaschke [1] and recall the
modern approach to Ribaucour transforms of [7].

In Section 3 Lie applicable surfaces are studied from the gauge-theoretic
viewpoint, that is, by the existence of a non-trivial closed 1-form taking
values in a certain vector bundle. Such an approach is less straightforward
than in the case of isothermic surfaces as, given such a closed 1-form, we
obtain a set of uncountably many such closed 1-forms. This ambiguity is
dealt with by using the middle potential - a unique 1-form in this set with
a certain geometric property. This is analogous to the potential used in [13,
➜2.4.1] for the study of projectively applicable surfaces. We show that this
approach yields the classical notion of Ω- and Ω0-surfaces [16–18] in space
forms.

In Section 4 we recall from [13] the transformation theory of Lie appli-
cable surfaces. In contrast to [13], we give some consideration to umbilics.
For example, we see that the appearance of umbilics on Darboux transforms
is attributed to the enveloping sphere congruence between the two surfaces
coinciding with one of the isothermic sphere congruences.

In Section 5 we recall the classical notion of associate Ω-surfaces [16],
i.e., two Combescure transformations such that a certain relation between
the principal curvatures of the two surfaces is satisfied. We show that such
surfaces give rise to a system of O-surfaces, see [25].
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2. Preliminaries

2.1. Notation

Let Σ be a manifold and, as usual, let TΣ denote the tangent bundle of Σ. For
a vector bundle E over Σ, ΓE shall denote the space of smooth sections of E.
Given a vector space V , we shall denote by V the trivial bundle Σ× V . IfW
is a vector subbundle of V , we define W (1) to be the subset of V consisting
of the images of sections of W and derivatives of sections of W with respect
to the trivial connection on V and call W (1) the derived bundle of W . In
general W (1) will not be a subbundle of V , however, in many instances, we
may assume that it is.

Throughout this paper we shall be considering the pseudo-Euclidean
space R

4,2, i.e., a six dimensional vector space equipped with a non-
degenerate symmetric bilinear form ( , ) of signature (4, 2). Let L denote
the lightcone of R4,2. The orthogonal group O(4, 2) acts transitively on L.
We shall denote by P(L) the projectivisation of L, i.e., the set of null 1-
dimensional subspaces of R4,2.

We shall recall in Subsection 2.3 that, under Lie’s [26] correspondence,
points in P(L) correspond to spheres in any three dimensional space form.
Therefore given a manifold Σ we have that any smooth map s : Σ → P(L)
corresponds to a sphere congruence in any space form. We shall thus refer
to s as a sphere congruence. Such a map can also be identified as a smooth
rank 1 null subbundle of the trivial bundle R

4,2.

Remark 2.1. It is well known that the exterior algebra ∧2
R
4,2 is isomor-

phic to the Lie algebra o(4, 2) of O(4, 2), i.e., the space of skew-symmetric
endomorphisms of R4,2, via the isomorphism

a ∧ b 7→ (a ∧ b),

where for any c ∈ R
4,2,

(a ∧ b)c = (a, c)b− (b, c)a.

We shall make use of this identification (without warning) throughout this
paper.

Given a manifold Σ, if ω1, ω2 ∈ Ω1(R4,2), that is ω1 and ω2 are 1-forms
on Σ with values in R

4,2, then we define ω1 ⋏ ω2 to be the 2-form with values
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in ∧2
R
4,2 defined by

ω1 ⋏ ω2(X,Y ) := ω1(X) ∧ ω2(Y )− ω1(Y ) ∧ ω2(X),

for X,Y ∈ ΓTΣ. Notice that ω1 ⋏ ω2 = ω2 ⋏ ω1.

2.2. Legendre immersions

The maximal isotropic subspaces that exist in R
4,2 are 2-dimensional. Let

Z denote the Grassmannian of such isotropic 2-dimensional subspaces. Of
course, we can identify this space with the space of lines in the projective
lightcone P(L). We shall recall in Subsection 2.3 that under Lie’s correspon-
dence [26] such lines correspond to parabolic pencils of spheres.

Suppose that Σ is a 2-dimensional manifold and let f : Σ → Z be a
smooth map. We may view f as a 2-dimensional subbundle of the trivial
bundle R

4,2. Then we may define a tensor, analogous to the solder form
defined in [3, 10],

β : TΣ → Hom(f, f (1)/f), X 7→ (σ 7→ dXσ mod f).

In accordance with [12, Theorem 4.3] we have the following definition:

Definition 2.2. f : Σ → Z is a Legendre immersion if f (1) = f⊥ and
kerβ = {0}.

Note that f⊥/f is a rank 2 subbundle of R4,2/f , inheriting a positive
definite metric from R

4,2.
Using the terminology of [7] we say that f envelops a sphere congruence

s : Σ → P(L) if for all p ∈ Σ, s(p) ⊂ f(p), i.e., s is a rank 1 subbundle of f .

Definition 2.3. Let p ∈ Σ. Then a 1-dimensional subspace s(p) ≤ f(p) is
a curvature sphere of f at p if there exists a non-zero subspace Ts(p) ≤ TpΣ
such that β(Ts(p))s(p) = 0. We call the maximal such Ts(p) the curvature
space of s(p).

It was shown in [32] that at each point p there is either one or two cur-
vature spheres. We say that p is an umbilic point of f if there is exactly
one curvature sphere s(p) at p and in that case Ts(p) = TpΣ. Away from
umbilic points we have that the curvature spheres form two rank 1 subbun-
dles s1, s2 ≤ f with respective curvature subbundles T1 =

⋃
p∈Σ Ts1(p) and

T2 =
⋃

p∈Σ Ts2(p). We then have that f = s1 ⊕ s2 and TΣ = T1 ⊕ T2.
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Suppose that f is umbilic-free. Then for each curvature subbundle Ti
we may define a rank 3 subbundle fi ≤ f⊥ as the set of sections of f and
derivatives of sections of f along Ti. One can check that given any non-zero
section σ ∈ Γf such that ⟨σ⟩ ∩ si = {0} we have that

fi = f ⊕ dσ(Ti).

Furthermore,

f⊥/f = f1/f ⊕⊥ f2/f,

and each fi/f inherits a positive definite metric from that of R4,2.
Let σ1 ∈ Γs1 and σ2 ∈ Γs2 be lifts of the curvature sphere congruences

and let X ∈ ΓT1 and Y ∈ ΓT2. Then from Definition 2.3 it follows immedi-
ately that

dXσ1, dY σ2 ∈ Γf.

Let

S1 := ⟨σ1, dY σ1, dY dY σ1⟩ and S2 := ⟨σ2, dXσ2, dXdXσ2⟩ .

It was shown in [1] that S1 and S2 are orthogonal rank 3 subbundles of
R
4,2 and the restriction of the metric on R

4,2 to each Si has signature (2, 1).
Furthermore, S1 and S2 do not depend on choices and we have the following
orthogonal splitting

R
4,2 = S1 ⊕⊥ S2

of the trivial bundle. We refer to this splitting as the Lie cyclide splitting of
R
4,2 because it can be identified with the Lie cyclides of f , i.e., a congruence

of Dupin cyclides that make “the most contact” with f at each point.
This splitting now yields a splitting of the trivial connection d on R

4,2:

d = D +N ,

where D is the direct sum of the induced connections on S1 and S2 and

(2) N = d−D ∈ Ω1((Hom(S1, S2)⊕Hom(S2, S1)) ∩ o(4, 2)).

Since S1 and S2 are orthogonal, we have that D is a metric connection on
R
4,2 and N is a skew-symmetric endomorphism. Hence, N ∈ Ω1(S1 ∧ S2).

Lemma 2.4. N f ≤ Ω1(f) and N (T2)s1 = 0 = N (T1)s2.
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Proof. Suppose that σ1 ∈ Γs1. Then for any Y ∈ ΓT2, dY σ1 ∈ ΓS1 and thus
NY σ1 = 0. Furthermore, since s1 is a curvature sphere, dXσ1 ∈ Γf . Hence,
N s1 ≤ Ω1(f). A similar argument can be used for s2. □

2.3. Symmetry breaking

Suppose that q, p ∈ R
4,2 are non-zero vectors such that q ⊥ p and p is not

null. Then we may define a quadric

Q3 := {y ∈ L : (y, q) = −1, (y, p) = 0}.

One can show that (see, for example, [24, 34]) Q3 is isometric to a three
dimensional space form with constant sectional curvature κ = −|q|2. Lie [26]
showed that each s ∈ P(L) can be identified with an oriented1 sphere in this
space form, namely the sphere determined in Q3 by the set of points

s⊥ ∩Q3.

Furthermore, in this correspondence, two spheres are in oriented contact
with each other if and only if their representatives in P(L) are orthogo-
nal. Thus, lines in P(L) correspond to parabolic pencils of spheres, i.e.,
1-parameter families of mutually touching spheres. If |p|2 = ±1, then

P3 := {y ∈ L : (y, q) = 0, (y, p) = −1}

can be identified with the space of hyperplanes (complete, totally geodesic
hypersurfaces) in this space form.

Lie sphere transformations are the transformations of space forms that
map spheres to spheres and preserve oriented contact. Conveniently, in this
model these are represented by the orthogonal transformations of R4,2. In
fact O(4, 2) is a double cover for the set of Lie sphere transformations. A
modern account of this correspondence is given in [12].

Given a Legendre immersion f : Σ → Z, we generically obtain a space
form projection f := f ∩Q3 and a tangent plane congruence t := f ∩P3.
The condition that f is a Legendre immersion, ensures that f is a front, i.e.,
a smooth map into Q3 admitting a unit normal vector such that the pairing
of surface and normal is an immersion. Conversely, given a front f : Σ → Q3

1Unless s ∈ ⟨p⟩⊥, there exists exactly one other point s̃ ∈ P(L) such that s⊥ ∩
Q3 = s̃⊥ ∩Q3. Therefore, each sphere in Q3 is represented by exactly two points
in P(L) and this gives rise to a notion of orientation (see [12], for example).
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with tangent plane congruence t : Σ → P3, we obtain a Legendre immersion
by taking the span, f = ⟨f, t⟩.

Suppose that f is an immersion. Then away from umbilic points of f we
may choose curvature line coordinates (u, v). By Rodrigues’ equations one
has that

tu + κ1fu = 0 = tv + κ2fv,

where κ1 and κ2 are the principal curvatures of f. Therefore,

s1 := ⟨t+ κ1f⟩ and s2 := ⟨t+ κ2f⟩

are curvature spheres of f with respective curvature subbundles T1 :=
〈

∂
∂u

〉

and T2 :=
〈

∂
∂v

〉
.

2.4. Invariants of Lie sphere geometry

We will now recover the Lie-invariant metric and conformal class of the cubic
form used in [1, 22]. These invariants generically2 determine a surface up to
Lie sphere transformation.

Let f : Σ → Z be a Legendre immersion.

2.4.1. Conformal structure. Define a tensor c ∈ Γ(S2T ∗Σ⊗ (∧2f)∗ ⊗
∧2(f⊥/f)) by

c(X,Y )ξ1 ∧ ξ2 =
1

2
(β(X)ξ1 ∧ β(Y )ξ2 + β(Y )ξ1 ∧ β(X)ξ2),

for any X,Y ∈ ΓTΣ and ξ1, ξ2 ∈ Γf . Since the rank 2 bundle f⊥/f inherits
a non-degenerate metric from R

4,2, the rank 1 bundle ∧2(f⊥/f) inherits a
definite metric and thus ∧2(f⊥/f) is a trivial bundle and we can view c as
a tensor in S2T ∗Σ⊗ (∧2f)∗. Now suppose that s(p) is a curvature sphere
of f at p with curvature subspace Ts(p). Then β(Ts(p))s(p) = 0 and since
we may write any τ ∈ Γ(∧2f) as τ = σ ∧ σ̃, for some σ, σ̃ ∈ Γf such that
σ(p) ∈ s(p), we have that

c(Ts(p), Ts(p))τp = 0.

Hence, c(Ts(p), Ts(p)) = 0. Therefore, at umbilic points p ∈ Σ of f , cp = 0 and
away from umbilic points, for any nowhere zero τ ∈ Γ(∧2f), g := c τ defines

2Blaschke [1] showed that those surfaces that aren’t determined are the Lie ap-
plicable surfaces. We shall explore this further in Subsection 4.1.
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an indefinite metric on Σ whose null lines are the curvature subbundles
T1 and T2. We shall refer to g as a representative metric of c and, since
c is tensorial in ∧2f , we have that any other representative metric of c
is conformally equivalent to g. We shall thus refer to c as the conformal
structure of f .

In the case that f is umbilic-free, the conformal structure c gives rise to
the Hodge star operator ⋆ which acts as id on T ∗

1 and −id on T ∗
2 .

2.4.2. Lie-invariant metric. Now suppose that f is an umbilic-free Leg-
endre immersion. Recall from (2) that the Lie cyclide splitting induces
a skew-symmetric endomorphism N ∈ Ω1(S1 ∧ S2). By Lemma 2.4, N f ≤
Ω1(f). Therefore, we may define a tensor gL ∈ Γ(S2T ∗Σ⊗ End(∧2f)) called
the Lie-invariant metric3 by

gL(X,Y )ξ1 ∧ ξ2 =
1

2
(N (X)ξ1 ∧N (Y )ξ2 +N (Y )ξ1 ∧N (X)ξ2),(3)

for any X,Y ∈ ΓTΣ and ξ1, ξ2 ∈ Γf . Since ∧2f has rank 1, End(∧2f) is
canonically trivial and so we identify gL with a quadratic form. By
Lemma 2.4, the curvature subbundles T1 and T2 are isotropic with respect
to gL and thus, away from points where it vanishes, gL is a representative
metric of c.

Remark 2.5. Unlike the conformal structure c, gL may vanish at certain
points. For example, if f is a Dupin cyclide then gL ≡ 0.

Recall that given a space form Q3 and space form projection f : Σ → Q3

of f with tangent plane congruence t : Σ → P3, we have that

t+ κ1f and t+ κ2f

are lifts of the curvature spheres s1 and s2, respectively. Now we may split
the trivial connection d = d1 + d2, where di denotes the partial connection

3In [6], the Lie cyclides are shown to define a conformal Gauss map for f . One can
show that the induced metric of this conformal Gauss map is a non-zero constant
scalar multiple of the Lie invariant metric.
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along Ti. Then one can check that

N (t+ κ1f) = − d1κ1
κ1 − κ2

(t+ κ2f) and N (t+ κ2f) =
d2κ2
κ1 − κ2

(t+ κ1f).

Hence, in terms of curvature line coordinates (u, v),

gL = (κ1 − κ2)
−2κ1,uκ2,v dudv,

and thus gL coincides with the Lie-invariant metric of [22, Theorem 1].

2.4.3. Darboux cubic form. Suppose that f is an umbilic-free Legendre
immersion. For X,Y, Z ∈ ΓTΣ and ξ1, ξ2 ∈ Γf , define a map

C(X,Y, Z)ξ1 ∧ ξ2 := (DXDY ξ1,NZξ2)− (DXDY ξ2,NZξ1).

We call C the Darboux cubic form of f .

Lemma 2.6. C is a tensor taking values in ((T ∗
1 )

3 ⊕ (T ∗
2 )

3)⊗ (∧2f)∗.

Proof. The tensorial nature of C follows from the fact that for any X,Y, Z ∈
ΓTΣ, ξ ∈ Γf and any smooth function λ,

DXDY (λξ) = DXDλY ξ = DλXDY ξ = λDXDY ξ mod f⊥

and by Lemma 2.4, NZf ≤ f .
Let Z ∈ ΓT1, σ1 ∈ Γs1 and σ2 ∈ Γs2. Then by Lemma 2.4, NZσ2 = 0,

and thus for any X,Y ∈ ΓTΣ,

C(X,Y, Z)σ1 ∧ σ2 = −(DXDY σ2,NZσ1).

If either of X or Y lies in T2 then DXDY σ2 ∈ Γf⊥ and, since NZf ≤ f , this
would imply that C(X,Y, Z) = 0. A similar argument shows that if Z ∈ ΓT2
and either of X and Y lies in T1 then C(X,Y, Z) = 0. Hence,

C ∈ Γ(((T ∗
1 )

3 ⊕ (T ∗
2 )

3)⊗ (∧2f)∗)

as required. □
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Remark 2.7. By evaluating the Darboux cubic form C on τ := (t+ κ1f) ∧
(t+ κ2f) one obtains

Cτ = (κ2 − κ1)(κ1,uE du
3 + κ2,vGdv

3),

in terms of curvature line coordinates (u, v). Hence, Cτ is in the same con-
formal class as the cubic form used in [22, Theorem 1].

2.5. Ribaucour transforms

In [7], a modern treatment of Ribaucour transforms was developed in the
realm of Lie sphere geometry. In this section we shall recall this construction
and prove some results that will be useful to us later in Subsection 4.2 when
considering Darboux transforms.

Suppose that f, f̂ : Σ → Z are pointwise distinct Legendre immersions
enveloping a common sphere congruence s0 := f ∩ f̂ . Then s⊥0 /s0 is a rank
4 subbundle of R4,2/s0 that inherits a non-degenerate metric with signature
(3, 1) from R

4,2. Let

N
f,f̂

:= (f + f̂)/s0.

Then N
f,f̂

is a rank 2 subbundle of s⊥0 /s0 and the induced metric ⟨., .⟩ on
N

f,f̂
is non-degenerate with signature (1, 1). We then have a well-defined

orthogonal projection π : s⊥0 /s0 → N
f,f̂

. From the contact condition on f

and f̂ , one quickly deduces the following lemma:

Lemma 2.8. s
(1)
0 ≤ (f + f̂)⊥ and (f + f̂)(1) ≤ s⊥0 .

We now define a metric connection on N
f,f̂

: for ξ ∈ Γ(f + f̂),

∇f,f̂ (ξ + s0) = π(dξ + s0)

and make the following definition:

Definition 2.9. If ∇f,f̂ is flat then we say that s0 is a Ribaucour sphere
congruence and that f and f̂ are Ribaucour transforms of each other.

Now f + f̂ is a rank 3 degenerate subbundle of R4,2. If we let l ≤ f + f̂
be a rank 2 subbundle of f + f̂ such that l ∩ s0 = {0}, then the induced
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metric on l has signature (1, 1). This yields a splitting

R
4,2 = l ⊕ l⊥

and the trivial connection splits accordingly as

d = Dl +Dl⊥ +N l,l⊥ ,

where Dl is the induced connection on l, Dl⊥ is the induced connection on
l⊥ and

N l,l⊥ = d− (Dl +Dl⊥) ∈ Ω1(Hom(l, l⊥)⊕Hom(l⊥, l)).

Proposition 2.10. The vector bundle isomorphism

ψ : l → N
f,f̂
, ξ 7→ ξ + s0

preserves the metric and connection on l, i.e., ψ∗⟨., .⟩ = (., .)|l×l and ∇f,f̂ ◦
ψ = ψ ◦ Dl.

Proof. Suppose that ξ1, ξ2 ∈ Γl. Then

⟨ψ(ξ1), ψ(ξ2)⟩ = ⟨ξ1 + s0, ξ2 + s0⟩ = (ξ1, ξ2).

Hence, the induced metric on l is isometric to ⟨., .⟩ via ψ. Furthermore, for
ξ ∈ Γl,

∇f,f̂ (ψ(ξ)) = π(dξ + s0) = Dlξ + s0 = ψ(Dlξ).

Hence, ψ is connection preserving. □

This gives rise to an alternative characterisation of Ribaucour transforms:

Corollary 2.11. f and f̂ are Ribaucour transforms of each other if and
only if the induced connection Dl is flat for some (and hence all) l ≤ f + f̂
of rank 2 such that l ∩ s0 = {0}.

Remark 2.12. Suppose that l ∩ s0 = {0} and let s := l ∩ f and ŝ := l ∩ f̂ .
Then the condition that Dl be flat is equivalent to requiring s and ŝ to be
parallel subbundles of Dl. In fact, s being a parallel subbundle of Dl implies
that ŝ is parallel as well, and conversely.
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It was shown in [7] that Definition 2.9 is equivalent to the classical defi-
nition of Ribaucour transform [1, 14, 15, 21, 36], that is, that the curvature
directions of f and f̂ correspond. Suppose that f and f̂ are umbilic-free and
let s1, s2 ≤ f denote the curvature sphere congruences of f and let ŝ1, ŝ2 ≤ f̂
denote the curvature sphere congruences of f̂ . Then we may assume that Ti
is the curvature subbundle of si and ŝi for i ∈ {1, 2}. Let

li := si ⊕ ŝi.

Then for any ξ ∈ Γli we have that dξ(Ti) ≤ (f + f̂). Now let

s∞ := l1 ∩ l2.

Then for any σ∞ ∈ Γs∞, we have that dσ∞(T1) ≤ f + f̂ , since σ∞ ∈ Γl1
and dσ∞(T2) ≤ f + f̂ , since σ∞ ∈ Γl2. Therefore, as TΣ = T1 ⊕ T2, dσ∞ ∈
Ω1(f + f̂). In fact s∞ is the unique point map in P(f + f̂) with the property
that

s(1)∞ ≤ f + f̂

and this motivates the following definition:

Definition 2.13. We call s∞ the enveloping point of f + f̂ .

3. Lie applicable surfaces

In this section we shall adopt the gauge theoretic viewpoint of Lie applicable
surfaces laid out by Clarke [13]. From this viewpoint, Lie applicability cor-
responds to the existence of a vector-bundle valued 1-form. The existence of
such a 1-form gives rise to a set of uncountably many such 1-forms. In order
to work with such a set, we geometrically derive a unique member called
the middle potential. This is analogous to a potential used in [13, ➜2.4.1] for
studying projectively applicable surfaces.

Given a Legendre immersion f : Σ → Z we may consider the subbundle
f ∧ f⊥ of ∧2

R
4,2. Now suppose that η ∈ Ω1(f ∧ f⊥), i.e., η is a 1-form taking

values in f ∧ f⊥. Then for any section σ ∈ Γf , since dσ ∈ Ω1(f⊥), we have
that η(X)dY σ ∈ Γf , for any X,Y ∈ ΓTΣ. Furthermore, since ηf = 0, we
have that η(X)dY σ is tensorial in σ. Thus, for given X,Y ∈ ΓTΣ, we have
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an endomorphism on f defined by

σ 7→ η(X)dY σ.

Therefore we may take the trace of this endomorphism and this gives rise
to a 2-tensor q defined by

q(X,Y ) = tr(σ 7→ η(X)dY σ).

We are now in a position to state the main definition of this section:

Definition 3.1. We say that f is a Lie applicable surface if there exists a
closed η ∈ Ω1(f ∧ f⊥) such that [η ∧ η] = 0 and q is non-zero.

Furthermore, if q is non-degenerate (respectively, degenerate) on a dense
open subset of Σ we say that f is an Ω-surface (Ω0-surface).

Suppose now that η ∈ Ω1(f ∧ f⊥) is closed. Then for any τ ∈ Γ(∧2f),
η̃ := η − dτ is a closed 1-form with values in f ∧ f⊥. In this case we say that
η̃ and η are gauge equivalent4. This yields an equivalence relation on closed
1-forms with values in f ∧ f⊥ and we call the equivalence class

[η] := {η − dτ : τ ∈ Γ(∧2f)}

the gauge orbit of η. Of course, any Legendre immersion admits 1-forms
with trivial gauge orbit, namely, dτ for any τ ∈ Γ(∧2f). However, assuming
that the quadratic differential q is non-zero in Definition 3.1 ensures that
the associated 1-form is non-trivial:

Lemma 3.2. If [η] = [0] at p ∈ Σ then q = 0 at p.

Proof. Suppose that s(p) is a curvature sphere congruence of f at p with
associated curvature space Ts(p). Then, for σ ∈ Γf and X,Y ∈ ΓTΣ such

that Xp, Yp ∈ Ts(p), one has that (dXdY σ)p ∈ s⊥(p). Therefore, for any τ ∈
Γ(∧2f),

(dXp
τ)dYp

σ = −τ(p)(dXdY σ)p ∈ s(p).

Furthermore, if σ(p) ∈ s(p) then (dXdY σ)p ∈ f⊥(p) and so (dXp
τ)dYp

σ van-
ishes. Hence, q = 0 at p. □

4In Section 4 we shall see that each closed 1-form η gives rise to a 1-parameter
family of flat connections. Moreover, we shall see that if two 1-forms η and η̃ are
gauge equivalent then the resulting flat connections are related by a gauge trans-
formation.
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Corollary 3.3. q is well defined on gauge orbits, i.e., if η̃ ∈ [η] then q̃ = q,
where q̃ is the quadratic form associated to η̃.

Proof. This follows from the fact that η̃ − η = dτ for some τ ∈ Γ(∧2f). □

Now suppose that f is umbilic-free. That is, there are two distinct cur-
vature sphere congruences s1 and s2 such that s1 ∩ s2 = {0}. Let Ti ≤ TΣ
denote the corresponding rank 1 curvature subbundle for si, i.e., for any
Xi ∈ ΓTi and σi ∈ Γsi,

dXi
σi ∈ Γf.

Recall that each curvature subbundle Ti induces a rank 3 subbundle fi of
f⊥. The following proposition shows that in the umbilic-free case, we may
drop the condition that [η ∧ η] = 0 in Definition 3.1:

Proposition 3.4. η is closed if and only if η satisfies the Maurer Cartan
equation. In this case, η(Ti) ≤ f ∧ fi and [η ∧ η] = 0.

Proof. Since ηf ≡ 0, we have that

(
dη +

1

2
[η ∧ η]

)
f = (dη)f.

Let Xi ∈ ΓTi and Xj ∈ ΓTj for i ̸= j and σi ∈ Γsi. Then

dη(Xi, Xj)σi = (dXi
(η(Xj))− dXj

(η(Xi))− η([Xi, Xj ]))σi

= dXi
(η(Xj)σi)− η(Xj)dXi

σi − dXj
(η(Xi)σi) + η(Xi)dXj

σi

= −η(Xj)dXi
σi + η(Xi)dXj

σi,

using again that ηf ≡ 0. Since si is a curvature sphere, dXi
σi ∈ Γf and

thus η(Xj)dXi
σi = 0. Therefore assuming that η satisfies the Maurer-Cartan

equation or that it is closed implies that for all i ̸= j, Xi ∈ ΓTi, Xj ∈ ΓTj
and σi ∈ Γsi,

0 = η(Xi)dXj
σi.

Thus, η(Xi) ∈ Γ(f ∧ fi) and

[η(Xi), η(Xj)] = 0.

Thus,

[η ∧ η](Xi, Xj) = 2[η(Xi), η(Xj)] = 0.
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Therefore, since X1 and X2 form a basis for TΣ, we have that [η ∧ η] = 0.
Hence,

dη +
1

2
[η ∧ η] = dη

and the result follows. □

Corollary 3.5. q is symmetric with q(T1, T2) = 0. Hence, q is a quadratic
differential with respect to the conformal structure c.

In order to work with the gauge orbit of closed 1-forms that arises from
Lie applicability, we shall derive a unique member of this orbit using the Lie
cyclide splitting

R
4,2 = S1 ⊕ S2.

This then induces a splitting

∧2
R
4,2 = h⊕m,

where

h := (S1 ∧ S1)⊕ (S2 ∧ S2) and m := S1 ∧ S2.
Thus, given a closed 1-form η ∈ Ω1(f ∧ f⊥), we may write η = ηh + ηm,
where ηh ∈ Ω1(h ∩ (f ∧ f⊥)) and ηm ∈ Ω1(m ∩ (f ∧ f⊥)).

Proposition 3.6. ηh is well-defined on gauge orbits.

Proof. This follows from the fact that dτ ∈ Ω1(m ∩ (f ∧ f⊥)), for any τ ∈
Γ(∧2f). □

Proposition 3.7. Modulo Ω1(∧2f), ηm = dτ for some τ ∈ Γ(∧2f).

Proof. Let σ1 ∈ Γs1 and σ2 ∈ Γs2 be lifts of the curvature spheres. Then we
may write

η = (α1 σ1 ∧ dσ1 + α2 σ2 ∧ dσ2 + β1 σ1 ∧ dσ2 + β2 σ2 ∧ dσ1) mod Ω1(∧2f),

where α1, α2, β1, β2 are smooth functions. In this case

ηm = (β1 σ1 ∧ dσ2 + β2 σ2 ∧ dσ1) mod Ω1(∧2f).

Now dσ1 ⋏ dσ1, dσ2 ⋏ dσ2 ∈ Ω2(f ∧ f⊥) and thus

0 = dη = β1 dσ1 ⋏ dσ2 + β2 dσ2 ⋏ dσ1 mod Ω2(f ∧ f⊥).
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Therefore β2 = −β1 and

ηm = d(β1σ1 ∧ σ2) mod Ω1(∧2f).

Hence the result is proved. □

From Proposition 3.7 one can deduce that there exists a unique gauge
potential of [η] with ηm ∈ Ω1(∧2f), thus motivating the following definition5:

Definition 3.8. We call the unique gauge potential in [η] with ηm∈Ω1(∧2f)
the middle potential and denote it ηmid.

Since q is well-defined on gauge orbits, we may compute it using the
middle potential. Then it is clear that q(X,Y ) = tr(σ 7→ ηh(X)dY σ), since
(∧2f)f⊥ = 0.

Remark 3.9. It should be noted that it is possible for a Legendre immer-
sion to be Lie applicable in more than one way, i.e., for there to exists more
than one gauge orbit of non-trivial closed 1-forms with values in f ∧ f⊥.
The case that a Legendre immersion is Lie applicable in three parameters
worth of ways has been studied in [23, 29].

3.1. Invariant approach

We will now obtain a characterisation of Lie applicability by the existence
of a certain quadratic differential. So let us assume that q is a quadratic
differential with respect to the conformal structure c, i.e., q ∈ Γ((T ∗

1 )
2 ⊕

(T ∗
2 )

2). For the rest of this section we make the assumption that the signature
of q is constant6 over Σ. Thus, up to rescaling q by ±1 and reordering T1
and T2, we may assume that

q = −ϵ2q1 + q2,

where ϵ ∈ {0, 1, i}, and q1 ∈ Γ(T ∗
1 )

2 and q2 ∈ Γ(T ∗
2 )

2 are positive definite
quadratic forms. Then q1 and q2 determine unique lifts σ1 ∈ Γs1 and σ2 ∈

5This potential also has a characterisation in terms of Lie algebra homology,
analogous to the characterisation given in [13, ➜2.4.1] for projectively applicable
surfaces.

6In order to establish a global theory of Lie applicable surfaces we will have to
weaken this assumption.
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Γs2 (up to sign) such that

q1 = (dσ2, dσ2) and q2 = (dσ1, dσ1).

Thus, q determines a unique 1-form ηh ∈ Ω1(h ∩ (f ∧ f⊥)) such that

q(X,Y ) = tr(σ 7→ ηh(X)dY σ),

namely,

ηh = −σ1 ∧ d2σ1 + ϵ2σ2 ∧ d1σ2,
where we recall that each di denotes the partial connection of d along Ti.
Let ω := ω1 + ω2 be a 1-form, with ω1 ∈ ΓT ∗

1 and ω2 ∈ ΓT ∗
2 , and define

ηmid := −σ1 ∧ dσ1 + ϵ2σ2 ∧ dσ2 + ωσ1 ∧ σ2.

Then ηmid is closed if and only if

0 = −dσ1 ⋏ dσ1 + ϵ2dσ2 ⋏ dσ2 + dω σ1 ∧ σ2 − ω ∧ d(σ1 ∧ σ2).(4)

Now let α, β ∈ ΓT ∗
1 and γ, δ ∈ ΓT ∗

2 such that

d1σ1 = ασ1 + βσ2 and d2σ2 = γσ1 + δσ2.

Remark 3.10. Obviously, in the case that ϵ = 0, q1 and thus our lift σ2 of
s2 may be chosen arbitrarily. To simplify the following analysis, we will fix
q1 by choosing a lift σ2 so that δ = 0. Note that this choice is unique up to
multiplication by a smooth function g such that d2g = 0.

Therefore, (4) is equivalent to

0 =− 2α ∧ (σ1 ∧ d2σ1) + 2ϵ2δ ∧ (σ2 ∧ d1σ2) + (2ϵ2γ − ω2) ∧ (σ1 ∧ d1σ2)
+ (−2β + ω1) ∧ (σ2 ∧ d2σ1) + (dω − ω1 ∧ δ − ω2 ∧ α)σ1 ∧ σ2.

Hence, ηmid is closed if and only if the following two conditions hold:

(a) α = δ = 0, that is, d1σ1 ∈ ΓT ∗
1 ⊗ s2 and d2σ2 ∈ ΓT ∗

2 ⊗ s1.

(b) ω = 2(β + ϵ2γ) and ω is closed.

These two conditions can be reformulated as conditions on q. In Lemma A.3
we show that the first condition is equivalent to q being divergence-free with
respect to the conformal structure c on TΣ. In other words, in terms of
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conformal curvature line coordinates (u, v), there exist functions U of u and
V of v such that

q = −ϵ2U2du2 + V 2dv2.

The second condition can be equated to a condition on the Darboux cubic
form. Recall that we defined the Darboux cubic form C ∈ ΓS3T ∗Σ⊗ (∧2f)∗

as

C(X,Y, Z)σ ∧ ν = (DXDY σ,NZν)− (DXDY ν,NZσ),

where σ, ν ∈ Γf and X,Y, Z ∈ ΓTΣ. Then in terms of the special lifts σ1
and σ2,

C(X,Y, Z)σ1 ∧ σ2 = −γ(Z)(dY σ1, dXσ1) + β(Z)(dY σ2, dXσ2)(5)

= −γ(Z)q2(X,Y ) + β(Z)q1(X,Y ).

Now let X ∈ ΓT1, Y ∈ ΓT2 such that

q1(X,X) = q2(Y, Y ) = 1.

Then we may define a 1-form

Cq := (C(X,X, .)− ϵ2C(Y, Y, .))σ1 ∧ σ2.

It is then clear from Equation (5) that Cq = β + ϵ2γ and therefore condi-
tion (b) is equivalent to the closure7 of Cq. We have thus arrived at the
following theorem:

Theorem 3.11. An umbilic-free Legendre map f is an Ω-surface (Ω0-
surface) if and only if there exists a non-zero divergence-free, non-degenerate
(degenerate) quadratic differential (with respect to the conformal structure c
induced by f) q such that Cq is closed.

Remark 3.12. In [13, ➜2.4.1], by using Lie algebra homology, an elegant
characterisation of projectively applicable surfaces is given in terms of a
quadratic differential and the Darboux cubic form. An analogous homolog-
ical characterisation can be obtained for Lie applicable surfaces, however,
this is beyond the scope of this paper.

7In the case that ϵ = 0, X and thus Cq are determined by our choice of lift of s2
in Remark 3.10. A different choice of such a lift scales Cq by a function g satisfying
d2g = 0. Therefore, the closure of Cq is not affected by this choice.
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Condition (b) also tells us that the middle potential is given by

(6) ηmid = σ1 ∧ ⋆dσ1 + ϵ2σ2 ∧ ⋆dσ2,

where ⋆ is the hodge star operator induced by the conformal structure c.

3.2. Demoulin’s equation

Now suppose that f is the lift of an umbilic-free space-form projection f with
tangent plane congruence t, i.e., f = ⟨f, t⟩. Then, from Subsection 2.3,

t+ κ1f and t+ κ2f

are lifts of the curvature sphere congruences s1 and s2, respectively. Thus,
there exists functions λ and µ such that our special lifts σ1 and σ2 are given
by

σ1 = λ(t+ κ1f) and σ2 = µ(t+ κ2f).

Since q is divergence-free, in terms of arbitrary curvature line coordinates
(u, v), there exist functions U of u and V of v such that

q = −ϵ2U2du2 + V 2dv2.

Thus,

V 2 = (σ1,v, σ1,v) = λ2(tv + κ1fv, tv + κ1fv) = λ2(κ1 − κ2)
2G.

Hence,

λ = ± V√
G(κ1 − κ2)

.

Similarly,

µ = ± U√
E(κ1 − κ2)

.

On the other hand, we have that

d1σ1 = βσ2 and d2σ2 = γσ1.

Therefore,

βµ(t+ κ2f) = d1λ(t+ κ1f) + λd1κ1f
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and

β = −λ
µ

d1κ1
κ1 − κ2

.

Similarly,

γ =
µ

λ

d2κ2
κ1 − κ2

.

Thus,

Cq = β + ϵ2γ = ±
(
−V

√
E

U
√
G

d1κ1
κ1 − κ2

+ ϵ2
U
√
G

V
√
E

d2κ2
κ1 − κ2

)
.

Hence, Cq is closed if and only if

0 =

(
V
√
E

U
√
G

κ1,u
κ1 − κ2

)

v

+ ϵ2

(
U
√
G

V
√
E

κ2,v
κ1 − κ2

)

u

.

Thus, f is an Ω-/Ω0-surface if and only if the space form projection f is an
Ω-/Ω0-surface in the sense of Demoulin [18].

3.3. Isothermic sphere congruences

We will now see how Lie applicable surfaces envelop isothermic sphere con-
gruences. We say that a sphere congruence is isothermic if it is isothermic as
a surface in the Lie quadric (with respect to the natural conformal structure
on the Lie quadric). Equivalently, we have the following definition:

Definition 3.13 ([5, 24]). A sphere congruence s : Σ → P(L) is isothermic
if there exists a non-zero closed 1-form ηs ∈ Ω1(s ∧ s⊥).

Now suppose that f is an umbilic-free Lie applicable surface with middle
potential

ηmid = σ1 ∧ ⋆dσ1 + ϵ2σ2 ∧ ⋆dσ2.
Then we may gauge ηmid by ±ϵσ1 ∧ σ2 to obtain8

η± := ηmid + d(±ϵσ1 ∧ σ2) = (σ1 ± ϵσ2) ∧ ⋆d(σ1 ± ϵσ2) ∈ Ω1(s± ∧ (s±)⊥),

where s± := ⟨σ1 ± ϵσ2⟩. Hence, s± are isothermic sphere congruences. In the
case that ϵ ̸= 0 we have that s± are a pair of isothermic sphere congruences

8Notice that ηmid = 1

2
(η+ + η−). This is our justification for calling ηmid the

middle potential.
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separating the curvature sphere congruences s1 and s2 harmonically. If ϵ = 0
we have that the curvature sphere congruence s1 is isothermic.

Theorem 3.14. If f is an umbilic-free Ω-surface then f envelops a pair
of isothermic sphere congruences that separate the curvature sphere con-
gruences harmonically. Furthermore, if q is indefinite then the isothermic
sphere congruences are real and if q is positive definite then they are com-
plex conjugate.

If f is an umbilic-free Ω0 surface then f envelops a curvature sphere
congruence that is isothermic.

Lemma 3.15. Let s ≤ f be a sphere congruence enveloped by f and suppose
that there exists η ∈ [ηmid] such that at a point p ∈ Σ

ηp ∈ T ∗
pΣ⊗ (s(p) ∧ f(p)⊥).

Then s coincides with one of the isothermic sphere congruences enveloped
by f at p.

Proof. Since η ∈ [ηmid], there exists a smooth function λ such that

η = ηmid + d(λσ1 ∧ σ2).

Now using that

ηmid = σ1 ∧ ⋆dσ1 + ϵ2σ2 ∧ ⋆dσ2
we have that

η = σ1 ∧ (λd1σ2 − d2σ1) + σ2 ∧ (ϵ2d1σ2 − λd2σ1) mod Ω1(∧2f).

Since d1σ2 and d2σ1 are linearly independent, η nowhere takes values in
s2 ∧ f⊥, for all smooth functions λ. Therefore, let µ ∈ R such that σ(p) =
σ1(p) + µσ2(p) is a lift of s(p). Then

ηp ∈ T ∗
pΣ⊗ (s(p) ∧ f(p)⊥)

if and only if

µ(λ(p)d1σ2 − d2σ1) = ϵ2d1σ2 − λ(p)d2σ1.

Since d1σ2 and d2σ1 are linearly independent at p, this is equivalent to

µ = λ(p) and λ(p)2 = ϵ2.
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Thus, σ(p) = σ1(p)± ϵσ2(p) ∈ s±(p). □

3.3.1. The ∆q operator. Let X ∈ ΓT1 and Y ∈ ΓT2 such that

q1(X,X) = 1 and q2(Y, Y ) = 1.

Then we define an operator

∆q := dXdX − ϵ2dY dY .

Using ∆q we define a map ζq : f ⊗ f → R by

ζq(ν, ξ) = (∆qν, ξ).

Then ζq is a symmetric tensor and identifies the isothermic sphere congru-
ences:

Proposition 3.16. Let s ≤ f . Then ζq(s(p), s(p)) = 0 if and only if s co-
incides with one of the isothermic sphere congruences at p.

Proof. Let σ1 and σ2 be the special lifts of the curvature spheres s1 and s2,
respectively, such that

q1 = (dσ2, dσ2) and q2 = (dσ1, dσ1).

Since s1 and s2 are curvature spheres, we have that

∆qσ1 = −ϵ2dY dY σ1 mod f⊥ and ∆qσ2 = dXdXσ2 mod f⊥.

Let σ ∈ Γs and let α and β be smooth functions such that σ = ασ1 + βσ2.
Then

ζq(σ, σ) = β2(dXdXσ2, σ2)− ϵ2α2(dY dY σ1, σ1) = −β2 + ϵ2α2.

Thus, ζq(σ, σ) = 0 if and only if β = ±ϵα, which holds if and only if σ ∈ Γs±.
Since ζq is tensorial, this is a pointwise condition. □

3.3.2. Christoffel dual lifts. Suppose that ϵ ̸= 0. Recall that Cq is a
closed 1-form. Thus, there exist non-trivial functions ξ± such that

dξ± = ∓ϵ−1 Cqξ±.

Now, ξ+ξ− is constant, and, without loss of generality we will assume that
ξ+ξ− = −1. We may then define unique (up to reciprocal constant rescaling)
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lifts σ± of the isothermic sphere congruences s± by

σ± := ξ±(σ1 ± ϵσ2).

A straightforward computation shows that:

Proposition 3.17. η± = σ± ∧ dσ∓ and dσ+ ⋏ dσ− = 0.

We call these lifts the Christoffel dual lifts of s±.

4. Transformations of Lie applicable surfaces

In this section we shall review and expand on the transformation theory of
Lie applicable surfaces presented by Clarke [13]. In particular we shall show
how the middle potential behaves under such transformations.

Suppose that f is a Lie applicable surface with closed 1-form η.

Theorem 4.1 ([13, Lemma 4.2.6]). {d+ tη}t∈R is a 1-parameter family
of flat metric connections.

Proof. The curvature of the connection d+ tη is given by

Rd+tη = tdη +
t2

2
[η ∧ η] = 0.

The fact that d+ tη is a metric connection follows from the skew-symmetry
of η. □

Our choice of η in the gauge orbit was arbitrary, so it is prudent to
examine how these connections change when we use a different member
of the gauge orbit. Suppose that η̃ = η − dτ for some τ ∈ Γ(∧2f). Then a
straightforward computation shows that:

Lemma 4.2 ([13, Lemma 4.5.1]). d+ tη̃ = exp(tτ) · (d+ tη).

4.1. Calapso transforms

Since {dt := d+ tη}t∈R is a 1-parameter family of flat metric connections, for
each t ∈ R, there exists a local orthogonal trivialising gauge transformation
T (t) : Σ → O(4, 2), i.e.,

(7) T (t) · dt = d.
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Definition 4.3. f t := T (t)f is called a Calapso transform of f .

Now suppose that η̃ = η − dτ , and let T̃ (t) denote the corresponding
local orthogonal trivialising gauge transformations. Then from Lemma 4.2,
it follows that

T̃ (t) = T (t) exp(−tτ).

Since (∧2f)f = 0, it follows that the Calapso transforms are well defined on
the gauge orbit [η].

Let σt := T (t)σ be a section of f t. Then by Equation (7),

dσt = d(T (t)σ) = T (t)(d+ tη)σ = T (t)dσ.

From this one can easily deduce that the contact and immersion conditions
hold for f t and thus f t is a Legendre immersion. Moreover, we can deduce
that if s(p) is a curvature sphere of f at p then st(p) := T (t)s(p) is a curva-
ture sphere of f t at p and the corresponding curvature spaces coincide.

Theorem 4.4. ηt := AdT (t) · η is a closed 1-form with values in Ω1(f t ∧
(f t)⊥) with [ηt ∧ ηt] = 0 and qt = q. Hence, f t is a Lie applicable surface.

Proof. The closedness of ηt follows from

dηt = (T (t) · dt)AdT (t) · η = T (t) · dtη = T (t) · (dη + t[η ∧ η]) = 0.

Furthermore,

[ηt ∧ ηt] = AdT (t) · [η ∧ η] = 0.

Finally, for σt := T (t)σ

ηt(X)dY σ
t = (AdT (t) · η(X))(T (t) · (d+ tη)(Y ))σt = T (t)η(X)dY σ.

Thus,

qt(X,Y ) = tr(σt 7→ ηt(X)dY σ
t)

coincides with q(X,Y ) for all X,Y ∈ ΓTΣ. □

We will now see how the 1-parameter family of flat connections of a
Calapso transform are related to those of the original surface:
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Proposition 4.5. For any s ∈ R,

d+ sηt = T (t) · (d+ (s+ t)η).

Therefore the local trivialising orthogonal gauge transformations of d+ sηt

are

T t(s) = T (s+ t)T−1(t).

Proof. Using Theorem 4.4, we have that

d+ sηt = d+ sAdT (t) · η = T (t) · (T−1(t) · d+ sη) = T (t) · (d+ (s+ t)η),

and the result follows. □

From Proposition 4.5 we can quickly deduce the analogue of the per-
mutability result of Hertrich-Jeromin [24, ➜5.5.9] for Calapso transforms of
isothermic surfaces:

T t(s)T (t) = T (s+ t).

Now let us assume that f is umbilic-free and we are using the middle
potential, i.e., η = ηmid.

Lemma 4.6. The Lie cyclides of f t are given by

St
1 = T (t)S1 and St

2 = T (t)S2.

Hence, the induced splitting of the trivial connection d = Dt +N t satisfies

Dt = T (t) · (D + tηh) and N t = T (t) · (N + tηm).

Proof. Let Y ∈ ΓT2 and σt1 = T (t)σ1 be a lift of the curvature sphere st1.
Then

dY σ
t
1 = dY (T (t)σ1) = (T (t) · dtY )T (t)σ1 = T (t)(dtY σ1) = T (t)dY σ1,

since ηmidf = 0. Thus, dσt1(T2) = T (t)dσ1(T2). Furthermore,

dY dY σ
t
1 = dY dY (T (t)σ1) = (T (t) · dtY )(T (t)dY σ1) = T (t)dtY dY σ1.

Now, since we are using the middle potential, ηmid(Y )dY σ1 ∈ Γs1. Thus,
dY dY σ

t
1 ∈ ΓT (t)S1 and

St
1 = st1 ⊕ dσt1(T2)⊕ ⟨dY dY σt1⟩ = T (t)S1.
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Similarly, St
2 = T (t)S2. From

d = T (t) · (d+ tηmid) = T (t) · (D +N + tηh + tηm),

one can deduce the remainder of the lemma. □

Blaschke [1] showed that Lie applicable surfaces are the only surfaces
that are not determined by the Lie invariant metric and Darboux cubic
form. Therefore the following corollary comes as no surprise:

Corollary 4.7. The Lie-invariant metric gL is preserved by Calapso trans-
form and the Darboux cubic form Ct ∈ Γ(S3T ∗Σ⊗ (∧2f t)∗) of f t satisfies

Ct ◦ T (t) = C,(8)

that is, for τ ∈ Γ(∧2f) and X,Y, Z ∈ ΓTΣ,

Ct(X,Y, Z)(T (t) · τ) = C(X,Y, Z)τ.

Corollary 4.8. The middle potential of f t is (ηt)mid = AdT (t) · ηmid.

Proof. In Section 3 we had a splitting o(4, 2) = h+m induced by f , where

h = (S1 ∧ S1)⊕ (S2 ∧ S2) and m = S1 ∧ S2.

By Lemma 4.6, f t induces the splitting o(4, 2) = ht +mt, where

ht = T (t) · h and mt = T (t) ·m.

We then split ηmid = ηh + ηm, where ηh ∈ Ω1(h) and ηm ∈ Ω1(m). Now split-
ting AdT (t) · ηmid with respect to the splitting induced by f t yields AdT (t) ·
ηmid = ηtht + ηtmt with

ηtht = AdT (t) · ηh and ηtmt = AdT (t) · ηm.

Since ηmid is the middle potential, ηm ∈ Ω1(f ∧ f). Hence,

ηtmt = AdT (t) · ηm ∈ Ω1(f t ∧ f t).

Therefore AdT (t) · ηmid is the middle potential of f t. □
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Proposition 4.9. Suppose that s is an isothermic sphere congruence of
f with isothermic gauge potential ηs ∈ Ω1(s ∧ s⊥). Then st := T (t)s is an
isothermic9 sphere congruence of f t with isothermic gauge potential (ηt)s :=
AdT (t) · ηs.

Proof. From the orthogonality of T (t) we have

T (t) · s ∧ s⊥ = st ∧ (st)⊥.

Hence, (ηt)s ∈ Ω1(st ∧ (st)⊥) and st is isothermic. □

4.2. Darboux transforms

Fix a non-zero m ∈ R. Since dm = d+mη is a flat connection, it has many
parallel sections. Suppose that ŝ is a null rank 1 parallel subbundle of dm

such that ŝ is nowhere orthogonal to the curvature sphere congruences of f .
Let s0 := ŝ⊥ ∩ f and let f̂ := s0 ⊕ ŝ.

Definition 4.10. f̂ is a Darboux transform of f with parameter m.

Now for any section σ0 ∈ Γs0 and any parallel section σ̂ ∈ Γŝ of dm

(9) dσ0, dσ̂ ∈ Ω1((f + f̂)⊥).

It is then clear that f̂ satisfies the contact condition. It remains to check the
immersion condition of f̂ : let p ∈ Σ and suppose that there exists X ∈ TpΣ

such that dXσ0 ∈ f̂(p) for some lift σ0 ∈ Γs0. Then as dσ0 ∈ Ω1((f + f̂)⊥),
we have that dXσ0 ∈ s0(p). Then it follows from the fact that s0 is nowhere
a curvature sphere of f that X = 0. Therefore, f̂ is a Legendre immersion.

Recall from Section 2.5 that we defined Ribaucour transforms of Legen-
dre immersions.

Lemma 4.11. f̂ is a Ribaucour transform of f .

Proof. By Equation (9), for a parallel section σ̂ ∈ Γŝ of dm,

dσ̂ ∈ Ω1((f + f̂)⊥).

Therefore, σ̂ mod s0 is a parallel section of the induced connection on (f +
f̂)/s0. Hence, this connection is flat. □

9st is in fact the Calapso transform of the isothermic sphere congruence s, see [5,
24].
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Suppose that s ≤ f is a rank 1 subbundle of f such that s ∩ s0 = {0} and
define l := s⊕ ŝ. Then l defines a (1, 1)-subbundle of R4,2 and we have the
following splitting of R4,2:

R
4,2 = l ⊕ l⊥.

We can then use this splitting to split the trivial connection d on R
4,2 into

d = Dl,l⊥ +N l,l⊥ ,

where Dl,l⊥ is the sum of the induced connections Dl and Dl⊥ on l and l⊥,
respectively, and N l,l⊥ ∈ Ω1(l ∧ l⊥). By Corollary 2.11, Dl is a flat connec-
tion on l and if σ̂ is a parallel section of dm, then σ̂ is a parallel section of
Dl. We may further split N l,l⊥ = −β − β̂ where

β ∈ Ω1(ŝ ∧ l⊥) and β̂ ∈ Ω1(s ∧ l⊥).

Moreover we may use our splitting to split η = η0 + ηs, where

η0 ∈ Ω1(s0 ∧ l⊥) and ηs ∈ Ω1(s ∧ l⊥).

Recall from [5, 11, 13, 34] that for v, w ∈ L such that (v, w) ̸= 0 and
non-zero t ∈ R we have an orthogonal transformation

Γv
w(t)u =





t u for u = v,
1
t
u for u = w,

u for u ∈ ⟨v, w⟩⊥.

We are now in a position to state the following proposition:

Proposition 4.12. There exists a closed 1-form η̂ ∈ Ω1(f̂ ∧ f̂⊥) with [η̂ ∧
η̂] = 0 such that

d+ tη̂ = Γŝ
s(1− t/m) · (d+ tη).

Furthermore, s is a parallel subbundle of d+mη̂ and the quadratic differen-
tial q̂ of η̂ coincides with q.

Proof. The first part of this theorem was proved by Clarke [13, Theorem
4.3.7] and is analogous to [5, Proposition 3.11]. For the purpose of proving
the latter part of this theorem, we shall repeat the arguments of those proofs
here.
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Firstly, for a parallel section σ̂ ∈ Γŝ of dm, we have that dσ̂ = −mησ̂.
Therefore −β̂σ̂ = −mηsσ̂. This implies that β̂ = mηs. Now we may write

d+ tη = Dl,l⊥ − β − β̂ + tη0 + tηs.

Therefore,

Γŝ
s(1− t/m) · (d+ tη) = Γŝ

s(1− t/m) · (Dl,l⊥ − β − (1− t/m)β̂ + tη0)

= Dl,l⊥ − (1− t/m)β − (1− t/m)/(1− t/m)β̂ + tη0

= Dl,l⊥ − β̂ − β + t(η0 + (1/m)β).

Then letting ηŝ := (1/m)β and η̂ := η0 + ηŝ ∈ Ω1(f̂ ∧ f̂⊥), we have that

d+ tη̂ = Γŝ
s(1− t/m) · (d+ tη).

Since d+ tη is a 1-parameter family of flat connections, we must have that
d+ tη̂ is a 1-parameter family of flat connections. The curvature of this
family is given by

Rd+tη̂ = tdη̂ +
t2

2
[η̂ ∧ η̂].

Thus, η̂ is closed and [η̂ ∧ η̂] = 0.
Suppose that σ ∈ Γs is a parallel section of Dl. Then dσ = −βσ and

(d+mη̂)σ = −βσ +m(1/m)βσ = 0.

Hence, s is a parallel subbundle of d+mη̂.
We shall now show that the quadratic forms of η̂ and η coincide: let

σ0 ∈ Γs0 and assume that (σ, σ̂) = −1. Now, {σ0, σ} is a basis for f and
{σ0, σ̂} is a basis for f̂ . Since η̂ = η0 + ηŝ and η = η0 + ηs, we have that, for
X,Y ∈ ΓTΣ,

[η̂(X)dY σ0]s0 = [η0(X)dY σ0]s0 = [η(X)dY σ0]s0 .

Therefore, with respect to our bases defined above, the s0 component of
η̂(X)dY σ0 coincides with the s0 component of η(X)dY σ0. Furthermore, the
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ŝ component of η̂(X)dY σ̂ is given by

−(η̂(X)dY σ̂, σ) = (1/m)(β(X)β̂(Y )σ̂, σ)

= (1/m)(σ̂, β̂(Y )β(X)σ) = −(σ̂, η(Y )dXσ),

by the skew-symmetry of β and β̂. Therefore, the ŝ component of η̂(X)dY σ̂
coincides with the s component of η(X)dY σ. It follows then that

q(X,Y ) = tr(ν 7→ η(X)dY ν) and q̂(X,Y ) = tr(ν̂ 7→ η̂(X)dY ν̂)

are equal. □

As a corollary to Proposition 4.12 we have the following theorem:

Theorem 4.13 ([13, Theorem 4.3.7, Proposition 4.3.8]). f̂ is a Lie-
applicable surface and f is a Darboux transform of f̂ with parameter m.

An obvious question to ask is what happens if we use a different gauge
η̃ = η − dτ to compute our Darboux transforms. However, by Lemma 4.2,
exp(mτ)ŝ ≤ f̂ is a parallel subbundle of d+mη̃. Hence, we obtain the same
Darboux transforms.

Now exp(∧2f) acts transitively on f̂\s0 and, analogously, exp(∧2f̂) acts
transitively on f\s0. Thus, given s′ ≤ f and ŝ′ ≤ f̂ such that s′ ∩ s0 = {0} =
ŝ′ ∩ s0, there exists τ ∈ Γ(∧2f) and τ̂ ∈ Γ(∧2f̂) such that

s′ = exp(mτ̂)s and ŝ′ = exp(mτ)ŝ.

By letting η′ := η − dτ and η̂′ := η̂ − dτ̂ we have that s is a parallel subbun-
dle of d+mη̂′ and ŝ is a parallel subbundle of d+mη′. We therefore have
the following proposition:

Proposition 4.14. Suppose that f̂ is a Darboux transform of f with pa-
rameter m and let l be any rank 2 subbundle of f + f̂ with l ∩ s0 = {0}.
Then there exist gauge potentials η ∈ Ω1(f ∧ f⊥) and η̂ ∈ Ω1(f̂ ∧ f̂⊥) such
that s := f ∩ l is a parallel subbundle of d+mη̂ and ŝ := f̂ ∩ l is a parallel
subbundle of d+mη.

4.3. The enveloping sphere congruence

In this subsection we will show that the nature of the enveloping sphere
congruence s0 determines when umbilics appear on a Darboux transform.



✐

✐

“5-Pember” — 2020/10/21 — 0:00 — page 1438 — #32
✐

✐

✐

✐

✐

✐

1438 Mason Pember

Furthermore, we will see how we can determine the middle potential of a
Darboux transform.

Suppose that f is an umbilic-free Lie applicable surface and as in Subsec-
tion 3.1 we make the assumption that the signature of q is constant over Σ.

Proposition 4.15. p ∈ Σ is an umbilic point of f̂ if and only if s0 coincides
with one of the isothermic sphere congruences at p.

Proof. Suppose that s0 coincides with an isothermic sphere congruence s ≤ f
at p. Let σ̂ ∈ Γf̂ be a parallel section of d+mη, where η ∈ Ω1(s ∧ f⊥) is
the isothermic gauge potential associated to s. Since s0 coincides with s at
p, we have that σ̂(p) ∈ s(p)⊥. Then

(dσ̂)p = −mηpσ̂(p) ∈ TpΣ⊗ s0(p).

Therefore, p is an umbilic point of f̂ .
Conversely, suppose that p is an umbilic point of f̂ . Then there exists

ŝ ≤ f̂ such that (dσ̂)p ∈ TpΣ⊗ f̂(p) for all σ̂ ∈ Γŝ. Since we assumed that s0
is never a curvature sphere, we have that ŝ ∩ s0 = {0}. Now we may choose
η ∈ Ω1(f ∧ f⊥) such that ŝ is a parallel subbundle of d+mη. Let σ̂ ∈ Γŝ be
a parallel section of d+mη. Then at p

mηpσ̂(p) = −(dσ̂)p ∈ TpΣ⊗ f̂(p).

Moreover, since η ∈ Ω1(f ∧ f⊥), ηpσ̂(p) takes values in f(p)⊥. Thus, ηpσ̂(p)
takes values in s0 = f̂ ∩ f⊥. Now for some complementary sphere congruence
s ≤ f to s0, we may write

η = σ0 ∧ ω0 + σ ∧ ω,

where ω0, ω ∈ Ω1(f⊥), σ0 ∈ Γs0 and σ ∈ Γs. Thus

ηpσ̂(p) = (σ(p), σ̂(p))ωp mod T ∗
pΣ⊗ f(p).

Since s is complementary to s0, we must have that (σ(p), σ̂(p)) is non-zero
and thus ωp ∈ TpΣ⊗ f(p). Therefore, ηp ∈ TpΣ⊗ (s0(p) ∧ f(p)⊥). Hence, by
Lemma 3.15, s0 coincides with an isothermic sphere congruence at p. □

Recall in Subsection 3.3.1 that we defined ∆q and ζq associated to a Lie
applicable surface. Using Proposition 3.16 we obtain the following corollary:

Corollary 4.16. p is an umbilic point of f̂ if and only if ζq(s0(p), s0(p)) =
0.
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Now suppose that f̂ is umbilic-free. Then by Corollary 4.16, ζq(s0, s0)
is nowhere zero, i.e., (∆qσ0) ∩ s⊥0 = {0} for any lift σ0 of s0. We may then
define a rank 4 subbundle of R4,2 with signature (3, 1),

Vq := s0 ⊕ dσ0(TΣ)⊕ ⟨∆qσ0⟩.

Recall in Definition 2.13 that we defined the enveloping point s∞ in the
plane f + f̂ of two Ribaucour transforms as the unique point map in f + f̂

satisfying s
(1)
∞ ≤ f + f̂ . Taking lines between the corresponding curvature

spheres of f and f̂ , we obtain s∞ as the intersection of these two lines.

Proposition 4.17. Let ηmid denote the middle potential of f and η̂mid the
middle potential of f̂ . Then V ⊥

q = s⊕ ŝ where s ≤ f is a parallel subbundle

of d+mη̂mid and ŝ ≤ f̂ is a parallel subbundle of d+mηmid. Furthermore,
s∞ ≤ V ⊥

q .

To prove Proposition 4.17 we shall use the following lemma:

Lemma 4.18. Suppose that ηmid is the middle potential. Let τ ∈ Γ(∧2f).
Then,

ηmid(X)dXτ − ϵ2ηmid(Y )dY τ = −ϵ2τ,
where X ∈ ΓT1, Y ∈ ΓT2 such that q1(X,X) = 1 and q2(Y, Y ) = 1.

Proof. Let σ1 ∈ Γs1, σ2 ∈ Γs2 be the special lifts of the curvature spheres
such that

q = −ϵ2(dσ2, dσ2) + (dσ1, dσ1)

and let τ = σ1 ∧ σ2 ∈ Γ(∧2f). Recall from (6) that the middle potential is
given by

ηmid = σ1 ∧ ⋆dσ1 + ϵ2σ2 ∧ ⋆dσ2.
Thus, for v ∈ ΓR4,2,

(ηmid(X)dXτ)v = (ϵ2σ2 ∧ dXσ2)(σ1 ∧ dXσ2)v
= −ϵ2(dXσ2, dXσ2)(σ1, v)σ2
= −ϵ2(σ1, v)σ2.

Similarly, (ηmid(Y )dY τ)v = −(σ2, v)σ1. Hence,

(ηmid(X)dXτ − ϵ2ηmid(Y )dY τ)v = −ϵ2(σ1, v)σ2 + ϵ2(σ2, v)σ1 = −ϵ2τv

and the result follows. □
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Proof of Proposition 4.17. Let σ̂ ∈ Γŝ be a parallel section of d+mηmid and
let σ0 ∈ Γs0. Then,

(∆qσ0, σ̂) = (dXdXσ0 − ϵ2dY dY σ0, σ̂)

= −(dXσ0, dX σ̂) + ϵ2(dY σ0, dY σ̂)

= m((dXσ0, η
mid(X)σ̂)− ϵ2(dY σ0, η

mid(Y )σ̂))

= −m(ηmid(X)dXσ0 − ϵ2ηmid(Y )dY σ0, σ̂).

Now, there exists τ ∈ Γ(∧2f) such that σ0 = τ σ̂. Hence,

(∆qσ0, σ̂) = −m((ηmid(X)dXτ − ϵ2ηmid(Y )dY τ)σ̂, σ̂) = mϵ2(τ σ̂, σ̂),

by Lemma 4.18. By the skew-symmetry of τ , (∆qσ0, σ̂) vanishes.
By a symmetric argument, (∆qσ0, σ) vanishes, where σ is a parallel sec-

tion of d+mη̂mid.
Now let σ∞ ∈ Γs∞. Then dσ∞ ∈ Ω1(f + f̂). Then using that dσ0 ∈

Ω1((f + f̂)⊥) for any σ0 ∈ Γs0, it is clear that s∞ ≤ (s0 ⊕ dσ0(TΣ))
⊥, from

which it follows that (∆qσ0, σ∞) vanishes. □

As a corollary to Proposition 4.17 we obtain the following theorem that
tells us how to determine the middle potential of f̂ :

Theorem 4.19. Suppose that f and f̂ are umbilic-free Darboux transforms
of each other with parameter m. Let ŝ ≤ f̂ be the parallel subbundle of d+
mηmid. Then

d+ tη̂mid = Γŝ
s(1− t/m) · (d+ tηmid),

for s := f ∩ l, where l is the line spanned by ŝ and s∞.

4.4. Isothermic sphere congruences

Let f and f̂ be umbilic-free Darboux transforms of each other with pa-
rameter m and suppose that we are working with the isothermic potential
η+ associated to the isothermic sphere congruence s+. Then if ŝ ≤ f̂ is the
parallel subbundle of d+mη+ then by Proposition 4.12, η̂ defined by

d+ tη̂ = Γŝ
s+(1− t/m) · (d+ tη+)

is a closed 1-form. Recall that we split η = η0 + ηs+ and η̂ = η̂0 + η̂ŝ, where
η0, η̂0 ∈ Ω1(s0 ∧ l⊥), ηs+ ∈ Ω1(s+ ∧ l⊥) and η̂ŝ ∈ Ω1(ŝ ∧ l⊥). Now, in the
proof of Proposition 4.12 we saw that η0 = η̂0 and since we are working
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with the isothermic potential η+ ∈ Ω1(s+ ∧ f⊥), we have that η0 = 0. Thus,
η̂ ∈ Ω1(ŝ ∧ l⊥). Hence, ŝ is isothermic and we shall denote it ŝ+. A symmetric
argument yields an analogous result for s−.

Proposition 4.20. We may label the isothermic sphere congruences ŝ+

and ŝ− of f̂ such that ŝ± is a parallel subbundle of d+mη±. Furthermore

d+ tη̂± = Γŝ±

s±(1− t/m) · (d+ tη±).

Proposition 4.20 shows that Darboux transforms of Lie applicable sur-
faces are induced by the Darboux transforms of their isothermic sphere
congruences [5, 24]. On the other hand, given a Darboux transform ŝ+ of
one of the isothermic sphere congruence, say s+, we have that f̂ := s0 ⊕ ŝ+,
where s0 = f ∩ (ŝ+)⊥, is a Darboux transform of f . This is our justification
for using the term “Darboux transform” instead of “Bäcklund transform”.

We now give a result concerning the lines joining “opposite” isothermic
sphere congruences:

Proposition 4.21. Let l1 = s+ ⊕ ŝ− and l2 = s− ⊕ ŝ+. Then l1 ∩ l2 = s∞.

Proof. By Proposition 3.17, η− = σ− ∧ dσ+, where σ± are Christoffel dual
lifts of s±. By Proposition 4.20, there exists σ̂ ∈ Γŝ− such that σ̂ is a parallel
section of d+mη−. Thus,

dσ̂ = −m(σ−, σ̂)dσ+ mod Ω1(f).

Hence, σ∞ := σ̂ +m(σ−, σ̂)σ+ ∈ Γl1 and satisfies dσ∞ ∈ Ω1(f + f̂). Since

s∞ is the unique point in f + f̂ satisfying s
(1)
∞ ≤ f + f̂ , we have that σ∞ ∈

Γs∞. Therefore, s∞ ≤ l1. Similarly, s∞ ≤ l2 and the result follows. □

5. Associate surfaces

Let us recall the definition of O-surfaces given in [25]: suppose that x1, . . . ,
xn : Σ → R

3 are Combescure transformations10 of each other and let the
subbundles T1, T2 ≤ TΣ denote the induced curvature subbundles on TΣ.

10That is, the curvature directions of xi are parallel to the curvature directions
of xj for all i, j ∈ {1, . . . , n}.
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Let κi1 and κi2 denote the principal curvatures of xi along T1 and T2, respec-
tively, and define row vectors

Kj := (1/κ1j , . . . , 1/κ
n
j ),

for j ∈ {1, 2}. Then we say that {x1, . . . , xn} is a system of O-surfaces if
there exists a constant symmetric n× n matrix S such that

K1SK
t
2 = 0.

In this section we shall see how a system of O-surfaces arises from an Ω-
surface.

In [16], Demoulin defines an associate surface of an umbilic-free Ω-
surface: suppose that x : Σ → R

3 is an Ω-surface and in terms of curvature
line coordinates (u, v) the third fundamental form of x is given by III =
p2du2 + r2dv2. Then there exists a Combescure transformation xD : Σ → R

3

of x and there exist functions U of u and V of v such that
(

1

κ1
− 1

κ2

)(
1

κD1
− 1

κD2

)
= −ϵ2U

2

p2
+
V 2

r2
,(10)

where κ1 and κ2 denote the principal curvatures of x, κD1 and κD2 denote
the principal curvatures of xD and ϵ ∈ {1, i}. Conversely, if two surfaces are
in such a relation then they are Ω-surfaces.

Suppose that f : Σ → Z is an umbilic-free Ω-surface. Then there exists a
closed 1-form η ∈ Ω1(f ∧ f⊥) such that the quadratic differential associated
to η is non-degenerate. Let q∞ and p be a space form vector and point sphere
complex with |q∞|2 = 0 and |p|2 = −1, i.e.,

Q3 := {y ∈ L : (y, q∞) = −1, (y, p) = 0}

has sectional curvature κ = 0 and Q3 ∼= R
3. Then we may choose a null

vector q0 ∈ ⟨p⟩⊥ such that (q0, q∞) = −1. Thus ⟨q∞, p, q0⟩⊥ ∼= R
3 and we

have an isometry

ϕ : ⟨q∞, p, q0⟩⊥ → Q3, x 7→ x+ q0 +
1

2
(x, x)q∞.

We can use this to identify f := f ∩Q3 with x : Σ → R
3. We then have that

df = dx+ (dx, x)q∞ and t = n+ (n, x)q∞ + p.
Now (ηp, q∞) is a closed 1-form, so there exists (up to addition of a

constant) λ : Σ → R such that dλ = (ηp, q∞). Then we may gauge η by
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τ := −λf ∧ t to obtain η̃ := η − dτ with (η̃p, q∞) = 0. Therefore, we shall
assume that (ηp, q∞) = 0. From this we can deduce that η is of the form

η = f ∧ df ◦A+ t ∧ dt ◦B,

for some A,B ∈ ΓEnd(TΣ). The closure of η implies that ηq∞ = −df ◦A
and ηp = −dt ◦B are closed and that

df⋏ df ◦A+ dt⋏ dt ◦B = 0.(11)

The closure of df◦A implies that dx ◦A is closed. Furthermore, by Lemma 3.4,
we have that η(Ti) ≤ f ∧ fi and thus

A ∈ Γ(T ∗
1 ⊗ T1 ⊕ T ∗

2 ⊗ T2).

Therefore, locally there exists xD : Σ → R
3 such that dxD = dx ◦A and xD

has parallel curvature directions to x. Similarly there exists x̂ : Σ → R
3 such

that dx̂ = dn ◦B and B ∈ Γ(T ∗
1 ⊗ T1 ⊕ T ∗

2 ⊗ T2). Thus, x̂ also has parallel
curvature directions to x. From Equation (11) and Rodrigues’ equations, we
can then deduce that

1

κ1κD2
+

1

κ2κD1
− 1

κ̂1
− 1

κ̂2
= 0.(12)

Conversely, given Combescure transformations xD and x̂ of x such that
(12) is satisfied we may define a closed 1-form

η = f ∧ (dxD + (dxD, x)q∞) + t ∧ (dx̂+ (dx̂, x)q∞).

Hence, we have arrived at the following result:

Theorem 5.1. An umbilic-free surface x : Σ → R
3 is an Ω-surface if and

only if there exists an associate surface xD : Σ → R
3 and an associate Gauss

map x̂ : Σ → R
3 that are Combescure transformations of x such that the

principal curvatures of x, xD and x̂ satisfy (12).

Remark 5.2. We shall assume that xD and x̂ are oriented so that the
Gauss map of these surfaces is −n.
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Remark 5.3. The addition of a constant c to λ sends

xD 7→ xD + cn and x̂ 7→ x̂− cx.

Thus we get a parallel surface to xD. The behaviour of x̂ under this change
is our motivation for calling x̂ an associate Gauss map.

By letting

S =




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0




one can see that condition (12) shows that {x, xD, x̂, n} is a system of O-
surfaces, where we consider the Gauss map n to be oriented so that its
principal curvatures are both −1.

We have that the quadratic form of η is given by

q = −(dx, dxD)− (dn, dx̂).

On the other hand, in terms of curvature line coordinates (u, v), we have
that

q = −ϵ2U2du2 + V 2dv2,

for some functions U of u and V of v. Hence,

−ϵ2U2 =

(
1

κ1κD1
− 1

κ̂1

)
p2 and V 2 =

(
1

κ2κD2
− 1

κ̂2

)
r2

and thus
1

κ̂1
=
ϵ2U2

p2
+

1

κ1κD1
and

1

κ̂2
= −V

2

r2
+

1

κ2κD2
.

Then substituting this into (12) yields (10). Hence, xD is an associate surface
of x, in the sense of [16].

We may write η as

η = Adexp(x∧q∞)(q0 ∧ dxD + ξ ∧ dx̂),

where ξ := n+ p. By the symmetry of Equation (12), xD is an Ω-surface
with closed 1-form

ηD := Adexp(xD∧q∞)(q0 ∧ dx− ξD ∧ dx̂),
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where ξD := −n+ p. Furthermore, the quadratic differential qD defined by
ηD agrees with q.

Theorem 5.4. An associate surface of an Ω-surface is itself an Ω-surface.

Appendix A. The quadratic differential

In this appendix we prove some facts about the quadratic differential that
arises in the definition of Lie applicability (see Definition 3.1) in order to
prove Theorem 3.11. In particular, we shall characterise the condition that
a quadratic differential is divergence-free in terms of certain special lifts of
the curvature spheres.

Suppose that f : Σ → Z is an umbilic-free Legendre immersion and let
q ∈ Γ((T ∗

1 )
2 ⊕ (T ∗

2 )
2) be a quadratic differential. Then for any representative

metric g of the conformal structure c, there exists a symmetric trace free
endomorphism Q ∈ ΓEnd(TΣ) such that

q(X,Y ) = g(X,Q(Y )),

for any X,Y ∈ ΓTΣ.
Now the conformal structure c gives rise to a product structure J which

acts as id on T1 and −id on T2. Since the Hodge star operator ⋆ induced by
c acts as id on T ∗

1 and −id on T ∗
2 we have, for any α ∈ ΓEnd(TΣ),

⋆α = α ◦ J.

One then deduces the following lemma:

Lemma A.1. Q ∈ ΓEnd(TΣ) is trace-free and symmetric with respect to
c if and only if ⋆Q = −J ◦Q.

Corollary A.2. Suppose that Q ∈ ΓEnd(TΣ) is trace-free and symmetric
with respect to c. Let g be a representative metric for c with induced Levi-
Civita connection ∇. Then d∇⋆ Q = 0, i.e., Q is divergence-free, if and only
if d∇Q = 0.

Proof. Since ∇ is the Levi-Civita connection for g, we have that d∇J = 0.
Then, using Lemma A.1 and the Leibniz rule,

d∇ ⋆ Q = −(d∇J) ◦Q− J ◦ d∇Q = −J ◦ d∇Q,

and the result follows. □
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We say that q is divergence-free with respect to c if for any representative
metric g, the endomorphism Q ∈ ΓEnd(TΣ) defined by

q(X,Y ) = g(X,Q(Y ))

is divergence-free.
Assume that the signature of q is constant over Σ. Recall from Subsec-

tion 3.1 that after possibly multiplying q by ±1 and reordering the curvature
sphere congruences s1 and s2, there exists (unique up to sign) lifts σ1 ∈ Γs1
and σ2 ∈ Γs2 such that

q = −ϵ2(dσ2, dσ2) + (dσ1, dσ1),

where ϵ ∈ {0, 1, i}.

Lemma A.3. q is divergence-free with respect to the conformal structure c
on TΣ if and only if d1σ1 ∈ ΓT ∗

1 ⊗ s2 and ϵ2d2σ2 ∈ ΓT ∗
2 ⊗ s1.

Proof. Let g be a representative metric of the conformal structure c and let
∇ denote the Levi-Civita connection of g. Since T1, T2 are the maximally
isotropic subbundles of this metric, we have that ∇ZX ∈ ΓT1 and ∇ZY ∈
ΓT2 for any X ∈ ΓT1, Y ∈ ΓT2 and Z ∈ ΓTΣ.

Let Q ∈ ΓEnd(TΣ) such that

q(X,Y ) = g(X,Q(Y )).

Since q ∈ Γ((T ∗
1 )

2 ⊕ (T ∗
2 )

2), we have thatQ(T1) ≤ T2 andQ(T2) ≤ T1. Hence,
Q is symmetric and trace-free with respect to g. Now for X ∈ ΓT1 and
Y ∈ ΓT2

dY (q(X,X)) = −ϵ2dY (dXσ2, dXσ2)
= −2ϵ2(dY dXσ2, dXσ2)

= −2ϵ2((dXdY σ2, dXσ2) + (d[Y,X]σ2, dXσ2)).

On the other hand, since ∇ is the Levi-Civita connection we have that

dY (q(X,X)) = dY (g(X,Q(X))) = g(∇YX,Q(X)) + g(X,∇YQ(X)).

Furthermore, −ϵ2(d[Y,X]σ2, dXσ2) is equal to

q([Y,X], X) = g(Q(∇YX −∇XY ), X) = g(Q(∇YX), X),
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since Q(∇XY ) ∈ ΓT1. Hence,

−2ϵ2(dXdY σ2, dXσ2) = g(∇YQ(X)−Q(∇YX), X).

Therefore, since ∇YQ(X)−Q(∇YX) ∈ ΓT2, −2ϵ2(dXdY σ2, dXσ2) = 0 if
and only if (∇YQ)(X) = 0. One can then check that −2ϵ2(dXdY σ2, dXσ2) =
0 if and only if ϵ2dY σ2 ∈ ΓT ∗

2 ⊗ s1. Similarly, one can show that (∇XQ)(Y ) =
0 if and only if dXσ1 ∈ ΓT ∗

1 ⊗ s2. Therefore,

(d∇Q)(X,Y ) = (∇XQ)(Y )− (∇YQ)(X) = 0

if and only if ϵ2d2σ2 ∈ ΓT ∗
2 ⊗ s1 and d1σ1 ∈ ΓT ∗

1 ⊗ s2. The result follows by
applying Corollary A.2. □
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