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On the Morse index of Willmore
spheres in S°

ALEXIS MICHELAT

We obtain an upper bound for the Morse index of Willmore spheres
¥ C S% coming from an immersion of S?. The quantization of
Willmore energy, which is a consequence of the classification of
Willmore spheres in S? by Robert Bryant, shows that there exists
an integer m such that #(X) = 4wm. We show that the Morse
index Indy (X) of the Willmore sphere ¥ satisfies the inequality
Indy (2) < m.

1 Introductionl 1337

2 T | 1 — F the Will F : ] 1343

[3__First and second variation of GGauss curvature 1361
4__Index estimatel 1373
[References| 1404

1. Introduction
1.1. Definitions and statement of the main results

The problem of estimating the index of a minimal surface is rich, and has
strong connections with complex analysis and algebraic geometry. In this
paper the goal is to study the index of Willmore spheres from the 2-sphere
S2? into the 3-sphere S®. We first recall a few definitions. Let (N", k) be a
smooth Riemannian manifold, and ¥ be a connected (possibly non-compact)
Riemann surface. For every smooth immersion U:2 o N " we define the
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Willmore energy of ¥ by
(1.1) W () = /E |2 dvol,,

where g = U*h is the induced metric on >, and ﬁg is the mean curvature
tensor of W(X). Then we can define a conformal Willmore functional by

(1.2) WNH(@):/E(yﬁgyuKh) dvol,

if K, = KNn(\f'*TE) is the sectional curvature of the 2-plan \fJ*TE CTN™.
It is conformally invariant in the sense that for every conformal diffeomor-

phism ¢ : (N, h) — (N™, k) and for every immersion U : ¥ — N of a closed
surface >, we have

Wn(T) = W, (p 0 D).

In this general setting, this property is a theorem of Bang-Yen Chen (see [4],
[5]). In the case where N™ = S™ and h is the standard metric, we simply have

Won(T) = /E (1+14,[?) dvol,.

Furthermore, if p € S™ and 7 : S™\ {p} — R" is a stereographic projection
from p such that p ¢ ®(X) C S™, as 7 is conformal when R" is equipped with
its flat metric, we have

Won(U) = Wn (70 T).
In R™, we obviously have

Wan (F) = /E |2 dvol,.

We also notice that for every conformal transformation ¢ : R U {oo} — R" U
{oo} such that p=!(c0) N ¥(X) = &, we have

Wi (p 0 ) = Wien ().
However, this identity is no longer true in general if ¢~'(c0) N W(X) # @.

Inversions of minimal surfaces are counter-examples, as we shall see later.
In the special case of R, we define another globally conformal invariant,
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where we do not take the extrinsic curvature K} (as in ([1.1))) which vanishes
identically, but rather the Gauss curvature K, of U(X) C R™. It is defined by

WRH(@):/E(@F—KQ) dvol,,.

Notice in particular that it differs with #&~ as defined in . As the 2-form
(|I—ﬂ[g|2 — Kg)dvol, is invariant under any conformal transformation in R™ (see
[2], [32]), the functional #&~ is a fortiori a conformal invariant. If ¥ is closed,
then by the Gauss-Bonnet theorem, we have

/ Kydvoly, = 2mx (%),
2

where x(X) is the Euler characteristic of ¥. Therefore, the two functionals
Wgn and #g» only differ by a constant when we consider immersions of a
closed (compact connected) Riemann surface ¥. We say that an immersion
U : ¥ — R" is a Willmore immersion if it is a critical point of Wg». We will
always assume that Willmore immersions do not have branched points when
they are defined on a closed Riemann surface 3. For a smooth immersion and
in codimension 1, this is equivalent to

AgHy +2Hy(H} — Kg) = 0.

Here, H, is the mean curvature function of () C R3 (see [24] for a weak
formulation of this formula and its consequences). This equation goes back to
the works of Blaschke ([2]) and Thomsen ([29]). We remark that for a minimal
surface & : ¥ — R"™, we have ﬁg =0, so ® is an absolute minimiser of the
Willmore energy, and by conformal invariance, we deduce that its inversion
centred at a point outside of 5(2) is a compact Willmore surfaces. Likewise,
its inverse stereographic projection in S® is a Willmore surface. These are the
simplest cases of Willmore surface.

In the special case that ¥ = 52, we call a Willmore immersion a Willmore
sphere. To define the (Morse) index for critical points of the Willmore energy,
we first need the following definition.

Definition. Let ¥ be a connected Riemann surface, and (N", h) be a Rie-
mannian manifold that we suppose isometrically embedded in some Euclidean
space RY. The set of weak immersions from ¥ into N is as follows

WH2(3, N") = W2(3, RY)
N {\17 : ®(z) € N™ and d¥(z) is injective for a.e. z € E} ,
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Then for all ¥ € W22(3, N"), we define
W22 (2, TN") = W22(2, TN™) 1 {4 : () € Ty, N" for ae. v € £} .

The index of a critical point U € Wf’QgZ, N™)NWHee(%) N™) of the Will-
more functional W, denoted by Indy (V), is defined as the dimension of
the maximal subspace of WéQ(E, TN™) N WL(S, TN™) where the second

derivative D?W () is negative definite.
Our main result is the following.

Theorem 1.1. Let U : S — 53 be a Willmore sphere, and m € N be the
integer defined by

m = EW(‘I’) = E /Sz(l + Hg)dvolg.
Then we have
(1.3) Indy (V) < m.

These Willmore spheres are always assumed to be globally defined, i.e.
they do not admit branched points. This implies that they are smooth (see
[25], [27]). This hypothesis is made in order to apply Bryant’s theorem ([3]).

One may conjecture that the index of a Willmore sphere, seen as a func-
tion depending on the number of ends m of the dual minimal surfaces given
by Bryant’s theorem, is bounded by two affine functions of m with positive
slopes. One reason this might hold comes from minimal surfaces theory, where
this property is exactly verified. (see [10], [30], [8], [7]). However, we do not
obtain any lower bound in this work. Furthermore, we think that it is pos-
sible to improve the bound Indy () < m (if #g:(¥) = 47m) to the bound
Ind«;//(\I_}) < m — 3. The reason is that the first non-trivial Willmore sphere
has energy 167, so for m = 4 there should be only one direction to decrease
the energy in the class of non-branched Willmore spheres. The non-existence
of Willmore spheres with energy 8 and 127 is a direct consequence to the
non-existence of minimal surfaces with genus 0, embedded planar ends and
total curvature —4mw and —8m (see [17], [18]).

Another reason why this Willmore surface of energy 167 should have index
less or equal than 1 is the following: if, as conjectured by Kusner (see [14]),
the Bryant Willmore surface with energy 167 realises the min-max sphere
eversion (see also open problems 4 and 7 in [26]), its Morse index should
be bounded by the number of parameters of the min-max (see for example
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[19] for such theorem in the case of minimal surfaces). As such a critical
point would correspond to a path of immersions between Euclidean spheres
of opposite orientations (that is, a 1-dimensional min-max), its Morse index
should be less or equal than 1.

Acknowledgements. [t is a pleasure to thank my advisor Tristan Riviere
for useful discussions and motivation about this problem. The author is grate-
ful to the referees for their very careful reading of the preliminary versions
of the present paper and for their precise questions which helped improve
significantly the quality of the manuscript.

1.2. Organisation of the paper

In Section [2] we will derive the first and the second variation of the Willmore
functional in a general setting, and in Section [3, we will derive the first and
the second variation of the Gauss curvature. As Sections [2 and [3] are rather
computational, they are self-explanatory, we will describe in more details the
content of Section [4] which contains the formulae for the index and the proof
of Theorem [L.1]

We first recall one of the main result of Bryant’s classification theory.

Theorem 1.2 (Bryant, [3]). Let U : S2 — S3 be a Willmore sphere. Either
U s completely umbilic and \IJ(SQ) C S3 is a round sphere or there exists a
point p € \II(SZ) C S% and a stereographic projection 7 : S3\ {p} — R3 such

that U=1({p}) is discrete and
ToW: 2\ U ({p}) = R?

is a complete minimal sphere in R® with finite total curvature and embedded
planar ends.

By the conformal invariance of #, the index of a Willmore sphere e
S? — 53 is equal to the index of 7 o R ECLIN R3, where 7 is a stereographic
projection whose domain includes the image of 0.

Therefore, we fix some Willmore sphere U 52 — R3 Up to translation,
by the theorem of Robert Bryant ([3]), the image ® =i o W is a branched min-
imal surface with finite total curvature and planar ends (we refer to Section [4]
for the definitions), where i : R® U {00} — R? U {oo} is the inversion centred
at 0. Let g (resp. rig) be the unit normal of U (resp. of ). We deduce that
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if ¥ is a normal variation of \I_j, that is, v = vy for some function v, then
D*W(0)[5, 5] = D*#/(9)[¥, 4] = D*# (®)[, 7]

where @ = |®[?v fig. So the index of U is equal to the index of ® for normal
variations of the form o = |5|2v fig. The later can be explicitly computed,
as for a minimal surface the index quadratic form simplifies significantly.
Indeed, we have the following intermediate result, which is the main object
of Section [3l

Proposition 1.3. Let ¥ be a connected Riemann surface and ® : ¥ — R3 be
a complete minimal immersion. Then for every normal variation W = wig,
we have

(14)  D29/(®)[i, @] = /E {;(Agw—2ng)2dvolg

1
—d ((Agw + 2K w) *x dw — 5% d|dw|§) },
where * is the Hodge star operator.

In particular, we will see that the index of U for W (or #/) is equal to the
index of @ for # for the special class of variations @ = @\20 fig. The residue
term coming from the exact form on the right-hand side of will actually
give all the negative directions, and it can be computed explicitly thanks to
the Weierstrass parametrisation and the planarity of the ends of the minimal
surface ®(X) C R3.

Theorem 1.4. Let X be a closed Riemann surface and d:% \{p1,- -, Pm}
— R? be a complete minimal immersion with m embedded planar ends such
that U = io® : % — R3 is a non-branched Willmore immersion. For all 1 <
Jj < m, we fix some small enough disjoint charts (U;,u;), where u; is a com-
plex coordinate u; : Uj — D* C C such that uj(p;) = 0. For all normal vari-
ations U= viig of \f/, we have

2o (TN A — T 1/ _ 2
(1.5) D=y (V)[v, 9] = 11%11%{2 ER(Agw 2K w)“dvol,
" Res j(é,U‘)
— A pR2 J ’UQ(p])}

Jj=1
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Here, w = \CI;\QU, g= CIS*QR:;, the set X is defined by

Sr=5\ | D20 R)

=1

where for all 1 < j <n, we have D%(p;, R) = u;l(D%(O,R)) (for 0 < R <
1), and finally, Respj(tf, U;) is a positive number given by Definition (it
is independent of u;, but not of U;). In particular, the limit on the right-
hand side of exists and is a well-defined real number for every normal
variation

7€ W2P(S,R*) n W2 (S, RY).

The residues Respj(5, U;) of the minimal immersion & with embedded
planar ends at the points p; (1 < j < m) are defined in Definition . The
quadratic form DQW(\I_}) can be seen as a special case of a family of Schrédinger
operators associated to meromorphic functions. This demonstrates the strong
analogy to the index theory for minimal surfaces (see Section for the
general discussion and the papers of Shiu-Yuen Cheng and Johan Tysk [6],
Sebastian Montiel and Antonio Ros [20] for the links between Schrodinger
operators and the index of minimal surfaces).

2. First and second variation of the Willmore functional
2.1. Definitions and notations

Let (N™, h) be a smooth Riemannian manifold, V be its Levi-Civita connec-
tion, R be its Riemann tensor curvature, and M™ C N be an isometrically
embedded sub-manifold of N". The induced Levi-Civita connection on M™
by the injection ¢ : M™ — N™ will be denoted by V = +*V and R will denote
the Riemann curvature tensor of V. If mp; : TN — TM 1is the orthogonal
projection, then V is characterised by the condition

VX = (VX)T = my(VX)

for every vector field X € I'(T'N). As a consequence, we have for every vector
fields X, Y, Z € I'(T'M) the identity

(VxY,Z) = (VxY, Z).
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Let I be the second fundamental form of M™ C N " the symmetric two-tensor
IeD((T*M)®* @ (TM)™*), characterised by the following condition : for all
vector fields X,Y € I'(T'M), we have

I[(X,Y)=(VxY)" =7m,(VxY)

As V is torsion-free, we have

-

I(X,Y) = (VxY)" = (Vy X — [X,Y])" = (Vy X)" = T(Y, X),

so I is symmetric. The connection V also induces a connection V+, which we
call the normal connection, such that on the total bundle *T'N™, we have
the decomposition V = V + V+. Furthermore, V' induces a connection on
the bundle (T*M)®? @ (T M)+, still denoted by V-, such that for all vector
fields XY, Z € I'(T M), there holds

- —

(VxI)(Y, 2) = Vx(L(Y, 2)) - 1I(VxY, Z) - (Y, Vx 2).

The main symmetries of the second fundamental form are gathered in the
following theorem (see [23]), which we explicitly recall for the convenience of
the reader and to fix notations.

Theorem. (i) (Gauss formula) For all X,Y € I'(TM),
VxY = ﬁxy + E(X, Y)
(ii) (Gauss equation) For oll XY, Z W € I'(TM),
R(X,Y,Z,W) = R(X,Y, 2, W) + (I(v, 2),1(x,w)) - (I(X, 2),T(v,W)).
(ili) (Codazzi-Mainardi identity) For all X,Y,Z € T'(T'M), we have
(VRD)(Y, 2) = (V¥D)(X. 2) + (R(X,Y)Z)".

Here and subsequently, assume N to be 3-dimensional. Let 3 be a con-
nected Riemann surface, and ® € W22(X, N3) be a smooth immersion. We
restrict ourselves in the following computations to dimension 3 only to sim-
plify the presentation, as we will deal with a local normal unit vector-field
inducing locally the second fundamental form, whereas for a n-manifold, we

need to deal with a (n — 2)-vector field, adding sums only in computations,
and not in final formulae. Let g = ®*h be the induced metric on X, (¢; j)1<i j<2
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its local components and (g ’J)1<l j<2 be the components of the i inverse of g.
We define the mean-curvature tensor field H of the immersion & : ¥ — N3
by

12
075 2 97k

where for 1 <1i,7 <2, we define ]I” = H(el,e]) (Vzé;)t if V is the Levi-
Civita connection on (N3, h), €, = 8%@ fork=1,2,and L: TN® — &,(T%)*
is the orthogonal projection.

2.2. First variation of W
We define for i = 1,2, ¢; = 8;51.(5, and we use a conformal local chart where

,5°

In particular, we have
- - 1 -
2 = |0, B = (0., = S|V

In the following Sections, we will compute the first and the second variation
of a weak immersion ® € W22(X, N") N W1°(%, N3). Notice that can al-
ways, by a standard approximation argument, suppose that the immersion is
smooth.

Definition 2.1. Let X be a closed Riemann surface and & € C* N
W22(3, N3) be a smooth immersion. An admissible variation of ® is a C?
function

{Biier € C2 (1,6 NWEA(E, NP)),

such that 50 = . Here, I is an open interval of R containing 0, and we define
by abuse of notation the variation of {®;}c; by

d -
i=—o .
v (dt t) |t=0

Furthermore, for all t € I, we set

5 12
g, =28, o VoL

dt "’ 2
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In particular, in this definition, we have
Wy = W.

2.2.1. First variation of the metric. Here we compute the first variation
of the metric, of its inverse and of the induced volume form.

Lemma 2.2. Under the preceding hypotheses, we have for 1 <1i,j <2, and
foralltel,

21) ot = (Ve &) + (Ve i &),
(2.2) %g”j (t) = —e~ 0 (<va(t)wt, 5j(t)> + <v€j(t)wt, e:»(t)>) ,
(2.3) %dvolg(t) = (d3,, dwt>g(t) dvol (.

Here, for all t € I, the metric g(t) = fﬁfh s the pull-back of the metric of
(N3, 1) by ®,.

Remark 2.3. Notice that in this Section, we only need the value of the
derivative at t = 0 for the first variation, where g; j = 0; ;. We shall however
need the value for all t € I in the next Section where we derive the second
derivative of the Willmore energy.

Proof. To simplify the notations, we will drop most of the ¢ indices in the
proof. Fix 1 <4,7 < 2. Locally, we have g; ; = <8ZiCI>t, Oz, <I>t>. Therefore, the
compatibility of the Levi-Civita connection V with the metric gives

% (00,81, 0,8, ) = (V200 8, 00, 81) + (V 2.0, 1, 00,8, )
= (Ve &) + (Ve 0, €;) .

Then, we obtain

d d

%detg( ) = T (91 1922 — 91 2)
=2((Va,é1) gao + (Va,l, &) g11
- (<V~1u7, €2> + <V5‘ >)gl 2)
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which specializes for ¢t = 0 to

d
— det g = 2™ (<Vglu7, €1> + <V52U7, €2>)
dt |t=0

This implies as dvoly, = +/det g; dx1 A dxo locally that
d

vol

gl = (dd, du7>gdvolg.

Now, the explicit formula

i — (1 it+j Jit1,j+1
9" =(-1) oty

gives

d ;. il o L
(2-4) @9 7= (—1) I (6 ° (<Va+1wa €j+1> + <V5j+1w7 €z‘+1>)
5 2\ 262)\<<V€iw7 €l> + <v€7‘+1w’ a+1>)>
— i€ D) :
e

The formula (4.45)) specialises for i = j to
d
at?

while for (i,7) = (1,2), we obtain

d _ L L
%91,2 — e (Vg &) + (Vg 1)) .

ii _2674)\ <v€iw’ @)

Finally, we deduce that

d

%gl’] = _674)\ (<v5iw7 €]> + <v5'w7 €J>) )

which concludes the proof of the lemma. O

2.2.2. First variation of the second fundamental form. We notice
that even if we have chosen a local chart where ® is conformal, for ¢ # 0, P,
is not conformal in general, and as we aim at computing second derivative,
we must keep track of the exact quantities depending on t. Therefore, we
introduce the following definition.
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Definition 2.4. Forallt € I, and i = 1,2, we define the two quantities e>*(*)
and e2Mi(®) by

62)\(t) = ’axl(ﬁt A 8x2£t|a 62)\i(t) = gi,i(t), M(t) = gl,Q(t) = <8x16t7 ax2(I_;t>

Lemma 2.5. Let 0, € T(T'N®) be a time-dependant smooth vector field on
N3, and let us denote mg, the orthogonal projection TN3 — &4, (TY). Then
we have

T, () =g; " (Eﬁt’&vl(}iti) (&Elcﬁt, 31»2(130

Ut, Oz, Dy
where g; ' is the inverse of the metric g, = (fﬁ{h, viewed as a squared 2-matriz.
Lemma 2.6. Foralll <i,5 <2, we have
@)

Vi@tfm = ((Vavaj = V(v.e) )W+ R(W,&)e
2 2
(25)  =VgVgd— Y TEVad+ Y ¢ (Ve )+ (R(w,6)e)"
kl=1

2,
k=1

if Fﬁj are the Christoffel symbols of the metric g, = 5;%

Proof. As i is a unit vector, we have V4 i; = 0, as
dt

<Viﬁtaﬁt> = <Vﬁﬁt,ﬁt> =0,
dt dt

and furthermore, by lemma ({2.5)),

dt

Vi = e M0 (220 (75, V, &) - p(t) (7, Y, 5,5)) 0 B
v

— e (—u (1, Vg, ul) + e*M (7, V52U7>) ey
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where @y = V a Cft, dropping the t index on the last line. And, if 7 is a smooth
t
vector-field on N3 depending of ¢, we have

= —e™ (22 (5, @) — p(t) (5, &) (7, Ve, @)
o (6—2/\1 (Ty, @) — 1 (h, é’1>> (11, Vg,i)
= — <ﬁt; vmf,(ﬁt)u_;t> - <ﬁt’ V(E‘)th>

so we get
(2.6) Vi ()t vdut Vi @

Therefore, we deduce that

dt

Vil = (VaVad,ii)i— (i, Vg, @)

and

V%Vele*j = VaV%@ + R(W, )€}
= Vgngjw + R(ID’, €; _’]
Finally, we obtain
Vil = (VaVed + R, &) — Vv, s, i) i
dt

= {(VaVe, = V(v,e)7 )i + R(i, &)&), ) 7

1
= ((VaVe, = Vig,o) )0 + R0, 6)E)
which concludes the proof of the lemma. O

2.2.3. First variation of the mean curvature. We deduce from (2.2)
and (2.6 that, making the shift of notation &; = e=*9,,® (therefore (¢, )
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is an orthonormal frame for Cﬁ)

1 /d .\ = y -
(2.7)  VuH, = 3 > (dtg”> I; j + "’ (Vﬁﬂz‘,j)

d
dt

and

is a curvature operator. Indeed, we define the second order differential opera-
tor Vi y (see [9], 5.4.12 for example),acting on Section of the total pull-back

bundle ®*T'N3, such that
Viy = VxVy = Vg

Then, we define the normal Laplacian Ag as
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if (€1,¢€3) is a local orthonormal frame. In particular, we have for any @ as
before

28)  ((VxVy — Vigyyyr) @) = Vayti + VEVId

Then ([2.8)) implies that

2 2 2
Y ((VaVe ~ Vigney ) @) =Y. V20 + Y (Vew.e) e e)

Therefore, we deduce that

. d .
DW(®) - = (/ \Hgt\zdvolgt>
dt Jx |t=0
_ (/ (V 1 H,,, ) dvoly, + /|Hgt|2( dvolgt)>
b |t=0

_ / <Anu‘}+%1 (@) — Z (Ve e T, g>dvolg

ij=1

+ /Z | Hy|? (d, du7>g dvol,.

We notice that this formula holds for the minimal regularity assumption i.e.
for & € W22(2, N™) N W (%, N3). Furthermore, as mentioned in the intro-
duction, it does not depend on the dimension of N, and is actually valid in
any dimension. Indeed, in a Riemannian manifold (N™, h) one simply needs
to replace 77 with a (n — 2)-vector inducing the second fundamental form, still
denoted by 7. Then locally, 77 = 7y A - - 7i,_o where (71, ...,7,_2) is an or-
thonormal basis of the normal bundle of CI;t. Extending by parallel transport
the 71; (1 < j < n — 2) such that V4 7i; = 0, the formula is still correct

and we get immediately the result. “
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If ® is smooth, and @ is a normal variation, (Vew, ) = — <1U,}Ti,j>, SO
we get

a [ L S (DN

- /E H2dvol, = /E <Agw+%’ (meZl <w,ﬂl,]>]1w,Hg> dvol,

This gives the classical Willmore equation (see the paper of Joel Weiner [31],
and notice the different conventions we use here)

(2.9) AGH, —2|Hy*Hy + o (Hy) + %7 (H,) = 0.

which is valid in an arbitrary Riemannian manifold (N", k) such that D
¥ — N™ is an immersion. Here ./ is the Simons’ operation, defined by

MIIES> (H,.1@ )T e)

2,j=1

if (1,) is a orthonormal frame on ®,(T%) (we recall the shift of notation
€ = e—Aaxié). In dimension 3, the equation can sometimes be written in a
simpler way if cf>(2) has a trivial normal bundle. Indeed, in this case, we can
define up to the sign of a normal vector-field, the scalar mean curvature H,
defined by ﬁg = H,n. This easily gives

ATHy = (AgHy)i.

o (Hy) = |L,[* Hyit
we finally obtain

AGHy — 2| Hy|*Hy + o/ (Hy) + % (H,)
= (AgHy — 2H} + |T,|*Hy + Ric (i, ) H, ) 7

S

= (AgHy — 2H} + (AHZ — 20,) Hy + Ric(7, 1) H, )
(AgHy + 2H,(HZ — Ky) + Ric(i, i) Hy ) 7
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which is equivalent to
(2.10) AgHy+ 2Hy(H — K,) + Ric(ii, i) Hy = 0
if Ric is the Ricci curvature of (N3, h).

2.3. Second variation of W

Let @ : © — N3 be a smooth critical point of W. Then the second variation
of W is well-defined, and does not depend on the variation « such that

Therefore, we choose a variation @ such that

d -

and we abbreviate this expression by abuse of notation as Vgw = 0. We will
omit the proof of the following lemmas, as they are analogous to the previous
ones.

2.3.1. Second variation of the metric. We split the preliminary com-
putation into two lemmas.

Lemma 2.7. Let 1 <1,j <2 be fizred indices. We have
d2
(2.11) (dthi’]) = 2(Vew, Vg,w) — 2 (R(€;, W)W, €;) ,
|t=0

dz ..
(2.12) (dtggﬂ =272 (= (Val, Ve, 0), + (R(&, 0)i, &), )
[t=0
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2
(2.13) (;;dvolgt> =<|dw|§—%(w,u7)
[t

=0

where
R (W, ) = e Z &) -

2.3.2. Second variation of the second fundamental form.

Lemma 2.8. We have for 1 <i,j <2

—

vi@ Vii L = <R( &)V, + Vo R(W, &) + R(V 0, &)W

+ R(@, T; ;) )@ + R(W, &)V, @ + VgR(1T, €)E;
+ R(w, Vgw)e; + R(W, €)Vew
(Ve

1
(Ve Ve, — Vv, o) )@ + R(T, )&, & >Vekw).

Proof. Thanks to ([2.6), we have in the preceding notations of the proof of
Lemma (¢ is a smooth vector-field on N3 which is C! regular with respect
to time)

(2.14) Vi ()" = Vi — Vi,

and

Therefore, we first have
1
(2.15) Vi (Ve Ve )" = (VaVavVew) - VS ve o @

2
= (R(W, &)V, + Ve VgV @)™ — > (Ve Ve, ) Vi i
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Then, we compute

€ €L
(216) Vi (Viv,e)@) = (VaViv,zr@) -V @

Viwe,enTmT

(
= (R, (V&) )i)

— Y (V(voe)r @ &) VD,
k=

=

Finally, we easily have

k=1

Gathering ([2.15)), (2.16) and (2.17) we obtain

VLEVLT, = (R(w, &)Ve, @ + Vo R(@, )0 + R(Va @, &)

+ R(w, Ve, &)W + R(w, €;) Ve w — R, (V&) )i

VR, 8)E, + R(d, Ve i) + R(, a)vgjw)

k=1

1355
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= (R(w, &)V e, @ + Ve R(6, )i + R(V .6, &)id + R(w, ;)

+ R(5,8) Ve + ViaR(@, &) + R(T, Ve, d)E + R(, &) Ve, &

1
2
- Z <<v€iv€j B V(Véigj)T> W+ R(u_f, gz)‘%’ €k> vékw>
k=1
This concludes the proof of the lemma. ]

2.3.3. Second variation of the mean curvature. Now, making as ear-
lier the shift of notation €; = e=*d,,®, we obtain

2 2
- 2 .\ = d ;. . B S
2V Vi Hy = 37 (dtzg J) L +2 <dtg ,]> (vﬂi,j) + 6,56V Vil

+3 (R(w, NV 2 + Ve R(W, 80 + R(Vedi, &) + R(w, (6, &))w

w, € .
9 1
_Z<(V&V@1 ~ V(v ey )@ + R(1 ez)el,ek>v w)
k=1
Then
d Lol I
1, = 2(V4 Vi Hy, Hy ) +2| Vi Ay
and

N 12
S / |H,,|2dvol,, = / (Va4 Ay i) +2| V4 A, dvol,

dt

dt
d
+4/ VLHwH (dtdvolg> /\H \2< dvol)
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As

1. - _ 2 .

Vi H, = 5 | Afd+ (@) - Y (Ve &) I,
ij=1
we get
(2.18)
— 2 —
DAW ()i, ] = | < > { (2 (= (Va, Ve,b) + (R(E, 0@, &) (7, &)
b)) -
2,j=1

2 1
-y (vava—v(vgigi)T)w+R(w7a)a,gk>vgkw>  H, Ydvol,

k=1

/\

+
N | —
T

>

Q3

g

+

N

PR

@

|

4

o

&

i

=

Analogous computations for the second derivative of the Willmore energy
in different special cases were already present in the literature (see [11], [15],

[21).
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We remark that this formula makes sense for ® € W22(%, N3N
Whee(3 N3), and @ € W22(X, TN3) N WL°(S, TN?). This formula does
not use the fact the IV is 3-dimensional, and as mentioned above, it remains
valid in every C® Riemannian manifold (N™, k) (this regularity is necessary,
as VR is only continuous in a C® manifold).

In particular, if ¥ is a closed Riemann surface, p1,...,p, € X are fixed
distinct points, and ® : & \ {p1,...,pm} — R" is a complete minimal surface
with finite total curvature, and @ is a variation compactly supported in ¥\

{p1,-..,Pm}, then

9 2
ATG+ R (0) = Y (Ve &) T,

ij=1

- 1
(219) DW(B), @] = / dvol,
b

> 0.

This inequality (2.19) shows the obvious fact that a minimal surface, which
is an absolute minimiser of the Willmore functional, is stable. For a normal
variation, i.e. such that @ = 7z (), we have

(Ve &) = — (@, Vady) = — (0,16, &) )
SO
SIS | 7 Lo .k
D*W (&)[i, ] = §/Z\Agw+@1 (i) + o ()] dvol,

where o/ is Simon’s operator, defined by

i) = 3 (T 5)) ).

ij=1

In the case of a surface with trivial normal bundle, this equation gets even
simpler, as there exists w € W22(3, R), such that @ = w i, and

. 1 . 2
(220 D*W(B)7, ] = / (Agw -+ (1T, + Ricya (7)) dvol,.
b

Indeed, if V = d*V is the2tangent connection defined on X, then we define
a second order operator V; ; (see [9], 5.4.12 for example), acting on smooth
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function on X, such that

If f € C?(X), then we get the following expression for the Laplacian A, on X
=2 2o
Agf =TV f=> "V, [
i=1

We deduce that for a normal variation @ = wii, as (Vz€;)" = V€, we have
as 71 is a unit vector-field,

((VaVe = Viv.e)r) “7>L

(Vijw) it +w (Ve Ve, i) i
(Vijw = w(Vei, Vei)) i
(Vi]w - we*4’\ (HiJH]‘J + Hi,QHj,2)> n

SO

while

So we also have
2

2.21
( ) dt2

dvol, = (|dw|§ + w2|}fg|2 — w? Ricys (71, 7)
— 2w (I(1, )2 + (6, &)? + 21(71, &)?) ) dvol,
= ((ldw? = (|Ty[2 + Ricys (7, 7)) w?) dvol,.

Now let A be the area functional. By (2.21)), if ® is a minimal surface, we
have

D2A() [, ] = /E (ldw2 = (o[ + Ricys (7, 7)) w?) dvol,
=— /2 w (Agw + (|]Tg|2 + Ricpys (7, ﬁ)) w) dvolg

= —/ w Lgw dvol,
»
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so for a minimal surface CI;, if Ly is the Jacobi operator of Cf>, we obtain

. 1
DW (@)@, @) = /E (Lyw)*dvol,.

An other interesting case is the second variation of the conformal Willmore
W = W#gs for a minimal surface in S®, already present in the paper of Joel
Weiner ([31]) presenting first the Euler-Lagrange equation of Willmore func-
tional in arbitrary Riemannian manifolds. If $: ¥ — 53 is a minimal surface,
then

(2.22) D*#(®)[w, @] = D> A(D) [, @] + D*W (®)[1, 0]
= / ]dw|§ - (|]fg|2 + Ricgs (7, 71 ) w?dvol,,
3
1 - 2
+5 (Agw+ (JTy[* + Ricss (77, 7)) w) " dvol,

- _/ (A w + (|]Tg]2 + 2) w) dvol,

1

+ 3 (Agw+ <|]I |2+2) ) dvol,
;/ Aw+ |]Iy +2) )(Agw+yﬁ’g\2w) dvol,
1

=3 (Lg — 2)w) dvol,

so the index (for the Willmore energy) of a minimal surface in S is equal to
the (finite) number of negative eigenvalues of the strongly elliptic operator
Lg o (Lg — 2). Therefore, if X is a positive eigenvalue of Ly, E) the eigenspace
associated to A we define by

dim F A
the dimension of the eigenspace. Therefore, we deduce that

(2.23) Indy (®) = > dimE).

0<A<2

which was already contained in the paper of Joel Weiner [3I] (notice the
different sign convention which we used here).
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3. First and second variation of Gauss curvature

In this Section, we compute the first and the second variation of the Gauss
curvature. This may seem at first useless according to the Gauss-Bonnet the-
orem, as for every closed surface X, for every smooth metric g on 3 we have

/ Kydvol, = 21 x(X),
s

where x(X) is the Euler characteristic of 3. However, this formula is not valid
for non-closed surface. And when we perform variations, the total curvature
does not stay constant in general. The necessity to consider non-closed sur-
faces will be clarified in the next Section, and the reader may first skip this
technical part to get first some motivation for performing these computations.
We fix an arbitrary connected Riemann surface 3, which is not supposed to
be closed.

3.1. First variation of K

Lemma 3.1. For all smooth immersions d:¥% - R", for any admissible
variation {®¢}ier (in the sense of Deﬁnitz’on of ®, we have for allt € I,

% (K dvoly,) = d(\/diTgt( (= (Ti1(®), Ve ) + (Tua(t), Ve, ayith ) ) dan

+ (<]T2,2(t), Va(t)lUt> - <]T2,1(t), ng(t)lﬁt>) d$2)>,

where for allt € I,

Proof. We have in conformal coordinates
Ky dvoly, = e~ (<]T1,1, ]T2,2> - |]T1,2|2) e day A dis,

where we recall the notation e***) = det g, = ’@gﬁiﬁ A Oy, <I_5t]2. Therefore, we
need to compute
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(3.1) (detgt 7% (<]I1 1,H22> |H1 2| ))
< (det g¢) 2> ]11 1,H22 |]T1,2|2)

+ (det g) 77 % (<I[1 11 2> - UT1,2‘2)
= (I) + (II).

—

We have by Lemma

d 1
(3.2) (1) = ( “(det )" 2)th
= —e P (e (Ve d, &) + € (Ve i, &)

- M(<Vé’1w, 52> + <vﬂzu_ja €1>) th'

Recall that

If e2Xi(t) — |8zl-(f)t|27 we introduce the notation

ot (1) = (Ve (1), 6u(t)) = (32,0, B1. 00,81
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To simplify notations, we drop the ¢ index in the following. We recall that

(83)  (Vad) = e (2 (Vad, &) — n(Vad;, &) &
+e (e% (Vad), @) — 11 (Vs ), @) &

_ e“”‘( 222, —4>\< 2M1

—pa? )814-6 a uaﬂ)e}

) Z ( 2/\L+1a Hal+1) g

while
4 (fy1,Toa) - < v “i( Mol — pal) Vau >
- <v§2w *MZ( Petaby — paky') Vad, ]T171>
and
%ﬁmﬁ —9 <v€1v€2w — A 22: (Praly — pal)) Vad, ﬁ172> .
Therefore, we obtain
(84) ()= ((VAd,ho) + (Vi Ti1) - 2(Va Vo, 2))
(k) (S
+(ad, - o) (Ve ) )
85) #2703 (ol k) (T ).

We first compute , and we first make some remarks about covariant
derivatives . We recall that the covariant derivative V is the orthogonal pro-
jection TR™ — &, (TX) of the flat connection on R™. By the definition of the
covariant derivative V, if X, Y, Z are tangent vectors, we have

- e —

VLY, 2) = Vx((Y, 2)) - L(VxY, 2) - 1(Y,Vx Z)
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while Codazzi-Mainardi identity reads, as R = 0
ViI(Y, Z) = VyI(X, 2).
By compatibility of the connection V with the metric, we get for i = 1,2

(3.6) e (VA T;) = Va, ((Vad,e 2 T;))
2

Now, thanks to the orthogonality of ]Tm-, we have

Va (L) = (¢ (Va (T) @) = (Ve (L) &) &
(2 (9 (1) ) 9 1) )
= —e*“lzzl (e%+1< > <]I” i z+1>)

Therefore, by definition of V, and Codazzi-Mainardi identity, we get
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and now

véﬂﬂ%? gk) = véi (_’j,k) - V; (]_f]}k) - ]T(vé’igj’ gk) - q(é‘j)vé‘ieﬂk)

|
<|
—
& 1
e
N
|
|
W~
<
—
a
)
g
§
Q
QN
S+
AN
~——
=
>

1

4 ZQ: ( 241 <ﬁ’jyk7ﬁ;,l> — <]Tj,k7]fi,l+1>) €

=1

so bringing together both expression, the two sums cancel, and we get

67 Ve (L) = Ve (Iy) + 23 (P00, — ot Ty

=1
2
e lz_; <€2>\z+1a Ma§;1> ]Tk,l
+ 6_4>\Z (62)\1+1 <<_'jk ]T l> — <E j ]Tkl>)

i , e
S (T ) - (T )
e <V W, Vg, (]ng)> —e 2 <VgQIU, Ve, (IT11)>
+e 2A <V w,V <E172)> + e~ <V Ve (E1,2)>

= (i) + (ii) + (iii)
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where (i), (ii) and (iii) correspond to the first, second and third line respec-
tively. Now, we see that

\/legt( (_ <ﬁ1’1(t)’ vf?2(15)“7t> + <ﬁ1,2(t)7 Va(t)@» dxq

+ (<]T2,2(t), vgl(t)wt> - @J(t), vgz(t)@) dx2)>.
Indeed, we have by
{Va (Ve e PDa)) + Ve, (Ve e 2E,))
- Va ((Vad.e ha)) - Ve, ((Vad.e i) fdo A des
— (e (= (1. Vau) + (fia. Va)) da
e (o, Varit) — (o V) ) i ).

Therefore, we simply need to verify that all remaining terms cancel. Using
the Codazzi-Mainardi identity (3.7)) for the first two terms of (ii) cancels the
last two terms and we get

<ﬁ>——e-”< &, e -“12;(%1 — pol) I,
5 (P ) )
- < “i( N (CER RS )
(fiaorn) - (B Fa)) )
—<v 03 (ol ol B
S (ol - ) )
- <vw Z (e ((fia o) — (B o)

— (<]T1,2, ]Tl,l+1> - <]T1,1, ]TZ,H-1>> >€l>

(i)dxy A dxo = (

/N

—

no
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The sum of the even lines of this expression gives
72)‘<Ve1w 674’\< 2)‘2(1111 2’2 <E2 2, IT1 1>)51

- (|H12|2—<H22,H11> >>
)€

— 6_2>\<V32 —aA (6ZA (IT12)? - <]I1 1, I 2> €2
— p(([Tuaf? = (Th1,T22)))é1 )
= 672)\ (eQ)‘Q <Vglw, €1> + 62/\1 <v€2wa 52) —H (<Vg1u7, 52> + <V€2u_j> €1>)> th

which cancels with (3.2)). Now, we have
Oy e =2 (0%'1,1‘32/\2 + Ofiz,zeﬂl —H (O‘il + 0‘%,2))
SO
Oy, = —= O (a e 4 a e ,u( a;q+ ai?)) .

The remaining terms is the sum of the odd lines of the last expression of (ii),

(iii) and ([3.5):

Cbl

o

>
(]

i
5

N
Il
—

—6A

| +
® )
[=2]
>
[ T[]
/N /~ /g\ ~/~
[\
2
+
—
Q
S~
[N
=
S
awt
N— N— — —

N
Il
—

+
ml
o
>
WMN}
—

&
s
Q

|
o
>

+ o+
[ )
&
>
/\/\/é\/'\

Q

Q

e e e
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—6>\ Z ( ( 2>\z+1a ,uall'j'll) <V7U7, _’2,2>
o) (8

2
2676/\ Z (€2Al+lai72 o luloéll—gl) < glU77 1,2> -0
=1
which concludes the proof of the lemma. ]

3.2. Second variation of K

Lemma 3.2. For every minimal immersion ® : ¥ — R3, and for every nor-
mal admissible variation {®4}icr of © with variation vector W = wii, we have

2

(68 o

1
(Kgdvolg,),_g=d ((Agw + 2K w) * dw — 3 * d\dw[3> ,
where x is the Hodge star operator.

Proof. Thanks to Lemma [3.1] we have

%(K dvoly) = d(e_Q/\ (— <]T1,1, 3x21ﬁ> + <]T1,2, 8zlu7>) dxy

+ 7 (T, 00, ) — (1 5, 00y ) d),

where e = M) = det g, = |8$1<13t A 8z2<13t|2. We have as @ = wn the iden-
tity
e (T, 00,0 ) = e 2L (7, 00,0) = e (02, 8,7) Ou 0.

Ti,Tj

Now, as ® is minimal, the mean curvature H, vanished identically, so we
obtain

(3.9) CZ@?AtZO — (01, 8,0,,0) + (0,8, 0,,10)
+

Therefore, (3.9)) implies that

G o) =G (@, 80) aam)
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Choosing conformal coordinates, we compute

= <(82 W) A+ Op w0y 1T + 8xjw8xin + w@ii@jﬁ, ﬁ>

2
=Y (2, 8,0,8) 0y,
1=1 '
(3.10) =02 ;W = W Dy, O 1) — e 2 Z< - Bxl(f;> Oy w
=1
and
d L L d . 2 Y e a a2
7 (8zkw,n)|t_0 = ( Op, W, 2 Tl=0 ) = ; <01kw, e~ (i1, Oy, W) (9IZCI>>
2 . 2
(3.11) =_—¢ 2 Z <3xkﬁ, 8x1<1>> w Oy, w = e Z I ; w Og,w.
=1 =1

Therefore, , we have by (3.10)) and (3.11)

dit <<8§i@j(§’ ﬁ> <al7k w’ ﬁ>> [t=0

2
- <8§i7mjw = w0 (D71, Oy ) — ™02, 8,0, azlw> Oy

=1

2
-+ €72>‘]L'7j Z ]Ik,l w &clw
=1

and finally,

4 <]1 ,],awkw>|ti0 = NP, w)(0n,w) — € P w (D, 1, Oy, 1) D0
- Z (02,1, 8, 00,8 ) (O 10) (D)

+ w 674)\ Z ]Iiyj]Ik,lé?xlw.
=1
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By minimality, we have

_ o TP L
‘V(ﬁn’; = ’v€2n|§ = “;‘ = —Kg, <v€1n,V€2n> = O

As a consequence, we get

6—2/\% (= (11,00, + (Th 2, 02,5))

= — (672’\85110 — w€72’\|3x1m2) O w
LA (<8§1<f>, ax1<}?> Dy, w + <0§1<f, 8125> amw) Oy, W
— we_4)\(H171H1,26:z:1w + H1,1H2,28zzw)

+ (6_2/\82 w — we 2 (0,1, 89527_2'}) O, W

x1,r2

—e—4k(<32 B,0,,8) 0,00 + (2 5,3x25>8x2w>8x1w

T1,T2 x1,T2
~NI 514 10 I 514 20
+ we™ Iy oIy 104, w + Th 2l 204, w)
. —2xq2 —2X 92
= —e 0, w0y, w +e 70

e~ O, W
—4\ 2 ~12
e wiy,w (H171H272 - Hl,z) + w0y, w| Vg, 1|

N eu{ ((02,8,0,,8) Oy, + (04,8, 00,8 ) D) Dy

— ((02,,0,8,00,®) 0w + (82, ,,8, 02,8 ) Oy, 0) azlw}

= —e_”ailw Opyw 4+ €202 w0y, w — 2K wdy,w

1,2

4 64A{ (<0§1(I_5, 8x1<13> O, w + <8§1<I_5, 8IQ<I;> axzw) Oz, W
~ ((02,,,0:,8) Dy + (82, ,,,0,,8) Do) axlw}.

Likewise, we have

6—2,\% <<ﬁ2727 am1w> — <1T1,2,3z2u7>)

= 6_2/\65211)61;110 — w@xlw\VgQﬁF + 6_4/\10(]1272]117183;111} -+ ]12721[17281210)
— e ((02,8,00,8) 00w + (02,8, 00,8 00,10) Oaywo — 7202w

e P (I 21 205, w + I 2ll9 20, w)

e ((02,0,8,00,8) Oy + (02, 1,8, 00, 8) D) Oy

L1,T2 L1,T2
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e (in Oy w — 02 wamw) + 2K w0, w

x1,T2

+ e—“{ ~ ((02,8,0.,8) a0 + (02,8,0,,8 ) 0,15 Dy

+ ((02,8,00,8) 0w + (32, ,,8,0,, ) 01,0 8x2w}.
Now let {a;}er be the family of 1-form such that for all ¢ € I, one has

d
E (Kg(t)dvolg(t)) B dat.

We have

q
dt

x1,r2

(a)imo = { L PR wiw e PP wdsw — 2K, wds,w
+ e—“{ (82 8,0:,8) 00y + (2,8,0,8) 01y0) Dy
— ((02,0,8,00,®) 02w + (82, ,8, 02,8 ) Oy, 0) azlw}}dasl
+ {6-2* (02,0 00w — 2, w0 Duyw) + 2Ky wy,w

+ e-‘ﬂ{ — ((02,8,00,8) s, + (02,8, 0,8 ) 0, 5) Dy w

+ (<8§17$2<§7 (9131<I_>’> Op, W + <8§1’x2<1_5, 8x25> 0x2w> 8r2w}}d:v2.

Now, as M = ®(X) is minimal, ® : ¥ — R3 is harmonic for the metric g, so
in our conformal chart, we deduce that

Ag® = e D2 D+ 02,0) =

thus 8225 = —8%15. And as & is conformal, we have
L . 1
25 2 _ = 2\ .o
(008,00, 8) = 255, (32,,,8,0.,8) = S0ne 1<ij<2
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We deduce that

Likewise, we obtain

(€02 2,8, 00, ®) Oy + (82, ,,8, 02,8 ) Oy ) Dy
+ ((02,8,0,,8) 00,10 — (62,8,0,,8) 0,,5) Oy 0
= 200 ((000)? + (2,0)?).

SO

6_4’\{ ((04,®,00,8) 0w + (02, 8,0,,8 ) Oy Oy
— ((02,0,8,00,8) 02y + (2, ,,®, 0,8 ) amw)amw}dxl
+ e—M{ — ((02,8,0,,8) s, + (02,8, 0,8 ) 0, 1) D0

+((02,,0,8,0,8) 00 + (82, ,,8,0,,8) O 0) azzw}dxg

1,22 x1,r2

1
= 5¢ A dw|? (833162)‘d$2 — Op,? dx1>

1 1
= 56_4)‘|alw|2 * de? = 5(6_2/\ *deQ’\)|dw|§.
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The remaining terms are

6_2)‘{ (—8§1w Opyw + 02 w@wlw) dxy

+ (622111 O, w — 8;@,2111 8;,;211)) dmg}
=2 (éﬁlw(—amwdxl) + 0§2w(0zlwdx2))
1
+ 567”‘ (8x2\3m1w|2dx1 — O, |8x2w]2dx2)
= A (lew(*dw — Oy wds) + 02 w(kdw + 8Z2wdxl)>
1
e (8$2|8Z1w|2d$1 — Oy, |8$2w|2d:132)
= Ay w(*xdw)
1
+ 57 (0000, wl + 1000 )drs = s, (19, w0l + |0ryw])das

= Ayw * dw — %e’Q’\ * d|dw|?
and
2K gw(—0p,wdzy + Oy wdxs) = 2K gw * dw.
As we have
e P dldwl® = e e d(e*dw|?) = (€7 de®)|dw|? + *d|dw?,

we finally deduce that

d 1, _
pr () =g = 5(6 2 deQ’\)|dw|§ + Agw * dw
1
b ((672)‘ * deQ’\) |dwl? + *d|dw|§) + 2K yw x dw
1
= (Agw + 2K w) x dw — 3% d|dw|§.
This concludes the proof of the lemma. O

4. Index estimate
4.1. Introduction and definitions

According to the classification established by Robert Bryant in [3], Willmore
spheres in S are either minimal equatorial spheres or inverse stereographic
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projections of a certain class of complete minimal surfaces in R?. Let $:% —
R3 be a complete minimal isometric immersion from an connected Riemann
surface 3. By mlmmal we mean that the mean curvature tensor H (where ¢
is the pull-back by ® of the euclidean metric on R3) of d is 1dent1cally Z€ro.
We say that M = ®(X) has finite total curvature if

C(M) = ﬁ |, |dvol, = /7 K, dvol, < oo,
5 by
We first recall the following theorem.

Theorem 4.1. Let Y be an orientable surface and d:T 5 R3bea complete
manitmal tmmersion with finite total curvature.

1) ([12]) ¥ is conformally diffeomorphic to a closed Riemann surface %
with a finite number a points removed, called the ends of X. We say
that an end p € ¥ is embedded, if there exists a radius r > 0, such that
the restriction ®|D2(p,r) \ {p} is an embedding.

2) ([28]) If p € ¥ is an embedded end, and v > 0 is such that ®|D*(p,r) \
{p} is an embedding, then there exists a,b € R and ¢ € R? such that, up
to rotation and translation

B\ D) = {(0.0) v = atoglel 40+ S0 ().
xeRQ\D2(0,1)}.

We say that the end is planar (or has zero logarithmic growth) if a = 0.

3) ([22]) C(M) is an integer multiple of 4w, and furthermore, if all ends
of 3 are embedded, and ¥ has m ends, then

(4.1) C(M) = /E _K,dvoly = dr (m 4+~ — 1).
if the genus of X is .
We recall the fundamental theorem of Robert Bryant.
Theorem 4.2. ([3]) Let \I_}; S% — R3 be a Willmore immersion, then either

U s totally umbilic, either V is the inversion of a complete minimal surface
with finite total curvature and planar ends.
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4.2. Second variation of conformal Willmore functional

We first define the index for the Willmore functional.

Definition 4.3. Let ¥ € W22(X, N™) N C (%, N") be a Willmore surface.
Then the second variation D?W of W = Wy is well defined by

DW (B i, ) = L
’I,U,w = dtZ

W(¥¢)=o-

Here, {WU,}cr € C%(I,W22(%, N") N C>®(X, N")) is a C? family of immer-
sions such that Uo =V, and @ = %(‘I_}t)u:o- The index of a critical point
U e W22(3, N™) N Wh (2, N™) of the Willmore functional W, denoted by
Indy (V), is defined as the dimension of the maximal subspace of
WEZ(E, TN™) MWL (2, TN™) where the second derivative D*W (¥) is neg-
ative definite. We define in an analogous way the # index, denoted by
Indy (0).

Let us recall (2.20)) and Lemma we have the following formula.

Lemma 4.4. Let ¥ be a connected Riemann surface, an d: ¥ —>ﬂl§3 be a
complete minimal immersion. For every C? family of immersions {®;}er €
C*(I,W?2(Z,R™) N C(%,R")), we have

a2 (2 - K, v,

1 1
= {Q(Agw — 2K w)*dvol, — d ((Agw + 2K w) x dw — 5 * d|dw\§>}

|t=0

—

if fort € I, the pull-back metric g, is defined by g+ = P} ggrn.

Let ¥ be a closed Riemann surface and ¥ : & — R? be a (smooth) non-
branched Willmore immersion which is the inversion of a complete mini-
mal surface with planar ends (see the remark page 47 in [3]). Then up
to translation there exists an integer m, a finite set of m distinct points
{p1,...,pm} C X, and a complete minimal isometric immersion d:% - R3,
such that M = &(Z) (S =S\ {p1,...,pm}) is a complete minimal surface
with finite total curvature, and planar ends, and if i : R?\ {0} — R3\ {0} is
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the inversion at 0, given by

i(z) = ’x% vz e R3\ {0},

then we have U =i o ®. By conformal invariance, noting # = #4s, we have
W (D) =W (V).
So by Theorem {.1] and Gauss-Bonnet formula, we have
W(T) = #(T) + 27x(8) = C(M) 4 2rx(X) = 47m,

which shows that the Willmore energy is quantized by 4m. Another interpre-
tation of this integer m is given by a thgorem of Peter Li and Shing-Tung Yau
[T6]. They proved that if z € R3, and U~ ({z}) = k for some k € N, then

W (V) > 4k

so m is the maximum number if pre-images under U of points in R3. Further-
more, thanks to our normalisation, we see that 0 has m pre-images under U
The next proposition shows that the conformal invariance leads to a much
simpler formula for the second derivative of inversions of minimal surfaces.

Proposition 4.5. Let ¥ be a closed Riemann surface and TU:Y - R3 be
a smooth Willmore immersion which is the inversion of a complete minimal
surface $:% \ {p1,....pm} = R3. Then for every normal variation v = vng
of \f/, we have

43)  DW(I)[5,7] = /2

1
—d ((Agw + 2K w) * dw — 5 *d!dw[§> }

1
{Z(Agw — 2K w)?*dvol,,

if w=|®|% and g = O*ggs.

Proof. Let {U;}e; (where I is an open interval of R containing 0) an admis-
sible variation of ¥ such that
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for some v € C*°(X). We have

W (T,) = /Z (H2 — K,,)dvol,, = /E H2 dvol,, — 2x(X)

so, by the conformal invariance of # ,we have

. . d2 . d2
(44) DAW()[3, 8] = DA (D)5, 7] = A (F)lio = 7

dt2 W(Z o \I_}t)’t:O-

The remainder of the proof is dedicated to the verification of the fact that

2 = A
EW(Z o \I/t)|t=0 = DQW(CI))[U), U)]

if W = |®|?vnz. First, we have

d /-
£ \1:) =T =viis
( t \t:O )

dt
SO as
L N
(4.5) nq; = n\fj -2 (\I/ . n\f,) @
we obtain
d{ U 7 7=
(4.6) w:< f) =2
A\ |02 )y P2 [
v - i -
= — 7_?:”—2 \yﬁ” — :ézvﬁ*
|2 ( 5 =2 (1) |\m2> ol g

(4.7) % (@)MZO — wiig

where w = |®|2.
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We now use the more precise result on the conformal invariance of the
Willmore energy which implies that the 2-form

a(V) = (H} — Ky)dvoly,

if h = U+ grs is the pull-back metric of the Willmore immersion Uy — R3,
is conformally invariant. As {W;};cs is an admissible variation of ¥, the map

t— a(0y)

is a C? map with values into the 2-forms on ¥, we deduce by compactness of ¥
that for all € > 0 such that [—¢,e] C I, there exists a constant 0 < C'(e) < oo

such that
} < (C(e) < >

where the norm of a 2-form § given locally in a local complex coordinate
z =x1 +1ix9 by 8 = fdxy A dxy is defined as

(4.8)
d2

dt?

d -
%a(‘l’t)

-

(V) (W)

, sup
—e<t<e

, Sup
—e<t<e

max < sup
—e<t<e

18" = 1fI*.

In particular, by the point-wise conformal invariance of a(¥ ) ifd=ioW is
the inversion of ‘IJ recalling that <I>t =1qo0 ‘Ilt for all t € I, we have

(4.9) a(®y) = a(Ty).
In particular, we deduce from (4.8)) and (4.9)) that

(4.10)
d? -
@a(q)t)

. d -
a(dy) %a(i)

)

, Sup
—e<t<e

, sup
—e<t<e

}§0(5)<oo

max 4 sup
—e<t<e

We now have thanks to Lemma [4.4] the pointwise equality everywhere on
Y\ {p1,.-.,pn} (and therefore Lebesgue almost everywhere on )

2

(4.11) @Of@t”tzo =

(Agw — 2K ) dvol,

DO |

1
—d <(Agw + Kyw) * dw — 3 *d|dw|§)
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if g = o+ gr3, and w = |<f>|21/7 if the variation W is normal and given by

d /= .
dt (\Ijt)t o VT

where 773 is the unit normal of V. In particular, thanks to and -
we can apply Lebesgue’s bounded convergence theorem to obtam that

d? - d? - d? -

(412) TV Bio = 25 @0 = [ 25 (al8)),
1
= / { (A,w — 2K,)? dvol,
w12
1
—d ((Agw + Kyw) * dw — 3% d|dw|§> }

This concludes the proof of the proposition. O

This proposition shows that the index Indy (¥ ) of U is equal to the index
of its inversion ® = io ¥ for normal variations of the form @ = \<I>| vitg. A
remarkable fact is that one can estimate the index by computing explicitly
an integral involving a residue term.

4.3. Explicit formula for the second derivative of inversions of
minimal surfaces

We begin with a definition of residues of complete minimal surfaces with
embedded planar ends.

Definition-Proposition 4.6. Let > be a closed Riemann surface, and let

:¥% \{p1,...,pm} — R? be a complete minimal immersion with m planar
embedded end. For all 1 < j <m, for all (mutually disjoint) small enough
open subsets Uy, ..., Uy, C %, for any complex coordinate u; : U; — D? such
that u;(pj) = 0, the limit

. r? 2o L ozon
(4.13) lim —7/ wd (4132 = 2131212 )

=0\ AT Jopz (p ) 2 !
where D%(p;,7) = u; (D(C(O r)) (and 0 <1 < 1), exists and is a finite posi-

tive number, mdependent of the chart uj : U; — D?* such that uj(p;) = 0. We
call it the residue of ® at (p;,U;) and denote it by Resy, (®,U;).
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Proof. We fix some 1 < j < m. Thanks to a theorem of Richard Schoen (28],
see also the paper of Robert Osserman [22] about the Weierstrass parametri-
sation), as the end is embedded and planar, provided U; is small enough,
there exists a complex chart u; : U; — Q(QC(O, 1), such that u;(p;) =0, and
which sends p; to 0 such that, for ®,, = ® o u;l, one has

(1.14) Bu,(2) = Re [ (o1, 0, 00)dC,

where z = 1 +ixy € DZ(0,1) \ {0}, and for 1 < j <3, ¢, is a holomorphic
function with a pole of order at most 2 at 0, and finally

(4.15) ¢1+ @5+ 93 =0

Assuming up to a rotation that the asymptotic normal is (0,0, 1), this trans-
lates to

a

5+ 82+ 0(z2)),  wa(z) =7 +0(2))

1(z) = F+A 02D, @alz) =3

where ai,as € C\ {0}, 51, B2,y € C. The conformality condition (4.15]) shows
that

(4.16) o1+ 03+ 3 =

ai 4 a3 n 2(a151 + azf) L0 <1) .

24 22 z

In particular, we deduce that up to a rotation, we have for some o;; € R\ {0}
with a; > 0 the identities

ap = —oy, G = iay = —iay, o =1if.

Therefore, we have by (4.14)

—

. A -
(4.17) ®,,(2) = Re <;+Boz> +0(]z)*) e C xR =R?

where XO, éo € C? are defined by

Ag=a;(1,i,0), By =p;(1,4,0)+ (0,0, bs)

Notice that we have

(418) (Ao, Aoy = (A, Bo) =0, |Aol* =202, (Ao, By) =20;5;.



On the Morse index of Willmore spheres in S3 1381

(4.19) From now on, we drop the u; index for <I_5uj

for the simplicity of notations.

By (4.17) and (4.18) we have

2

(4.20) 1B(2)[2 = |O‘|2 +a, Re (@j) LO(2]).

Furthermore, an immediate computation shows that for every smooth func-
tion o : D? — R, and for every smooth contour v C D?, we have

1 1
(4.21) 47T/Wwda—hrn (%[/804)

Then, by (E20),

2 _
©oo . ajdz 1 —7Z 1 dz
oF (1 15,22 10
S, A ,+,@i_,@2+0(‘z’2)
|| 205 2 2aq;

Therefore, thanks to (4.22)), we have

4
. L1
(4.23) 0.3 = % ( + Re (

Turning now to the conformal parameter, we have

. 1A
0.0 = — §—°+ >Bo+0(l2))
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so by (4.18)

1] A ?
(4.24) 2 = 200,0)? = ‘—O+BO+O(|2\)

1[4 (Ao, By) < 1 >
5 ( ‘2’4 — 2Re Z2 +O ‘Z’
: 1
= a] —2a; Re 6] +O( )
IRER 22 2]
2

T (1 —2a; ' Re (6]-22) + O(\z]?’)) .

IRER

Thanks to and (| -, we obtain

(4.25) |d|B?)2 = e 2}20,|D|??
4
| (1+205" Re (822) +0())

|z
S

( (1+0(3 y))>

+ 8a;Re (ﬁj )+O(|z])

so that by (4.20]) and (4.25])

> 1 - z
(126) AP~ JldIF = <‘P+a]Re ﬁjz)>
1 —Z
5 | ’2 +80é]Re (sz> +O(|Z|)

20
*f+0(\ )-

|22

Therefore, we get the following expression

- 1, .= 202 dz
(4.27) a<4|<1>|2— 2|d|<1>|2§> = —ﬁ;—kO(l)
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L1
Finally, thanks to (4.21)) with o = 4|®|? — §|d]<1>]2|§7 we have

1 - 1 -
4.2 — d 4<I>2—d<I>22)
(4.28) b fo 2 (088 = Sl
— Im 1/ 6(4]5]2—1\d@\2|2)
21 Js1(0,r) 2 N

1 —202 dz 202
—Im | — L= +0(1)=——L+0(r).
m <2W /Sl(O,r) 22 2 > +0(1) 2 T (r)

And we obtain thanks to (4.19))

2 - 1, -
lim —L/ *d(4|®|2—]d]¢>]2\3> — 202> 0,
r=0\ AT JoDg ;) 2

which concludes the proof that the limit in is well-defined.

Now, to show the independence of the complex chart u; : U; — D? such
that u;(p;) = 0, let @, : U; — D? be another complex chart such that @;(p;) =
0. The map f=wu;o ﬁ;l : D? — D? is a holomorphic diffeomorphism and
f(0) =0, so f(z) = €”z for some 6 € S*. Therefore, as

. 1 - e . 1 -
@20)  0(48,, P - Sl PE) = (i) (0 (1P - 5laFPE))

o? dz
=924 710
s Ol
and f is a rotation, we have
1 dz 1 dz
4.30 ) =
(4:30) / <|z!2 z) |22 27

Finally, we deduce from the two identities (4.29) and (4.30) that

w0 —1yx* 3 1 5 s ) 0 1 b
£y (o (487 - 3dPE) ) = @ (o (4187 - 31adE:))
207 dz

— -2 1 0(l2,

|2 =

and by (4.28), the residue is independent of the complex chart u; : U; — D?
such that u;(p;) = 0. O

We now state the main result of this Section, from which the main The-
orem [I.1] will be an easy consequence.
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Theorem 4.7. Let X be a closed Riemann surface and $: % \{p1,.- - om}—
R3 be a complete minimal immersion with m embedded planar ends, such that
U=iod:% — R3 is a non-branched Willmore immersion. For all 1 < j <
m, we fix some small enough disjoint charts (Uj,u;), where uj is a complex
coordinate uj : U — D? C C such that u;j(p;) = 0. For all normal variations
v =vrig of \I_}, we have

(4.31) D*% (0)[7,7] = lim {1/ (A w — 2K w)?dvol,
R—0 | 2 Jyp
. Res j(<f),U')
—in I’Rﬂv%pj)}.
Jj=1

Here, w = ]5]21), g = ®*gps, the set Xp is defined by

Yp= E\ U D%(pj,R),
j=1

where for all1 < j < n, we have D%(pj, R) = *I(DC(O R)) (for0< R < 1),
and finally, Respj((I), U;) is given by the Deﬁmtwn 0 (it is independent of
uj, but not of U;). In particular, the limit on the M’ght—hand side of
exists and is a well-defined real number for every normal variation

7€ W2 (S, R N W2 (S, RY).

Remark 4.8. One of the main points of the theorem is to show that the
limit of the right-hand side exists, is finite, and coincides with the second
derivative of the inverted immersion 7} of the minimal surface d at some
normal variation v = viig. Indeed, if for some 1 < j < m, v(p;) # 0, as d is
complete, we have

‘(I_;(Z)|2 — +00.
Z—rpj

In particular, this is easy to see that

1
(Agw — 2K, w)*dvol,,

2/ o (1820) = 2K, (18[20) ) dvol, —» +o0
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while we have trivially

% Respj (‘57 Uj)

2(p.
m P oo

Jj=1

However, we will show that the limit of the difference

) 1 " Res j(<f>,U-)
}1%1£n>0 {2 /ER(Agw — 2ng)2dvolg —Ar 2 % UQ(P]‘)}

-

. .3
exists, is finite, and coincides with D*# (V)[v,v], where ¥ = = s a com-

pact smooth Willmore surface. We will also check explicitly after the proof of
the theorem that we can show a priori that the quantity

1

1 Ui Resp_j(q;, U;)
2 )5,

(A w — 2K w)? dvol, — 4 iz v?(pj)

j=1
1s bounded independently of R as R — 0.

Proof. (of the theorem) By Proposition 4.5|if 7 = viig and @ = w g, where
w = |®|?v, we have

D (B)[5, 7] = / {;(Agw—ﬂ(gw)Zdvolg
b
1
—d ((Agw + 2K w) * dw — 5% d|dw|§) }

As we saw in the remark, the two quantities under the integral are infinite
when taken separately. In particular, we deduce from the proof of Proposi-
tion LA that

- 1
2 g BT L _ 2
(4.32) D*w (0)[v, U] —11%1£n>O - {2(Agw 2K w)=dvol,

1
—d ((Agw + 2K qw) * dw — 5 *d|dw|§) }

Now, for all R > 0, each component of the integral

1 1
/ER {Q(Agw — 2ng)2dvolg —d <(Agw + 2K w) % dw — 5 * d|dw|§>}
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is finite, and by Stokes theorem
1
/ d <(Agw+2ng)*dw— *d|dw|§>
Sh 2
1
= ((Agw—l—Qng)*dw— *d|dw|§) ,
) 2

so the point of the theorem is to express this last boundary interal as a
function of R and the rcsiduos of Cf> as defined in the Definition 4.6 In par-
ticular, the equations (4.3) and (4.4]) will then show that the limit ex1sts and
coincides with D2/ (¥ )[v 0.

Now, as u;(0D%(p;, R)) = 0D, (0, R), we have

1
Aw+2Kw*dw—*ddw2)
/w(p]m(( J -+ 26K ) 5+ dldu?
1
—1\x* 2
= u; Ayw +2K,w) x dw — = x d|dw ),
7" (@4 2800 o = 5 it

and thanks to the proof of Definition- -Proposition E 4.6} there exists (up to a
rotation) o; € R\ {0}, such that for <I> —do u; 1 we have

- z
(I)uj(Z) = (O{]’Z‘Q,O) + O(|Z|)7 z € D2.

For the sake of simplicity of notations, we will write ® instead of 5u ; in the
rest of the proof. Making the change of variable

we get

T 1
4.33 =a;i—+ 0| —
( ) z O‘J‘x‘2+ (’$’3>’

so in (z1, 79) coordinates, we obtain for some a € R and b € R? the parametri-
sation

(4.34) O(r) = <$’G+T E +O<| 1\2)>

where r € R?\ K, and K is some compact set containing 0. The components
of the induced metric g in these coordinates are

giaj(x) = <ax1(§(x)>axj(5($)>, 1,7 =1,2.
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and

&)
r@u

z1

0= (0.5 255" +0 ()
0, B () = <0 1, |b2|2—2(b";ix2 +O<‘xl‘3)>.

We can differentiate under the O sign, as the Weierstrass parametrization
shows that ® is locally the real part of a meromorphic function, therefore is
it analytic outside of branched points, and the rest can be differentiated as
the rest of a convergent series of power of |z|~!. These expressions show that
we have a conformally flat metric at infinity, as

b1b2 b-x (bl‘)2 1 1
9172(1‘) = W — 2(()11‘2 + bszl)W + 4$1Z2W + O (W) = O (W)

2 = 22(b - 2))? 1 1
gualr) =14 GEEZ20@ DN 6 (LYo (LY i
|z[° |z|*

jz®

and
det g(x) 1+0(1>
et g(z) = i)

So we have

1
917]—6,]+O<| |4)

439 dvoly(z) = \/det(g(x))dw1 A dwy = (1 +0 (| 1‘4)> dy A divy

which proves the asymptotic flatness.
Now, we have by Stokes theorem

1
(4.36) / d ((Agw + 2K w) * dw — 5 X d]dw]?])
3R

1
7z/s <Agw+2ng)*dw - 2*d|dw|§>
(p],R)

where the circles Sk (p;, R) = 0D%(pj, R) are positively oriented (which ex-
plains the negative sign in front of the sum). Setting r = a;(R)™!, the change
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of variable (4.33)) shows that
1
/ ((Agw—l—Zng)*dw - *d\dwf])
S5 (ps,R) 2
1
- /51 ((Agw + 2K w) * dw — 3% d\dw@) +o(1)

where S} is the circle in R? of radius r > 0. Indeed, if we make the change of
variable

T

b(z) = <x+o<| |> a+l|)x|§+0<|;|2)>

for some @ € R, b € R2. As we will see in the following, the error term in
these coordinates where ® is almost a graph is irrelevant, so we discard it and

use (4.33)) instead. Now thanks to (4.33)), we have

v mf<<|x>|) - () 19007 =0 () (F 0 (155
We now have
*dw(r) = ((\mQ—i—a +O(|z|7?) (x ))
— Oy, (<|zlc|2 +a® + O(|z| %) (;)) dxq

= 2u(i(z)) (.Tldl‘g — 2odx1) + O(|z| )0 (i(2))(dze — da1)
+ (|2 + a® + O(|2]72))

3 { ((‘1, _ |2|> Bro(i(x)) — ﬂijf?agva(x))) drs

S(A —

. 3 — 17 221
= 20(2($>)($1d$2 — xgd:vl) + ( 2’$|2 181’[) — ‘;‘2282’[)> dxs

2 2
r] — T 21179 1 )
_ Doy — o | dey + O
( P T et ) nr <|x\2

we obtain
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Now, by (4.35]), we have

gwx
z]l

. (Voog @, (18 Potia)))

=¢T)@ ((1+ O™, (([21* + a* + O(|2|)v(i(2)))))

+@21+Okd )0u, ((J2* + a® + O(|z ) (i(x)))))

(
D, (02102, (|2 + a* + O[] ))u(i(x))))
+@Aou\ M\W+a+owr»<mmn

Now, we notice that there holds

so that

:@ﬂxﬂ4WMﬂ+W)M— O(Jz ),

and only the flat Laplacian will remain in the end. We have

A ([2]? + a* + (2| 2)(i(x)) )
= 4+ O(]a[™)v(i(x)) + 4z + O(|z[ ), Vo(i(x)) )
+ (|z]* + a® + O(|z|72)) Av(i(z)).

A simple computation will show that Av(i(z)) = O(]z|~3), so we can discard
all error terms, and the constant term a?, as we integrate on a circle of radius
r. So it suffices to compute the flat Laplacian of w. We have

Aw(i(z)) = dv(i(z)) + 2 (22105, v(i(x)) + 2220,,0(i(2))) + |z|* Av(i(x))



1390 Alexis Michelat

and

210, 0(i(x)) + 220,,0(i(2))

2 .2 2 2 .2 2
=1 T2 xl@w _thte OV | + 29 u@zv _tnt o
ks |t |z[* ks
1 1
= BT (xl(xg —2?) — 21:136%) o + g (—21’%%2 + 2o (22 — x%))
1
= _W (331311) + 1‘2(9211)

= —(dv(i()),i(x))).

By the conformal invariance of the Laplacian in dimension 2, we have

A (i) = S Avlia).
so we get
(438) Agw(i(a) = 40(i(2)) — 4 {dv(i(x)), i())
4 ‘;‘QAU@(Q;)) +0 (’;’3> .

Furthermore, we have

O, ®(2) A Oy ®(2) = (o (|x1|2> ,0 (;‘2) ,1) ,
w01 (o). () 1)

and for 1 < 1,5 < 2, by (4.34))

Oy, B () = (0,0,0 (,L;'g)) .

In particular, the components of the second fundamental form I have the
following decay

SO

I, = <a§h$2<f>,ﬁ> -0 <W> 1<i,j<2
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and we deduce the following asymptotic estimate for the Gauss curvature

v -0(35)

and as xdw(i(z)) = O(|z|?), we have

(4.39) 2K (z)w(i(x)) * dw(x) = 2K (z)|z|*v(i(2))O(|z|*)
= L z2o(i(x z|?) = L
=0 (5 ) ePoti@)00f) =0 (175 )

Therefore, we obtain

T

/ 2K (2)w(i(x)) * dw(i(z)) = O (1> .
St
Now, the error terms of order less than O(|z|~?) in |dw|? will vanish when
r — oo. By ([4.35)), as Dw(z) = O(|z|), for i # j,

(a0, ()0, 0() = O (7 ) 0ol =0 ()
NP BRANEEA

Therefore, we will omit all these error terms, and we do not write the O(]x|~2)
in equalities

(4.40)
[dw(@)[2 = [0, w(@)]? + O, w0() 2
= { (201 + O(2[7%)) v(i(2))
+ (Jal 2 + a?fa]~ + O(Ja ™)) (2} = ) Oho(i(x)) — 22122000(i(2))) }
+{ (222 + O(2]7)) v(i(2))
+ (Jaf 2+ @]~ + Ol ™)) (o — a3)Dho(i(x)) — 2122000(i(2))) }
2e10(i(2)) + o 2((x3 — })Ov(i(e)) — 2r1aado(i(a)) )

+ (2220(i(2)) + |2 72((2 = 23)50(i(2)) — 221220501 (i(x)))
= 4z*o(i(x))* + (Dr0(i(2)))? + (B20(i(2)))? — 4v(i(x)) {w, Du(i(x)))

/

2
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Now, D*v(i(z)) = O(r=2k) for all k > 0, so

(@) + @untite))?) =0 (7).

and we can drop these terms in the O(|z|~2) error. We have by (4.38)), (4.39),
(@.40)

Agu(i(e)) — 5 * dldu?
= (411(2(:3)) — 4 (dv(i(x)),i(x))

" |:,;1|2Av<i<x>> +0 <|1|) ) xd (jefo(i(2)))

- % xd (420 (i(2))? — 40(i(2)) (d(i()), 7)) + O (Iasllz)
Now we remark that

sd (|a20(i(2))2) = 22 Po(i(r)) * d (0(i(2)) + v(i(@))* *d (j2]?)
so that
(i) = d (JoPo(i(e) - 5 +d (4elo(i(@))) = 20(i(z)? «d(JaP).

Then, we have

xd (v(i(x)) (dv(i()), 7))
= xd (|20 (i(2)) (dv(i(2)), i(x)))
= [a[0(i(2)) * d ({dv(i(2)), i(2))) + (do(i(@)), i(2)) * d (JoPo(i(z)))

SO

— 4(dv(i(2)),i(2)) * d (JoPo(i(2)) + 2% d (0(i(2) (do(i(x)), 7))
= 2le2u(i(x)) * d ((v(i(x)), i(2))) — 2 (do(i(@)), i(2)) = d (| Po(i(2)))
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Finally, we get

1
(4.41) (Agw 4+ 2Kw) * dw — E*d\dwlg

= 20%(i(x)) x d(|=|*) + ,;,QAU(Z’(:L‘)) * d(|z[*v(i()))

+2[a*o(i(2)) * d ({(dv(i(x)), i(2)))
— 2 (do(i()), i(x)) * d (Jaf?0(i(x))) + O <‘x1‘2>
=)+ @2)+B)+4).

We are now able to compute the boundary integral up to a vanishing error
term as r — co. We can develop v at 0 up to order two to get precise estimates

of the boundary integral. We write for some real coefficients {a;;}; ;5o C R

k
(4.42) v(z) = Z a;jrizh + O(|z[F+h).
4,j=0
where
(4.43) Q5 = M
’ 5!

We recall the three following formulae, valid for x,y € R
2cosz cosx = cos(x +y) + cos(x — ),
2sin xsiny = cos(x — y) — cos(z + y),
2coszsiny = sin(z + y) — sin(z — y).

In particular, if a,b € N, with a # b, we have

2w 2w
(4.44) / cos(ax) sin(bx)dxr = / cos(ax) cos(bx)dx
0 0

27
= / sin(ax) sin(bz)dx = 0.
0
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So by (4.43),

[ 226 ) = 4 [ 12i) wrdes = )
Sy
27 2
_ 4/ 2 (ao,o + a1,oCOST(9) + ao,1smr(9) + a2 (cos(@))
0

r

+ a0 (siane))? +alylcos(6’) sin(0) O(Tg,)) "

r2

2
= 4/ (aaOrQ + 2ap 0 (ag 0 cos?(0) + ap,2 sin (0))
0
—i—aiocos +a0181n 9)d9+0

)
= 87Ta§70 + 8magp (az,0 + ag2) + 4 (a ot ao )+ O(r‘l)
= 8mr%0(p)? + 4 (v(p) Av(p) + |dv(p)[*) + O(r ")

therefore

(4.45) / (1) = 8nriu(p)* + 4n (’U(p)AU(p) + ]dv(p)|2) + 0> h.
St

Then, there holds

[, e AwG@) «d (le[2o(i(x)))

= /27r 2v(i(z))Av(i(x) | 1|2 (z1drs — 22d21)
/% 20(i ime {\ 2 (”“"2' ‘flal v(i(z)) — 2&?82@(@(3;))) das
2 — a3 T122 .
B <1|x|4282v( (2)) — QW 511}(1(30))) dxl}
= dmv(p)Av(p) + O(r™1).

and

(4.46) /S (2) = dmo(p) Ao(p) + O(r ).
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Now, we compute

|20 (i(2)) * d ((dv(i(x)), i(x)))

. 2 /. T X2 x1 T2
— 2| v(z(x)){@zl (Waw + Wf@) des — 0, (Waw + W&m) dml}
x3 — a2 2219 2 — 2 2219
= ]m[%(z(:c)){( 219w — Oqv | dwg — | 2—"205v — v
| z[* || |=[* |z[*
2 .2 2
+ (12 93182“ — x1x282 v | drg
e\ 2t |t 1
x
Ty (23— 2} 9 2172 9
+LL‘7|2 |17|4 8127}— |I|4 (921) dIQ
2 2
T (X TG _2561:1:2 9
e ( el 2 al”) o
2
T (XT3 27172 o9
’x’Z ( ‘ ‘4 (921) ’$’4 812'0) dl‘l}
— (i)+(ii)
We first see that
2 _ .2 2
(i) = |x|%<z'<x>>{ (””jx,flaw o 321)) s
2 2
T — T5 2129
— 821) — 811)> }
( ||* |=[*
= |2*v(i(x)) * dv(i(x))

and we have already computed this integral, so we find

(4.47) [ 0= =7 (1) + o(p)av(p))

T

and

J = [ stiton{ s (et - o) — 20kt oo

+ (—2:1:?:1:% + x%(m% - :1:%)) 8311} + O(r_l)
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= [T (SO O (ogyop (0, A0
))d& +0(r™h

4 sin(0)02 ((305(6)7 sin(0)

= —7v(p)Av(p).

r

Finally, we have

(4.48) /S (3)=2 [ ()+(i) = —2r (ldv®)? + 20(p) Av(p))
We have only left (4):

[ @ =2 i) i@y d (ol Pu(i(x)))
Sl Sl
=-2 . (dv(i(x)),i(z))v(i(x))2(x1dre — xodry)

-2 . {(dv(i(x)),x) * dv(i(z))

= —2{(iii)+(iv)}.
Now, we easily compute
2 3
(iii) = / (8111608@ + agvsm@> 2ur2df
0 r r

21
= 2/ (rag,o + a0 cos(f) + ag 1 sin(0))
0

cos(f) 200, sin(0) )
T

X { cos(f) (al,o + 2a2yp

+ sin(9) (a(),l + 2@072 SIHT(G) + 2&1’1 COST(Q)) }d9 + O(Tﬁl)

2w
= 2/0 (aio cos?(0) + aal sin?(6)
+ 2a90 (az,o cos?(0) + ag 2 sin® (9)))d9 +0(@r™)
= 2n(|dv(p)|? + v(p)Av(p)) + O(r~ 1),
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while

2m
/ 7 cos(6)01v + rsin(0)0qv)
0

X (_1 (Op,vcos(0) + Oy sin(@))) +o@r Y

<

(01v cos(B) + Oy sin(6))?dO + O(r~1)
—7ldv(p)]® +O(r™).

Gathering estimates, we get

(4.49) /S (@) = —2x (|do(p)? + 20(p) Av(p)) + O

and we finally obtain by [.41), ([#.45), ([#.46), {.45), (.4]), ([#.49)

1
(4.50) /Sl ((Agw +2Kw) * dw — 3 *d\dw\g) = —8mr?v%(p) + O (i) .

By (4.6, we get the correct multiplicative factor of a? in front of this ex-
pression, which gives the correct expression as thanks to Definition as
r? = 204]2~R_2. This concludes the proof of the theorem thanks to (4.32)). O

Remark 4.9. As |§5|2 is unbounded at the points p; for 1 < j < m, the first
term under the limit of the right-hand side of goes to +00 as R — 0,
while the second term goes to —oo, as long as v is not compactly supported
in X\ {p1,..-,Pm}. We can also check directly that this quantity is bounded,
while the existence of the limit is a consequence of the preceding remark [{.8,
To do so, we fiz some Ry > 0 such that the disks D%(p;, Ro) (for 1 <j <m)
are disjoint and we need to estimate the integral

1

= (Agw — 2ng)2 dvoly, 1<j7<m
2 JD2(p; Ro)\D2(p;.R)

as R — 0, and w = |<f>|2v. The asymptotic flatness (4.35)) shows that
1

2 D2(0,r)\D2(0,1)

_ % . (A (|x|2v (&)) _oK, (2)[x (| 9‘;'2>> 4.2 (1) +0(1).

(Ayw — 2K w)?dvol,
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As
A (lePo () =0 () + o (mdve () + w0 (55))
22/) NP P T ) T
1 x
—Av|— | =0(1
“ e (5p) o0
and K,(x) = O(|z|7%) by (4.35), and by the previous computation
w(z) = O(|z*), Aw(z) = O(1)
we have for some C' > 0

(4.51) |Agw - 2K w| dz

/D?(O,r)\DQ(O,l)

d 1
gC’/ i-C’W(l—Q)S?rC
D20\ D2(0,1) 7] r

which is bounded as r — oco. Likewise,

(4.52) / |, (2)w(x)[2dz
D2(0,)\D2(0,1)
dx T 1 T
<cC 2 _el(1-4) <l
D2(0.,r\D2(0,1) | 7] 3 r 3

which is also bounded as r — oo. Therefore, by (4.51) and (4.52), we have

1

5 D2(0,r)\D2(0,1)
1

- 5 D2(0,7)\D?(0,1)

(4.53) (Ayw — 2K,)*dvol,

(A w)?dvol, + O(1).

so the only singular terms will come from the integration of (Ayw)?.
As we can suppose that the variation v is smooth, we have for some

{a’i,j}i7j20 CR
k . .
) = Y aigiay+ O(ja[*)

i,j=0

for all k € N.
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Using polar coordinates (x1,x9) = (pcos(9), psin(d)), (p,0) € [1,7] x ST,

0 in(6
A <|5L“QU (1‘2>) =1 ap,0 + aio COS( ) + ao,1 Sln( )
] p p

cos?()  sin*(f
+ a2.0 B 5
p p

)
+ai 22

o)
)

sin(20)>

cos(0) cos(0)

w0

—4

<CL170 + 2@2,0 + al,l

sin(#) sin(0)

Q

—4

<CL071 + 2@072 + a171

2 + 1
J Haaotaoa) g (3)
p p
cos?(6 sin?(# sin (26
=4 ap,0 — a0 2( ) _ ap,2 2( ) _ a1,17(2 )
p p 2p

2(azp + apz2) 1
g (1)
s0 by (53)
1 2
(4.54) 2/132(0,r)\D2(0,1)(Agw — 2K w)*dvol,

1/ 9 cos?(6) sin?(0)
= 5/1 /51 (16&070 — 32&070 (az,o p2 + ao,2 p2

+ 16—6“)’0(@2’0;r a0.2) ) pdpdd + O(1)
p

= 16%@%0/ p*dp — 16ag <a270 (/ dp) (/ cosQ(H)dQ)
T 1 p 51
+ap,2 (/ dp) (/ sin2(9)d9) >
1P s

T d
+ 167ra070(a270 + a072)/ ﬁ
1P
2

—1
= 167ra%’0 (r 5 ) — 16mag,o(az,o + aoz2) logr

+ 16map(az0 + ap2)logr + O(1)
= 8mag or’ + O(1) = 8rr?v*(p;) + O(1).
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- a?
As Resy, (®,U;) = 2043», and r? = R—]Q, we obtain

47T R'espj (®7 U])

(4.55) =

U2(pj) = 87rr2v2(pj),

and by (£5) and ([I53)

1

2 DZ (pj,Ro)\DZ (pj,R)

Res,, (5, Uj)

(Ayw — 2K w)?dvol, = 47 I

V(p)) + O(1),

Therefore,
1 ™ Res J.(tf, U;)
2 Js (Ayw — 2K w)*dvol, — 4r %UQ(%)
R j=1
1
== (Ayw — 2K w)?dvol, + O(1)
2 Jsig,

which is bounded indepe_pdently of R— 0 as Ry > 0 is fized and the metric
and the variation w = |®|?v are smooth and bounded on

Yp, = 2\ U D%(pijO)'
j=1

This concludes the remarks on the well-definitiveness of (4.31)).

4.4. Proof of the main Theorem : Theorem [1.1]

Proof. Suppose first that ¥ : S? — S3 is a non-umbilic Willmore sphere such
that

then it is the inversion at 0 (after translation if necessary), after a stereo-
graphic projection in R?, of a complete minimal surface with m embedded
ends with zero logarithmic growth and finite total curvature. Furthermore, for
every normal variation @ = vii of ¥ such that v € W22(S% R), if d=ioV,
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w = |®|?v, we have by ([@.31) (for some Uy, ..., Uy, as in Definition (£.6)),
1

20 (TN A — iy = _ 2
(4.56) D= (V)[v,v] = 11%1310 5 S%(Agw 2K w)=dvol,
" Res j(<f,U-)
—47r‘ 1%’02@3‘).
]:

In particular, if v(p;) = 0 for all 1 < j <m, then
D*w (0)[7,7] > 0.

Now, we introduce the continuous map (thanks of the Sobolev embedding
W22(S52 R) — C°(S% R))

V. W*(S% R) — R™
v (v(p1),. .., v(Pm))

We see that V~1(0) € W22(S% R) is a closed sub-space of codimension at
most m. As the second variation of W can only be negative on the com-
plementary of V~!(0) C W??(52, R) by (4.56), the dimension of the sub-
space of W22(S% R) where DQW(‘I_}) is negative is bounded by m. Therefore,
Indy (V) < m.

Now, we treat the umbilical case (where m = 1). Thanks to the result of
Bryant ([3]), if there exists an umbilical point, then ¥ : $2 — S? is totally
umbilical, and is a geodesic 2-sphere. In particular U : 52 - $3 is a minimal
immersion. Therefore, as U is an absolute minimiser of W, it should have
index 0. As the Gauss map of a minimal surface is holomorphic, it is a fortiori
harmonic, so

Agii + |dii]3 7 =0

if g = \17*953, and 7 : S? — S? is the Gauss map of U. The Jacobi operator
of the minimal surface ¥ : §2 — S3 is simply

Ly = Ag+ (L]* +2) = Ay + (|dit]% +2)
so for all @ € R*, we have
Ly(a-7i) = a- (Agii + |dii]27) + 20 - = 20+ 7

so 2 is a positive eigenvalue of the Jacobi operator, and one can show that it
is the only one. Furthermore, the associated eigenspace is 1-dimensional (see
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the paper of Frederick Almgren [I]) so ¥ : $2 — $% is of index 1. Therefore,

by ([2-22) and ([2.23) VU is stable i.e. Indy (¥) = 0, and the bound is trivially
verified. O

Remark 4.10. This proof shows in particular that whenever in the classifi-
cation of Bryant, we have an Willmore immersion Uy g3 from a closed
Riemann surface 3 which is not totally umbilic, with Bryant’s quartic form
Qg identically equal to 0 (theorem E in [3]), then for some stereographic
projection 7 : S® = R3, wo U : Y — R3 is a branched complete minimal im-
mersion with embedded planar ends. In particular "//(\I_}) is quantized by 4w
and

. 1 .
, < W )
Indy () < s (D)

However, when the genus of ¥ is larger than 1, then there are Willmore
immersions with non-zero quartic form 2g. One example is furnished by the
Clifford torus in S® with energy 2m?, which cannot be the inverse stereographic
projection of a minimal surface in R, as its Willmore energy (or area) is not
an integer multiple of 4w.

4.5. Index and Schrodinger operators

Let X be a closed Riemann surface and ¥ = X\ {p1,...,pn} be a connected
Riemann surface with m punctured points {p1,...,pm} C %, and fix some
Ui, ...,U, as in Definition . Ifd:Y > R3isa complete minimal immer-
sion, recall that for a normal variation « = wri, we have

D2A()[@, @) = / (1duwl? + 26, dvol,
E
= 7/ w (Lgw) dvol,
b))

if Ly=Ag—2Ky=Ag+[dN|2 if N:X — 5? is the Gauss map of o If ¢
conformal, and if dvoly, is a canonical volume form on X, we have,
dP|?
dvol, = | 2‘ dvoly,
—2Ky = |[dN|? = 2|d®|*|dN|?

so if M = ®(X) is a finite curvature minimal surface with m embedded planar
ends, and ¥ : ¥ — R3 is the inversion at 0 of ®, we have if ¥ = v7 is a normal
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variation, by (4.31])

D*# (), ]
i Respj(i, Uj)

1 2 o 3/ .2 .
= lim / S(|1B20 dvolg 47rj:1 R ()

_ 1 1 =2 12 B1—2 24222|dc§|2
= Jms ) (20d®| 2 As(|B[*v) + 2/dB|*|dN]*|B[*v?) = dvols

—47TZReSpJ (®,U;) ,
2 dvoly, “ Respj(@U)

= i Lz(|0)20)) —— —dr Y 2 I 2
Jim [ (La(®F0) ap n T w e

v*(p;)

if Ly = Ay + |dN|*. Moreover, the Gauss map N : £ — S? is a holomorphic
map, so it is in particular harmonic, i.e.

AsN + |dN|*N = 0.

Therefore, (recalling (4.6)) for the definition of the residue) we can study in
general the problem of finding the index of the following quadratic form

dVOlZ

) 2
Qf(v,v) = })}L%LR (Lf(‘Ref‘zv)) |dR€f‘2

" Res,, (Re (f), U,
e 1.0 5,

— 4

i=1
where f: ¥ — C3 is a meromorphic immersion with at most simple poles at

eachend p; € ¥ (1 < j <m),and N : ¥ — 52 is the holomorphic Gauss map
of Re f: ¥ — R3.

Remark 4.11. We remark that for every conformal transformation of ¢ :
3 — X, we have

QfOLP(U oY,V o (P) = Qf('l),'l))

This is easily seen by the conformal invariance of the Laplacian in dimension
2 (see the book of Frédéric Hélein [13]).
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