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In the last 15 years, the series of works of White and Huisken-
Sinestrari yield that the blowup limits at singularities are convex
for the mean curvature flow of mean convex hypersurfaces. In 1998
Smoczyk [20] showed that, among others, the blowup limits at
singularities are convex for the mean curvature flow starting from a
closed star-shaped surface inR3. We prove in this paper that this is
still true for the mean curvature flow of star-shaped hypersurfaces
in Rn+1 in arbitrary dimension n ≥ 2. In fact, this holds for a
much more general class of initial hypersurfaces. In particular, this
implies that the mean curvature flow of star-shaped hypersurfaces
is generic in the sense of Colding-Minicozzi [6].

1. Introduction

A family of hypersurfaces evolves by mean curvature flow if the velocity at
each point is given by the mean curvature vector. Mean curvature flow has
been extensively studied ever since the pioneering work of Brakke [3] and
Huisken [14]. While the theory was progressing in many fruitful directions,
there was one persistent central theme: the investigation of singularities, and
the development of related techniques. In the last 15 years, this culminated
in the spectacular work of White [23, 24, 26] and Huisken-Sinestrari [15–
17] on mean curvature flow in the case of mean convex hypersurfaces, i.e.
hypersurfaces with positive mean curvature. Their papers give a far-reaching
structure theory, providing a package of estimates that yield a qualitative
picture of singularities and a global description of the large curvature part
in a mean convex flow.

In a recent paper [12] (see also [13]), Haslhofer-Kleiner gave a new
treatment of the theory of White and Huisken-Sinestrari. A key ingredi-
ent in this new approach is a new preserved quantity under mean convex
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mean curvature flow discovered by Andrews [1] (see also [19, 23]), called
α-noncollapsing. A mean convex hypersurface M ⊂ Rn+1 is α-noncollapsed,
if each point p ∈ M admits interior and exterior ball tangent at p of radius
at least α/H(p), see Sheng-Wang [19]. The definition and preservation of
α-noncollapsing crucially depends on the fact that the the mean curvature
is positive (H > 0).

If the initial hypersurface M0 is not mean convex, then the theory of
mean convex mean curvature flow is not applicable. It is thus a very inter-
esting question, whether the results can nevertheless be extended to some
situations where the mean curvature changes sign. As observed by Smoczyk
[20], a good situation to look for such extensions is the setting where the
initial hypersurface is star-shaped, i.e. where M0 satisfies ⟨X,ν⟩ > 0, with ν

denoting the outward unit normal. In this setting, the relevant quantity to
consider is F = ⟨X,ν⟩+ 2tH, which is nondecreasing and positive along the
flow. Smoczyk proved that the Huisken-Sinestrari convexity estimate holds
for the flow of star-shaped surfaces in R

3 [20, Thm. 1.1], and it was pointed
out (without proof) by Huisken-Sinestrari [17, Rem. 3.8] that their proof of
the convexity estimate in fact goes through for star-shaped hypersurfaces in
arbitrary dimension, see also Remark 3.19. Moreover, it has been observed
by Andrews [1] that a variant of his α-noncollapsing condition, where H is
replaced by F , is preserved for mean curvature flow with star-shaped ini-
tial condition. It shall be remarked also that the work of White [23] and
Haslhofer-Kleiner [12] (and the non-collapsing result of Sheng-Wang [19]
and Andrews [1]) applies to embedded flows, whereas the work of Huisken-
Sinestrari [16, 17] applies more generally to immersed flows.

In this paper, we will prove analogous estimates and structural results
for the star-shaped mean curvature flows, which hold in all dimensions. In
fact, our results hold for a much more general class of initial hypersurfaces,
see Remark 2.4. In Section 2, we collect some preliminaries on (star-shaped)
mean curvature flow and recall the variant of Andrews’ noncollapsing result
for the star-shaped case (Theorem 2.6). In Section 3, we prove three main
estimates for the mean curvature flow with star-shaped initial condition. The
local curvature estimate (Theorem 3.1) gives curvature control in a parabolic
neighborhood of definite size assuming only curvature control at a single
point. The convexity estimate (Theorem 3.17) gives pinching of the principal
curvatures towards positive. The blowup theorem (Theorem 3.21) allows us
to pass to blowup limits smoothly and globally. In Section 4, we explain
that our three main estimates still hold beyond the first singular time if the
mean curvature is interpreted in the viscosity sense (Definition 4.9). As a
consequence, we obtain a structure theorem (Theorem 4.29), which says that
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all tangent flows in the star-shaped case are either planes or shrinking round
spheres or cylinders, and a partial regularity theorem (Theorem 4.31), which
says that the parabolic Hausdorff (and Minkowski) dimension of the singular
set S ⊂ Rn+1,1 in the star-shaped case is at most n− 1. In particular, we
see that the star-shaped case provides a setting where all mean curvature
flow singularities are generic in the sense of [6]. Thus, applying recent results
of Colding-Minicozzi [7, 8] we can also conclude that all tangent flows are
unique and that the (n− 1)-dimensional parabolic Hausdorff measure of S
is in fact finite.

The proofs of the local curvature estimate, the convexity estimate and
elliptic regularization for star-shaped flows are quite different from [12] and
require a number of novel ideas. E.g. we have to relate bounds for F (which
appears in the definition of noncollapsing) and bounds for H (which we get
by comparison with spheres), and we have to overcome the difficulty that
for star-shaped flow the speed H doesn’t have a sign, i.e. that the motion
in general doesn’t produce a foliation.
Acknowledgement. The author would like to thank Robert Haslhofer for the
continued stimulating discussions. We would also like to thank the referees
for the thorough careful reading and the suggestions which helped improve
the presentation of the paper.

2. Preliminaries

2.1. Notation and terminology

A smooth family {Mt ⊂ Rn+1}t∈I of closed embedded hypersurfaces, where
I⊂R is an interval, moves by mean curvature flow if Mt=Xt(M)=X(M, t)
for some smooth family of embeddings {Xt : M → Rn+1}t∈I satisfying the
mean curvature flow equation

∂Xt

∂t
= −Hν,

where H denotes the mean curvature and ν is the outward unit normal at
Xt. Instead of the family {Mt} itself, we will think in terms of the evolving
family {Kt} of the compact domains bounded by the Mt’s.

Space-time Rn+1,1 is defined to beRn+1 ×R equipped with the parabolic
metric d((x1, t1), (x2, t2)) = max(|x1 − x2|, |t1 − t2|

1

2 ). Parabolic rescaling by
λ ∈ (0,∞) at (x0, t0) ∈ Rn+1,1 is described by the mapping

(x, t) 7→ (λ(x− x0), λ
2(t− t0)).
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The parabolic ball with radius r > 0 and center X = (x, t) ∈ Rn+1,1 is the
product

P (x, t, r) = B(x, r)× (t− r2, t] ⊂ Rn+1,1 .

When we talk about a flow in a parabolic ball P (x, t, r) we in particular
include the assumption that the flow existed at least since t− r2.

Given a family of subsets {Kt ⊆ Rn+1}t∈I its space-time track is the set

K = ∪t∈IKt × {t} ⊆ Rn+1,1 .

Given a subset K ⊆ Rn+1,1, the time t slice of K is

Kt = {x ∈ Rn+1 | (x, t) ∈ K} .

Given a smooth compact domain K0 ⊂ Rn+1 we write Kt for the evolu-
tion of K0 by mean curvature flow. In technical terms, this is the level set
flow {Kt ⊂ Rn+1} starting at K0, see [10], [5] and [18]. The level set flow
can be defined as the maximal family of closed sets {Kt}t≥0 starting at K0

that satisfies the the avoidance principle

Kt0 ∩ Lt0 = ∅ ⇒ Kt ∩ Lt = ∅ for all t ∈ [t0, t1],

whenever {Lt}t∈[t0,t1] is a smooth compact mean curvature flow. The defini-
tion is phrased in such a way, that existence and uniqueness are immediate.
Moreover, the level set flow of K0 coincides with smooth mean curvature
flow of K0 for as long as the latter is defined.

We suppress the dependence on n in the notation, and we always assume
that the initial domain K0 ⊂ Rn+1 is smooth and compact.

2.2. Star-shapedness and α-noncollapsing

A smooth compact domain K0 ⊂ Rn+1 is called star-shaped (around the
origin) if ⟨X,ν⟩ > 0 for all X ∈ ∂K0.

Proposition 2.1 ([20, Prop. 4]). The quantity F = ⟨X,ν⟩+ 2tH satis-
fies the evolution equation

(2.2) ∂tF = ∆F + |A|2F,

In particular, if K0 is star-shaped, then F is positive for all t ≥ 0 as long as
the flow exists.



✐

✐

“3-Lin” — 2020/11/3 — 1:16 — page 1319 — #5
✐

✐

✐

✐

✐

✐

Star-shaped mean curvature flow 1319

Proposition 2.3 (c.f. [20, Lem. 1.1]). If Kt is a smooth mean curvature
flow starting at a star-shaped domain K0 ⊂ Rn+1, then H ≥ −C, where C
only depends on β = max{max∂K0

|A|,Diam(∂K0)}.

Proof. Using the evolution equation for |A|2,

∂t|A|2 = ∆|A|2 − 2|∇A|2 + 2|A|4,

and the maximum principle, there exists some small σ > 0 depending only on
max∂K0

|A|, such that for all t ∈ [0, σ] we have max∂Kt
|A| ≤ 2max∂K0

|A| .
This gives C̃ such that H ≥ −C̃ for all t ∈ [0, σ]. For t > σ, since F =
⟨X,ν⟩+ 2tH is positive we have H ≥ −Diam(∂K0)/σ. □

Remark 2.4. In fact, the quantity F = a1⟨X,ν⟩+ (a2 + 2a1t)H, where
a1 + a2 > 0, also satisfies equation (2.2). Therefore, with minor modifica-
tions (cf. (3.10) - (3.12)), our proofs generalize to the class of initial hyper-
surfaces that satisfy the condition a1⟨X,ν⟩+ a2H > 0. Such class of initial
hypersurfaces include mean convex hypersurfaces (a1 = 0, a2 = 1) and star-
shaped hypersurfaces (a1 = 1, a2 = 0) and more, cf. [20].

The following non-collapsing notion was due to Sheng-Wang [19].

Definition 2.5 (c.f. [19], [1]). Let α > 0. A smooth compact domain
K ⊂ Rn+1 with F > 0 is α-noncollapsed if each point p ∈ ∂K admits interior
and exterior balls tangent at p of radius at least α/F (p).

By compactness, each star-shaped domain K0 ⊂ Rn+1 satisfies the α-
noncollapsing condition for some α = α(K0) > 0. The following theorem
shows that α-noncollapsing is preserved along the mean curvature flow.

Theorem 2.6 (c.f. [19], [1, Rem. 7], [2, Rem. 3]). If K0 is α-non-
collapsed and Kt is the smooth mean curvature flow starting from K0, then
Kt is α-noncollapsed for the same constant α.

Proof. The proof follows from a similar computation as in [1] and [2]. For
the convenience of reader, we include it here. Consider

Z(x, y, t) =
2⟨X(y, t)−X(x, t),ν(x, t)⟩

∥X(y, t)−X(x, t)∥2

and

Z∗(x, t) = inf
y ̸=x

Z(x, y, t) , Z∗(x, t) = sup
y ̸=x

Z(x, y, t) .
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By a simple geometric argument, interior and exterior α-noncollapsing is
equivalent to the inequalities Z∗

F ≥ − 1
α and Z∗

F ≤ 1
α , respectively.

Computing various derivatives of Z, Andrews-Langford-McCoy derived
the evolution inequalities (in the viscosity sense),

(2.7) ∂tZ∗ ≥ ∆Z∗ + |A|2Z∗ , ∂tZ
∗ ≤ ∆Z∗ + |A|2Z∗ ,

see [2, Thm. 2]. Combining this with (2.2) we obtain

(∂t −∆)
Z∗

F
=

(∂t −∆)Z∗

F
− Z∗(∂t −∆)F

F 2
+ 2

〈

∇ logF,∇Z∗

F

〉

≥ 2

〈

∇ logF,∇Z∗

F

〉

.(2.8)

By the maximum principle, the minimum of Z∗

F is nondecreasing in time.
In particular, if the inequality Z∗

F ≥ − 1
α holds at t = 0, then this inequality

holds for all t. Arguing similarly we obtain that

(2.9) ∂t
Z∗

F
≤ ∆

Z∗

F
+ 2

〈

∇ logF,∇Z∗

F

〉

,

and thus that the inequality Z∗

F ≤ 1
α is also preserved along the flow. □

Remark 2.10 (parabolic rescaling). If {Kt}t∈I is an α-noncollapsed
flow and if {K̂t}t∈Î denotes the flow obtained by the parabolic rescaling

(x, t) → (λx, λ2t), λ ∈ (0,∞), then {K̂t}t∈Î is (λ2α)-noncollapsed. This is
because the quantity F is scaled by λ so that the noncollapsing constant
should be scaled to λ2α in order to match the scaling of the radii of the
interior and exterior balls at a point.

3. Main estimates and consequences

Throughout this section, we consider mean curvature flows {Kt} starting
at a smooth compact star-shaped initial domain K0 ⊂ Rn+1. We denote
by α = α(K0) > 0 and β = β(K0) > 0 the constants from Definition 2.5 and
Proposition 2.3, respectively. In this section, we give the proofs in the smooth
setting; we refer to Section 4 for the extension of the results to the setting
of weak solutions (level set flow).
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3.1. Local curvature estimate

Our first main estimate gives curvature control on a parabolic ball of definite
size, from a bound on the mean curvature H at a single point.

Theorem 3.1 (Local curvature estimate). There exist ρ = ρ(α, β) > 0
and Cl = Cl(α, β) < ∞ with the following property. If K is a smooth mean
curvature flow starting from a smooth compact star-shaped domain K0, de-
fined in a parabolic ball P (p, t, r) centered at a boundary point p ∈ ∂Kt with
H(p, t) ≤ r−1, then we have

(3.2) sup
P (p,t,ρr)

|∇lA| ≤ Clr
−(l+1) .

As an immediate consequence of Theorem 3.1, we obtain:

Corollary 3.3 (Gradient estimate). Suppose K is a smooth mean cur-
vature flow starting from a smooth compact star-shaped domain K0. Then
we have the gradient estimate

|∇A| ≤ CH2 ,

where C = C(K0) < ∞.

Proof of Theorem 3.1. Fix α and β. We will show that there exists a ρ′ > 0
such that the estimate (3.2) holds for l = 0 with C0 =

1
ρ′ ; the higher order

derivative estimates then follow immediately from standard interior esti-
mates (see e.g. [9, Prop. 3.22]).

Suppose this doesn’t hold. Then there are sequences of α-noncollapsed
flows

{

Kj
}

, boundary points {pj ∈ ∂Ktj} and scales {rj} → 0, such that Kj

is defined in P (pj , tj , rj) and H(pj , tj) ≤ r−1
j , but

sup
P (pj ,tj ,j−1rj)

|A| ≥ jr−1
j .

After parabolically rescaling by jr−1
j and applying an isometry, we obtain a

sequence {K̂j} of mean curvature flows defined in P (0, 0, j) with H(0, 0) ≤
j−1, but

(3.4) sup
P (0,0,1)

|A| ≥ 1 .
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Moreover, we can choose coordinates such that the outward normal of K̂j
0

at (0, 0) is en+1. Roughly speaking, we have

Fj(pj , tj) = ⟨Xj(pj , tj),ν(pj , tj)⟩+ 2tjH(pj , tj) ≤ Mr−1
j

for some M > 0 depending on the diameter of ∂K0, which yields that the in-
scribed curvature at Xj(pj , tj) is bounded from above by Mα−1r−1

j . Rescal-

ing by λ := jr−1
j then yields that the inscribed radius at the rescaled point

is greater than M−1αj → ∞. Intuitively, we have

Claim 3.5 (Halfspace convergence). The sequence of mean curvature
flows {K̂j} converges in the pointed Hausdorff topology to a static halfspace
in Rn+1 × (−∞, 0], and similarly for their complements.

Proof of Claim 3.5. ForR < ∞, d > 0 let B̄R,d = B((−R+ d)en+1, R) be the
closed R-ball tangent to the horizontal hyperplane {xn+1 = d} at the point
den+1. When R is large, under the mean curvature flow it will take time
approximately dR for B̄R,d to leave the upper half space {xn+1 > 0}.

Since 0 ∈ ∂K̂j
0 for all j, by the avoidance principle it follows that B̄R,d

cannot be contained in the interior of K̂j
t for any t ∈ [−T, 0], where T ≃ dR.

Thus, for large j we can find dj ≤ d such that B̄R,dj
has interior contact

with K̂j
t at some point q̂j , where ⟨q̂j , en+1⟩ < d and ∥q̂j∥ ≲

√
dR.

The mean curvature of ∂K̂j
t satisfies Ĥ(q̂j , t) ≤ n

R , and therefore for ∂Kj
t

we have H(qj , s) ≤ nj
Rrj

where s = (j−1rj)
2t+ tj . Moreover, by avoidance

principle for the mean curvature flow it is clear that

(3.6) s ≤ D2

2n
,

where D is the diameter of ∂K0. Thus

(3.7) F (qj , s) ≤ D +
jD2

Rrj
≤ 2jD2

Rrj
,

provided R ≤ jr−1
j D. Since Kj

t satisfies the α-noncollapsing condition, there

is a closed ball B̄j,o with radius at least αRrj
2jD2 making exterior contact with

Kj
s at qj . Therefore, after rescaling, there is a closed ball B̄j with radius

at least αR
2D2 making exterior contact with K̂j

0 at q̂j . By a simple geometric

calculation, this implies that K̂j
t has height ≲ D2d

α in the ball B(0, R′) where

R′ is comparable to
√
dR. As d and R are arbitrary (in fact, R is allowed

to be larger and larger as j increases provided R ≤ jr−1
j D; also note that
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r2j ≤ D2/2n), this implies that for any T > 0, and any compact subset Y ⊂
{xN > 0}, for large j the time slice K̂j

t is disjoint from Y , for all t ≥ −T .
Likewise, for any T > 0 and any compact subset Y ⊂ {xN < 0}, the time
slice K̂j

t contains Y for all t ∈ [−T, 0], and large j, because K̂j
−T will contain

a ball whose forward evolution under mean curvature flow contains Y at any
time t ∈ [−T, 0]. This proves the claim. □

To finish the proof of the theorem, we need a variant of the one-sided
minimization theorem, cf. [23, Thm. 3.5], [12, Rem. 2.6].

Claim 3.8 (One-sided minimization for K̂j
t ). For every ε > 0, every

t ∈ [−T, 0] and every ball B(x, r) centered on the hyperplane {xn+1 = 0}, we
have

(3.9) |∂K̂j
t ∩B(x, r)| ≤ (1 + ε)ωnr

n ,

for j large enough.

Combining Claim 3.5, Claim 3.8 and the local regularity theorem for the
mean curvature flow (see e.g. [25], [22]), we see that {K̂j} converges smoothly
on compact subsets of spacetime to a static halfspace. In particular,

lim sup
j→∞

sup
P (0,0,1)

|A| = 0;

this contradicts (3.4). Modulo the proof of Claim 3.8, which we will give
below, this concludes the proof of Theorem 3.1. □

To prove Claim 3.8, we will rescale the flow and prove a weighted version
of the one-sided minimization result for the rescaled flow, and then convert
it back to the original flow. The key is to make use of the fact that F =
⟨X,ν⟩+ 2tH > 0 along the flow. We first perform the continuous rescaling:

(3.10) X̃(·, τ) = 1√
t
X(·, t) , τ = log t .

Then X̃(·, τ) satisfies the rescaled mean curvature flow equation

(3.11)

(

∂

∂τ
X̃

)⊥

= −
(

H̃ +
⟨X̃, ν̃⟩

2

)

ν̃ , τ ∈ (−∞, log T ) .
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Note that the speed function on the right-hand side of (3.11) is negative:

(3.12) −
(

H̃ +
⟨X̃, ν̃⟩

2

)

= −
√
t

(

H +
⟨X,ν⟩
2t

)

< 0 .

Let {Kt=Kj
t } be the sequence of flows from the proof of Theorem 3.1,

and denote by {K̃τ} the associated rescaled mean curvature flows (we sup-
press the index j in the notation). Using (3.11) and (3.12), we see that the
boundaries of the {K̃τ}τ∈(−∞,log T ) form a foliation of Rn+1\K̃log T for any
T > 0 as long as the flow exits.

Now we define the weighted boundary area of a compact set S with
sufficiently regular boundary to be

Areaw(∂S) =

∫

∂S
e

|x|2

4 dµ .

Note that if ∂S minimizes the weighted boundary area, then on ∂S we have

H +
⟨X,ν⟩

2
= 0 .

Claim 3.13 (Weighted one-sided minimization for rescaled flow).
The weighted boundary area of K̃τ is less than or equal to the weighted
boundary area of any smooth compact domain S ⊇ K̃τ .

Proof of Claim 3.13. Recall that {∂K̃τ ′}τ ′≤τ foliates Rn+1\Int(K̃τ ). Let ν̃

be the vector field in Rn+1\Int(K̃τ ) defined by the outward unit normals
of the foliation. If S ⊇ K̃τ is any smooth compact domain, then using the
divergence theorem we can compute

Areaw(∂S)−Areaw(∂K̃τ ) ≥
∫

∂S
⟨ν̃, ν̃∂S⟩e

|x|2

4 dµ−
∫

∂K̃τ

⟨ν̃, ν̃∂K̃τ
⟩e |x|2

4 dµ

=

∫

S\K̃τ

(

H̃ +
⟨X̃, ν̃⟩

2

)

e
|x|2

4 dµ ≥ 0 .

This proves the claim. □

Proof of Claim 3.8. Note first that there exists a uniform constant σ =
σ(α, β) > 0 such that F = ⟨X,ν⟩+ 2tH ≥ σ for any t ∈ [0, σ] and such that
tj ≥ σ for j large (since supP (pj ,tj ,j−1rj) |A| → ∞).

Since {∂K̃τ}τ∈(−∞,log T ) foliates Rn+1\K̃log T for any T > 0 as long as

the flow exits, there is some Θ = Θ(α, β) < ∞ such that K̃τ is contained in
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BΘ for any τ ≥ log σ. Moreover, by Claim 3.13, K̃τ is one-sided minimizing
for the weighted area. Also note that the rescaling factor between K̃τ and
Kt is uniformly controlled for τ ≥ log σ.

For any ε > 0 there exists a constant δ = δ(ε,Θ) > 0, such that at any
point p ∈ ∂K̃τ (τ ≥ log σ) we have

(3.14) 1− ε/2 ≤ e
|p|2

4 Area(∂K̃τ ∩B(p, δ))

Areaw(∂K̃τ ∩B(p, δ))
≤ 1 + ε/2 .

Now at pj ∈ ∂Kj
t , using the facts that Kj is α-noncollapsed and that the

parabolically rescaled flow K̂j
t has height ≲ D2d

α in the ball B(0, R′) where

R′ is comparable to
√
dR, we conclude that for any r sufficiently small and

j sufficiently large:

Area(∂Kj
t ∩B(pj , r)) ≤ (1 + ε)ωnr

n .(3.15)

Here, we used the estimate (3.14) and Claim 3.13 with S obtained from Kj
t

by attaching a short solid cylinder over the approximate disk. Rescaling to
K̂j this completes the proof of Claim 3.8. □

Remark 3.16. One may obtain a variant of the curvature estimate by
considering flows which are defined in B(p, r)× (t− r2, t+ τr2] for some
fixed τ > 0, in which case the curvature bound holds in a suitable parabolic
region extending forward in time. The proof is similar.

3.2. Convexity estimate

In this section, we prove the following convexity estimate for mean curvature
flow with star-shaped initial data.

Theorem 3.17. For all ε > 0, there exists η = η(ε, α, β) < ∞ with the fol-
lowing property. If K is a smooth mean curvature flow starting from a smooth
compact star-shaped domain K0, defined in a parabolic ball P (p, t, ηr) cen-
tered at a boundary point p ∈ ∂Kt with H(p, t) ≤ r−1, then

κ1(p, t) ≥ −εr−1 ,

where κ1 is the lowest principal curvature.

Theorem 3.17 immediately implies the following corollary.
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Corollary 3.18. If K is a smooth mean curvature flow starting from a
smooth compact star-shaped domain K0, then for all ε > 0 there exists 0 <
H0 = H0(ε,K0) < ∞ such that if H(p, t) ≥ H0 then κ1

H (p, t) ≥ −ε .

Remark 3.19. As mentioned in the introduction, a similar convexity esti-
mate has been proved by Smoczyk [20, Thm. 1.1] for n = 2.

Proof of Theorem 3.17. Fix α and β. We first show that the theorem holds
for ε ≥ 2β2

nα ≥ 2D2

nα , where D is the diameter of ∂K0. To see this, we choose

η =
√

n/2 and note that since the flow existed in the parabolic ball P (p, t, ηr)

we have (ηr)2 ≤ t ≤ D2

2n , c.f. (3.6). Now the α-noncollapsing (Theorem 2.6)
gives interior and exterior balls of radius at least α/F (p, t) and thus

(3.20) κ1(p, t) ≥ −F (p, t)

α
≥ −D + n−1D2r−1

α
≥ −εr−1,

where we used that ε ≥ 2D2

nα and r ≤ D
n by our choice of η.

Let ε0 ≤ 2β2

nα be the infimum of the ε’s for which the assertion of the
theorem holds, and suppose towards a contradiction that ε0 > 0.

It follows that there is a sequence {Kj} defined in P (pj , tj , ηjrj) with
H(pj , rj) ≤ r−1

j and ηj → ∞, but κ1(pj , tj)rj → −ε0. Now since

(ηjrj)
2 ≤ tj ≤

D2
j

2n
≤ β2

2n

is uniformly bounded, we have rj → 0. It follows that κ1(pj , tj) → −∞. Let
I := lim infj→∞H(pj , tj). If I < ∞, then by the α-noncollapsing condition
we have

κ1(pj , tj) ≥ −F (pj , tj)

α
≥ −

Dj +D2
j I/n

α
≥ −β + β2I/n

α

for some arbitrarily large integers j; a contradiction. Thus, I = ∞.
Parabolically rescaling by r−1

j and applying an isometry, we obtain a

sequence {K̂j} of flows defined in P (0, 0, ηj) with (0, 0) ∈ ∂K̂j , 0 < H(0, 0) ≤
1 for all j, but κ1(0, 0) → −ε0 as j → ∞. After passing to a subsequence,
{K̂j} converges smoothly to a mean curvature flow K̂∞ in the parabolic ball
P (0, 0, ρ), where ρ = ρ(α, β) is the quantity from Theorem 3.1. For K̂∞ we
have κ1(0, 0) = −ε0, and thusH(0, 0) = 1. By continuityH > 1

2 in P (0, 0, ρ′)
for some ρ′ ∈ (0, ρ). Since ε0 is the infimum of the ε’s for which the assertion
of the theorem holds and since I = ∞, it follow that κ1

H ≥ −ε0 in P (0, 0, ρ′).
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Thus, κ1

H attains a negative minimum at (0, 0); this contradicts the strict
maximum principle (see e.g. [12, App. A], [11, Sec. 8] or [24, App. A]). □

3.3. Blowup theorem

The next theorem shows that for mean curvature flow with star-shaped
initial condition, we can pass to blowup limits smoothly and globally.

Theorem 3.21 (Blowup theorem). Let K be a smooth mean curvature
flow starting from a smooth compact star-shaped domain K0. Let {(pj , tj) ∈
∂K} be a sequence of boundary points with λj := H(pj , tj) → ∞. Then, after
passing to a subsequence, the flows K̂j obtained from K by the rescaling
(p, t) 7→ (λj(p− pj), λ

2
j (t− tj)) converge smoothly and globally:

K̂j → K∞ in C∞
loc on Rn+1 × (−∞, 0].(3.22)

The limit K∞ is a mean convex α̂-noncollapsed flow for some α̂ = α̂(α, β) >
0, and has convex time slices.

Proof. Since λj = H(pj , tj) → ∞, w.l.o.g. we have that tj ≥ σ > 0, for some
uniform constant σ > 0. By comparison with spheres, tj ≤ T (β) < ∞ where
β is from Proposition 2.3.

Note also that there is a sequence ηj → ∞ such that the rescaled flow
K̂j satisfies Ĥ(x, t) ≥ σ−1βλ−1

j in P (0, 0, ηj) for all sufficiently large j. To
see this, suppose otherwise that there exists j0 ∈ N sufficiently large such
that for any i ∈ N there exists (x0, t0) ∈ ∂K̂j0 ∩ P (0, 0, i) such that

Ĥ(x0, t0) < σ−1βλ−1
j0

.

Then Remark 3.16 tells us that a version of the local curvature estimate
Theorem 3.1 that is valid in the region B(x0, i)× (t0 − i2, t0 + i2] yields

Ĥ(0, 0) < Cσ−1βλ−1
j0

< 1

for such j0 sufficiently large; a contradiction to Ĥ(0, 0) = 1 for all K̂j . Rescal-
ing back, we know that in a sequence of increasing parabolic neighborhoods
of the base points (pj , tj) for j sufficiently large we have

0 < β ≤ ⟨X,ν⟩+ 2tH ≤ β + 2TH ≤ (σ + 2T )H .

Therefore, K̂j is mean convex α̂-noncollapsed (i.e. admits interior and ex-
terior balls of radius α̂/H(p)) in P (0, 0, ηj), where α̂ = α̂(α, β) > 0. We can
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now apply the global convergence theorem [12, Thm 1.12] to get a limit K∞,
which is a mean convex α̂-noncollapsed flow with convex time slices. □

4. Estimates for weak solutions

4.1. Elliptic regularization and consequences

Let K0 ⊂ Rn+1 be a star-shaped domain and let {Kt}t≥0 be the level set
flow starting at K0, see Section 2. By a result of Soner [21, Sec. 9], the flow
is nonfattening. As in Section 3, we consider the rescaled flow K̃τ = t−1/2Kt

where τ = log t and t ∈ [σ, T ].
We will now adapt the elliptic regularization from Evans-Spruck [10,

Sec. 7] to our setting. The rescaled level set flow {K̃τ}log σ≤τ≤log T can
be described by the time of arrival function v : K̃log σ → R defined by
(x1, . . . , xn+1) = x ∈ ∂K̃τ ⇔ v(x) + log σ = τ . The function v satisfies

(4.1) − div

(

Dv

|Dv|

)

− 1

2

〈

x,
Dv

|Dv|

〉

=
1

|Dv| ,

in K̃log σ with v = 0 on ∂K̃log σ in the viscosity sense. The solution v arises
as uniform limit of smooth functions vε : K̃log σ → R solving the regularized
equation
(4.2)

− div

(

(Dvε,−ε)
√

ε2 + |Dvε|2

)

− 1

2

〈

(

x,
vε

ε

)

,
(Dvε,−ε)

√

ε2 + |Dvε|2

〉

=
1

√

ε2 + |Dvε|2
,

with Dirichlet boundary condition vε = 0 on ∂K̃log σ. Geometrically, equa-
tion (4.2) says that Ñ ε

log σ = graph
(

vε

ε

)

satisfies

(4.3) H⃗ − X⊥

2
= −1

ε
e
⊥
n+2 ,

or equivalently that Ñ ε
τ = graph

(

vε+log σ−τ
ε

)

, τ ≥ log σ, is a translating so-

lution of the rescaled mean curvature flow (3.11). Using a barrier argument
(see e.g. [10, Sec. 7] for details) we obtain the C0-estimate

(4.4) C−1 dist(x, ∂K̃log σ) ≤ vε(x) ≤ C dist(x, ∂K̃log σ) ,

for some uniform constant C > 0. Observe that (4.4) yields

(4.5) |Dvε| ≤ C on ∂K̃log σ .
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Multiplying by
√

ε2 + |Dvε|2 and taking the first partial derivative Dxl

(where l = 1, . . . , n+ 1) on both sides of equation (4.2), we get

(4.6) −
(

δij −
vεxi

vεxj

ε2 + |Dvε|2
)

(vεxl
)xixj

+
2(vεxl

)xi
vεxj

ε2 + |Dvε|2 v
ε
xixj

−
2vεxi

vεxj
vεxk

(vεxl
)xk

(ε2 + |Dvε|2)2
vεxixj

− xk(v
ε
xl
)xk

2
= 0 .

Thus, vεxl
satisfies a uniformly elliptic PDE where the maximum principle is

applicable directly and any derivative vεxl
achieves its maximum and mini-

mum on ∂K̃log σ. Combing this with (4.5) we therefore obtain the uniform
gradient estimate

(4.7) |Dvε| ≤ C in K̃log σ .

Therefore, as ε tends to zero the functions vε indeed converge uniformly to
v, and v is Lipschitz.

Now for (x, xn+2) ∈ Ñ ε
τ we have τ = vε(x) + log σ − εxn+2. Thus, the

time of arrival function of {Ñ ε
τ } is given by

(4.8) V ε(x, xn+2) = vε(x) + log σ − εxn+2

For ε → 0 it converges locally uniformly to V (x, xn+2) = v(x) + log σ, which
is the time of arrival function of {∂K̃τ ×R}. Thus, for ε → 0 the space-time
tracks Ñ ε Hausdorff converge to K̃, and similarly for their complements.
Together with Lemma 4.10 below, we can now finish the argument as in [12,
Sec. 4.3] to conclude that the estimates from Section 3 hold for the level
set flow with star-shaped initial condition, provided the mean curvature is
interpreted in the viscosity sense:

Definition 4.9 ([12, Def. 1.3]). Let K ⊆ Rn+1 be a closed set. If p ∈ ∂K,
then the viscosity mean curvature of K at p is

H(p) = inf{H∂X(p) | X ⊆ K is a compact smooth domain, p ∈ ∂X},

where H∂X(p) denotes the mean curvature of ∂X at p with respect to the
inward pointing normal (here inf ∅ = +∞).

Lemma 4.10 (c.f. [12, Thm. 4.6 (1)]). The elliptic approximators Ñ ε
τ

admit interior and exterior balls of radius at least αε

eσ

√

ε2 + |Dvε(x)|2 at

X̃ε(x, τ) =
(

x, v
ε(x)+log σ−τ

ε

)

∈ Ñ ε
τ , and lim infε→0 αε ≥ α.
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Proof. As in the proof of Theorem 2.6, consider

Z̃ε(x,y, τ) =
2
〈

X̃ε(y, τ)− X̃ε(x, τ), ν̃ε(x, τ)
〉

∥X̃ε(y, τ)− X̃ε(x, τ)∥2

and

Z̃ε
∗(x, τ) = inf

y ̸=x

Z̃ε(x,y, τ) , Z̃∗
ε (x, τ) = sup

y ̸=x

Z̃ε(x,y, τ) ,

where x ∈ K̃log σ. Here

(4.11) ν̃
ε(x, τ) = (−Dvε(x), ε)/

√

ε2 + |Dvε(x)|2

and

(4.12) X̃ε(x, τ) =

(

x,
vε(x) + log σ − τ

ε

)

∈ Ñ ε
τ .

Since Ñ ε
τ is a translating solution of the rescaled mean curvature flow (3.11),

we denote N ε
τ = eτ/2Ñ ε

τ the mean curvature flow corresponding to Ñ ε
τ and

Xε(x, t) = eτ/2X̃ε(x, τ), where τ = log t. Let

F̃ ε(x, τ) = F̃ ε(X̃ε(x, τ)) = H̃ε(X̃ε(x, τ)) +

〈

X̃ε(x, τ), ν̃ε(x, τ)
〉

2

and

(4.13) F ε(x, t) = 2eτ/2F̃ ε(x, τ) = 2tHε(Xε(x, t)) + ⟨Xε(x, t),νε(x, t)⟩ ,

cf. (3.12).
Similarly, we define

(4.14) Zε
∗(x, t) = e−τ/2Z̃ε

∗(x, τ) and Z∗
ε (x, t) = e−τ/2Z̃∗

ε (x, τ)

according to the rescaling . Then we have

(4.15)
Zε
∗

F ε
=

Z̃ε
∗

2eτ F̃ ε
.

Now note that equation (4.2) is equivalent to

(4.16) F̃ ε(x, log σ) = 1/
√

ε2 + |Dvε(x)|2 for ∀ x ∈ K̃log σ .

Moreover, since Ñ ε
τ is a translating solution of the rescaled mean curvature

flow (3.11) (so that for fixed x we know that Z̃ε
∗(x, τ), Z̃

∗
ε (x, τ) and H̃ε(x, τ)
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are independent of τ), using (4.11) and (4.12) we have

d

dτ
Z̃ε
∗(x, τ) = 0

and

(4.17)
d

dτ
F̃ ε(x, τ) =

1

2

d

dτ

〈

ν̃
ε, X̃ε

〉

(x, τ) =
−1

2
√

ε2 + |Dvε(x)|2
.

Therefore, integrating (4.17) w.r.t. τ and using (4.16) we have

(4.18) F̃ ε (x, τ) =

(

2 + log σ − τ

2

)

/
√

ε2 + |Dvε(x)|2 .

Therefore

0 =
d

dτ

(

(2 + log σ − τ) Z̃ε
∗

2F̃ ε

)

(x, τ)(4.19)

= ∂τ

(

(2 + log σ − τ) Z̃ε
∗

2F̃ ε

)

(x, τ)

+

〈

∇̃
(

(2 + log σ − τ) Z̃ε
∗

2F̃ ε

)

,
eTn+2

ε|eTn+2|

〉

(x, τ) ,

where eTn+2 is the tangential part of en+2 at X̃ε(x, τ) and ∂τ

(

(2+log σ−τ)Z̃ε
∗

2F̃ ε

)

is the time derivative of (2+log σ−τ)Z̃ε
∗

2F̃ ε
along the normal motion.

Now using (2.7), (2.8) and (4.15) we obtain

(4.20) ∂τ
Z̃ε
∗

F̃ ε
≥ ∆̃

Z̃ε
∗

F̃ ε
+ 2

〈

∇̃ log F̃ ε, ∇̃ Z̃ε
∗

F̃ ε

〉

+
Z̃ε
∗

F̃ ε
,

in the viscosity sense. Combining (4.19) and (4.20) we obtain

0 ≥ 2 + log σ − τ

2

(

∆̃
Z̃ε
∗

F̃ ε
+ 2

〈

∇̃ log F̃ ε +
eTn+2

2ε|eTn+2|
, ∇̃ Z̃ε

∗

F̃ ε

〉)

(4.21)

+
(1 + log σ − τ)Z̃ε

∗

2F̃ ε
,

if τ < 2 + log σ. Note that 2 + log σ − τ > 0 and 1 + log σ − τ ≤ 0 if τ ∈
[1 + log σ, 2 + log σ).
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Therefore, by (4.19), the quantity

(4.22) Iε(τ) := min
Ñε

τ

Z̃ε
∗

2F̃ ε/(2 + log σ − τ)

and the value of the optimal noncollapsing constant αε of Ñ ε
τ (with respect

to the radius 1
2F̃ ε/(2+log σ−τ)

) are independent of time τ ≥ log σ. Moreover,

at any time τ ∈ [1 + log σ, 2 + log σ) we can apply the maximum principle
to equation (4.21) so that we know Iε(τ) is attained at the boundary of
Ñ ε

τ . Since {Ñ ε
τ }τ≥log σ converges locally uniformly to {K̃τ ×R}τ≥log σ as

ε → 0 (and the convergence is smooth at least until τ = 2 + log σ if σ is
chosen sufficiently small), to find the limiting behavior of the noncollapsing
constant as ε → 0, we can simply look any time τ = 1 + log σ to conclude
that (note also that K̃1+log σ admits interior and exterior balls of radius at

least α/(2eσF̃ ) where F̃ = H̃ + ⟨X̃,ν̃⟩
2 )

(4.23) lim inf
ε→0

Iε ≥ −eσ

α
.

Therefore, using (4.16) and (4.18) we know that Ñ ε
τ admits interior balls

of radius at least

(4.24)
αε/(eσ)

2F̃ ε(x, τ)/(2 + log σ − τ)
=

αε

eσF̃ ε(x, log σ)
=

αε

√

ε2 + |Dvε(x)|2
eσ

at X̃ε(x, τ) for all x ∈ K̃log σ and all τ ≥ log σ. Moreover, lim infε→0 αε ≥ α.
Arguing similarly for Z̃∗

ε , this proves the lemma. □

Remark 4.25. To see that K̃1+log σ admits interior and exterior balls of

radius at least α/(2eσF̃ ) where F̃ = H̃ + ⟨X̃,ν̃⟩
2 , we note that if Nt = eτ/2Ñτ

admits interior and exterior balls of radius at least α/F at X(x, t), then
by the rescaling X̃(x, τ) = t−1/2X(x, t) (cf. (4.13)) we know that Ñτ admits
interior and exterior balls of radius at least α/(2eτ F̃ ) at X̃(x, τ).

Remark 4.26. From (4.22) and (4.24) we see that the noncollapsing con-
stant of Ñ ε

τ , with respect to the radius

1

2F̃ ε/(2 + log σ − τ)
=
√

ε2 + |Dvε(x)|2 ,

is at least α/(eσ) = 2α/e
2elog σ for all τ ≥ log σ.
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Therefore, using (4.13), (4.14) and (4.22) we know that

(4.27) Iε(t) := min
Nε

t

tZε
∗

F ε/(2 + log σ − log t)

is independent of t ≥ σ. Namely, the noncollapsing constant of N ε
t = eτ/2Ñ ε

τ ,
with respect to the radius

t

F ε/(2 + log σ − log t)
=

√
t
√

ε2 + |Dvε(x)|2 ,

is independent of t.
Now take t = σ. Since the noncollapsing constant of Ñ ε

log σ (w.r.t. 1/F̃ ε)
is at least α/(eσ), by the same rescaling as in Remark 4.25 we know
that the noncollapsing constant of N ε

σ (w.r.t.
√
σ
√

ε2 + |Dvε(x)|2 = 2σ/F ε)
is at least 2α/e, and thus the noncollapsing constant of N ε

t (w.r.t.√
t
√

ε2 + |Dvε(x)|2) is at least 2α/e for all t ≥ σ since it is independent
of t.

Remark 4.28. Applying Lemma 4.10 to {Ñ ε
τ }τ≥log σ and by Remark 4.26

we know that the noncollapsing constant of {N ε
t }t≥σ (w.r.t.

√
t×

√

ε2+|Dvε(x)|2) is at least 2α/e for all t≥σ. Since {Ñ ε
τ }τ≥log σ and {N ε

t }t≥σ

converges locally uniformly to {K̃τ ×R}τ≥log σ and {Kt ×R}t≥σ, respec-
tively, as ε → 0, we get that the noncollapsing constant of Kt (w.r.t.
limε→0

√
t
√

ε2 + |Dvε(x)|2 = eτ/2/F̃ = 1
F/(2t) =

1
H+⟨X,ν⟩/(2t) > 0) is at least

2α/e for all t ≥ σ.

4.2. Size and structure of the singular set

In this final section we describe the size and the structure of the singular
set for the mean curvature flow with star-shaped initial condition.

Theorem 4.29 (Tangent flows). Let K be a mean curvature flow with
star-shaped initial condition. Let (p0, t0) ∈ ∂K (t0 > 0) and let λj → ∞.
Then, the flow Kj obtained from K by the parabolic rescaling (p, t) 7→ (λj(p−
p0), λ

2
j (t− t0)) converges smoothly and globally:

Kj → K∞ in C∞
loc on Rn+1 × (−∞, 0].(4.30)

The limit K∞ is either (i) a static halfspace or (ii) a shrinking round sphere
or cylinder.
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Proof. Let Qj := supKj∩P (0,0,1)H. If there is a subsequence such that

Qjλ
−1
j → 0, then by the local curvature estimate (Theorem 3.1) we have

convergence to a static halfspace. Assume now lim infj→∞Qjλ
−1
j > 0. Then,

arguing as in the proof of the blowup theorem (Theorem 3.21) we see that
Kj is mean convex α̂-noncollapsed in P (0, 0, ηj) for some sequence ηj → ∞.
Applying the structure theorem [12, Thm. 1.14] we conclude that a subse-
quence converges to a round shrinking sphere or cylinder. Finally, by a recent
result of Colding-Minicozzi [7] the limit is unique, i.e. we have convergence
even without passing to a subsequence. □

Theorem 4.31 (Partial regularity). Suppose K is a mean curvature flow
with star-shaped initial condition. Then the parabolic Hausdorff dimension
and Minkowski dimension of the singular set S ⊂ Rn+1,1 are at most n− 1.
Moreover, Hn−1

par (S) < ∞.

Proof. The estimate for the parabolic Hausdorff dimension is a quick conse-
quence of the tangent flow theorem (Theorem 4.29). Namely, if the parabolic
Hausdorff dimension of S where bigger than n− 1, then blowing up at a den-
sity point we would obtain a tangent flow whose singular set has parabolic
Hausdorff dimension bigger than n− 1, contradicting the classification of
tangent flows. The stronger estimate for the parabolic Minkowski dimen-
sion and the finiteness of Hn−1

par (S) can be obtained by combining Theorem
4.29 with the work of Cheeger-Haslhofer-Naber [4] and Colding-Minicozzi
[8], respectively. □

References

[1] B. Andrews, Noncollapsing in mean-convex mean curvature flow, Geom.
Topol. 16 (2012), no. 3, 1413–1418.

[2] B. Andrews, M. Langford, and J. McCoy, Non-collapsing in fully non-
linear curvature flows, Ann. Inst. H. Poincaré Anal. Non Linéaire 30
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Boston Inc., Boston, MA, (2004).

[10] L. Evans and J. Spruck, Motion of level sets by mean curvature. I, J.
Differential Geom. 33 (1991), no. 3, 635–681.

[11] R. Hamilton, Four-manifolds with positive curvature operator, J. Dif-
ferential Geom. 24 (1986), no. 2, 153–179.

[12] R. Haslhofer and B. Kleiner, Mean curvature flow of mean convex hy-
persurfaces, arXiv:1304.0926, (2013).

[13] R. Haslhofer and B. Kleiner, A new construction of mean curvature flow
with surgery, arXiv:1404.2332, (2014).

[14] G. Huisken, Flow by mean curvature of convex surfaces into spheres, J.
Differential Geom. 20 (1984), no. 1, 237–266.

[15] G. Huisken and C. Sinestrari, Mean curvature flow with surgeries of
two-convex hypersurfaces, Invent. Math. 175 (2009), no. 1, 137–221.

[16] G. Huisken and C. Sinestrari, Mean curvature flow singularities for
mean convex surfaces, Calc. Var. Partial Differential Equations 8
(1999), no. 1, 1–14.

[17] G. Huisken and C. Sinestrari, Convexity estimates for mean curvature
flow and singularities of mean convex surfaces, Acta Math. 183 (1999),
no. 1, 45–70.

[18] T. Ilmanen, Elliptic regularization and partial regularity for motion by
mean curvature, Mem. Amer. Math. Soc. 108 (1994), no. 520, x+90.



✐

✐

“3-Lin” — 2020/11/3 — 1:16 — page 1336 — #22
✐

✐

✐

✐

✐

✐

1336 Longzhi Lin

[19] W. Sheng and X. Wang, Singularity profile in the mean curvature flow,
Methods Appl. Anal. 16 (2009), no. 2, 139–155.

[20] K. Smoczyk, Starshaped hypersurfaces and the mean curvature flow,
Manuscripta Math. 95 (1998), no. 2, 225–236.

[21] M. Soner,Motion of a set by the curvature of its boundary, J. Differential
Equations 101 (1993), no. 2, 313–372.

[22] L. Wang, A regularity theorem for curvature flows, Rev. Mat.
Iberoamericana 18 (2002), no. 1, 99–114.

[23] B. White, The size of the singular set in mean curvature flow of mean
convex sets, J. Amer. Math. Soc. 13 (2000), no. 3, 665–695.

[24] B. White, The nature of singularities in mean curvature flow of mean-
convex sets, J. Amer. Math. Soc. 16 (2003), no. 1, 123–138.

[25] B. White, A local regularity theorem for mean curvature flow, Ann. of
Math. (2) 161 (2005), no. 3, 1487–1519.

[26] B. White, Subsequent singularities in mean-convex mean curvature flow,
Calc. Var. Partial Differential Equations (2015), to appear.

Mathematics Department, University of California - Santa Cruz

1156 High Street, Santa Cruz, CA 95064, USA

E-mail address: lzlin@ucsc.edu

Received February 2, 2016

Accepted March 11, 2018


	Introduction
	Preliminaries
	Main estimates and consequences
	Estimates for weak solutions
	References

