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Symplectic quotients of unstable Morse

strata for normsquares of moment maps

FRANCES KIRWAN

Let K be a compact Lie group and fix an invariant inner product
on its Lie algebra £. Given a Hamiltonian action of K on a com-
pact symplectic manifold X with moment map p: X — £, the
normsquare |u|? of u defines a Morse stratification {Sz: 3 € B}
of X by locally closed symplectic submanifolds of X such that the
stratum to which any z € X belongs is determined by the limiting
behaviour of its downwards trajectory under the gradient flow of
|p]? with respect to a suitably compatible Riemannian metric on
X. The open stratum Sy retracts K-equivariantly via this gradient
flow to the minimum p~1(0) of |u|? (if this is not empty). If 8 # 0
the usual ‘symplectic quotient’ (Sg N p~1(0))/K for the action of
K on the stratum Ss is empty. Nonetheless, motivated by recent
results in non-reductive geometric invariant theory, we find that
the symplectic quotient construction can be modified to provide
natural ‘symplectic quotients’ for the unstable strata with 5 # 0.
There is an analogous infinite-dimensional picture for the Yang—
Mills functional over a Riemann surface with strata determined by
Harder—Narasimhan type.
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1. Introduction

Let (X,w) be a compact symplectic manifold, and let u : X — €* be a mo-
ment map for a Hamiltonian action of a compact Lie group K on (X, w).
Then the symplectic quotient (or Marsden—Weinstein reduction of X at 0
[36]) is given by X /fK = u~1(0)/K with its induced symplectic structure.
Let us fix a K-invariant inner product on the Lie algebra £ of K; then the
associated normsquare |u|? of 4 can be considered as a Morse function on
X. This is not in general a Morse function in the classical sense, nor even
a Morse-Bott function, since the connected components of its set of critical
points are not in general submanifolds of X. Nonetheless, given a suitably
compatible K-invariant Riemannian metric on X, there is a Morse strati-
fication {Ss : B € B} of X induced by |u|? such that each stratum Sz is a
K-invariant locally closed symplectic submanifold of X [28]. Here the stra-
tum to which x € X belongs is determined by the limit set of its path of
steepest descent for |u|?, and the index 3 is the intersection with a positive
Weyl chamber t, for K of the co-adjoint orbit which is the image under p
of the corresponding critical set.

We can attempt to construct symplectic quotients for the restrictions of
the Hamiltonian K-action to the strata Sz. However the usual construction,
given by (SN p=1(0))/K, is empty if 8 # 0. When K = T is abelian we can
deal with this problem by shifting the moment map by a suitable constant;
a natural choice is to replace ©~1(0) here with u=1((1 +¢€)B) for 0 < e <
< 1. However when f3 is not central p~!((1+ ¢)3) will not in general be
K-invariant, so we must modify the construction. We will see in this paper
that this can be done by recalling that there are natural identifications

Sﬁ = K X Kg (Y/B ﬁSﬁ)

where Y} is the locally closed submanifold given for the Morse-Bott function
pp(x) = p(x).5 by

Y = {y € X : the downward trajectory of y for grad(ug)
has a limit point = with pg(x) = |8},
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and the stabiliser Kz of 8 under the adjoint action of K acts diagonally on
the product of K with the open subset Y3 N Sz of Y3. For sufficiently small
€ > 0 we will see that Yz N u~1((1+ €)B) C Ss is compact and

S JIK == (Yanp ' ((1+€)B)/Ks

has an induced symplectic structure with which it can be regarded as a
symplectic quotient for the K-action on the stratum Sg.

The motivation for this construction comes from the relationship be-
tween symplectic quotients and geometric invariant theory (GIT). Suppose
that X C P” is a nonsingular complex projective variety, that w is the
restriction to X of the Fubini-Study Kéahler form on the complex projec-
tive space P" and that K acts linearly on X via a unitary representation
p: K — U(n+1). Then the open stratum Sy coincides with the semistable
locus X %% in the sense of Mumford’s GIT for the induced linear action on X
of the complexification G = K¢ of K, and the inclusion p~1(0) — X3¢ com-
posed with the quotient map from X*° to the GIT quotient X//G induces
an identification of the symplectic quotient X /JK = pu~1(0)/K with X//G.
(For this reason, even in the non-algebraic case, we will refer to the strata
Sg for B # 0 as the unstable strata). The unstable strata Sg are G-invariant
locally closed subvarieties of X and have descriptions of the form

Sp=KY3® = GY5* =G xp, Yi* 2 K xg, Y§°

where Pg is a parabolic subgroup of &, and Yo =YsnN Ss has an inductive
description involving semistability for the action of a Levi subgroup Lg of
Pg, after twisting the linearisation by a suitable rational character of Pg.
Since such characters do not in general extend to G, in order to construct
GIT quotients of the unstable strata Sg it is natural to consider quotients
of the subvarieties Y by the action of the non-reductive groups Ps. Recent
results have extended classical GIT to suitable non-reductive linear algebraic
group actions on projective varieties [4, 5], and the modified symplectic
quotient construction for unstable strata just described is suggested by these
advances, together with links between non-reductive GIT and the symplectic
implosion construction of Guillemin, Jeffrey and Sjamaar [20, [34]. In the
algebraic setting the modified symplectic quotient construction coincides
with a non-reductive GIT quotient construction for the Pz action on Yj
with an appropriately twisted linearisation.

In their fundamental paper [3] Atiyah and Bott observed that the Yang—
Mills functional over a compact Riemann surface ¥ plays the role of |u|? in
an infinite-dimensional analogue of this picture (modulo a constant which
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depends on the addition of a central constant to the moment map). Here the
corresponding analogue of the GIT or symplectic quotient is a moduli space
of semistable holomorphic bundles of fixed rank and degree over X, and the
stratification {Sg : B € B} is by the Harder-Narasimhan type of a holomor-
phic bundle. The primary motivation for considering the Yang—Mills func-
tional in [3] (and |u|? in the finite-dimensional setting explored in [28]) as
a Morse function was to study the cohomology (at least the Betti numbers)
of the symplectic quotient. This was done by relating the equivariant co-
homology of the compact symplectic manifold X, or its infinite-dimensional
analogue in the Yang—Mills case, to the equivariant cohomology of the strata,
and by describing the equivariant cohomology of the unstable strata induc-
tively in terms of semistable strata for symplectic submanifolds of X acted
on by compact subgroups of K (or subgroups of its infinite-dimensional
analogue, the relevant gauge group). Later work [26], 27, 42] showed how
related ideas could be used to study intersection pairings on X /K and the
ring structure of its cohomology. In a future paper [I1] we will show how
to extend these results to symplectic quotients of unstable strata and other
non-reductive GIT quotients.

The layout of this paper is as follows. In §2 we will review the Morse
stratification for the normsquare of a moment map on a compact symplectic
manifold with a compact Hamiltonian action. In §3 and §4 we will sum-
marise the relevant results from non-reductive GIT and symplectic implo-
sion. Finally §5 describes the construction of symplectic quotients of unstable
strata for compact Hamiltonian actions on compact symplectic manifolds,
with the main results summarised in Theorem and §6 considers the
infinite-dimensional Yang—Mills analogue.

2. Normsquares of moment maps and their Morse
stratifications

Suppose that a compact Lie group K with Lie algebra ¢ acts smoothly on
a symplectic manifold X and preserves the symplectic form w. Any a € ¢
determines a vector field x — a, on X defined by the infinitesimal action of
a. A moment map for the action of K on X is a smooth K-equivariant map
u: X — ¥ which satisfies

dp(x)(§)-a = we (&, az)

forall z € X, £ € T, X and a € ¢. Equivalently, if u, : X — R denotes the
component of u along a € £ defined for all z € X by the pairing puq(z) =
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p(x).a between u(x) € € and a € ¢, then pu, is a Hamiltonian function for
the vector field on X induced by a.

If the stabiliser K of ¢ € £ under the adjoint action of K acts with
only finite stabilisers on p~1(¢), then u~1(¢) is a submanifold of X and the
symplectic form w induces a symplectic structure on the orbifold ~1(¢)/ K¢
which is the Marsden—Weinstein reduction at ¢ of the action of K on X. The
symplectic quotient X /K is the Marsden—Weinstein reduction p~1(0)/K
at 0.

The reduction p~1(¢)/K¢ also inherits a symplectic structure when the
action of K¢ on p~!(¢) has positive-dimensional stabilisers, but in this case
it is likely to have more serious singularities.

Remark 2.1. Let X be a nonsingular complex projective variety embedded
in complex projective space P", and let G = K¢ be a reductive complex Lie
group with maximal compact subgroup K acting on X via a representation
p: G — GL(n+ 1;C). By choosing coordinates on P" appropriately we can
assume that p maps K into the unitary group U(n + 1). Then the Fubini-
Study form w on P" restricts to a K-invariant Kahler form on X, and there
is a moment map p: X — ¢ defined (up to multiplication by a constant
scalar factor depending on the convention chosen for the normalisation of
the Fubini-Study form) by

—t
Z pi(a)z
(2.1) w(x).a = SmililE
for all a € €, where & € C""! — {0} is a representative vector for x € P" and
the representation p: K — U(n + 1) induces p, : € - u(n + 1) and dually
p*u(n+ 1) — €.

In this situation the symplectic quotient X /K = u~1(0)/K coincides
with the GIT quotient X//G in algebraic geometry described in §3 below
[28]. Moreover = € X lies in the semistable locus X ¢ if and only if the closure
of its orbit Go meets 1 ~1(0), and x lies in the stable locus if and only if its
orbit Gz meets the open subset 11~ 1(0)reg of p~1(0) where dp is surjective.
The inclusion p~1(0) — X*¢ composed with the quotient map X% — X//G
is K-invariant and induces a bijection ~1(0)/K — X//G which can be used
to identify the symplectic quotient X /f/K = p~1(0)/K with the GIT quotient
X//G.

When X is Kihler but not necessarily algebraic then ;~1(0)/K inher-
its a Kéhler structure (at least away from its singularities) by identifying
17 1(0)reg/ K with the quotient by G of the open subset G =1 (0)yeg of X.
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Let us fix a maximal torus T of K and an inner product on the Lie
algebra € which is invariant under the adjoint action of K, and which we
will use to identify €* with €. We will assume that the inner product is
chosen so that its restriction to the Lie algebra t of T' takes rational values
on the lattice given by the derivatives at the identity of homomorphisms
St — T. Then we can consider the associated normsquare |u|? of u as a
Morse function on X; it is not a Morse function in the classical sense, nor
even a Morse-Bott function, but it is shown in [28] that |x|? is a ‘minimally
degenerate’ Morse function. More precisely, the set of critical points for
f = |pn)? is a finite disjoint union of closed subsets {Cj : 8 € B} along each
of which f is minimally degenerate in the following sense.

Definition 2.1. A locally closed submanifold ¥ containing Cz with ori-
entable normal bundle in X is a minimising submanifold for f = |u|? if

1) the restriction of f to 3 achieves its minimum value exactly on Cjg,
and

2) the tangent space to X at any point x € Cg is maximal among sub-
spaces of T, X on which the Hessian H,(f) is non-negative.

If a minimising submanifold ¥ 3 exists, then f is called minimally degenerate
along C.

In [28] it is shown that as a consequence |u|? induces a smooth strat-
ification {Sg: 8 € B} of X such that, for a suitable choice of Riemannian
metric (which can be taken to be the Kéhler metric if (X,w) is Kahler),
z € X lies in the stratum Sz if its path of steepest descent for |u|? has a
limit point in the critical subset C'3. The stratum Sy then coincides with ¥
near Cg.

Remark 2.2. Here we choose a K-invariant Riemannian metric which is
compatible with the symplectic structure in the sense that X has a K-
invariant almost-complex structure such that if £ € T, X then i£ is the dual
with respect to the metric of the linear form ¢ — w,((,€) on T, X. This
implies that

gradyup(z) = B,
for all z € X, where pg(z) = pu(x).S.

It is shown in [28] that in the situation of Remark [2.1] the open stratum
So of this stratification {Sg : § € B} coincides with the semistable locus X*°,
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and that each stratum Sg has the form
Sg = G xp, Ygs

where YﬁSs is a locally closed nonsingular subvariety of X and Pg is a
parabolic subgroup of G (|28 Theorem 6.18). Moreover, there is a linear
action of a Levi subgroup Lg of Pg on a nonsingular closed subvariety Zg
of X such that Y3® retracts equivariantly onto the subset zy of semistable
points for this action. It is also shown in [28] that |u[? is equivariantly per-
fect, in the sense that its equivariant Morse inequalities are in fact equalities,
and that this leads to an inductive procedure for calculating dim H, g;(X 5:Q),
which in good cases give the Betti numbers of the quotient variety X//G.

When X is merely a compact symplectic manifold acted on by a compact
group K, the function |u|? still induces a smooth stratification of X and is
K-equivariantly perfect, providing a formula for the Betti numbers of the
symplectic quotient ¢ ~1(0)/K in the good case when 0 is a regular value of
i, which involves the K-equivariant cohomology of the critical subsets Cs.
Indeed the same is true when |u|? is replaced with any convex function of
p (cf. [3] §88,12).

The set B indexing the critical subsets Cz and the stratification {Sg : 5 €
B} can be identified with a finite set of orbits of the adjoint representation
of K on its Lie algebra £ (which is identified with its dual using the fixed
invariant inner product). Each orbit in B is the image under the moment
map p: X — 8 = ¢ of the critical subset which it indexes. If a choice is
made of a positive Weyl chamber t; in the Lie algebra of some maximal
torus T of K, then each adjoint orbit intersects t; in a unique point, so B
can also be identified with a finite set of points in t;. In the situation of
Remark a point of t; lies in B if it is the closest point to the origin of the
convex hull of a nonempty set of the weights of the unitary representation of
K which defines its action on X C P". The same is true more generally if we
interpret weight here as the image under the T-moment map of a connected
component of the fixed point set X7 .

When B is identified with a finite set of points in ty, for 8 € B the
submanifold Zg of X is the union of those components of the fixed point set
of the subtorus T of K generated by $ on which the moment map for T
given by composing p with the restriction map from £* to tj takes the value
5. Then

Cs=K(Zgnp ' (B) = K xg, (ZgNp~ ' (B))
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where the subgroup Kjp is the stabiliser of 5 under the adjoint action of K
on its Lie algebra, and in the Kahler case, the complexification Lg of Kjp is
a Levi subgroup of the parabolic subgroup P of G = Kc.

Since the moment map is K-equivariant the image of Zg under 1 is con-
tained in the Lie algebra of K3, and thus x|z, can be regarded as a moment
map for the action of Kg on Zg. As moment maps are only determined up
to the addition of a central constant, j|z, — /3 is also a moment map for the
action of Kz on Zg.

Remark 2.3. In the situation of Remark this change of moment map
corresponds to a modification of the linearisation of the action of Kz on Zg,
and we define Z Z’f to be the set of semistable points of Zg with respect to
this modified linear action. Equivalently, ng is the stratum labelled by 0
for the Morse stratification of the function |u — 8| on Zs. Then

Yﬁss — pgl(zg;s)
where Y3 and pg : Yz — Zg are given by pg(x) = lim;_, exp(—itf)z and

Ys ={y € X|ps(y) € Zs}.

If B is the Borel subgroup of G associated to the choice of positive Weyl
chamber t; and if Pg is the parabolic subgroup BKpg, then Y3 and Y;® are
Pg-invariant and we have Sg = KY/J;SS = K Xk, Yﬁss =G xp, Yﬁss. Moreover
when X is nonsingular Y3 is a nonsingular subvariety of X and pg:Ys —
Zg is a locally trivial fibration whose fibre is isomorphic to C™# for some
mg 2> 0.

An element g of G lies in the parabolic subgroup Pg if and only if
exp(—itf3)gexp(itf) tends to a limit in G as t — oo, and this limit defines
a surjection qg : P3 — Lg such that

pp(9y) = as(9)ps(v)

for each g € Py and y € Yp. Since G = KB and B C Pg we have GY3 = KYj,
which is compact, and hence

(2.2) SsCGYCSsu | S,
InI>181
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3. Non-reductive geometric invariant theory
3.1. GIT for reductive groups

In Mumford’s classical Geometric Invariant Theory we choose a linearisation
of an action of a reductive group G on a complex projective variety X; this is
given by an ample line bundle L on X and a lift of the action to L. When L
is very ample, so that X can be embedded in a projective space P" such that
L is the restriction of the hyperplane line bundle O(1), the action is given
by a representation p: G — GL(n+1) and Op(X) = @2, H(X, L®*) is
k[zo,...,xn]/Zx where ZTx is the ideal generated by the homogeneous poly-
nomials which vanish on X.

(X.L) ~ OuX) = @i H (X, L)
|
| Ul
J/ A~
X//G «~ Op(X)“ algebra of invariants.

Since G is reductive, the algebra of G-invariants @L(X )¢ is finitely gen-
erated as a graded algebra and so defines a projective variety X//G =
Proj(Or(X)%). The inclusion of Or(X)¢ in Op(X) determines a rational
map X — — — X//G which fits into a diagram

X ——— X//G projective variety
U |
semistable X% OM  x /|G

U U open
stable X°* —  X°/G

where X* and X*% are open subvarieties of X, the GIT quotient X//G is a
categorical quotient for the action of G on X*° via the G-invariant surjective
morphism ¢¢g : X% — X//G, and

pc(7) = ¢a(y) & Gx NGy N X5 # .

Remark 3.1. A complex Lie group G is reductive if and only if it is
the complexification G = K¢ of a maximal compact subgroup K, and then
X//G = p~0)/K for a suitable moment map p for the action of K (see
Remark above). Indeed, recall that in this situation the semistable locus
X% coincides with the open stratum Sy, while x € X lies in Sy = X% if and



846 Frances Kirwan

only if the closure of its orbit Gz meets 1 ~*(0), and z lies in the stable locus
if and only if its orbit Ga meets the open subset p~1(0).eg of 1~ 1(0) where
dp is surjective. Then the inclusion p~1(0) — X*¢ composed with the quo-
tient map X% — X//G induces an identification of the symplectic quotient
XK = p~1(0)/K with the GIT quotient X//G.

When X is Kahler but not necessarily algebraic then we can define
an equivalence relation ~ on the open stratum Sy by x ~ y if and only if
Gz NGy N X% = (; if z lies in the open subset G (0)yeg of Sp then  ~ y
if and only if y € Gz. Then the inclusion x~!(0) — Sp induces an identi-
fication of the symplectic quotient X JK = p~1(0)/K with the topological
quotient So/ ~. Thus p~1(0)/K inherits a stratified Kihler structure, with
the complex structure induced from Sy and the Kéhler form given by the
symplectic form on p~1(0)/K [25].

The subsets X*®® and X* of X for a linear action of a reductive group G
with respect to an ample linearisation £ are characterised by the Hilbert—
Mumford criteria [38, Chapter 2], [39]:

Proposition 3.2. (i) A point x € X is semistable (respectively stable) for
the action of G on X if and only if for every g € G the point gx is semistable
(respectively stable) for the action of a fized mazimal torus T of G.

(i1) A point x € X with homogeneous coordinates [xq : - -+ : ] in some co-
ordinate system on P™ is semistable (respectively stable) for the action of
a maximal torus T of G acting diagonally on P™ with weights ap, . .., if
and only if the convex hull

Conv{a; : x; # 0}
contains 0 (respectively contains 0 in its interior).

The projective GIT quotient X//G contains as an open subset the geo-
metric quotient X*/G of the stable set X°. When X is nonsingular then the
singularities of X*®/G are very mild, since the stabilisers of stable points are
finite subgroups of G. If X*% £ X® #£ () the singularities of X//G are typi-
cally more severe, but X//G has a ‘partial desingularisation’ X //G which (
if X is irreducible and X* # ()) is also a projective completion of X*/G and
is itself a geometric quotient

X//G=X*/G

by G of an open subset X* = X* of a G-equivariant blow-up X of X [30].
X 5% is obtained from X*° by successively blowing up along the subvarieties
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of semistable points stabilised by reductive subgroups of G of maximal di-
mension and then removing the unstable points in the resulting blow-up.
Thus for irreducible X we have

i) when X% = X*® # () the GIT quotient X//G = X*®/G is a projective vari-
ety which is a geometric quotient of the open subvariety X*® of X;

ii) when X% # X* #£ () then the GIT quotient X//G is a projective com-
pletion of the geometric quotient X*/G, and X*/G has another projective
completion X //G = X*/G which is a ‘partial desingularisation’ of X//G in
the sense just described.

Remark 3.1. The GIT quotient X//G has an ample line bundle which
pulls back to a positive tensor power on X*% of the line bundle L defining
the linearisation L.

Note that when we replace the linearisation £ for the action of G on X
by any positive tensor power of itself, the stable and semistable loci X* and
X** and the GIT quotient X//G are unchanged. From a symplectic view-
point the symplectic form and moment map (and the induced symplectic
form on the symplectic quotient) are multiplied by a positive integer, but
©~1(0) is unchanged. In particular this means that it makes sense to mul-
tiply a linearisation by a rational character x/m of G, where y : G — C*
is a character and m is a positive integer: from a GIT perspective we can
interpret the result as multiplying the induced linearisation on L®™ by the
character x. From a symplectic viewpoint we are adding a central constant
to the moment map.

Example 3.2. As we have seen, associated to the G-action on X with lin-
earisation £ and an invariant inner product on the Lie algebra of a maximal
compact subgroup K of G, there is a stratification (the Morse stratification

for |u]?)
X=1]]69s
BeB

of X by locally closed subvarieties Sg, indexed by a partially ordered finite
subset B of a positive Weyl chamber for the reductive group G, such that

(i) So = X*°,
and for each S € B

(ii) the closure of Sg is contained in J, 5 455, and

(iii) Sp = KYF* =GY® =G xp, Y5° = K xg, Y5* B
where Pg is a parabolic subgroup of G acting on a projective subvariety Y g
of X with an open subset Yﬁss which is determined by the action of the Levi
subgroup Lg of Pz with respect to a suitably twisted linearisation [21, 2§].
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Here the linearisation L is restricted to the action of the parabolic subgroup
Pg over ?5, and then twisted by the rational character 5 of Pjg.

To construct a quotient by G of (an open subset of) an unstable stratum
S, we can study the linear action on Yz of the parabolic subgroup Ps. In
order to have a non-empty quotient we must modify the linearisation L,
and it is natural to do this by twisting it by a rational character; such a
character may not extend to a character of GG, which is why it makes sense
to consider the action on Yz of the non-reductive group Pg. Twisting by 3
(or subtracting /3 from the moment map for the maximal compact subgroup
K3 of Pg) gives a categorical quotient Zg//Ls = (Zg N p~Y(B))/ K =2 Cs/K
for the action of Pg on Yg®, or equivalently for the action of G on Sg (cf.
Remark , but in general this is far from being a geometric quotient.
To have hope of a non-empty open subset of Sg with a geometric quotient
(when 8 # 0) one can instead try twisting the action of Pz on Y3 by (1 +¢€)3
where 0 < € << 1, or by another perturbation of 3 whose restriction to Tj
is of this form.

3.2. GIT for non-reductive groups

Motivated by Example [3.2] let us consider a complex projective variety X
acted on linearly (with ample linearisation £) by a linear algebraic group
H which is not necessarily reductive. Then H = U x R is the semi-direct
product of its unipotent radical U by a reductive subgroup R; here R is a
Levi subgroup of H and is unique up to conjugation by H.

An immediate difficulty arises when trying to extend classical GIT to
non-reductive linear algebraic groups H; this is that in general we cannot
define a projective variety X//H = Proj(Or(X)") because Or,(X)H is not
necessarily finitely generated as a graded algebra. However in [4] [16] it is
shown that given an H-action on X with linearisation £ as above, X has
open subvarieties X* (‘stable points’) and X*¢ (‘semistable points’) with a
geometric quotient X* — X*®/H and an ‘enveloping quotient’ X** — X//H,
with a diagram

X
U

semistable X** — X//H

U U open
stable X* — X¢/H
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where if O (X)) is finitely generated then X//H = Proj(Or (X)) as in the
reductive case. However X//H is not always a projective variety; moreover
(even when Op (X)¥ is finitely generated and so X//H = Proj(Or (X)) is a
projective variety) the H-invariant morphism X — X //H is not necessarily
a categorical quotient, and its image is not in general a subvariety of X//H,
only a constructible subset. A final problem is that there are in general
no obvious analogues in this situation of the Hilbert—Mumford criteria for
(semi)stability.

However non-reductive GIT is better behaved when the unipotent radical
U of H=U x R is ‘internally graded’ in the sense that its Levi subgroup
R = H/U has a central one-parameter subgroup \ : C* — R whose adjoint
action on the Lie algebra of U has only strictly positive weights. It is shown
in [B [6, 10] that, provided that we are willing to twist the linearisation for
a linear action of H on a projective variety X by an appropriate (rational)
character, many of the good properties of Mumford’s GIT hold. Many non-
reductive linear algebraic group actions arising in algebraic geometry are
actions of linear algebraic groups with internally graded unipotent radicals:
in particular, any parabolic subgroup of a reductive group has this form,
as does the automorphism group of any complete simplicial toric variety
[13], and the group of k-jets of germs of biholomorphisms of (CP,0) for any
positive integers k and p [10].

Example 3.3. The automorphism group of the weighted projective plane
P(1,1,2) with weights 1,1 and 2 is Aut(IP(1,1,2)) = R x U where R = GL(2)
acting on the two-dimensional weight space with weight 1 is reductive, and
U = (CT)3 is unipotent with elements given by (x,v,2) — (z,y, 2z + A\z? +
pxy + vy?) for (A, p,v) € C3.

Definition 3.4. Let us call a unipotent linear algebraic group U graded
unipotent if there is a homomorphism A : C* — Aut(U) with the weights of
the C* action on Lie(U) all strictly positive. For such a homomorphism A
let

U=UxC"={(u,t):ueU€teC*}

be the associated semi-direct product of U and C* with multiplication (u,t) -
(', t") = (u(\(t)(u))), tt"). We will say that a linear algebraic group H =
U x R has internally graded unipotent radical U if the centre Z(R) of R has
a one-parameter subgroup A : C* — Z(R) whose adjoint action grades U.
When L is very ample, and so induces an embedding of X in a projective
space P", we can choose coordinates on P” such that the action of C* on X
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is diagonal, given by

te 0 0
0o 0
t—

0 0 tr
where ro < r; < --- <r,. The lowest bounded chamber for this linear C*-
action is the closed interval [ro,r;] where 79 =--- =rj_1 <7rj; < -+ <1y,
with interior the open interval (rg,7;), unless the action of C* on X is
trivial; when the action is trivial so that ro =r; = --- = r, we will say that

[r0,70] is the lowest bounded chamber and it is its own interior. Note that
in the situation above, if C* acts trivially then so does U.

Theorem 3.3 ([5), [6]). Let H be a linear algebraic group with internally
graded unipotent radical, acting linearly on a projective variety X with lin-
earisation L on a very ample line bundle L. Let A : C* — Z(R) define the
internal grading of the unipotent radical U of H = U x R. Suppose also that
semistability coincides with stability for the unipotent radical U, in the sense
that

x € Zmin = Staby(z) = {e}

where Zmin s the union of those connected components of the fized point
set XMC) where A(C*) acts on the fibres of L* with minimum weight. Then
the linearisation for the action of U = U % AC*) on X can be twisted by a
rational character of U so that 0 lies in the interior of the lowest bounded
chamber for the linear \(C*) action on X and

(i) the algebras Opec(X ) = a%_ HY(X, L®Cm) of U-invariants and
Orec(X)H =% _ H(X, L®Cm) of H-invariants are finitely gener-
ated for any sufficiently divisible integer ¢ > 0, so that the enveloping
quotients X//U = Proj(Ore-(X)V) and X//H = (X//U)//(R/A(C*))
are projective varieties;

(ii) x50 = XU and also X5 and X*U have Hilbert Mumford descrip-
tions, and X//U X U/U s a geometric quotient of xsU by U.

Moreover, even when the condition that semistability should coincide
with stability for the unipotent radical fails, there is

(iii) a projective variety, containing the geometric quotient XS’U/U as an

open subset, which is a geometric quotient XSS’U/U by U of an open
subset X*5U of a U-equivariant blow-up X of X, and
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(iv) an induced linear action of R/A(C*) on XSS’U/U whose reduc-
tive GIT quotient is a projective variety which contains the geometric
quotient XS’H/H as an open subset.

4. Symplectic implosion

The non-reductive GIT quotients described in §3 can be studied using sym-
plectic techniques closely related to the ‘symplectic implosion’ construction
of Guillemin, Jeffrey and Sjamaar [20), B4]. In this paper this link will be
described for the special case of the unstable strata for the moment map
normsquare; in [I1] we will explore more general situations.

For the original construction [20] we suppose that U is a maximal unipo-
tent subgroup of a complex reductive group G acting linearly (with respect
to an ample line bundle L) on a complex projective variety X, and we as-
sume that the linear action of U on X extends to a linear action of G. Then
the algebra of invariants @, H°(X, L?*)V is a finitely generated graded
algebra and the enveloping quotient X//U is the associated projective vari-
ety Proj (Do H(X, L#*)Y) [19]. It is shown in [20] that if K is a maximal
compact subgroup of G, and X is given a suitable K-invariant Kihler form,
then X//U can be identified with the ‘symplectic implosion’ or ‘imploded
cross-section’ Xjy,p of X by K. In this section we will recall this construction
and its generalisation [34] to the situation when U is the unipotent radical
of any parabolic subgroup P of G.

As before let (X,w) be a symplectic manifold on which a compact con-
nected Lie group K acts with a moment map p : X — £ where £ is the Lie
algebra of K, and fix an invariant inner product on £, using it to identify
£* with €. Let T be a maximal torus of K with Lie algebra t C £ and Weyl
group W = Ng(T)/T, and let t = t*/WW = £ /Ad*(K) be a positive Weyl
chamber in €. The imploded cross-section [20] of X is then

Ximpl = M_l(tjr)/ ~

where x ~ y if and only if ju(z) = p(y) = ¢ € £} and = = ky for some element
k of the commutator subgroup [K¢, K¢] of the stabiliser K¢ of ( under the
co-adjoint action of K. If 3 is the set of faces of t then Xj,,; is the disjoint
union

B o
Ximpl = H [?{0’([{3] = Nil((ti)o) U H [?{W(sz]

oEX cEY

o # (t)°
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where K, = K, for any ¢ € 0. We give Xjp1 the quotient topology induced
from u‘l(t”;), and it inherits a stratified symplectic structure, where the
strata are the locally closed subsets u~!(0)/[Ky, Ky]. Each such stratum
is the symplectic reduction by the action of [K,, K,| of a locally closed
symplectic submanifold

Xo = Kaﬂil( U T)

TEX,TD0

of X; locally near every point y € Xjmp1 can be identified symplectically with
the product of the stratum containing y and a normal cone [20]. The induced
action of T on X, preserves this stratified symplectic structure and has a
moment map

Mimpl * Ximpl — tj_ Ct

induced by the restriction of u to /fl(ti). If ¢ € t7 the symplectic reduction
of Ximp1 at ¢ for the action of T' is the symplectic reduction of X at ¢ for
the action of K:

—1 _ _
'U’impl(C) _ 1% 1(() _ I 1(C)
T T[Ko K Koo
The universal imploded cross-section (or universal symplectic implosion) is
the imploded cross-section

(T* K )impl = K x £/ ~

of the cotangent bundle T*K = K x " with respect to the K-action given
by the right action of K on itself, with an induced action of K x T from
the left action of K on itself and the right action of 7' on K. Any other
implosion Xj;,p1 can be constructed as the symplectic quotient of the product
X X (T*K )imp1 by the diagonal action of K [20].

The universal symplectic implosion (7K )imp is always a complex affine
variety and its symplectic structure is given by a Kéhler form. As in [20]
we can assume for simplicity that K is semisimple and simply connected;
for general compact connected K one can reduce to this case by considering
the product K of the centre of K and the universal cover of its commutator
subgroup [K, K], and expressing K as K /Y, where T is a finite central
subgroup of K. When B is a Borel subgroup of the complexification G =
K. of K with G =KB and KNB =T, and Up.x < B is the unipotent
radical of B (and hence a maximal unipotent subgroup of G), then Upax
is a Grosshans subgroup of G [18]. This means that the quasi-affine variety
G/Upax can be embedded as an open subset of an affine variety in such a
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way that its complement has complex codimension at least two, and so the
algebra of invariants O(G)Ym=x is finitely generated. By [20] Proposition 6.8
there is a natural K x T-equivariant identification

(T*K)lmpl = SpeC<O(G)UmaX>

of the canonical affine completion Spec(O(G)V==) of G /Upax With (T* K )impl-
It follows that if X is a complex projective variety on which G acts linearly
with respect to an ample line bundle L, and w is an associated K-invariant
Kéhler form on X, then the symplectic quotient Ximpi of X x (T*K )imp1 by
K can be identified with the non-reductive GIT quotient

X//Unax = Proj(Op,(X)Vme=) 2 (X x Spec(O(G)Y))) /G = Ximpl-

Suppose now that U is the unipotent radical of a parabolic subgroup
P of the complex reductive group G with Lie algebra p. By replacing P
with a suitable conjugate in GG, we can assume that P contains the Borel
subgroup B of G and U < Upay. Then P =UL®P) = U x L) where the
Levi subgroup L") of P contains the complex maximal torus T, of G, and we
can assume in addition that L(*) is the complexification of its intersection

KO —I[P)nK=PNK

with K. There is a subset Sp of the set S of simple roots such that P is
the unique parabolic subgroup of G containing B with the property that if
a € S then the root space g_, C p if and only if « € Sp. The Lie algebra of
L(P) is generated by the root spaces g, and g_q for a € Sp together with the
Lie algebra t, = t ®g C of the complexification T, of T', and the Lie algebra

of U is
i= D
a€Rt:gZLie(L(P))

where RT is the set of positive roots for G. The Lie algebra of P is

p=1to @ Ja

OZGR(SP)

where R(Sp) is the union of R* with the set of all roots which can be
written as sums of negatives of the simple roots in Sp. We can decompose
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tP) = LieK®) and t as
¢(P) — [E(P),E(P)] @5(13) and t = t®) @3(13)

where [¢(F), £(P)] is the Lie algebra of the semisimple part Q") = [K(P) K (P)]
of K(P)| while t() is the Lie algebra of the maximal torus T) =
[KP) K(P)] of Q), and 3(P) is the Lie algebra of the centre Z(K () of
K®),

When U = Upax the Iwasawa decomposition G = K exp(it) Upax allows
us to identify G/Upax with K exp(it). More generally there is a decomposi-
tion

(4.1) G=K xgwm P=K xgw LU
= K x i K exp(ie™)U = K exp(ie)U

giving an identification of G/U with K exp(it(")).
U is a Grosshans subgroup of G' [19], and so the algebra of invariants
O(G)Y is finitely generated and G'/U has a canonical affine completion

G/U C GJU" = Spec(O(&)V)

where the complement of the open subset G/U of the affine variety G/ U" has
complex codimension at least two. Therefore if G acts linearly on a complex
projective variety X with linearisation £, then the algebra of invariants

~

Or(X)” = (0c(X) ® 0(G)")¢

is finitely generated, and the associated projective variety X//U =
Proj(O,(X)V) is isomorphic to the GIT quotient (G/U" x X)//G. Tt is
shown in [34] that, Just as in the case when U = Uyay, there is a K-invariant
Kéhler form on G / U’ Wthh gives us an identification of X//U with a sym-
plectic quotient of G/U U*x X by K, and thus a symplectic description of
X//U generalising the symplectic implosion construction of [20].

To describe this generalised universal symplectic implosion, let A =
ker(exp |¢) be the exponential lattice in t, and let A* = Homy(A,Z) be the
weight lattice in t*, so that A% = A* Nt} is the monoid of dominant weights.
For A € A% let V) be the irreducible G-module with highest weight A, and let
Il = {wi,...,w,} be the set of fundamental weights, forming a Z-basis of A*
and a minimal set of generators for A% . Recall that there is an isomorphism
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of G x G-modules

(4.2) o) =P eV P Vel
AEAL AEA”

which restricts to an isomorphism of G x T.-modules

(4.3) oG = P VD ovy= vy
AEAY AEAY

where V/\(T) is the irreducible T.-module with highest weight A. The graded
algebra O(G)U= is generated by its finite-dimensional vector subspace
@Dcr Ve, which gives us a closed G x Ti-equivariant embedding of
G /U .x = Spec(O(G)Y==) into the affine space @y Vio. It is shown in
[20] that (T*K)impl can be identified with the image of this embedding,
equipped with the restriction of a flat K-invariant Kahler structure on
Gawel'[ V

To extend this construction to G / U" when U is the unipotent radical of
a parabolic subgroup P as above, it is observed in [34] that O(G)Y is gener-
ated by the smallest (finite-dimensional) K (¥)-invariant subspace of O(G)
which contains @ _ . Vs = P cpr viD g V. Here KP) acts on O(G) via
left multiplication on G. Let EX) be the dual of this smallest such K()-
invariant subspace (E(F)* of O(G); then (E)* is fixed pointwise by U,
and its inclusion 1n O(G)Y C O(G) induces a closed LF) x G-equivariant
embedding of G/U" = Spec(O(G)V) into the affine space E(”). Then (EF))*
decomposes under the action of K x K() as a direct sum of irreducible
K x K(P)-modules

(EP)y =Py

well

where (Vép))* is the smallest K x K(P)-invariant subspace of O(G) con-
taining V. Moreover (Vép))* =~ VE® @ v* where VA is the irreducible
KP)-module with highest weight o, so

P — @ Vzép) — @(Vg(m)* V.

well well

1t &) is the vector in V) (VE®Y* @V, representing the inclusion of
VE®™ in V, then the embedding of G/U C G/U(er in E?) induced by the
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inclusion of (E()* in O(G)Y takes the identity coset U to I o) Let

(P) (P)
vET = @ v
AEAL

be the decomposition of Vb_f,( “ into weight spaces with weights A € t* under
the action of the maximal torus T of K¥). Then Vé,P) decomposes as a
K x T-module into a sum of irreducible K x T-modules

VAP) o @V ® (VA

and &) = o v(P;\ where v( ) €V ® (Vg;\ ’)* represents the inclusion of

in V5. In particular vy & is a highest weight vector for the action
VE in Vo In p 1 G?) high gh for th

of K x K on V). The embedding of G/U C G/U" in E®) induced by
the inclusion of (E!)* in O(G)V takes the identity coset to Yy o),

From the decomposition G = K exp(z{% WU (4.1) and the compactness of
K it follows that the closure G/ U" of the G—orblt of > e vfﬂp) in E() is

given by the K-sweep

of the closure in E(X) of the exp(iE(P))—orbit of > e o). Similarly the clo-

sure of the L(")-orbit of 3 _ ) is given by K ) (exp(it®) > _ o Ul(vp)).

There is a unique K x K %P )—mvarlant Hermitian inner product on E() =
DPocn Vi) satisfying qu(ﬂw” = 1 for each w € II, which is obtained from K-
invariant Hermitian inner products on the irreducible K-modules V, and
their restrictions to K (¥)-invariant Hermitian inner products on the irre-
ducible KP)-modules Vép). This gives E() a flat Kahler structure which
is K x K®)-invariant. If we identify (VX")* @ VA" with End(VE")
equipped with the Hermitian structure (A, B) = Trace(AB*) in the stan-
dard way, then vap) is identified with the identity map in End(VE <P))

Definition 4.1. Let t>(kP)+ be the cone in t* given by

U Ad*(w)t,

weW ()
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where W) is the Weyl group of Q) = [K(F), K(P)] (which is a subgroup
of the Weyl group W of K).

It is shown in [34] that the restriction to the closure exp(it) Y .y o)

of the exp(it)-orbit in E() of ) v of the moment map ,u:%(P) for the
action of T on E") is a homeomorphism onto the cone tz‘P) 4 Int*. Its inverse
provides a continuous injection

(4.4) FP g, - G/U < EP)

such that 2" o F(P) is the identity on t(p).- Morcover exp(it) Y e o)

is the union of finitely many exp(it)-orbits, each of the form

FP&) (o) = exp(it) Z vg;\
wellLAEAL NG

where o is an open face of t/), . Furthermore the restriction of the K (P).

moment map " 1 EP) — (8F))* to the closure of the exp(i&"))-orbit in

EP of 3 o v{¥) is a homeomorphism from exp(it(")) Y well o)

closed subset

onto the

P)x * *
e = A" (k) tp)+

of ¢)* and exp(it(P)) I o) is the union of finitely many exp(it("))-
orbits which correspond under this homeomorphism to the open faces
of E(f)*.

(P)

The inverse of u : exp(it(P)) Y owen Vo E(+P
ous KP)-equivariant map

)%

gives us a continu-

FB P L qut ¢ B

extending 1) such that M%(P) o FP) is the identity on ESFP)*. This in turn
extends to a continuous K x KF)-equivariant surjection

FP K x e S aut,
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ops P)x * * * *
Definition 4.2. If ¢ et = Ad" (K(P)g, , = Ad* (KD, let ¢ =
Ad* (k)¢ with k € KP) and ¢ € ¢, and let o be the open face of t* con-
taining &. Let 0¢(P) be the open face of t. whose closure is

oo(P)={Cet:¢-a=0forall a € Ry, \ R}

where R and R) are the sets of roots of K and K(¥), and R,, = {a €
R:(-a=0forall ( €0y}, so that oo(P) is an open subset of the open
face containing og of the cone tE‘P) 4 Finally let K¢(P) = kKe¢k™ where

K¢(P) = K, (p) is the stabiliser under the adjoint action of K of any element
of (s} (P) .

Remark 4.1. If ¢ lies in the interior of t?P)
[K¢(P), K¢(P)] is trivial.

4 then K¢(P)=T and

This leads to the following definition given in [34] of the K (P)-imploded
cross-section (or generalised symplectic implosion) Xy ke -

Definition 4.3. Let (X,w) be a symplectic manifold with a Hamiltonian
action of K with moment map p: X — #*. Let

ESrp)* _ Ad*(K(P))f(kP) Ad*(K(P))ti _ Ad*(Q(P))ti C eP)*

+ pu—
be the sweep of t under the co-adjoint action of K® on ¢, and let ©&) be
the set of open faces of ESFP)*. If ¢ € £€)* let K¢(P) be as in Definition
The K®)-imploded cross-section (or generalised symplectic implosion) of X
is

_ P)x
XKimplK® = {0 1(’3&) )/ A

where x ~ ) y if and only if u(z) = u(y) =C € ESFP)* and x = ky for some

K € [K(P), K¢(P)].
The universal K" -imploded cross-section (or universal generalised sym-
plectic implosion for K() C K ) is the K (P)-imploded cross-section

(P)

3 P *
(T" K )Kimpix» = K X SRS

for the cotangent bundle T*K = K x £* with respect to the K-action in-
duced from the right action of K on itself.
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The map F&): K x ESFP)* — G/Ua induces a K x K)-equivariant
homeomorphism

(4.5) (7" K)Kimplk» = K x ESFP)*/ ~gm— GJU C EW),

Moreover under this identification of K x ESFP)*/ ~r) with Gr’/Ua c EP)
the moment map for the action of K x K on E®) is induced by the map
(K x ESFP)*)/ ~pom— B x P given by

(k, ¢) = (Ad"(K)(C), €))-

G/U * has an induced K x K()-invariant Kahler structure as a com-
plex subvariety of E(); it is stratified by its (finitely many) G-orbits, and
the K x KP)-invariant Kéhler structure on E() restricts to a K x K)-
invariant symplectic structure on each stratum. Under the homeomorphism

— T
(T K)Kimpik® — G/U " of lb these strata correspond to the locally closed
subsets

K x Ad* (K)o . Kxo
) K e, arcen KT

Kxo
KP) x e npcer <>
RNk [KO'(P)7 KO’(P)]

12

12

of (T" K)Kimpik» Where o € X runs over the open faces of 7.
By construction, when K acts on a symplectic manifold X with moment
map p: X — ¥ then the symplectic quotient of

G/Ua XX = (T*K)Kimle(P) x X

by the diagonal action of K can be identified via F) with XKimplK(®)
(and in particular if X is a projective variety with a linear action of the
complexification G of K, then Xyiypke can be identified with the GIT
quotient of G/U “x X by the diagonal action of G). Thus X;jmpike inherits
a stratified K x K(P)-invariant symplectic structure

—1
g
(46) XKimle(P) = ILLKSP))
oEY ~
pHEDL L] EP ( 1) )
= P |
" o) fr-nk [Ko(p), Ko(p)]

oA ()
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with strata indexed by the set X of open faces of t%, which are locally
closed symplectic submanifolds of Xy;imnpixe . The induced action of K (P)
on Xgimpik preserves this symplectic structure and has a moment map

P)* %
uXKi)nle(P) : XKimle(P) — ES’_ ) - E(P)
inherited from the restriction of u to H_I(ES_P)).

Remark 4.2. If K = T and ¢ € £{7* then K¢(P) = K, and 0 Xgimpir
is the standard imploded cross-section Ximp of [20]. On the other hand if
K®) = K then K/(P) is conjugate to T and [K¢(P), K;(P)] is trivial for
all ( € E( ) , SO XKimle =T*K.

Remark 4.3. When K acts holomorphically on a Kahler manifold X with
moment map u : X — £* then the action of K extends to a holomorphic ac-
tion of its complexification G = K. Since the generalised symplectic implo-
sion Xgimpik is the symplectic quotient of G/U “x X = (T K ) Kimplk ™) X
X by the aonal action of K, it has an induced Kéhler structure (cf. Re-
marks . The open subset 1((?5:3)*) ) of XKimpike corresponds to
the open subset (G/U) x X of G/U" x X, and provides a K(P)-invariant

slice for the action of U on the open subset Up 1((E(+P) )°) of X. Thus if Y

is a P-invariant complex submanifold of X which meets u—l((é(f)*)"), then

Yn ,u_l((fsrp)*)o) is a K (P)-invariant slice for the action of U on the open
subset U(Yﬂ,u_l((égrp)*)o)) of Y, and its closure in Xgimpike, which is
the image of Y N u‘l(ESrp)*) in Xgimpik® , has an induced Kéhler structure.
However the singularities of this closure on the image of the boundary of
Yn ,u_l(ESrP)*) are likely to be more serious and harder to describe than in
the case when Y is G-invariant (or equivalently K-invariant).

In the general case when K acts on a symplectic manifold (X,w) with
moment map p : X — €, then we can choose a K-invariant almost complex
structure which is compatible with w as at Remark IfVis a K-
invariant almost complex submanifold of X which is invariant under the
induced infinitesimal action of U, then just as in the case above the image
of Y N M_I(EELP)*) in Xgimpike has an induced K (P)_invariant symplectic
structure, and almost complex structure, such that it can be regarded as
an almost-Kéhler quotient of Y by the infinitesimal action of U. There is
an induced Hamiltonian action of K") (or any subgroup of K)) with
moment map fiyimpl induced by the restriction of p to Y N ;fl(ESLP)), and
we can shift this moment map by any constant in the Lie algebra 3() of
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the centre Z(K ) of K(P)_ 1t follows from the definition of t(p); that for a

generic choice of 7 in 3(*) we have K, = K®) and n e M—l((é(f)*)O), so the

symplectic quotient by K(¥) is given by

Pt (M) /K = (v 0 = () /K,

When Y is K-invariant this simply recovers for us the symplectic reduction
of Y at n by the action of K, but the viewpoint from symplectic implosion
allows us to extend this construction to include submanifolds Y which are
not K-invariant (cf. [22]).

5. Symplectic quotients of unstable strata

As before let X be a compact symplectic manifold with a Hamiltonian ac-
tion of a compact group K with moment map p: X — €*, and choose a
compatible K-invariant almost complex structure and Riemannian metric
as at Remark 2.2] Fix an invariant inner product on ¢ with associated norm.

Let {Sg : 3 € B} be the Morse stratification for the function | u|?. Recall
that the set B indexing the critical subsets Cz for |u|? and the stratification
{Sp : B € B} can be identified with a finite subset of a positive Weyl chamber
t, in the Lie algebra of a maximal torus T" of K, where a point of t; lies in
B if it is the closest point to the origin of the convex hull of a nonempty set
of the weights for the Hamiltonian action of K, and we interpret ‘weight’ as
the image under the T-moment map of a connected component of the fixed
point set X7'. Then for § € B the submanifold Zg of X is the union of those
components of the fixed point set of the subtorus T3 of K generated by
on which the moment map for Tz given by composing p with the restriction
map from €* to tg takes the value 3, and

Cp=K(ZgNp™(B) = K xx, (Zg N u™ ()

where the subgroup Kp is the stabiliser of 8 under the adjoint action of K
on its Lie algebra.

Recall that p|z, can be regarded as a moment map for the action of Kg
on Zg, and so can pu|z, — (8 since (3 is central in Kz. We can define Z5 to
be the stratum labelled by 0 for the Morse stratification of the normsquare
| — B)? of the moment map u|z, — B on Zg. For x € X we let pg(x) be the
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limit lim;_, o exp(—itf)x of the downward trajectory from x for the Morse—
Bott function ug = p.f on X, and define

YBSS _ pEI(ZES)
where Yy with pg : Yg — Z3 is given by

Y ={y € X|psly) € Zs}

(cf. Remark . Then Y3 and Yj* are Kg-invariant almost-complex sub-
manifolds of X and we have

Sp = KY5® 2 K xg, Y3

Moreover pg : Yg — Zg is a locally trivial fibration whose fibre is isomorphic
to C™ for some m > 0 depending on S (and possibly also on the connected
component of Zg over which the fibre lies).

The locally closed almost-complex submanifold Yz of X is invariant un-
der the action of the maximal torus T of K, and hence so is its closure 75
Therefore by a result of Atiyah [2] (see also [12} 28]) the image of Y3 under
the T-moment map pr given by composing p with restriction £ — t* is a
convex polytope in t*; indeed it is the convex hull of the (finitely many) im-
ages of the T-fixed points in Y. Thus uz(Y3) is contained in the half-space
in t* consisting of those n € t* satisfying 7.3 > | 3|?; since by assumption
Cs = K(ZgNp~Y(B)) is non-empty, B is in fact the closest point to 0 in
t* = t of this convex hull, and a point y € X lies in Y3 if and only if 3 is the
closest point to 0 of the image under pr of its trajectory under the gradient
flow of pg.

Recall that g € G = K¢ lies in the parabolic subgroup P if and only if
exp(—itf)gexp(it3) tends to a limit in G as t — oo, and this limit defines a
surjective homomorphism gg : Pg — Lg whose kernel is the unipotent radical
Up of Pg. The chosen almost-Kahler structure on X is K-invariant, and so
by the definition of a moment map the gradient flow of pg is given by the
vector field = — i, where x +— 3, is the infinitesimal action of 5 € t on X.
Thus Y is invariant under the infinitesimal action of Pg on X.

This means that we can apply the symplectic implosion construction
associated to the unipotent radical Ug of Pg to ?ﬁ as in Remark , and take
a symplectic quotient of the result by the induced Hamiltonian action of the
maximal compact subgroup KF#) = K s of Pg. As discussed in Remark
we can shift the moment map for this induced Hamiltonian action by any
constant in the Lie algebra 3(7#) of the centre Z(K(PB)) of KF?) and for a
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generic choice of 1 in 3(#) we have K,=K (P5) and the symplectic quotient
by K() = Ky is given by (Y5 N~ (n))/Kp.

By definition if 7 = 8 or any nonzero scalar multiple of 8 then K, =
Kz = K@) and this symplectic quotient is (Y3 N p~t(n))/Kg. It follows
from the description of Y3 above that if 7 is a generic element of 3(F5)
and 7.8 < |B|? (or if we have equality and 1 # () then (YzNu~t(n))/Kgs
is empty, while if 7 = 8 then the symplectic quotient (Yz N p=1(n))/Ks =
(ZgNu=t(B))/Ks = Cz/K collapses the stratum onto its critical subset.
On the other hand if 7 is a sufficiently small perturbation of 8 in 3(#) then
Ysnut(n) CYsso

(Y (m)/Ks=(Yanu~'(n)/Ks.

It is therefore natural to choose 7 to be (1 + €)3 for some sufficiently small
€ > 0 and define

(5.1) SelfeK = (Ys N (1 +€)B))/Kp-

This has a stratified symplectic structure and it follows from the theory
of variation of symplectic quotients [I7, 23, B5] (cf. [15] [41]) that Sg/f K
is independent of € up to diffeomorphism for 0 < € << 1 and the induced
symplectic structure varies in a predictable fashion with €; we can also use
this theory to study the variation if 7 is chosen to be a different perturbation
of (.

We have thus proved our main result.

Theorem 5.1. Let X be a compact symplectic manifold with a Hamilto-
nian action of a compact group K with moment map p: X — €. Choose
a compatible K-invariant almost complex structure and Riemannian met-
ric on X, and an invariant inner product on € with associated norm. Let
{Ss : B € B} be the Morse stratification for the function |u|?. If 3 € B\ {0}
and 0 < e << 1 then

SeffeK = (Ysnpu ' ((L+€)B))/Ks

18 a compact stratified symplectic space which can be interpreted as a sym-
plectic quotient for the action of K on the stratum Sg.

When X C P, is a complex projective variety equipped with the Fubini—
Study Kdhler form and a linear action of K defined by a unitary representa-
tion K — U(n + 1), then when € is rational Sgffc K can be identified with a
compactification of a quotient of an open subset of Sg by G = K¢, obtained
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from non-reductive GIT applied to the action of the parabolic subgroup Pg
on Yg, with the linearisation twisted by the rational character (1 + €)5 of Pg.

6. The Yang—Mills functional over a compact Riemann
surface

Atiyah and Bott observed [3] that the Yang—Mills functional over a compact
Riemann surface . plays the role of |u|? for an infinite-dimensional Hamil-
tonian action. Here the symplectic quotient can be identified with a moduli
space of semistable holomorphic bundles of fixed rank and degree over 3,
and the stratification {Sg : § € B} is by the Harder-Narasimhan type of a
holomorphic bundle.

Let 3 be a compact Riemann surface of genus g > 2, and let £ be a fixed
C* complex hermitian vector bundle of rank n and degree d over .. Let C be
the space of all holomorphic structures on £. Since X has complex dimension
one there are no integrality conditions to be satisfied, so C can be identified
with the space of unitary connections on &£, which is an infinite-dimensional
complex affine space with a flat Kéahler structure.

Let G¢ denote the group of all C*° complex automorphisms of £. We can
regard Gc as the complexification of the gauge group G consisting of C'*°
unitary automorphisms of £. The natural action of G¢ on C preserves its
complex structure and the action of the gauge group G preserves the Kahler
structure and is Hamiltonian with a moment map given by the curvature of a
connection. The central subgroup C* of G¢ given by scalar multiplication on
& acts trivially on C, so the moment map in the direction of the corresponding
central S! in G is constant; it is essentially given by the ratio d/n. The Yang-
Mills functional on C takes a connection to the normsquare of its curvature
and hence plays the role of |u|? for the action of the gauge group on C,
except that it is more natural to choose the moment map p so that p=1(0)
is nonempty by adding a suitable central constant to the curvature. This
means that the Yang-Mills functional differs from |u|? by a constant, so
their Morse stratifications will coincide.

Atiyah and Bott [3] identified the symplectic quotient u~1(0)/G of C by
the gauge group with the moduli space M(n,d) of semistable holomorphic
vector bundles of rank n and degree d on ¥ (modulo S-equivalence). Recall
that a holomorphic vector bundle E over ¥ is semistable (respectively sta-
ble) if every holomorphic subbundle D of E satisfies slope(D) < slope(E),
(respectively slopeD) < slope(FE)), where slope(D) = deg(D)/rank(D) (and
thus semistable bundles of coprime rank and degree are stable). Any semi-
stable vector bundle E has a Jordan—Holder filtration by sub-bundles of
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the same slope as F¥ whose successive subquotients are stable; its associated
graded bundle is the direct sum of these successive subquotients (which is
independent of the choice of Jordan—-Holder filtration), and two semistable
bundles of rank n and degree d are S-equivalent if their associated graded
bundles are isomorphic.

A holomorphic bundle E over ¥ of rank n and degree d has a canonical
Harder—Narasimhan filtration

O=FEyCEiC---CE;1CFE;=F

such that slope(E;j_1) > slope(E;) and E;/E;_; is semistable for 1 < j <'s.
The Harder-Narasimhan type of FE is then given by the data provided by
the ranks and degrees of the successive subquotients E;/FE;_1; in [3] this is
encoded in the vector

/\(E) = (dl/nl,... ,dl/’ﬂl,dQ/?’LQ,. . .,ds/ns)

in which d;/n; occurs n; times. It was shown in [40] that if a family of bun-
dles of Harder—Narasimhan type A = (A1,...,\,) degenerates to a bundle
of type A" = (A},..., ;) then X' > X in the sense that >, ; \; > 37, A
for all <.

The main aim of [3] is to study the cohomology of the moduli space
M(n,d) by showing that the Yang—Mills functional is equivariantly perfect
as a Morse function. Because of the analytical difficulties created by working
in infinite-dimensions and the singularities in the critical locus for the Yang—
Mills functional, Morse theory is not applied directly to the Yang—Mills
functional in [3] but instead the stratification is defined directly in terms
of Harder—Narasimhan types; however the analytical difficulties were later
overcome [I4]. Let A denote the set of all Harder—Narasimhan types, and for
any Harder—Narasimhan type A, let Cy denote the subset of C consisting of
holomorphic structures on £ with Harder-Narasimhan type A. Atiyah and
Bott showed that {Cy : A € A} is a G-equivariantly perfect stratification of
C. They conjectured that it coincides with the Morse stratification for the
Yang-Mills functional, which was later proved by Daskalopoulos [14].

The moduli space M (n,d) can also be constructed as finite-dimensional
symplectic or GIT quotients, and the inductive formulas of [3] for its Betti
numbers can be rederived via these ‘finite-dimensional approximations’ to
the Yang-Mills picture [I, 29]. In [24] it is shown that the moduli spaces
M(n,d) (and more generally moduli spaces of sheaves over any fixed non-
singular projective scheme) can be constructed as GIT quotients for actions
of complex reductive groups on finite-dimensional complex varieties such
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that, for any given Harder—Narasimhan type A for bundles of rank n and
degree d there is a choice of GIT construction of M(n, d) for which the bun-
dles of Harder—Narasimhan type A appear as a stratum in the associated
stratification {Sg : 8 € B}. The results of non-reductive GIT described in
§3 can then be used to construct moduli spaces of holomorphic bundles of
fixed Harder—Narasimhan type [7, [9].

Alternatively we can attempt to use the infinite-dimensional Yang—Mills
construction of the moduli space M(n,d) as a symplectic quotient of C
by the gauge group and the methods of this paper to find an analogous
symplectic construction of moduli spaces of holomorphic bundles of fixed
Harder—Narasimhan type. Ignoring the analytical difficulties associated to
working with infinite-dimensional spaces and groups, we might proceed as
follows.

Let \(E)=(dy/n1,...,d1/n1,d2/ne,...,ds/ns) be a Harder-Narasimhan
type and fix a C filtration

(6.1) 0= Cé&E C--CE1CE=E

of the C* bundle £ with deg(&;/€j—1) =d; and rank(&;/E_1) =n; for
1 < j <s. Define Y, to be the subset of C consisting of those holomorphic
structures (or equivalently unitary connections) on £ which are compatible
with this filtration, in the sense that the subbundles &; are all holomorphic
subbundles, and define J§* to consist of those holomorphic structures for
which in addition the induced holomorphic structures on the subquotients
E;/Ej—1 are semistable, so that the holomorphic structure on £ lies in Cy. Let
P be the subgroup of G¢ consisting of the complex C'*°-automorphisms of
& which preserve the filtration and let Uy be the kernel of its induced
action on the direct sum of the successive subquotients &;/€;_1. There is
a C'°° decomposition of £ as the orthogonal direct sum of the successive
subquotients £;/&;_1; let L) be the subgroup of Py preserving this direct
sum decomposition and let ) be its intersection with the gauge group
G. Finally let Z) be the subset of ) consisting of holomorphic structures
for which this orthogonal direct sum decomposition of £ is a holomorphic
decomposition, and let Z3° = Z, N V5%,

Then Yy, V3%, 2y, Z3° and Py, Uy, L, Ky play the roles for the Hamil-
tonian action of the gauge group G on C, and on its stratum Cy, which Yj,
YB"’S , 43, ng and Pg, Ug, Lg and Kz play in the finite-dimensional setting
for the Hamiltonian action of the compact group K on the compact sym-
plectic (or Kédhler) manifold X, and its stratum Sg. Note however that it is
really A — (d/n,...,d/n), not X itself, which plays the role of /3, since the
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central circle subgroup in the gauge group acts trivially, so
(I14+e)A—e(d/n,....d/n)

plays the role of (1 +¢)2.
Thus by analogy with the finite-dimensional situation, and using the
methods of [14], we expect the stratum Cy to have a symplectic quotient

C\JJ-G = W necurv (14 )N —e(d/n,...,d/n)))/Kx

for 0 < & << 1, where curv assigns to a holomorphic structure, or equiva-
lently a unitary connection, on £ its curvature, appropriately normalised,
and )y and K, are defined as above. Away from its singularities we ex-
pect this symplectic quotient to be identifiable with a suitable moduli space
of holomorphic bundles of Harder—Narasimhan type A. Alternatively such
moduli spaces of holomorphic bundles can be constructed by applying The-
orem to a suitable finite-dimensional approximation [29] to the Atiyah—
Bott picture [3].
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