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A gap theorem of four-dimensional

gradient shrinking solitons
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In this paper, we will prove a gap theorem on four-dimensional
gradient shrinking soliton. More precisely, we will show that any
complete four-dimensional gradient shrinking soliton with nonneg-
ative and bounded Ricci curvature, satisfying a pinched Weyl cur-
vature, either is flat, or λ1 + λ2 ≥ c0R > 0 at all points, where c0 ≈
0.29167 and {λi} are the two least eigenvalues of Ricci curvature.
Furthermore, we can improve our estimate to λ1 + λ2 ≥ 1

3
R > 0

under a stronger pinched condition. We point out that the lower
bound 1

3
R is sharp.

1. Introduction

A Riemannian manifold (M, g), couple with a smooth function f , is called
gradient Ricci soliton, if there is a constant ρ, such that

Rij +∇i∇jf = ρgij .

The soliton is called shrinking, steady, or expanding, if ρ > 0, ρ = 0, or ρ < 0,
respectively. Gradient shrinking solitons (GSS for short) play an important
role in the Ricci flow, as they correspond to self-similar solutions, and often
arise naturally as limits of dilations of Type I singularities of Ricci flow.
They are also generalizations of Einstein metrics. Thus it is a central issue
to understand and classify GSS.

The GSS are complete classified in dimension 2 (see [10]) and 3 (see
[3, 11, 17, 18]), and in dimension n ≥ 4 with vanishing Weyl tensor (see [17,
19, 22]). In recent years, there are some other attention to the classification
of complete GSS (see [1, 8, 12, 15, 21] ).

For a better understanding and ultimately for the classifications of GSS
in higher dimension, one tries to obtain some curvature estimates and other
geometric structures on GSS. In particular, on a complete non-compact GSS,
Chen [7] showed that it will have nonnegative scalar curvature. In addition,
Cao-Zhu[5] showed that it has infinite volume (or see [2] Theorem 3.1). While
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Cao-Zhou[4] obtained a rather precise estimate on asymptotic behavior of
the potential function f , and showed that it must have at most Euclidean
volume growth.

If the GSS further satisfies some curvature assumptions, then we can
get some more precise characteristics. For example, Carrillo-Ni [6] showed
that any GSS with nonnegative Ricci curvature must have zero asymptotic
volume ratio, and Munteanu-Wang [14] proved that GSS with nonnegative
sectional curvature and positive Ricci curvature must be compact. In [13],
Munteanu-Wang obtained some curvature estimates on four-dimensional
GSS with bounded scalar curvature. In this paper, we obtain a gap the-
orem on four-dimensional GSS with pinched curvature.

Let (Mn, g) be a complete Riemannian manifold, we denote by Ric and
R the Ricci tensor and scalar curvature respectively. It is well known that the
Riemannian curvature tensor Rm can be decomposed into the orthogonal
components :

Rm = W ⊕ 2

n− 2
R̊ic ∧ g ⊕ R

n(n− 1)
g ∧ g,

where W is the Weyl tensor, and R̊ic = Ric− R
n
g is the traceless Ricci cur-

vature. Now we can state our main theorem.

Theorem 1.1. Let (M4, g) be a complete four-dimensional GSS with
bounded and nonnegative Ricci curvature 0 ≤ Ric ≤ C, satisfying

(∗) |W | ≤ γ

∣

∣

∣

∣

|R̊ic| − 1

2
√
3
R

∣

∣

∣

∣

for some constant γ < 1 +
√
3. Then either the soliton is flat, or

λ1 + λ2 ≥ c0R > 0

at all points, where c0 =
(1+2

√
3)−

√
5+4

√
3

2
√
3

≈ 0.29167, λ1 and λ2 are the least

two eigenvalues of the Ricci curvature.

Remark 1.2. In view of the round cylinder S
2 × R

2 with constant scalar
curvature, the pinched constant γ < 1 +

√
3 in (∗) is necessary. Indeed,

S
2 × R

2 is a non-flat GSS with Ricci curvature 0 ≤ Ric ≤ 1
2R. Furthermore,



✐

✐

“8-Zhang” — 2020/7/3 — 18:58 — page 731 — #3
✐

✐

✐

✐

✐

✐

Four-dimensional gradient shrinking solitons 731

|R̊ic| = 1
2R, and the Weyl tensor satisfies

|W | = 1√
3
R = (1 +

√
3)

∣

∣

∣

∣

|R̊ic| − 1

2
√
3
R

∣

∣

∣

∣

.

But the least two eigenvalues of the Ricci curvature λ1 + λ2 ≡ 0 at all points.

Follow by a similar argument, we can show a better result under a
stronger pinched condition as follow.

Theorem 1.3. Let (M4, g) be a complete four-dimensional GSS with
bounded and nonnegative Ricci curvature 0 ≤ Ric ≤ C, satisfying

(∗∗) |W | ≤ γ

∣

∣

∣

∣

|R̊ic| − 1

2
√
3
R

∣

∣

∣

∣

for some constant γ ≤ 1+
√
3√

3
. Then either the soliton is flat, or

λ1 + λ2 ≥
1

3
R > 0

at all points, where λ1 and λ2 are the least two eigenvalues of the Ricci
curvature.

Remark 1.4. Our conclusion λ1 + λ2 ≥ 1
3R > 0 is sharp due to the exam-

ple of round cylinder S3 × R. Since S
3 × R is also a non-flat GSS with Ricci

curvature 0 ≤ Ric ≤ 1
3R, and |R̊ic| = 1

2
√
3
R, |W | = 0. These facts imply that

the pinched condition (∗) holds. But the least two eigenvalues of the Ricci
curvature λ1 + λ2 ≡ 1

3R at all points.

Acknowledgements. The author was partially supported by National
Natural Science Foundation of China (Grant No. 11301191 and Grant No.
11371377). He is grateful to the referees for some helpful comments.

2. Preliminaries

Le (M4, gij) be a complete Riemannian manifold with bounded curvature.
We deform the metric with the Ricci flow equation







∂gij(x,t)
∂t

= −2Rij(x, t), x ∈ M4, t > 0,

gij(x, 0) = gij(x), x ∈ M4.
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Since the curvature is bounded, it is well known [20] that there exist a
complete solution g(t) of the Ricci flow on a time interval [0, T ) with bounded
curvature for each t. On the other hand, the Ricci curvature tensor Rij and
the scalar curvature R evolve by the (PDE) system (cf. Hamilton [9]):

(PDE)







∂
∂t
Rij = △Rij + 2

∑

k,l

RikjlRkl,

∂
∂t
R = △R+ 2|Ric|2.

Next we want to give a basic estimate of eigenvalues of Ricci tensor. Re-
call that a tensor evolves by a nonlinear heat equation may be controlled by
a corresponding (ODE) system (cf. Hamilton [9]), while the (ODE) system
corresponding to the above (PDE) is the following

(ODE)







d
dt
Rij = 2

∑

k,l

RikjlRkl,

d
dt
R = 2|Ric|2.

By a direct computation, we have the following lemma.

Lemma 2.1. Let b = (λ3 + λ4)− (λ1 + λ2), where {λi} are eigenvalues of
the Ricci tensor with λ1 ≤ λ2 ≤ λ3 ≤ λ4. Then under the (ODE) system, we
have

1

2

d

dt
b ≤ 2b

(

R

3
+W1212

)

+ (λ2
1 + λ2

2)− (λ2
3 + λ2

4).

Proof. Indeed, since Rijij = Wijij+
λi+λj

2 −R
6 , and Wijij = Wklkl,

∑

j

Wijij =

0 for any orthonormal four-frame {ei, ej , ek, el}, we have

1

2

d

dt
(λ1 + λ2) ≥

∑

k=2,3,4

λk

(

W1k1k +
λ1 + λk

2
− R

6

)

+
∑

l=1,3,4

λl

(

W2l2l +
λ2 + λl

2
− R

6

)

= (λ1 + λ2)

(

W1212 +
λ1 + λ2

2
− R

6

)

+ λ3

(

−W1212 +
λ1 + λ2

2
+ λ3 −

R

3

)

+ λ4

(

−W1212 +
λ1 + λ2

2
+ λ4 −

R

3

)

=

(

W1212 +
R

3

)

(λ1 + λ2 − λ3 − λ4) + λ2
3 + λ2

4.
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Similarly, we have

1

2

d

dt

(

λ3 + λ4

)

≤
(

W3434 +
R

3

)

(λ3 + λ4 − λ1 − λ2) + λ2
1 + λ2

2.

The desired result follow from the difference of the above two inequali-
ties. □

3. A key pinched estimate

In this section, we will give a pinched estimate, which implies that the cur-
vature b described in Lemma 2.1 can become better under the Ricci flow.

Lemma 3.1. Suppose we have a solution of Ricci flow g(t)t∈[0,T ] on a four-
manifold with uniformly bounded and nonnegative Ricci curvature, and sat-
isfying the pinched condition (∗) at all t ∈ [0, T ].

Assume at t = 0, R ≥ r0 and b ≤ η0R ≤ R for some positive constant

r0 > 0 and η0 > c̃, where c̃ =

√
5+4

√
3−(1+

√
3)√

3
≈ 0.41666. Then there exist a

positive constant δ = δ(r0, η0, γ) ∈ (0, 1], such that

b ≤ (η0 − δt)R

holds at all points and all t ∈ [0, T ′], where T ′ = min{T, η0−c̃
2 }.

Proof. Note that both the Ricci curvature tensor and the Weyl tensor are
uniformly bounded, hence g(t) has uniformly bounded curvature.

Consider the set Ω(t)t∈[0,T ′] of matrices defined by the inequalities

Ω(t) :







R ≥ r0,

b ≤ (η0 − δt)R.

The constant δ ∈ (0, 1] will be chosed later.
It is easy to see that Ω(t) is closed, convex and O(n)-invariant. By the

assumptions at t = 0 and the Hamilton’s maximum principle for tensor, we
only need to show the set Ω(t) is preserved by the (ODE) system. Indeed,
we only need to look at points on the boundary of the set.
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From the (ODE) system, we have

d

dt
R = 2|Ric|2 ≥ 0,

which implies that R ≥ r0 for all t ≥ 0. Thus the first inequality is preserved.
To prove the second inequality, we only need to show that

1

2
b′ ≤ (η0 − δt)

1

2
R′ − δ

2
R = η · 1

2
R′ − δ

2
R,

where b = (η0 − δt)R = ηR.
By Lemma 2.1 and the (ODE) system, it is suffice to show that

2b

(

R

3
+W1212

)

+ (λ2
1 + λ2

2)− (λ2
3 + λ2

4) ≤ η
∑

i

λ2
i −

δ

2
R.

It is equivalent to show that

I = (1 + η)(λ2
3 + λ2

4)− (1− η)(λ2
1 + λ2

2)(3.1)

− 2ηR

(

R

3
+W1212

)

≥ δ

2
R.

Now b = ηR, thus λ3 + λ4 =
1+η
2 R and λ1 + λ2 =

1−η
2 R. Denote by x =

λ2−λ1

2 and y = λ4−λ3

2 , which satisfies

0 ≤ x ≤ 1− η

4
R, y ≥ 0, x+ y ≤ η

2
R.

And then

λ1 =
1− η

4
R− x, λ2 =

1− η

4
R+ x,

λ3 =
1 + η

4
R− y, λ4 =

1 + η

4
R+ y.

Meanwhile, by a direct computation, we have

W 2
1212 ≤

2

3

∑

W 2
1k1k ≤ 2

3
· 1
8
|W |2 ≤ 1

12
γ2
(

|R̊ic| − 1

2
√
3
R

)2

.

In the following, we divide the argument into two cases.
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Case 1: |R̊ic| ≥ R

2
√
3
. In this case,

|R̊ic|2 =
∑

i

(

R

4
− λi

)2

= λ2
1 + λ2

2 + λ2
3 + λ2

4 −
1

4
R2

=

(

1− η

2

)2

R2 − 2λ1λ2 + 2

(

1 + η

4

)2

R2 + 2y2 − 1

4
R2

≤ 1

8
· (3η2 − 2η + 1)R2 + 2y2.

Denote by t =
√

1
8 · (3η2 − 2η + 1)R2 + 2y2. Thus

|W1212| ≤
γ

2
√
3
·
(

t− R

2
√
3

)

.

So I defined in (3.1) can be calculated as follow :

I = (1 + η)

[

2

(

1 + η

4
R

)2

+ 2y2

]

− (1− η)

[

(

1− η

2
R

)2

− 2λ1λ2

]

− 2

3
ηR2 − 2ηRW1212

≥ 1

24
(−3 + 11η − 9η2 + 9η3)R2 + 2(1 + η)y2

− 2ηR · γ

2
√
3
·
(

t− R

2
√
3

)

.

To get a lower bound of I, we rewrite the RHS as follow

RHS =
1

24
(−3 + 11η − 9η2 + 9η3)R2

+ (1 + η)

[

t2 − 1

8
· (3η2 − 2η + 1)R2

]

− γηR√
3

·
(

t− R

2
√
3

)

= (1 + η)t2 − γηR√
3

· t

+
1

24
(−3 + 11η − 9η2 + 9η3)R2

− 1

8
· (1 + η) · (3η2 − 2η + 1)R2 +

γη

6
R2.

Obviously, the RHS is a quadratic function of t, and we will see that
that it is a increasing function of t. Indeed, we only need to show that
2(1 + η)t− γηR√

3
> 0.
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It is easy to see that 12(
√
3− 1) > (1 +

√
3)2 > γ2, and then we have

(1 + η)
√

3η2 − 2η + 1

η
=

(

1√
η
+
√
η

)
√

3η − 2 +
1

η
≥ 2

√

2
√
3− 2 > γ.

Thus 2(1 + η)t ≥ R√
2
· (1 + η)

√

3η2 − 2η + 1 > R√
2
· ηγ > γηR√

3
.

Follow by the above monotonic property, the RHS achieves its minimal
value if t takes its minimal value R

2
√
2

√

3η2 − 2η + 1, i.e. y = 0. Hence we

have

I ≥ 1

24
(−3 + 11η − 9η2 + 9η3)R2 − γηR2

√
3

·
(

1

2
√
2

√

3η2 − 2η + 1− 1

2
√
3

)

=
R2

24



9

(

η − 1

3

)

(

(

η − 1

3

)2

+
8

9

)

− 4γη ·





√

1 +
9

2

(

η − 1

3

)2

− 1









=
3(η − 1

3)R
2

8





(

η − 1

3

)2

+
8

9
− 2γ · η

(

η − 1
3

)

√

1 + 9
2

(

η − 1
3

)2
+ 1





=
3(η − 1

3)R
2

8



II + 2(1 +
√
3− γ) · η(η − 1

3)
√

1 + 9
2(η − 1

3)
2 + 1



 ,

where

II = (η − 1

3
)2 +

8

9
− 2(1 +

√
3) · η(η − 1

3)
√

1 + 9
2(η − 1

3)
2 + 1

= η2 − 2

3
η + 1− 2η(η − 1

3
)

− 2η(η − 1

3
) ·





1 +
√
3

√

1 + 9
2(η − 1

3)
2 + 1

− 1





= (1− η)(1 + η)− 2η(η − 1

3
) ·

√
3−

√

1 + 9
2(η − 1

3)
2

√

1 + 9
2(η − 1

3)
2 + 1

= (1− η)(1 + η)

− 2η

(

η − 1

3

)

· 1
√

1 + 9
2(η − 1

3)
2 + 1

·
3
2(1− η)(1 + 3η)

√
3 +

√

1 + 9
2(η − 1

3)
2
.
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Note that η = η0 − δt ∈ [η0+c̃
2 , 1] ⊂ (13 , 1], thus

II ≥ (1 + η)(1− η)− 2η · 2
3
· 1

1 + 1
·
3
2(1− η) · 4√

3 + 1

= (1− η)

(

1 + η − 4

1 +
√
3
η

)

≥ 0,

and then

I ≥ 3(η − 1
3)R

2

8
· 2(1 +

√
3− γ) · η(η − 1

3)√
3 + 1

≥ C1(η0, γ)R
2 ≥ C2(c0, η0, γ)R

for some positive constant C2(r0, η0, γ) > 0.
Case 2: |R̊ic| < R

2
√
3
. In this case,

|R̊ic|2 = 2

(

1− η

4

)2

R2 + 2

(

1− η

4

)2

R2 − 1

4
R2 + 2y2 + 2x2

≥ 1

4
η2R2 + 2x2.

Denote by τ =
√

1
4η

2R2 + 2x2, then

|W1212| ≤
γ

2
√
3
·
(

R

2
√
3
− τ

)

.

By a direct computation, we have

I ≥ (1 + η)3

8
R2 − (1− η)3

8
R2 − 2

3
ηR2 + 2(1 + η)y2 − 2(1− η)x2

− 2ηR · γ

2
√
3
·
(

R

2
√
3
− τ

)

≥ η

12
(3η2 + 1)R2 − 2(1− η)x2 +

γηR√
3

·
(

τ − R

2
√
3

)

.

Similarly, to get a lower bound of I, we rewrite the RHS as follow

RHS =
η

12
(3η2 + 1)R2 − (1− η)(τ2 − 1

4
η2R2) +

γηR√
3

·
(

τ − R

2
√
3

)

.

Since the RHS is a quadratic function of τ , it is easy to see that the RHS
will get the minimum value on the boundary, i.e. x = 0 or x = 1−η

4 R.
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If x = 1−η
4 R. Then

I ≥ ηR2

12
(3η2 + 1)− 1

8
(1− η)3R2

+
γηR2

√
3

·
(

1

2
√
2

√

3η2 − 2η + 1− 1

2
√
3

)

.

Since η ≥ η0+c̃
2 > 1

3 , we have 1
2
√
2

√

3η2 − 2η + 1 > 1
2
√
2

√

2
3 = 1

2
√
3
. Thus

I >
ηR2

12
(3η2 + 1)− 1

8
(1− η)3R2

=
R2

24

[

2η · (3η2 + 1)− 3(1− η)3
]

=
R2

24
(9η3 − 9η2 + 11η − 3)

=
R2

24

(

η − 1

3

)

[

(3η − 1)2 + 8
]

= C3(η0, c0)R.

If x = 0. Then

I ≥ η

12
(3η2 + 1)R2 +

γηR2

√
3

·
(

η

2
− 1

2
√
3

)

(3.2)

=
ηR2

12

[

3η2 + 1 + 2γ(
√
3η − 1)

]

.

Note that R

2
√
3
> |R̊ic| ≥ η

2R, which implies that η < 1√
3
. So we have

3η2 + 1 + 2γ(
√
3η − 1)

> 3η2 + 1 + 2(1 +
√
3) · (

√
3η − 1)

= 3η2 + (6 + 2
√
3)η − (1 + 2

√
3)

= 3

(

η −
√

5 + 4
√
3− (1 +

√
3)√

3

)

·
(

η +

√

5 + 4
√
3 + (1 +

√
3)√

3

)

.

Thus

I ≥ C4(η0, c0)R.

Combine the above argument, we have

I ≥ C5(c0, η0)R.
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So by choosing δ = δ(c0, η0, γ) = min{1, 2C2, 2C5}, the inequality (3.1)
holds. The proof of Lemma 3.1 is complete. □

4. A gap theorem of four-dimensional GSS

Suppose (M4, g) is a complete GSS. Then there are a smooth function f

and a positive constant ρ, such that

Rij +∇i∇jf = ρgij .

It is well known that there exist a self-similar solution of Ricci flow as
follow

g(t) = τ(t)ϕ∗
t (g), t ∈

(

−∞,
1

2ρ

)

,

where τ(t) = 1− 2ρt, and ϕt is a family of diffeomorphisms.
Now we can prove Theorem 1.1.

Proof of Theorem 1.1. It is well known that any GSS with nonnegative Ricci
curvature either is flat, or has positive scalar curvature R ≥ r0 > 0 for some
positive constant r0 = r0(g). In the following, we always assume the soliton
has positive scalar curvature R ≥ r0 > 0 (cf. [16]).

We will argue by contradiction. Denote by

η0 = sup
x∈(M4,g)

b(x)

R(x)
≤ 1.

If η0 ≤ c̃, then we have λ1 + λ2 ≥ 1−c̃
2 R = c0R, and we have done. If not,

then η0 > c̃. By the assumptions, we see that the self-similar solution
g(t)t∈[0, 1

10ρ
] has nonnegative and uniformly bounded Ricci curvature with

g(0) = g.
Then by Lemma 3.1, there exist a positive constant δ = δ(r0, η0, γ) ∈

(0, 1], such that

b ≤ (η0 − δt)R

is preserved under the Ricci flow at all points and all small t ∈ [0, T ′], where
T ′ = min{ 1

10ρ ,
η0−c̃
2 }.

Hence we have

b ≤ (η0 − δT ′)R

at all points. But this is impossible. Since at t = 0, there exist some point
p ∈ M , such that b(p) ≥ (η0 − δ

2T
′)R(p). Note that g(t) only changes by
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scaling and a diffeomorphism on M4. So at time t = T ′, there is some point
q ∈ M , such that

b(q, T ′) =
1

1− 2ρT ′ b(p)

≥ 1

1− 2ρT ′

(

η0 −
δ

2
T ′
)

R(p) =

(

η0 −
δ

2
T ′
)

R(q, T ′),

which is contradictive with b(q, T ′) ≤ (η0 − δT ′)R(q, T ′).
And we complete the proof of Theorem 1.1. □

Next, we follow a similar argument to prove Theorem 1.3.

Proof of Theorem 1.3. Obviously, we only need to show that

η0 = sup
x∈(M4,g)

b(x)

R(x)
≤ 1

3
.

If not, η0 >
1
3 . Follow from a similar argument as Claim 3.1, we can

prove the following assertion.

Claim 4.1. Suppose we have a solution of Ricci flow g(t)t∈[0,T ] on a four-
manifold with uniformly bounded and nonnegative Ricci curvature, and sat-
isfying the pinched condition (∗∗) at all t ∈ [0, T ].

Assume at the initial time t = 0, R ≥ r0 and b ≤ η0R for some posi-
tive constant r0 > 0 and η0 >

1
3 . Then there exist a positive constant δ =

δ(r0, η0, γ) ∈ (0, 1], such that

b ≤ (η0 − δt)R

holds at all points and all t ∈ [0, T ′], where T ′ = min{T, η0− 1

3

2 }.

For the proof of Claim 4.1, we check the argument of Lemma 3.1. Then
we only need to get a positive lower bound of (3.2). Indeed,

3η2 + 1 + 2γ(
√
3η − 1) ≥ 3η2 + 1 + 2 · 1 +

√
3√

3
· (
√
3η − 1)

= 3(η − 1

3
) ·
(

η +
2 +

√
3√

3

)

≥ C(η0).

Thus Claim 4.1 holds. But this assertion will develop a contradiction
like the proof of Theorem 1.1. And then we obtain Theorem 1.3. □
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