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By using variational techniques we provide new existence results
for Yamabe-type equations with subcritical perturbations set on
a compact d-dimensional (d ≥ 3) Riemannian manifold without
boundary. As a direct consequence of our main theorems, we prove
the existence of at least one solution to the following Yamabe-type
problem



−∆gw + α(σ)w = µK(σ)w

d+2
d−2 + λ

(
wr−1 + f(w)

)
, σ ∈ M

w ∈ H2

α(M), w > 0 in M,

where, as usual, ∆g denotes the Laplace-Beltrami operator on
(M, g), α,K : M → R are positive (essentially) bounded functions,
r ∈ (0, 1), and f : [0,+∞) → [0,+∞) is a subcritical continuous
function. Restricting ourselves to the unit sphere Sd via the stereo-
graphic projection, we furthermore solve some parametrized
Emden-Fowler equations in the Euclidean case.
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1. Introduction

In the present paper we explore the existence of solutions to the problem

(Pλ,µ) −∆gw + α(σ)w = µK(σ)|w|
4

d−2w+λf(w), σ∈M, w∈H2
1 (M),

where (M, g) is a compact d-dimensional Riemannian manifold without
boundary, d ≥ 3; ∆g is the Laplace-Beltrami operator on (M, g), expressed
in local coordinates (x1, . . . , xd) by

∆gw := gij
(

∂2w

∂xi∂xj
− Γk

ij

∂w

∂xk

)

(here Γk
ij are the well-known Christoffel’s symbols); the functions α,K :

M → R belong to the class

(1.1) Λ+(M) :=

{
φ ∈ L∞(M,R) : essinf

σ∈M
φ(σ) > 0

}
;

λ, µ are positive real parameters, and f : R → R is a continuous function
with subcritical growth. Problem (Pλ,µ) displays the same structure as the
Yamabe equation with the addition of a subcritical perturbation term. As is
well-known, the latter equation is intimately related to the following prob-
lem arising in differential geometry:

Given a d-dimensional compact Riemannian manifold (M, g), d > 2,
with scalar curvature k = k(σ), find a metric g̃ conformal to g, with con-

stant scalar curvature k̃.

Setting g̃ := w4/(d−2)g, where w > 0 is the conformal factor, this require-
ment can be stated in terms of PDEs as follows:

Find w ∈ C∞(M), w > 0, satisfying

(1.2) −∆gw +
d− 2

4(d− 1)
k(σ)w = k̃w

d+2

d−2 in M.

The history of equation (1.2) and attempts on its resolution spans more
than two decades. In 1960, Yamabe [27] claimed to have found a solution
but his proof turned out to be wrong and was repaired by Trudinger [25]
for the case when the conformal class of the reference metric is non-positive.
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Some years later, Aubin [2] provided a positive answer to the question for all
manifolds of dimension d ≥ 6 which are not conformally flat; the remaining
and more difficult cases were definitively solved by Schoen [22].

Elliptic problems set on compact Riemannian manifolds without bound-
ary, as well as their applications to Emden-Fowler equations, have been the
object of recent study, especially in the sublinear case. In [16] Kristály and
Rădulescu obtained multiple solutions to the problem

(Pµ) −∆gw + α(σ)w = µK(σ)f(w), σ ∈ M, w ∈ H2
1 (M),

when f has a sublinear behaviour at infinity. More precisely, in their Theo-
rem 1.1 they proved the existence of two non-trivial solutions to (Pµ), for µ
sufficiently large, through a careful analysis of the mountain pass geometry
of the functional energy. Under some natural compactness assumptions, a
similar approach applies to problem (Pλ,µ) as well, and leads to the existence
of at least one non-trivial solution, as shown in our Theorem 9 (see Section
4).

However, we are going to propose here a different approach, quite new
in the framework of elliptic equations on manifolds, which in particular does
not use the celebrated Lions’ concentration-compactness principle (see [18])
or one of its many variants. As it is well-known, the latter represents a major
tool in the study of critical elliptic equations and has been intensively used
in literature in many different contexts.

Our first existence result (Theorem 2) relies upon direct minimization
techniques on small balls of the energy space. To be more precise, we prove
that, for every µ > 0, the restriction of the functional

w 7→
1

2

∫

M

(
|∇w(σ)|2 + α(σ)w(σ)2

)
dσg

−
µ

2∗

∫

M
K(σ)|w(σ)|2

∗

dσg, w ∈ H2
α(M),

to a ball of H2
α(M) centred at 0 and of small enough radius, is sequentially

weakly lower semicontinuous (see Lemma 3). Consequently, the whole en-
ergy functional associated with (Pλ,µ) is locally sequentially weakly lower
semicontinuous and so it will admit, for any µ > 0 and sufficiently small λ,
a local minimum. We point out that throughout our paper the nonlinearity
f is merely required to be subcritical and with an appropriate asymptotic
behaviour at 0. The key point is the smallness of λ, which needs to be-
long to the range of a suitable rational function, involving among other
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things the sharp constant of the continuous (but not compact) embedding
H2

α(M) →֒ L2d/(d−2)(M), see Remark 1.
We furthermore emphasize that our approach, originally due to Chabro-

wski [6], has been previously used in literature for studying classical quasilin-
ear p-Laplacian equations involving critical nonlinearities (see [10], to which
this paper is inspired, and [23]). For the sake of completeness, we also men-
tion [21], where the non-compact counterpart of (Pλ,µ) was investigated,
and the recent papers [13, 19, 20] where, by adopting similar variational
methods, the existence of weak solutions for nonlocal fractional equations
and subelliptic problems on Carnot groups were studied in situations of lack
of compactness.

Theorem 2 has connections with several results obtained in the case of
bounded domains of Rd, like the main one of [24], where Tarantello showed
that the problem

(1.3)

{
−∆u = |u|

4

d−2u+ h(x) in Ω

u = 0 on ∂Ω,

where Ω ⊂ Rd, d > 2, and h ∈ H−1(Ω), admits two distinct weak solutions
provided that h has a sufficiently small ∥ · ∥−1,2-norm, namely

∥h∥−1,2 ≤
4

d− 2

(
d− 2

d+ 2

)(d+2)/4

Sd/4,

where S is the best critical Sobolev constant for the embedding H1
0 (Ω) →֒

L2∗

(Ω). There are other connections with the central result of [12], dealing
with the perturbed critical elliptic problem

{
−∆u = |u|

4

d−2u+ g(x, u) in Ω

u = 0 on ∂Ω,

where Ω ⊂ Rd, d ≥ 3, and the nonlinearity g has a subcritical growth at
infinity.

Among all cases covered by (Pλ,µ), a remarkable one is given by

−∆hw + s(1− s− d)w(P̃λ,µ)

= µK(σ)|w|
4

d−2w + λf(w), σ ∈ S
d, w ∈ H2

1 (S
d),

where Sd is the unit sphere in Rd+1, h is the standard metric induced by
the embedding Sd →֒ Rd+1, s is a constant such that 1− d < s < 0 and ∆h
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denotes the Laplace-Beltrami operator on (Sd, h). It yields equation (1.2) on
Sd when s = −d/2 or s = −d/2 + 1 (see for instance [3, 7, 8, 14, 15, 26] and
references therein for a wider framework on these topics). Problem (P̃λ,µ)

has an analogue in the Euclidean context: any existence result for (P̃λ,µ)
indeed can be translated, by an appropriate change of coordinates, into an
existence result for the following parametrized Emden-Fowler type equation,

−∆u = µ|x|
2(2−2s−d)

d−2 K

(
x

|x|

)
|u|

4

d−2u(P λ,µ)

+ λ|x|s−2f

(
u

|x|s

)
, x ∈ R

d+1 \ {0},

see Section 5 for details. The latter represents a generalization of the more
common (and unperturbed) equation

(Pµ) −∆u = µ|x|s−2K

(
x

|x|

)
f

(
u

|x|s

)
, x ∈ R

d+1 \ {0},

which, in the presence of a pure superlinear nonlinearity (that is, for f(t) =
|t|p−1t, p > 1), has been treated by minimization and minimax techniques
in the classical papers [8] and [26].

If the perturbation term in (Pλ,µ) is modified with the addition of a
singular power at zero, then via the same approach as before (cf. also [10]),
it is still possible to get non-trivial solutions to the singular Yamabe problem

{
−∆gw + α(σ)w = µK(σ)w

d+2

d−2 + λ
(
wr−1 + f(w)

)
, σ ∈ M

w ∈ H2
α(M), w > 0 in M,

where r ∈ (0, 1) and f : [0,+∞) → [0,+∞) is continuous and subcritical, see
Theorem 8.

As a consequence, it is straightforward to deduce the existence of at least
one non-trivial solution to the following singular equation

{
−∆hw + s(1− s− d)w = µK(σ)w

d+2

d−2 + λ
(
wr−1 + f(w)

)
, σ ∈ Sd

w ∈ H2
1 (S

d), w > 0 in Sd,

and this is the content of Theorem 12.
For the sake of completeness we cite related paper [11] in which the

authors studied the existence of non-negative solutions for the doubly critical



✐

✐

“6-MolicaBisci” — 2020/7/3 — 18:55 — page 682 — #6
✐

✐

✐

✐

✐

✐

682 G. Molica Bisci, D. Repovš, and L. Vilasi

equation of the form

−∆pu− µ
up−1

|x|p
= up

∗−1 +
up

∗(s)−1

|x|s
, in R

d

where ∆p is the usual p-Laplace operator (with 1 < p < d and d ≥ 2), µ is a
real parameter, p∗ is the critical Sobolev exponent, 0 < s < p and p∗(s) :=
p(d− s)/(d− p). We also point out that a Lane-Emden-Fowler equation on
a bounded Euclidean domain and involving a singular potential was stud-
ied in [9]. Furthermore, under appropriate spectral assumptions, in [1] two
existence results for positive solutions of Lichnerowicz-type equations on
complete (non-compact) manifolds have been proved.

The paper is organized as follows. In Section 2 we review some basic def-
initions and facts on Sobolev spaces defined on compact Riemannian mani-
folds, while in Section 3 we state and prove our main result of existence of
solutions for (Pλ,µ). Section 4 is devoted to another existence result, obtained
this time as an application of a version of the Mountain Pass Theorem with-
out the Palais-Smale condition due to Brezis and Nirenberg ([5, Theorem
2.2]) proving an existence result for problem (Pλ,µ).

Some concrete applications of our general theorems to Emden-Fowler
equations are illustrated in the last section.

2. Preliminaries and variational framework

In this section we recall some notions and basic facts of Sobolev spaces on
compact Riemannian manifolds helpful for the sequel. We refer the reader to
[3, 14] for detailed derivations of the geometric quantities, their motivation
and further applications. We also mention recent monograph [17] as a general
reference on this subject.

Let (M, g) be a smooth compact d-dimensional Riemannian manifold,
d ≥ 3, without boundary and let gij be the components of the metric g. If
α ∈ Λ+(M) (see (1.1)) and C∞(M) denotes as usual the space of smooth
functions defined on M, we set

(2.1) ∥w∥H2
α
:=

(∫

M
|∇w(σ)|2dσg +

∫

M
α(σ)w(σ)2dσg

)1/2

,

for every w ∈ C∞(M), where ∇w is the covariant derivative of w and dσg is
the Riemannian measure on M. In terms of local coordinates (x1, . . . , xd),
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∇w can be represented by

(∇2w)ij =
∂2w

∂xi∂xj
− Γk

ij

∂w

∂xk

where

Γk
ij :=

1

2

(
∂glj
∂xi

+
∂gli
∂xj

−
∂gij
∂xk

)
glk

are the usual Christoffel’s symbols and glk are the elements of the inverse
matrix of g, Einstein’s summation convention being tacitly adopted.

The Riemannian volume element dσg in (2.1) is given by dσg =
(detg)1/2 dx, where dx stands for Lebesgue’s volume element of Rd, and
we set

V olg(M) :=

∫

M
dσg.

In the special case (M, g) = (Sd, h), where Sd is the unit sphere in Rd+1 and
h is the standard metric induced by the embedding Sd →֒ Rd+1, we use the
notation

ωd := V olh(S
d) =

∫

Sd

dσh.

The Sobolev space H2
α(M) is defined as the completion of C∞(M) with

respect to the norm ∥·∥H2
α
. Such a space turns out to be a Hilbert space

when endowed with the inner product

⟨w1, w2⟩H2
α
=

∫

M
⟨∇w1(σ),∇w2(σ)⟩g dσg(2.2)

+

∫

M
α(σ) ⟨w1(σ), w2(σ)⟩g dσg,

for every w1, w2 ∈ H2
α(M), where ⟨·, ·⟩g is the inner product on covariant ten-

sor fields associated with g. Because of the positivity of α, ∥·∥H2
α
is equivalent

to the standard norm

(2.3) ∥w∥H2
1
=

(∫

M
|∇w(σ)|2dσg +

∫

M
w(σ)2dσg

)1/2

,

as is plainly deducible from the following inequalities

(2.4) min

{
1, essinf

σ∈M
α(σ)1/2

}
∥w∥H2

1
≤ ∥w∥H2

α
≤ max

{
1, ∥α∥1/2∞

}
∥w∥H2

1
,

holding for any w ∈ H2
α(M). Hereafter, we shall drop the subscripts in (2.1)

and (2.2) and denote ∥·∥H2
α
and ⟨·, ·⟩H2

α
simply by ∥·∥ and ⟨·, ·⟩, respectively.
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On account of Rellich-Kondrachov’s theorem for compact manifolds with-
out boundary, one has

(2.5) H2
α(M) →֒ Lq(M) for every q ∈ [1, 2∗],

where

2∗ =
2d

d− 2
,

and the above embedding is also compact whenever q ∈ [1, 2∗). For any q ∈
[1, 2∗] we denote by ∥·∥q the standard Lq-norm on M and by cq the best
constant of (2.5), i.e.

cq := sup
w∈H2

α(M)\{0}

∥w∥q
∥w∥

> 0,

while we reserve the symbol S for the positive constant

(2.6) S := inf
w∈H2

α(M)\{0}

∥w∥2

∥w∥22∗

.

The open (respectively, closed) ball centered at w ∈ H2
α(M) of radius r >

0 will be denoted by B(w, r) (respectively, Bc(u, r)), and the sphere {z ∈
H2

α(M) : ∥w − z∥ = r} by ∂B(w, r).
In what follows, we shall make the standing assumptions that K ∈

Λ+(M) and f : R → R is locally Lipschitz continuous. It is straightforward
to check that problem (Pλ,µ) represents the Euler-Lagrange equation of the
functional

Eλ,µ(w) :=
1

2
∥w∥2 −

µ

2∗

∫

M
K(σ)|w|2

∗

dσg(2.7)

− λ

∫

M
F (w(σ))dσg, w ∈ H2

α(M),

where

F (t) :=

∫ t

0
f(τ)dτ for all t ∈ R.

The critical points w of Eλµ
are therefore the weak solutions to (Pλ,µ), i.e.

they satisfy the relationship

⟨w, z⟩ = µ

∫

M
K(σ)|w|

4

d−2wzdσg + λ

∫

M
f(w)zdσg,
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for all z ∈ H2
α(M) and, furthermore, the regularity assumptions on K and

f force any weak solution to be actually a classical one.
It is worth observing that, fixing λ, µ ∈ R, the constant function w(σ) =

c ∈ R is a (trivial) solution to (Pλ,µ) if and only if

c =
µK(σ)|c|

4

d−2 c+ λf(c)

α(σ)
in M.

Thus, constant solutions to (Pλ,µ) appear as fixed points of the real function

t 7→
µK(σ)|t|

4

d−2 t+ λf(t)

α(σ)
, t ∈ R.

Remark 1. It is well-known that sharp Sobolev inequalities play a crucial
role in the theory partial differential equations, from both theoretical and
applied point of view, and there is a broad literature on this subject. In our
context, when (M, g) = (Sd, h), a concrete upper bound for the constants
cq, q ∈ [1, 2d/(d− 2)), depending on the geometry of Sd, can be obtained as

(2.8) cq ≤
κq

min

{
1,min

σ∈Sd
α(σ)1/2

} ,

where

κq :=





ω
2−q

2q

d if q ∈ [1, 2),

max

{(
q − 2

d
ω

2−q

q

d

)1/2

, ω
2−q

2q

d

}
if q ∈

[
2, 2d

d−2

)
.

Indeed, for every 2 ≤ q < 2d/(d− 2) and w ∈ H2
1 (S

d), one has

(∫

Sd

|w(σ)|qdσh

)2/q

≤
q − 2

dω
1−2/q
d

∫

Sd

|∇w(σ)|2dσh +
1

ω
1−2/q
d

∫

Sd

|w(σ)|2dσh,

(cf. for instance [4] and [14]) and thus

∥w∥q ≤ max

{(
q − 2

d
ω

2−q

q

d

)1/2

, ω
2−q

2q

d

}

×

(∫

Sd

|∇w(σ)|2dσh +

∫

Sd

|w(σ)|2dσh

)1/2

,
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which, by (2.4), implies the desired estimate. On the other hand, if q ∈ [1, 2),
it follows from Hölder’s inequality that

∥w∥q ≤ ω
2−q

2q

d ∥w∥2, for all w ∈ L2(Sd)

and the conclusion is achieved by taking into account that

∥w∥2 ≤ ∥w∥H2
1 (S

d) ≤
∥w∥

min

{
1,min

σ∈Sd
α(σ)1/2

} ,

for every w ∈ H2
1 (S

d).

3. Existence of local minimizers

Our first existence result for problem (Pλ,µ) can be stated as follows:

Theorem 2. Let f : R → R satisfy the following requirements:

(f1) there exist a1, a2 > 0 and q ∈ [1, 2∗) such that

|f(t)| ≤ a1 + a2|t|
q−1 for all t ∈ R,

(f2) lim inf
t→0+

F (t)

t2
= +∞.

Furthermore, for any µ > 0 let lµ : [0,+∞) → R be the function defined by

(3.1) lµ(t) :=
t− µc2

∗

2∗ ∥K∥∞ t2
∗−1

a1c2∗V olg(M)
2∗−1

2∗ + a2c
q
2∗V olg(M)

2∗−q

2∗ tq−1
for all t ≥ 0.

Then for every µ > 0 there exists an open interval

Λµ ⊆

(
0, max

[0,+∞)
lµ

)

such that, for every λ ∈ Λµ, (Pλ,µ) admits a non-trivial solution w0,µ,λ ∈
H2

α(M).

As already mentioned, our strategy consists in showing that the energy
(2.7) possesses a non-trivial minimizer in H2

α(M). Yet, the presence of the



✐

✐

“6-MolicaBisci” — 2020/7/3 — 18:55 — page 687 — #11
✐

✐

✐

✐

✐

✐

Some problems on Riemannian manifolds 687

critical term prevents the direct minimization from being immediately ap-
plicable. First we consider, for all w ∈ H2

α(M), the functionals

w 7→ Eλ,µ(w) + λ

∫

M
F (w)dσg, w 7→

1

2
∥w∥2 − Eλ,µ(w),

and prove some of their properties.

Lemma 3. For every µ > 0 there exists ϱ0,µ > 0 such that the functional

Êµ(w) :=
1

2
∥w∥2 −

µ

2∗

∫

M
K(σ)|w(σ)|2

∗

dσg, w ∈ H2
α(M),

is sequentially weakly lower semicontinuous in Bc(0, ϱ0,µ).

Proof. Let µ, ϱ > 0 and let {wj}j∈N ⊂ Bc(0, ϱ) be such that wj ⇀ w∞ ∈
Bc(0, ϱ). The conclusion will be achieved by proving that

(3.2) lim inf
j→∞

(Êµ(wj)− Êµ(w∞)) ≥ 0.

Le us observe that, for all w1, w2 ∈ H2
α(M), the following basic equality

holds

∥w2∥
2 − ∥w1∥

2 − 2 ⟨w1, w2 − w1⟩g = ∥w1 − w2∥
2 .

Moreover, applying Brézis-Lieb’s Lemma to the sequence {K1/2∗

wj}j∈N ⊂
L2∗

(M), one has

lim inf
j→∞

(∫

M
K(σ)|wj(σ)|

2∗

dσg −

∫

M
K(σ)|w∞(σ)|2

∗

dσg

)

= lim inf
j→∞

∫

M
K(σ)|wj(σ)− w∞(σ)|2

∗

dσg.
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Bearing in mind also that wj ⇀ w∞, we deduce

lim inf
j→∞

(Êµ(wj)− Êµ(w∞))

= lim inf
j→∞

(
1

2

(
∥wj∥

2 − ∥w∞∥2
)

−
µ

2∗

∫

M
K(σ)

(
|wj(σ)|

2∗

− |w∞(σ)|2
∗
)
dσg

)

≥ lim inf
j→∞

(
1

2
∥wj − w∞∥2 −

µ

2∗
∥K∥∞

∫

M
|wj(σ)− w∞(σ)|2

∗

dσg

)

≥ lim inf
j→∞

(
1

2
−

c2
∗

2∗

2∗
µ ∥K∥∞ ∥wj − w∞∥2

∗−2

)
∥wj − w∞∥2

≥ lim inf
j→∞

(
1

2
−

c2
∗

2∗

2∗
µ ∥K∥∞ ϱ2

∗−2

)
∥wj − w∞∥2.

So for

0 < ϱ ≤ ϱ̄µ :=

(
d

(d− 2)c2
∗

2∗µ ∥K∥∞

) d−2

4

,

inequality (3.2) is verified and Êµ is sequentially weakly lower semicontinuous
in Bc(0, ϱ0,µ), provided that ϱ0,µ ∈ (0, ϱ̄µ). □

Lemma 4. Let λ, µ > 0, let f : R → R satisfy (f1), and let Ẽλ,µ : H2
α(M) →

R be the functional defined by

Ẽλ,µ(w) :=
µ

2∗

∫

M
K(σ)|w(σ)|2

∗

dσg + λ

∫

M
F (w)dσg

for any w ∈ H2
α(M). Then the following facts hold:

(i) if

(3.3) lim sup
ε→0+

sup
Bc(0,ϱ0)

Ẽλ,µ − sup
Bc(0,ϱ0−ϵ)

Ẽλ,µ

ε
< ϱ0

for some ϱ0 > 0, then

(3.4) inf
η<ϱ0

sup
Bc(0,ϱ0)

Ẽλ,µ − sup
Bc(0,η)

Ẽλ,µ

ϱ20 − η2
<

1

2
;
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(ii) if (3.4) is satisfied for some ϱ0 > 0, then

(3.5) inf
w∈B(0,ϱ0)

sup
Bc(0,ϱ0)

Ẽλ,µ − Ẽλ,µ(w)

ϱ20 − ∥w∥2
<

1

2
.

Proof. (i) From the identity

sup
Bc(0,ϱ0)

Ẽλ,µ − sup
Bc(0,ϱ0−ϵ)

Ẽλ,µ

ϱ20 − (ϱ0 − ε)2
=




sup
Bc(0,ϱ0)

Ẽλ,µ − sup
Bc(0,ϱ0−ϵ)

Ẽλ,µ

ε



(

1

2ϱ0 − ε

)
,

it follows that

(3.6) lim sup
ε→0+

sup
Bc(0,ϱ0)

Ẽλ,µ − sup
Bc(0,ϱ0−ϵ)

Ẽλ,µ

ϱ20 − (ϱ0 − ε)2
<

1

2
.

Now, by (3.6) there exists ε̄0 > 0 such that

sup
Bc(0,ϱ0)

Ẽλ,µ − sup
Bc(0,ϱ0−ε)

Ẽλ,µ

ϱ20 − (ϱ0 − ε)2
<

1

2

for every ε ∈ (0, ε̄0). Setting η0 := ϱ0 − ε0, with ε0 ∈ (0, ε̄0), we get

sup
Bc(0,ϱ0)

Ẽλ,µ − sup
Bc(0,η0)

Ẽλ,µ

ϱ20 − η20
<

1

2

and thus the conclusion follows.
(ii) Thanks to inequality (3.4), one has

(3.7) sup
Bc(0,η0)

Ẽλ,µ > sup
Bc(0,ϱ0)

Ẽλ,µ −
1

2
(ϱ20 − η20)

for some 0 < η0 < ϱ0. Invoking (f1) and standard arguments, Ẽλ,µ turns out
to be weakly lower semicontinuous in Bc(0, η0) and therefore

sup
∂Bc(0,η0)

Ẽλ,µ = sup
∂Bc(0,η0)

∗

Ẽλ,µ = sup
Bc(0,η0)

Ẽλ,µ,
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where ∂Bc(0, η0)
∗
is the weak closure of ∂Bc(0, η0) in H2

α(M). Therefore by
(3.7) there exists w0 ∈ H2

α(M) with ∥w0∥ = η0 such that

Ẽλ,µ(w0) > sup
Bc(0,ϱ0)

Ẽλ,µ −
1

2
(ϱ20 − η20),

and the second claim is proved as well. □

We are now in a position to prove our existence result.
Proof of Theorem 2. Fix µ > 0 and let ϱµ,max > 0 be the global maxi-

mizer of lµ. Set ϱ0,µ := min{ϱ̄µ, ϱµ,max}, ϱ̄µ being defined by (3), and Λµ :=
(0, lµ(ϱ0,µ)).

Taking λ ∈ Λµ, there exists ϱ0,µ,λ ∈ (0, ϱ0,µ) such that

(3.8) 0 < λ <
ϱ0,µ,λ − µc2

∗

2∗ ∥K∥∞ ϱ2
∗−1

0,µ,λ

a1c2∗V olg(M)
2∗−1

2∗ + a2c
q
2∗V olg(M)

2∗−q

2∗ ϱq−1
0,µ,λ

.

Since ϱ0,µ,λ < ϱ̄µ, by Lemma 3 the functional Eλ,µ is sequentially weakly
lower semicontinuous in Bc(0, ϱ0,µ,λ) and so there exists w0,µ,λ ∈
Bc(0, ϱ0,µ,λ) such that

Eλ,µ(w0,µ,λ) = min
Bc(0,ϱ0,µ,λ)

Eλ,µ.

Suppose by contradiction that ∥w0,µ,λ∥ = ϱ0,µ,λ. Fix ε ∈ (0, ϱ0,µ,λ) and
define

φλ,µ(ε, ϱ0,µ,λ) :=

sup
Bc(0,ϱ0,µ,λ)

Ẽλ,µ − sup
Bc(0,ϱ0,µ,λ−ε)

Ẽλ,µ

ε
.

With the aid of (f1) we get

φλ,µ(ε, ϱ0,µ,λ)

≤
1

ε
sup

w∈Bc(0,1)

∫

M

∣∣∣∣∣

∫ ϱ0,µ,λw(σ)

(ϱ0,µ,λ−ε)w(σ)

(
µ ∥K∥∞ |t|2

∗−1 + λ|f(t)|
)
dt

∣∣∣∣∣ dσg

≤
1

ε
sup

w∈Bc(0,1)

∫

M

∣∣∣∣∣

∫ ϱ0,µ,λw(σ)

(ϱ0,µ,λ−ε)w(σ)

(
µ ∥K∥∞ |t|2

∗−1 + a1λ+ a2λ|t|
q−1
)
dt

∣∣∣∣∣ dσg

≤
c2

∗

2∗µ ∥K∥∞
2∗

(
ϱ2

∗

0,µ,λ − (ϱ0,µ,λ − ε)2
∗

ε

)
+ a1λc2∗V olg(M)

2∗−1

2∗

+ a2λ
cq2∗

q
V olg(M)

2∗−q

2∗

(
ϱq0,µ,λ − (ϱ0,µ,λ − ε)q

ε

)
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and taking the limsup for ε → 0+ we get

lim sup
ε→0+

φλ,µ(ε, ϱ0,µ,λ) ≤ c2
∗

2∗µ ∥K∥∞ ϱ2
∗−1

0,µ,λ + λa1c2∗V olg(M)
2∗−1

2∗(3.9)

+ λa2c
q
2∗V olg(M)

2∗−q

2∗ ϱq−1
0,µ,λ,

which, due to (3.8), forces

lim sup
ε→0+

φλ,µ(ε, ϱ0,µ,λ) < ϱ0,µ,λ.

Therefore, invoking Lemma 4, one has

inf
w∈B(0,ϱ0,µ,λ)

sup
Bc(0,ϱ0,µ,λ)

Ẽλ,µ − Ẽλ,µ(w)

ϱ20,µ,λ − ∥w∥2
<

1

2

and there exists w̄µ,λ ∈ B(0, ϱ0,µ,λ) such that, for every w ∈ Bc(0, ϱ0,µ,λ),

Ẽλ,µ(w) ≤ sup
Bc(0,ϱ0,µ,λ)

Ẽλ,µ < Ẽλ,µ(w̄µ,λ) +
1

2
(ϱ20,µ,λ − ∥w̄µ,λ∥

2),

which we can rewrite as

(3.10) Eλ,µ(w̄µ,λ) :=
1

2
∥w̄µ,λ∥

2 − Ẽλ,µ(w̄µ,λ) <
ϱ20,µ,λ
2

− Ẽλ,µ(w).

Evaluating the previous inequality at w = w0, we deduce

Eλ,µ(w̄µ,λ) <
1

2
ϱ20,µ,λ − Ẽλ,µ(w0,µ,λ) = Eλ,µ(w0,µ,λ),

against the minimality of w0,µ,λ. In conclusion, w0,µ,λ ∈ B(0, ϱ0,µ,λ) and is
therefore a local minimum for Eλ,µ and a solution to (Pλ,µ).

The final task is now to show that w0,µ,λ is not identically 0 on M. To
this end, fix a constant a ∈ (0,+∞). Thanks to (f2), for all c > 0 there exists
δc > 0 such that

F (t) ≥ ct2 for any t ∈ (0, δc).
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So if t ∈ (0, δc/a), we obtain

Eλ,µ(ta) =
1

2
a2V olg(M)t2 −

µ

2∗
a2

∗

∥K∥1 t
2∗

− λ

∫

M
F (ta)dσg

≤

(
1

2
− λc

)
a2V olg(M)t2 −

µ

2∗
a2

∗

∥K∥1 t
2∗

< 0

for big enough c > 0. As a result, 0 is not a local minimizer of Eλ,µ and w0,µ,λ

is not the null function. □

Remark 5. It is worth noticing that assumption (f2) comes into play only
at the end of the proof of Theorem 2, to prevent 0 from being a local mini-
mum point of the energy. Therefore it can be replaced by any other assump-
tion, compatible with (f1), which ensures this fact. For instance, if f(0) ̸= 0
then it is easy to verify that 0 is not a solution to (Pλ,µ) and so w0,λ,µ is
non-zero. Another hypothesis, more restrictive than (f2), which serves our
purpose is

lim inf
t→0+

F (t)

tb
> 0, for some b ∈ (1, 2).

The next result shows that, by lightly strengthening the assumptions on
f , one can determine the sign of the local minimizer.

Theorem 6. Let f : R → R satisfy (f1), (f2) and f(0) = 0. Then for every

µ > 0 and sufficiently small λ, problem (Pλ,µ) admits a non-negative solution

w⋆
0,µ,λ in H2

α(M).

Proof. Associated with the function

F+(t) :=

∫ t

0
f+(τ)dτ,

for every t ∈ R, where

f+(τ) :=

{
f(τ) if τ > 0

0 if τ ≤ 0,

let us introduce the functional E+
λ,µ : H2

α(M) → R given by

(3.11) E+
λ,µ(w) :=

1

2
∥w∥2 −

µ

2∗

∫

M
K(σ)w+(σ)

2∗

dσg − λ

∫

M
F+(w(σ))dσg,
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where u+ := max{u, 0}, for any w ∈ H2
α(M).

It is a simple matter to check that E+
λ,µ is well-defined and Gâteaux-

differentiable on H2
α(M), so by Theorem 2, for every µ > 0 and λ sufficiently

small, it admits a critical point w⋆
0,µ,λ ∈ H2

α(M).

We claim that w⋆
0,µ,λ is non-negative onM. Indeed, since w⋆

0,µ,λ∈H2
α(M),

it follows that (w⋆
0,µ,λ)− := max{−w⋆

0,µ,λ, 0} belongs to H2
α(M) as well. So,

taking also into account the relationship

〈
w⋆
0,µ,λ, (w

⋆
0,µ,λ)−

〉
=

∫

M

〈
∇w⋆

0,µ,λ(σ),∇(w⋆
0,µ,λ)−(σ)

〉
g
dσg

+

∫

M
α(σ)

〈
w⋆
0,µ,λ(σ), (w

⋆
0,µ,λ)−(σ)

〉
g
dσg

= −

∫

M

(
|∇(w⋆

0,µ,λ)−(σ)|
2 + α(σ)(w⋆

0,µ,λ)−(σ)
2
)
dσg,

we get

−
∥∥(w⋆

0,µ,λ)−
∥∥2 =

〈
w⋆
0,µ,λ, (w

⋆
0,µ,λ)−

〉

= µ

∫

M
K(σ)(w⋆

0,µ,λ)+(σ)
2∗−1(w⋆

0,µ,λ)−(σ)dσg

+ λ

∫

M
f+(w

⋆
0,µ,λ(σ))(w

⋆
0,µ,λ)−(σ)dσg

= λ

∫

M
f+(w

⋆
0,µ,λ(σ))(w

⋆
0,µ,λ)−(σ)dσg

= 0.

As a result, ∥(w⋆
0,µ,λ)−∥ = 0 and hence w⋆

0,µ,λ ≥ 0 a.e. on M. □

Remark 7. In the same way, if f : R → R satisfies (f1),

(f ′
2) lim inf

t→0−

F (t)

t2
= +∞,

and f(0) = 0, then, arguing as in Theorem 6, one can study the existence
of a non-positive solution to (Pλ,µ). It suffices to consider the functional

(3.12) E−
λ,µ(w) :=

1

2
∥w∥2 −

µ

2∗

∫

M
K(σ)w−(σ)

2∗

dσg − λ

∫

M
F−(w(σ))dσg,

where

F−(t) :=

∫ t

0
f−(τ)dτ,
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for every t ∈ R, and

f−(τ) :=

{
f(τ) if τ < 0

0 if τ ≥ 0.

The underlying idea of the proof of Theorem 2 remains valid when adding
a term singular at zero, i.e. to treat the following singular variant of problem
(Pλ,µ):

(P ⋆
λ,µ)

{
−∆gw + α(σ)w = µK(σ)w

d+2

d−2 + λ
(
wr−1 + f(w)

)
, σ ∈ M

w ∈ H2
α(M), w > 0 in M,

where r ∈ (0, 1) and f : [0,+∞) → [0,+∞) is continuous and subcritical. In
this context a weak solution to (P ⋆

λ,µ) is meant to be any w ∈ H2
α(M) such

that w > 0 a.e. in M, wr−1z ∈ L1(M) for any z ∈ H2
α(M) and

⟨w, z⟩ − µ

∫

M
K(σ)w

d+2

d−2 zdσg − λ

∫

M

(
wr−1 + f(w)

)
zdσg = 0

for each z ∈ H2
α(M). The energy naturally associated with (P ⋆

λ,µ) is

Eλ,µ(w) :=
1

2
∥w∥2 −

µ

2∗

∫

M
K(σ)(w+)2

∗

dσg(3.13)

−
λ

r

∫

M
(w+)rdσg − λ

∫

M
F (w+)dσg,

for all w ∈ H2
α(M). As before, for any positive µ, the range of λ for which

(P ⋆
λ,µ) admits non-trivial solutions is strictly related to the maximum of an

auxiliary rational function similar to (3.1).

Theorem 8. Let f : [0,+∞) → [0,+∞) be a continuous function for which

(f ′
1) there exist a1, a2 ≥ 0 and q ∈ [1, 2∗) such that

f(t) ≤ a1 + a2t
q−1 for all t ≥ 0.

For any µ > 0 let mµ : [0,+∞) → R be the function defined by

mµ(t) :=
t2−r − µc2

∗

2∗ ∥K∥∞ t2
∗−r

cr2∗V olg(M)
2∗−r

2∗ +a1c2∗V olg(M)
2∗−1

2∗ t1−r+a2c
q
2∗V olg(M)

2∗−q

2∗ tq−r
,

for avery t ≥ 0.
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Then for every µ > 0 there exists an open interval

Λµ ⊆

(
0, max

[0,+∞)
mµ

)

such that, for every λ ∈ Λµ, (P
⋆
λ,µ) admits a non-trivial weak solution w̃0,λ,µ ∈

H2
α(M).

Proof. It is clear that for all λ, µ > 0 the functionals

H2
α(M) ∋ w 7→

1

2
∥w∥2 −

µ

2∗

∫

M
K(σ)(w+)2

∗

dσg,

H2
α(M) ∋ w 7→

µ

2∗

∫

M
K(σ)(w+)2

∗

dσg +
λ

r

∫

M
(w+)rdσg + λ

∫

M
F (w+)dσg

satisfy Lemmas 3 and 4, respectively.
Arguing exactly as in Theorem 2, we deduce that the functional Eλ,µ

defined by (3.13), attains a minimum w̃0,λ,µ on a sufficiently small ball
Bc(0, ϱ0,µ,λ) ⊂ H2

α(M) and such a minimum is not identically zero. Indeed,
fixing w ∈ H2

α(M), w > 0 on M, if t > 0 one has

Eλ,µ(tw) ≤
1

2
∥w∥2 t2 −

µ

2∗
essinf

M
K ∥w∥2

∗

2∗ t
2∗

+ λa1 ∥w∥1 t

+
λa2
q

∥w∥qq t
q −

λ

r

∫

M
|w|rdσg tr

and hence Eλ,µ(tw) is negative for all small enough t. Arguments similar to
those of [10, Theorem 4.1] finally show that w̃0,λ,µ weakly solves (P ⋆

λ,µ). □

4. Existence of MP-type solutions

In this section we establish another existence result for (Pλ,µ), this time
of the mountain pass type. The abstract tool we rely upon is a version of
the mountain pass theorem without the Palais-Smale condition ([5, Theo-
rem 2.2]) and, as usual in the treatment of critical problems via this ap-
proach, the crucial point is the relationship between the mountain pass level
and the constant S defined by (2.6).

Theorem 9. Let f : R → R be a continuous function satisfying (f1) and

(f3) lim
t→0

f(t)

t
= 0,
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and let λ, µ > 0. Furthermore, assume that there exists w⋆ ∈ H2
α(M) \ {0},

w⋆ ≥ 0 a.e. in M, such that

(H1) sup
τ≥0

Eλ,µ(τw
⋆) <

S
d

2

d(µ ∥K∥∞)
d−2

2

.

Then problem (Pλ,µ) admits a non-trivial solution.

Proof. Let us show first that Eλ,µ possesses the geometry required by The-
orem 2.2 of [5].

Claim 1. There exist ϱ, β > 0 such that for any w ∈ ∂B(0, ϱ) one has

Eλ,µ(w) ≥ β.

Fix ε ∈
(
0, λ−1c−2

2

)
. Thanks to (f3), there exists δϵ > 0 so that

(4.1) |f(t)| ≤ ε|t|

for every t ∈ (−δε, δε). On the other hand, (f1) allows us to deduce that

lim
|t|→+∞

|f(t)|

|t|2∗−1
= 0

and therefore there exists aε > 0 such that

(4.2) |f(t)| ≤ ε|t|2
∗−1 + aε

for all t ∈ R and, consequently,

(4.3) |f(t)| ≤ ε|t|2
∗−1 + aε

|t|2
∗−1

δ2
∗−1

ε
= bε|t|

2∗−1

for every t ∈ R \ (−δε, δε). Hence we get

(4.4) |F (t)| ≤
ε

2
t2 +

bε
2∗

|t|2
∗

for every t ∈ R. In the light of the above estimates, for every w ∈ H2
α(M)

we obtain

Eλ,µ(w) ≥
1

2
∥w∥2 −

µ

2∗
∥K∥∞ ∥w∥2

∗

2∗ −
λε

2
∥w∥22 −

λbε
2∗

∥w∥2
∗

2∗

≥

(
1− λεc22

2

)
∥w∥2 −

(
µ ∥K∥∞ + λbε

2∗

)
c2

∗

2∗ ∥w∥
2∗

.
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Thanks to the choice of ε, for suitable a, b > 0 we have

Eλ,µ(w) ≥ a ∥w∥2
(
1− b ∥w∥

4

d−2

)

and so, by choosing ϱ ∈
(
0, b

2−d

4

)
, we get

inf
∂B(0,ϱ)

E ≥ aϱ2
(
1− bϱ

4

d−2

)
=: β > 0

and the conclusion is achieved.

Claim 2. There exists w1 ∈ H2
α(M) such that w1 ≥ 0 a.e. in M, ∥w1∥ > ϱ

and Eλ,µ(w1) < β, where ϱ, β have the same meaning as in Claim 1.

If τ > 0 and w⋆ is the function defined in (H1), we get

Eλ,µ

(
τw⋆

∥w⋆∥

)
=

1

2
τ2−

µ

2∗ ∥w⋆∥2
∗

∫

M
K(σ)|τw⋆|2

∗

dσg−λ

∫

M
F

(
τw⋆

∥w⋆∥

)
dσg

≤
1

2
τ2 −

µ

2∗ ∥w⋆∥2
∗
essinf

M
K ∥w⋆∥2

∗

2∗ τ
2∗

+ λa1
∥w⋆∥1
∥w⋆∥

τ +
λa2
q

·
∥w⋆∥qq
∥w⋆∥q

τ q

and therefore Eλ,µ (τw
⋆/ ∥w⋆∥) → −∞ as τ → +∞. So it suffices to pick

w1 := τ0w
⋆/ ∥w⋆∥, with large enough τ0 > 0, to obtain the claim.

Now, set

(4.5) c := inf
γ∈Γ

sup
t∈[0,1]

Eλ,µ(γ(t)),

where

Γ := {γ ∈ C0([0, 1], H2
α(M)) : γ(0) = 0 and γ(1) = w1}.

For any γ ∈ Γ, the function t 7→ ∥γ(t)∥ is continuous in [0, 1], so by the
intermediate value theorem there exists t̄ ∈ (0, 1) such that ∥γ(t̄)∥ = ϱ. As
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a result

sup
t∈[0,1]

Eλ,µ(γ(t)) ≥ Eλ,µ(γ(t̄)) ≥ inf
∂B(0,ϱ)

Eλ,µ

which implies c ≥ β. Moreover, thanks to (H1) and the fact that the map
t 7→ w1t, t ∈ [0, 1], is an element of Γ, one has the estimate

(4.6) c ≤ sup
τ≥0

Eλ,µ(τw1) <
S

d

2

d(µ ∥K∥∞)
d−2

2

.

Next, due to Theorem 2.2 of [5], there exists a sequence {wj}j∈N ⊂
H2

α(M) satisfying

(4.7) Eλ,µ(wj) → c, E ′
λ,µ(wj) → 0, as j → ∞.

Claim 3. The sequence {wj}j∈N is bounded in H2
α(M).

For large enough j, using also (4.2) with ε ∈ (0, µ essinfMK/λ(d− 1)),
we have

c+ 1 + ∥wj∥ ≥ Eλ,µ(wj)−
1

2
E ′
λ,µ(wj)(wj)

=
µ

d

∫

M
K(σ)|wj |

2∗

dσg − λ

∫

M
F (wj)dσg +

λ

2

∫

M
f(wj)wjdσg

≥
µ

d
essinf

M
K ∥wj∥

2∗

2∗
−

(
λε

2∗
+

λε

2

)
∥wj∥

2∗

2∗
−

3

2
λaε ∥wj∥1

≥

(
2µ essinfMK − λε(d− 2)− λεd

2d

)
∥wj∥

2∗

2∗
−

3

2
λaεc1 ∥wj∥ ,

and therefore, for some κ1 > 0,

(4.8) ∥wj∥
2∗

2∗
≤ κ1(1 + ∥wj∥).

On the other hand, again for large values of j, taking (4.8) into account one
has

c+ 1 ≥ Eλ,µ(wj) ≥
1

2
∥wj∥

2 −

(
µ

2∗
∥K∥∞ +

λε

2∗

)
∥wj∥

2∗

2∗
− λaεc1 ∥wj∥

≥
1

2
∥wj∥

2 −

(
µ ∥K∥∞ + λε(d− 2)

2d

)
κ1(1 + ∥wj∥)− λaεc1 ∥wj∥ ,

which forces

∥wj∥
2 ≤ κ2(1 + ∥wj∥)

for some κ2 > 0, and hence the boundedness of {wj}j∈N.
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As a consequence of the previous claim, there exists w∞ ∈ H2
α(M) such

that, up to a subsequence (still denoted by {wj}j∈N), wj ⇀ w∞, that is

(4.9) ⟨wj , z⟩ → ⟨w∞, z⟩ as j → ∞

for any z ∈ H2
α(M). Moreover, since {wj}j∈N is bounded in L2∗

(M) as well,
passing to a further subsequence, we get the validity of the following con-
vergences:

wj ⇀ w∞ in L2∗

(M)

wj → w∞ in Lp(M), p ∈ [1, 2∗)

wj → w∞ a.e. in M

|wj |
4

d−2wj ⇀ |w∞|
4

d−2w∞ in L
2d

d+2 (M),

(4.10)

as j → ∞. Moreover, thanks to (4.2) and (4.10), we easily obtain

f(wj(·)) → f(w∞(·)) a.e. in M

f(wj(·)) ⇀ f(w∞(·)) in L
2d

d+2 (M),

as j → ∞. As a result,
∫

M
f(wj)zdσg →

∫

M
f(w∞)zdσg as j → ∞

for any z ∈ L2∗

(M) and, a fortiori,

(4.11)

∫

M
f(wj)zdσg →

∫

M
f(w∞)zdσg as j → ∞

for any z ∈ H2
α(M). Now, recalling that

E ′
λ,µ(wj)(z) = ⟨wj , z⟩ − µ

∫

M
K(σ)|wj |

4

d−2wjzdσg − λ

∫

M
f(wj)zdσg,

for any z ∈ H2
α, passing to the limit as j → ∞ in the above equality and

taking (4.7), (4.9), (4.10) and (4.11) and the fact that K ∈ Λ+(M) into
account, we get

⟨w∞, z⟩ − µ

∫

M
K(σ)|w∞|

4

d−2w∞zdσg − λ

∫

M
f(w∞)zdσg = 0

for any z ∈ H2
α(M), so w∞ is the weak solution to (Pλ,µ) we were looking

for.
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Arguing by contradiction, finally suppose that w∞ ≡ 0 in M. Then, due
to (4.2), for any j ∈ N and for some κ > 0 we would obtain

∣∣∣∣
∫

M
f(wj)wjdσg

∣∣∣∣ ≤ ε ∥wj∥
2∗

2∗
+ aε ∥wj∥1 ≤ εκ+ aε ∥wj∥1 ,

and ∣∣∣∣
∫

M
F (wj)dσg

∣∣∣∣ ≤
ε

2∗
∥wj∥

2∗

2∗
+ aε ∥wj∥1 ≤

εκ

2∗
+ aε ∥wj∥1 .

Exploiting (4.10) and taking lim sup as j → ∞ and lim as ε → 0 in the above
inequalities one has

(4.12) lim
j→∞

∫

M
f(wj)wjdσg = lim

j→∞

∫

M
F (wj)dσg = 0

and therefore, since E ′
λ,µ(wj)(wj) → 0 as j → ∞,

(4.13) ∥wj∥
2 − µ

∫

M
K(σ)|wj |

2∗

dσg → 0 as j → ∞.

Now, the boundedness of {∥wj∥}j∈N in R implies that, up to a subsequence,
there exists L ∈ [0,+∞) such that

(4.14) ∥wj∥
2 → L

and so

(4.15)

∫

M
K(σ)|wj |

2∗

dσg →
L

µ

as j → +∞. Recalling that

Eλ,µ(wj) =
1

2
∥wj∥

2 −
µ

2∗

∫

M
K(σ)|wj |

2∗

dσg

− λ

∫

M
F (wj)dσg → c as j → ∞,

it follows on account of (4.12), (4.14) and (4.15), that

(4.16) c =

(
1

2
−

1

2∗

)
L =

L

d
,

which due to c ≥ β > 0 forces L > 0. On the other hand, from (4.15) we get

(4.17) lim
j→∞

∫

M
|wj |

2∗

dσg ≥
L

µ ∥K∥∞
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and moreover

∥wj∥
2 ≥ S∥wj∥

2
2∗

so that, passing to the limit as j → ∞ in the above relationship and taking
(4.14) and (4.17) into account, we get

L ≥ S

(
L

µ ∥K∥∞

) 2

2∗

,

which combined with (4.16), gives

c ≥
S

2∗

2∗−2

d(µ ∥K∥∞)
2

2∗−2

=
S

d

2

d(µ ∥K∥∞)
d−2

2

.

This contradicts (4.6) and therefore w∞ ̸≡ 0 in M. The proof is hence com-
plete. □

5. The case of the sphere: applications to the Emden-Fowler

equation

As already explained in the introduction, an interesting case of problem
(Pλ,µ) is

−∆hw + s(1− s− d)w(P̃λ,µ)

= µK(σ)|w|
4

d−2w + λf(w), σ ∈ S
d, w ∈ H2

1 (S
d)

where Sd is the unit sphere in Rd+1, h is the standard metric induced by the
embedding Sd →֒ Rd+1, s ∈ R is a constant related to d by the relationship
1− d < s < 0, and ∆h is the Laplace-Beltrami operator on (Sd, h).

Existence results for (P̃λ,µ), via a suitable change of coordinates, produce
the existence of solutions to the following Emden-Fowler equation

−∆u = µ|x|
2(2−2s−d)

d−2 K

(
x

|x|

)
|u|

4

d−2u(P λ,µ)

+ λ|x|s−2f

(
u

|x|s

)
, x ∈ R

d+1 \ {0}.

Indeed, let us seek solutions to (P λ,µ) of the form

(5.1) u(x) = rsw(σ),
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where (r, σ) := (|x|, x/|x|) ∈ (0,+∞)× Sd are the spherical coordinates in
Rd+1 \ {0} and w a smooth function defined on Sd. Via (5.1) and taking
into account that

∆u = r−d ∂

∂r

(
rd

∂

∂r
(rsw)

)
+ rs−2∆hw

=
[
s(d+ s− 1) + ∆hw

]
rs−2,

it is easily seen that the study of problem (P̃λ,µ) can be successfully applied
to treat problem (P λ,µ).

Theorem 10. Let d, s ∈ R be such that 1− d < s < 0, K ∈ Λ+(S
d) and

f : R → R be a locally Lipschitz continuous function satisfying (f1)− (f2).
Furthermore, for any µ > 0, let lµ : [0,+∞) → R be the function defined by

(5.2) lµ(t) :=
t− µc2

∗

2∗ ∥K∥∞ t2
∗−1

a1c2∗ω
2∗−1

2∗

d + a2c
q
2∗ω

2∗−q

2∗

d tq−1
for all t ≥ 0.

Then for every µ > 0 there exists an open interval

Λµ ⊆

(
0, max

[0,+∞)
lµ

)

such that for every λ ∈ Λµ, the problem

−∆u = µ|x|
2(2−2s−d)

d−2 K

(
x

|x|

)
|u|

4

d−2u(P λ,µ)

+ λ|x|s−2f

(
u

|x|s

)
, x ∈ R

d+1 \ {0}

admits a non-trivial solution.

Proof. Let us appeal to Theorem 2 by choosing (M, g) = (Sd, h) and α(σ) :=
s(1− s− d) for every σ ∈ Sd. Thanks to the relationship between d and s,
clearly α ∈ Λ+(S

d). So the problem

−∆hw + s(1− s− d)w(5.3)

= µK(σ)|w|
4

d−2w + λf(w), σ ∈ S
d, w ∈ H2

1 (S
d)

admits at least a non-trivial solution w0,µ,λ ∈ H2
α(S

d).
But, due to (5.1), u(x) = |x|sw0,µ,λ(x/|x|) is a non-trivial solution to

(P λ,µ) and the proof is completed. □
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In the same manner, we can obtain the following

Theorem 11. Let d, s ∈ R be such that 1− d < s < 0, K ∈ Λ+(S
d) and

f : R → R be a locally Lipschitz continuous function satisfying (f1)− (f2)
and f(0) = 0. Then for every µ > 0 and sufficiently small λ, problem (P λ,µ)
admits a non-negative solution.

and

Theorem 12. Let d, s ∈ R be such that 1− d < s < 0, K ∈ Λ+(S
d). Fur-

thermore, let r ∈ (0, 1) and f : [0,+∞) → [0,+∞) be a locally Lipschitz con-

tinuous function for which

(f ′
1) there exist a1, a2 ≥ 0 and q ∈ [1, 2∗) such that

f(t) ≤ a1 + a2t
q−1 for all t ≥ 0.

For any µ > 0 let mµ : [0,+∞) → R be the function defined by

mµ(t) :=
t2−r − µc2

∗

2∗ ∥K∥∞ t2
∗−r

cr2∗ω
2∗−r

2∗

d + a1c2∗ω
2∗−1

2∗

d t1−r + a2c
q
2∗ω

2∗−q

2∗

d tq−r
for all t ≥ 0.

Then for every µ > 0 there exists an open interval

Λµ ⊆

(
0, max

[0,+∞)
mµ

)

such that, for every λ ∈ Λµ, the problem




−∆hw + s(1− s− d)w = µK(σ)w

d+2

d−2 + λ
(
wr−1 + f(w)

)
, σ ∈ Sd

w ∈ H2
1 (S

d), w > 0 in Sd,

admits a solution.
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