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We show that the properties of Lagrangian mean curvature flow are
a special case of a more general phenomenon, concerning couplings
between geometric flows of the ambient space and of totally real
submanifolds. Both flows are driven by ambient Ricci curvature or,
in the non-Kähler case, by its analogues. To this end we explore the
geometry of totally real submanifolds, defining (i) a new geometric
flow in terms of the ambient canonical bundle, (ii) a modified vol-
ume functional, further studied in [18], which takes into account
the totally real condition. We discuss short-time existence for our
flow and show it couples well with the Streets–Tian symplectic cur-
vature flow for almost Kähler manifolds. We also discuss possible
applications to Lagrangian submanifolds and calibrated geometry.
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1. Introduction

Lagrangian mean curvature flow has received much attention in the past
fifteen years. Various directions have been pursued: intrinsic issues (maximal
time existence and singularity formation e.g. [25], solitons e.g. [13, 15, 17]),
applications to symplectic geometry (e.g. symplectic diffeomorphisms [23])
and connections to mirror symmetry (analogies with Hermitian Yang–Mills
[35], relations to Bridgeland stability [14]).

The key observation from which this line of research originated is the
following: under appropriate assumptions, a submanifold which is initially
Lagrangian will remain Lagrangian when evolving under mean curvature
flow (MCF), cf. Theorem 2.10.

Although this fact has been known for some time, the starting point for
this paper is that this result is, in some sense, rather surprising. Indeed, MCF
is a purely Riemannian concept and thus can be applied to any submanifold
in an attempt to deform it to a minimal one. As a result, there is a priori
no reason to hope that it preserves special properties of the submanifold,
especially if those properties originate within a different branch of geometry.

The Lagrangian condition is an excellent example, as it has no metric
content: it belongs to the world of symplectic geometry. Given a symplectic
manifold (M2n, ω), a submanifold ι : Ln → M is Lagrangian if ω := ι∗ω ≡ 0.
This notion plays a key role in mechanics, symplectic topology and mirror
symmetry.

The secret to the above relationship between Lagrangians and MCF lies
in the “appropriate assumptions”. The obvious assumption is the ambient
manifold should be Kähler: this is the standard setting for interactions be-
tween Riemannian and symplectic geometry. It turns out however that this
assumption, by itself, is not sufficient. A curvature assumption is also nec-
essary: the above result is true only in Kähler–Einstein (KE) manifolds,
cf. Theorem 2.11.

The KE assumption is very strong. Nevertheless, it contains Ricci-flat
Kähler and thus Calabi–Yau (CY) manifolds as a subclass, and this is one
reason for interest in Lagrangian MCF. Indeed, CY manifolds and their La-
grangian submanifolds have attracted much attention in connection with
string theory and for their role in mirror symmetry. There are also direct
links to a natural class of volume-minimizing submanifolds within the con-
text of calibrated geometry.

Coupled flows. It is an interesting question whether one can weaken the
KE assumption. It is a much less well known fact due to Smoczyk [30]
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that, if the ambient manifold is only Kähler and not necessarily KE, one
should couple the MCF equation for the submanifolds with the Kähler–
Ricci flow (KRF) on the ambient space; this system of equations yields a
flow on submanifolds which preserves the Lagrangian condition.

It is curious that Smoczyk’s result has received little attention. Consider
the following.

• In recent years there has been increasing evidence [22, 24] that coupling
two geometric flows can lead each to exhibit better properties than it
had by itself, both from the geometric and the analytic perspective.
Analytic properties of the coupling of MCF with Ricci flow have been
studied in [20, 21].

• Perelman’s work has made it obvious that Ricci flow is currently the
most interesting ambient geometric flow available. Recent work on
the existence of Kähler–Einstein metrics and on the Minimal Model
Program provides good motivation to study KRF, which additionally
has been shown to exhibit some good long-time existence properties.

• For submanifolds, the obvious flow is MCF. However, it was perhaps
most clearly pointed out by Oh [27] that, in a Kähler manifold, MCF
of a Lagrangian L can be viewed as being driven by the ambient Ricci
curvature Ric: the mean curvature vector H on L is equivalent to the
1-form ξ := ω(H, ·) on L, and dξ = Ric(J ·, ·) (where J is the complex
structure).

The above should already convince us of the intrinsic value of Smoczyk’s
result. It also indicates why the result might be true. The variation of ω
depends on Ric, explaining the role of the geometric coupling: the two con-
tributions of the Ricci curvature ultimately cancel each other out, leaving ω
unchanged.

We now add a further consideration. In the past few years several gener-
alizations of KRF have been suggested, reducing the integrability assump-
tions on the initial geometric structures. It is important to question which
of these provide the most promising avenues for further investigation. There
are standard reasons to prefer one flow over another: geometric motivations
for the definition, or a proof of short-time existence. We wish to suggest an
addition to this list.

Test : Does the flow couple profitably with another?

If so, it seems definitely worthwhile to investigate it further. Notice
that this test may also help identify geometrically interesting lower-order
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perturbations of a given flow. If the flow is (weakly) parabolic, such terms
do not affect the short-time existence theory: in this sense they are not ana-
lytically detectable. In this paper, our geometrically motivated lower-order
terms turn out to play an important role even in the existence theory.

Totally real submanifolds. Lagrangians are a special case of a much
wider family of submanifolds called totally real submanifolds: those which
are “maximally non-complex”, where “maximal” also refers to the dimension
of the submanifold. Totally real submanifolds are a key part in the proof that
MCF preserves Lagrangians. However, the standard proof down-plays them,
simply viewing them as possible degenerations of Lagrangians to be ruled
out.

More generally, totally real submanifolds seem to have received only
sporadic interest, e.g. [2, 4]. Once again this is curious, considering that
by definition they are the “exact opposite” of the most classical class of
submanifolds: complex subvarieties. It may be that this lack of interest is
due to several factors.

• The suspicion that the defining condition is simply too weak: it is an
open condition in the space of immersions, so the class of totally real
submanifolds is huge.

• Pseudo-holomorphic curves whose boundary is contained in a totally
real submanifold constitute a well-defined elliptic problem, but to ob-
tain good compactness properties for such curves one requires that the
boundary lies in a Lagrangian. This property helps make Lagrangians
and pseudo-holomorphic curves a key tool in symplectic topology.

• The most straightforward analogue of Smoczyk’s result fails for general
totally real submanifolds: specifically, if one couples MCF of a totally
real, but not Lagrangian, submanifold with KRF, the initial values of
ω := ι∗ω are usually not preserved.

• In some contexts, e.g. when working with homotopy classes of immer-
sions, the difference between Lagrangian and totally real is irrelevant:
this is a consequence of the validity of the “h-principle”, cf. [12] for an
application.

Results on totally real submanifolds. In Sections 3–5 we try to counter
the above impression by showing that totally real submanifolds carry inter-
esting geometry which is hard to notice when one restricts to Lagrangians.
Specifically, we demonstrate the following.
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• Totally real submanifolds L in (M,J) can be characterized in terms of
the canonical bundle KM . This leads to an intrinsic notion of volume
of L, called the J-volume, and to a natural 1-form ξJ on L, which we
call the Maslov form.

• The gradient of the J-volume and the Maslov 1-form are linked by a
key formula which, in the simplified Kähler case, takes the form

ω̄(HJ , ·)|TL = ξJ , dξJ |TL = Ric(J ·, ·)|TL

for any totally real L, where HJ is an explicit vector field along L.

• The above data defines two natural flows on totally real submani-
folds: the gradient flow of the J-volume functional and the Maslov
flow (MF). These flows are in general distinct and, in the presence of
a Riemannian structure, different also from MCF. However, we show in
Section 5 that all three coincide for Lagrangians in Kähler manifolds,
recovering the standard theory.

We refer to these flows as “canonical”, both because they are generated by
the canonical bundle of M and because of links to other aspects of the geom-
etry of totally real submanifolds, studied in [18]: in particular, our J-volume
functional turns out to have interesting convexity properties with respect to
an intrinsic notion of geodesics on the space of totally real submanifolds.

Results on coupled flows. Having introduced these flows, we need to
meet our own standards of “what makes a new flow interesting”. Our main
results concern the Maslov flow, which thus becomes the focus of the paper.

Analytically, the main issue we address is short time existence. This turns
out to be a rather subtle question due to the degeneracies of the operators
involved. We give several results in this direction, but the general picture
remains open. Our proofs rely on Hamilton’s version of the Nash–Moser
inverse function theorem concerning operators satisfying an “integrability
condition”. In our case this condition is provided by the key formula in-
troduced above: this is a new twist on the use of this formula, even in the
classical case of Lagrangians in Kähler manifolds. This method thus empha-
sizes the link between the existence theory and preserved quantities.

Geometrically, the main point is the existence of interesting couplings.
We explain how the Maslov flow interacts with another “new entry”: sym-
plectic curvature flow (SCF), introduced by Streets–Tian in [33]. Our The-
orem 6.1 shows that the coupled system SCF with MF preserves not just
the Lagrangian condition, but any given initial values of ω on any initial
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totally real submanifold. Once again, the main tool is the above mentioned
key formula.

To explain this more carefully, however, we need another digression. The
context for SCF is that of almost Kähler manifolds. This class, which vastly
generalizes that of Kähler manifolds, has been studied at least since the
1950s, but mainly by researchers interested in “geometric structures with
torsion” [1, 10]. The point of view we wish to press here is that the above
results indicate that almost Kähler manifolds should also have a role to play
in geometric analysis. In particular, we observe the following.

• The Kähler condition is very strong: so strong that, by forcing several
quantities to vanish, it ends up obfuscating some interesting geometry.

• Almost Kähler manifolds essentially coincide with the symplectic cat-
egory: in the past decades symplectic topology has flourished, and now
has a large amount of specific techniques at its disposal.

• Our Theorem 6.1 expresses a new reason for interest in both SCF and
in MF, thus in almost Kähler manifolds.

Conclusions on Lagrangian MCF. We can now return to our original
question: how does MCF manage to preserve Lagrangian submanifolds?

Our answer, simply put, is that this is purely accidental. More explicitly,
at the end of Section 2.4 we emphasize that it is the combination of the
Lagrangian and Kähler assumptions which force the result to hold simply
by deleting all terms that would prevent it from being true.

The main goal of this paper is to show that these terms encode interest-
ing aspects of the submanifolds’ geometry. It follows that Lagrangian MCF
is not really about the Riemannian volume. It is about a different geometry
encoded by the Maslov form, which coincides with MCF only in restricted
situations. By replacing Lagrangians with totally reals we bring to light, in
this context, the role of the complex structure.

Results within Calabi–Yau manifolds. Sections 8–9 of this paper are
dedicated to the case of Calabi–Yau manifolds. Here, there was already a
classical notion of Maslov form for Lagrangians. We show that our own
notion is a generalization of that one to the much wider context of totally
real submanifolds in almost complex manifolds. We also provide a link with
calibrated geometry by showing that the critical points of our flows may
be interpreted as a generalized version of calibrated submanifolds, called
special totally real (STR). This implies that they are automatically absolute
J-volume minimizers.
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Open problems. Several issues seem worthy of further investigation.

Stronger existence results. Our current result, cf. Corollary 7.4, concerns
the short-time existence of solutions to the Maslov flow under two assump-
tions: (i) the initial submanifold is Lagrangian, (ii) the almost Kähler man-
ifold satisfies a certain Einstein-like constraint (formulated in terms of the
Chern connection). More generally, cf. Theorem 7.3, we can prove existence
for any initial totally real submanifold and any almost Kähler manifold if
we perturb the flow slightly (still preserving the desired “integrability condi-
tion”, but sacrificing the geometric motivation of the flow). The main open
question is whether the Maslov flow exists for any totally real submanifold,
under coupling with SCF (so as to remove the Einstein constraint).

Applications to Lagrangian geometry. One may speculate on the extent
to which our results on totally real submanifolds may be relevant to the
study of Lagrangians. For example, in Section 9.2 we consider potential ap-
plications to the study of minimal Lagrangians in Calabi–Yau manifolds and
relations to ideas introduced in [8, 35]. The negative KE direction is pursued
further in [18, 19]. In this context, our Proposition 5.3 shows that replac-
ing the standard volume functional with the J-volume serves to “weed out”
any non-Lagrangian critical points, thus helping to focus only on minimal
Lagrangians.

G2 geometry and gauge theory. Another direction concerns possible ana-
logues within G2 geometry, where coassociative submanifolds play the role
of Lagrangian submanifolds. This analogy actually provided the initial mo-
tivation for this paper. One can also propose coupled flows in the context of
G2 gauge theory.

Clearly there are possible analogues also in the context of Legendrian
submanifolds within Sasaki manifolds, cf. [16], [31] for results in this direc-
tion.

Some of the above is work in progress by the authors.

Relation to previous literature. Our point of view on Lagrangian MCF
is perhaps most closely related to that originally put forth by Oh [27], but
goes far beyond that. There is also some intersection with [32], which gen-
eralizes previous results concerning Lagrangian MCF to the almost Kähler
setting. However, it focuses only on Lagrangians and pre-dates the work
of Streets–Tian, so it does not make use of any coupling with symplectic
curvature flow.

Our main debt is towards Borrelli [2], who first extended the notion
of Maslov class from Lagrangians to totally real submanifolds. He also in-
troduces the notion of J-volume and of special totally real submanifolds;
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accordingly, we adopt his terminology. The setting he works in however is
mostly Cn, sometimes Kähler manifolds, and he does not pursue geometric
flows.

Summary. We conclude this introduction by briefly summarising the con-
tents of the article.

• In §2 we review the standard viewpoint on Lagrangian mean curvature
flow. We use this as an opportunity to highlight key points and intro-
duce notation and basic geometric notions which we use throughout
the article.

• In §3 we study totally real submanifolds in the general setting and
define the J-volume and Maslov form.

• In §4 we specialise to almost Hermitian manifolds where we relate our
J-volume and Maslov form to the ambient Riemannian geometry. We
identify the Maslov form with a vector field which provides the nat-
ural substitute for the mean curvature vector field, and make further
observations in the almost Kähler and Kähler settings.

• In §5 we investigate the properties of the critical points of the J-
volume, using the first variation formula computed in [18]. This for-
mula also serves to introduce the J-mean curvature flow, i.e. the neg-
ative gradient flow of the J-volume.

• In §6 we study the Maslov flow in almost Kähler manifolds and show
that it couples well with symplectic curvature flow, cf. Theorem 6.1.
In Kähler manifolds, the Maslov flow coincides with the J-mean cur-
vature flow. We examine the long-time behaviour of the Maslov flow
in the Kähler–Einstein setting and relate it to other known flows for
Lagrangians.

• In §7 we investigate the short-time existence and uniqueness of the
Maslov flow by computing the symbol of the flow operator and apply-
ing theory due to Hamilton [11] that invokes the Nash–Moser inverse
function theorem.

• In §8 we review the classical notion of Maslov form in Calabi–Yau
manifolds and relate it to our study, generalizing the known concept
and giving a further characterisation for critical points of the J-volume
functional.

• In §9 we generalize the calibrated geometry of special Lagrangians
in Calabi–Yau manifolds to totally real submanifolds, thus providing
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further results for critical points of our flows. We also relate our results
here to stability and moduli space questions for special Lagrangians,
and to graphs of maps between almost complex manifolds.

Thanks to Dominic Joyce in particular for invaluable discussions. We
would also like to thank Alberto Abbondandolo, Antonio Ache, Leonardo
Biliotti, Jonny Evans and Luigi Vezzoni for useful conversations and Vin-
cent Borrelli for providing a copy of his PhD thesis. We further thank Denis
Auroux, Johannes Nordström, Jake Solomon and Richard Thomas for com-
ments on a preliminary version of this paper.

JDL was partially supported by an EPSRC Career Acceleration Fellow-
ship. TP is grateful to Oxford University for its hospitality during some
stages of this project and to a Marie Curie reintegration grant for funding.

2. Review of Lagrangian MCF

Given any Riemannian manifold M and any immersion ι : L → M of an
oriented manifold L, we say that a one-parameter family of immersions
ιt : L → M such that ι0 = ι satisfies mean curvature flow (MCF) if

(1)
∂ιt
∂t

= Ht,

where Ht is the mean curvature vector of the immersion ιt. When L is
compact, this flow is the negative gradient flow of the volume functional;
stationary points for MCF are minimal submanifolds.

Suppose M also has a symplectic structure (so M is 2n-dimensional),
which is given by a closed non-degenerate 2-form ω, and that ι : L → M
is Lagrangian; i.e. that L is n-dimensional (half the dimension of M) and
ι∗ω = 0. If L moves by MCF, then in general ιt : L → M is no longer La-
grangian. However, there are situations where MCF does indeed preserve the
Lagrangian condition, leading to the notion of Lagrangian mean curvature
flow.

The aim of this section is to review the fact that Lagrangians are pre-
served by MCF in Kähler-Einstein manifolds, and also in Kähler mani-
folds when coupled with Kähler–Ricci flow. This result is originally due
to Smoczyk [30]. However, the key calculation goes at least as far back as [5]
and the ideas behind deforming Lagrangians in KE manifolds are certainly
discussed in [26, 27].
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For this section we suppose that M is a Kähler manifold, i.e. a com-
plex n-manifold with a Riemannian metric g with Levi-Civita connection
∇, an orthogonal complex structure J and a 2-form ω given by ω(X,Y ) =
g(JX, Y ) which is nondegenerate and satisfies dω = 0. We let R and Ric
denote the Riemann curvature tensor and Ricci tensor of g and define

ρ(X,Y ) = Ric(JX, Y ).

The 2-form ρ is the natural way to view the Ricci tensor as a (1, 1)-form on
M and we have that the first Chern class of M is given by 2πc1(M) = [ρ].
We may easily express the Kähler–Einstein (KE) condition as ρ = λω for a
constant λ, and we can write Kähler–Ricci flow (KRF) as:

(2)
∂ωt

∂t
= −ρt.

An equivalent definition of KRF is to have the metric evolve by Ricci flow
and define the Kähler form to be compatible with the evolving metric and
fixed complex structure.

Remark. KE manifolds are solitons for KRF; that is, they are either sta-
tionary, shrinking or expanding solutions depending on whether λ is 0, neg-
ative or positive. One can also defined normalized Kähler–Ricci flow by

(3)
∂ωt

∂t
= −ρt + λωt,

so that its stationary points are precisely the KE manifolds with given con-
stant λ, which is usually taken to be in {−1, 0, 1}. We can determine which
constant λ to take a priori by noting whether c1(M) is negative, zero or pos-
itive. It is known by work of Cao [3] that if M is compact with c1(M) ≤ 0
then the normalized Kähler–Ricci flow exists for all time and converges to
the appropriate KE metric. The case c1(M) > 0 (the case of Fano mani-
folds) is still open in general but should be related to so-called K-stability,
given the fact that K-stability of compact Fano manifolds is equivalent to
the existence of a KE metric, as shown in work by Chen–Donaldson–Sun,
Tian et al.

The result we want to review is the following, cf. [30].

Theorem 2.1. Let ι : L → M be a compact Lagrangian submanifold of a
Kähler manifold (M,J, ω).
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• If M is Kähler–Einstein and ιt : L → M satisfies MCF with ι0 = ι
then ιt : L → M is Lagrangian for all t > 0 for which the flow exists.

• If ωt satisfies Kähler–Ricci flow with ω0 = ω and ιt : L → (M,J, ωt)
satisfies MCF with ι0 = ι then ιt : L → (M,J, ωt) is Lagrangian for
all t > 0 for which the flow exists.

The first part of Theorem 2.1 shows that Lagrangian MCF is a well-defined
concept. We should emphasise in the second part that the mean curvature
vector Ht at time t is calculated using the ambient metric gt at time t
determined by the Ricci flow, so in this sense we have coupled MCF with
KRF. In other words, we treat the two equations as a system. Notice however
that the coupling is only partial: the ambient flow does not depend on the
flow of the submanifold.

Hopefully, our coordinate-free presentation of this result will be a useful
complement to the existing literature. It should also serve to emphasize how
to group together the many terms which in a coordinate-based expression
would appear in the formulae, so as to obtain well-defined tensors. Studying
the role of these tensors will be a key part of our subsequent improvement
on this result.

2.1. Totally real submanifolds in Kähler manifolds

Let L be an orientable (real) n-manifold and let ι : L → M be an immersion.
Let us identify L with its image ι(L) ⊂ M . The relationship ω(·, ·) = g(J ·, ·)
shows that ι (or, using the identification, L) is Lagrangian if and only if, for
all p ∈ L, we have that J(TpL) = (TpL)

⊥, the normal space. This yields the
orthogonal splitting

TpM = TpL
⊥
⊕ J(TpL).

More generally, we say that ι (or L) is totally real if, for all p ∈ L,

J(TpL) ∩ TpL = {0}.

In this case we still get a splitting of TpM as above, though it is not neces-
sarily orthogonal. We can thus write any vector field Z on a totally real L
uniquely as Z = X + JY where X,Y are tangent vector fields. Notice that
if we define projections πL, πJ by πL(Z) = X and πJ(Z) = JY then we have
the following.

Lemma 2.2. πL ◦ J = J ◦ πJ and J ◦ πL = πJ ◦ J .
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Proof. We calculate

πL(JZ) = πL(JX − Y ) = −Y = JπJ(Z)

and

JπL(Z) = JπL(X + JY ) = JX = πJ(JX − Y ) = πJ(JZ).

The result follows. □

For Lagrangian MCF the key object to study is ω = ι∗ω, which we want
to show stays zero along the flow if it is initially zero. To achieve this we
need some basic objects.

We let g = ι∗g and ∇ be the Levi-Civita connection of g. We let the
second fundamental form of L be given by

A(X,Y ) = ∇XY −∇XY

for vector fields X,Y on L, which takes values in the normal bundle NL =
(TL)⊥ of L because ∇ is the tangential part of ∇ on L. We let H be the
mean curvature vector of L, which is given at p ∈ L by:

H(p) = ∇eiei −∇eiei

where {e1, . . . , en} is an orthonormal basis of TpL and we will always sum
over repeated indices.

We now have a general lemma, which shows that we can evaluate ω on
NL in terms of ω. We let πT and π⊥ denote the tangential and normal
projections of a vector field along L.

Lemma 2.3. Let Z,W be normal vector fields on L. Since L is totally real
there exist unique tangent vector fields X,Y on L such that Z = π⊥(JX)
and W = π⊥(JY ). Then

ω(Z,W ) = ω(πT(JX), πT(JY ))− ω(X,Y ).

Proof. This is an elementary calculation:

ω(π⊥(JX), π⊥(JY ))

= ω(JX − πT(JX), JY − πT(JY ))

= ω(JX, JY )− g(J ◦ πT(JX), JY ) + g(X,πT(JY )) + ω(πT(JX), πT(JY ))

= ω(X,Y )− g(JX, Y ) + g(X, JY ) + ω(πT(JX), πT(JY ))

= ω(πT(JX), πT(JY ))− ω(X,Y ),
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from which the result follows. □

As we have seen in (2), the 2-form ρ defines the motion of ω by KRF,
so it is clearly important to understand how ρ restricts to the submanifold
L. This is the content of the following elementary lemma. Recall that we let
{e1, . . . , en} denote an orthonormal basis for TpL for a point p ∈ L.

Lemma 2.4. Let ρ = ι∗ρ. Then

ρ(X,Y ) = ω(πJR(X,Y )ei, ei).

Proof. Given p ∈ L and an orthonormal basis {e1, . . . , e2n} for TpM , we see
that {Je1, . . . , Je2n} is an orthonormal basis for TpM so

ρ(X,Y ) = Ric(JX, Y )

= Ric(Y, JX)

= g(R(Y, Jej)Jej , JX)

= g(R(Y, Jej)ej , X),

using the fact that ∇J = 0 (which is part of the Kähler condition). Thus,
using the Bianchi identity we have that:

ρ(X,Y ) = −g(R(Y,X)Jej , ej)− g(R(Y, ej)X, Jej)

= ω(R(X,Y )ej , ej) + g(R(Y, ej)Jej , X)

= ω(R(X,Y )ej , ej)− Ric(Y, JX).

Hence,

ρ(X,Y ) =
1

2
ω(R(X,Y )ej , ej).(4)

From this we can deduce that

ρ(X,Y ) =
1

2
ω(R(X,Y )ej , ej)

=
1

2
g(πL ◦ JR(X,Y )ei, ei) +

1

2
g(πJ ◦ JR(X,Y )Jei, Jei)
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since we can take a trace with respect to a basis of unit vectors for TpM
which is not orthonormal (namely, {e1, . . . , en, Je1, . . . , Jen}) by taking ap-
propriate projections. Hence, by Lemma 2.2,

ρ(X,Y ) =
1

2
g(J ◦ πJR(X,Y )ei, ei)−

1

2
g(πJR(X,Y )ei, Jei)

= ω(πJR(X,Y )ei, ei),

again using the fact that ∇J = 0. □

2.2. The mean curvature vector and the Kähler form

We want to compute how ω varies along MCF, so we need to calculate
LHω on L. By Cartan’s formula and the fact that ω is closed, we see that
LHω = d(H⌟ω). Hence, the first thing we need to calculate is the interior
product of H and ω. Again we use an orthonormal basis {e1, . . . , en} for
TpL.

Proposition 2.5. For tangent vectors to L,

(5) ω(H,X) = −d∗ω(X)− ω
(
ei, A(ei, X)

)
.

Remark. This result effectively expresses a formula for commuting deriva-
tives with contractions, as can be seen from the proof below.

Proof. Let p ∈ L, let X ∈ TpL and let {e1, . . . , en} be an orthonormal basis
for TpL. We have:

ω(∇eiei, X) = ∇ei

(
ω(ei, X)

)
− (∇eiω)(ei, X)− ω(ei,∇eiX).(6)

Since M is Kähler we know that ∇ω = 0 so the second term vanishes. The
first term is a derivative of a function on L, so we can replace ω by ω and
∇ by ∇ in (6) leading to:

ω(∇eiei, X) = ∇ei

(
ω(ei, X)

)
− ω(ei,∇eiX).(7)

Now we can use the formula for the codifferential to show that:

d∗ω(X) = −
(
(ei⌟∇ei)ω

)
(X)(8)

= −(∇eiω)(ei, X)

= −∇ei

(
ω(ei, X)

)
+ ω(∇eiei, X) + ω(ei,∇eiX).
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Hence, we can go back to (7) and substitute in (8):

ω(∇eiei, X) = −d∗ω(X) + ω(∇eiei, X) + ω(ei,∇eiX)− ω(ei,∇eiX).

Rearranging we have that

ω(∇eiei −∇eiei, X) = −d∗ω(X)− ω(ei,∇eiX −∇eiX),

so the result follows. □

Remark. Notice that this proposition does not use the totally real condition
and that the Kähler condition is crucially used to remove a term involving
the derivative of ω.

Let us now define a 1-form ξ on L by:

(9) ξ(X) = −ω
(
ei, A(ei, X)

)
,

which is the second and significant term on the right-hand side of (5).

Remark. Notice that we can rewrite

(10) ξ(X) = −ω(ei, A(X, ei)) = −g(Jei, π⊥∇Xei) = trL(Jπ⊥∇X).

This will be significant in later sections.

Our next step is to differentiate (5) in Proposition 2.5. We can deal with
the first term on the right-hand side using the well-known Weitzenböck
formula and the fact that dω = 0 so that ∆ω = (dd∗ + d∗d)ω = dd∗ω.

Lemma 2.6. We have that

(11) dd∗ω = ∇∗∇ω +
1

2
R(ei, ej)ω · e∗i · e∗j ,

where R is the Riemann curvature tensor of g extended to act on forms, e∗i
is the dual covector to ei and · denotes Clifford multiplication; i.e.

ξ · e∗i = (−1)k(e∗i ∧ ξ + ei⌟ξ)

for a k-form ξ.

We next prove the following important formula for dξ.
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Proposition 2.7. For tangent vectors X,Y to L,

dξ(X,Y ) = ω
(
R(X,Y )ei, ei

)
− ω(R(X,Y )ei, ei)− 2ω

(
A(X, ei), A(Y, ei)

)
.

Proof. By definition,

dξ(X,Y ) = X(ξ(Y ))− Y (ξ(X))− ξ([X,Y ])

= −X
(
ω
(
ei, A(ei, Y )

))
+ Y

(
ω
(
ei, A(ei, X)

))

+ ω
(
ei, A(ei, [X,Y ])

)
.

Now we observe the well-known fact that A is symmetric:

A(Y,X) = ∇Y X −∇Y X = ∇XY + [Y,X]−∇XY − [Y,X] = A(X,Y )

since ∇ and ∇ are torsion-free. Thus we have that

dξ(X,Y ) = −X
(
ω
(
ei, A(Y, ei)

))
+ Y

(
ω
(
ei, A(X, ei)

))
+ ω

(
ei, A([X,Y ], ei)

)

= −∇X

(
ω
(
ei,∇Y ei −∇Y ei

))
+∇Y

(
ω
(
ei,∇Xei −∇Xei

))

+ ω
(
ei,∇[X,Y ]ei −∇[X,Y ]ei

)

= −ω
(
∇Xei, A(Y, ei)

)
− ω(ei,∇X∇Y ei −∇X∇Y ei)

+ ω
(
∇Y ei, A(X, ei)

)
+ ω(ei,∇Y ∇Xei −∇Y ∇Xei)

+ ω
(
ei,∇[X,Y ]ei −∇[X,Y ]ei

)
,

where we have used the fact that ∇ω = 0 (as M is Kähler). Substituting
R(X,Y ) = ∇X∇Y −∇Y ∇X −∇[X,Y ] and using the formula for the second
fundamental form, we see that

dξ(X,Y ) = −ω
(
∇Xei +A(X, ei), A(Y, ei)

)
− ω

(
ei, R(X,Y )ei

)

+ ω
(
ei,∇X∇Y ei +A(X,∇Y ei)

)
+ ω

(
∇Y ei +A(Y, ei), A(X, ei)

)

− ω
(
ei,∇Y ∇Xei +A(Y,∇Xei)

)
− ω

(
ei,∇[X,Y ]ei

)

= ω
(
R(X,Y )ei, ei

)
− ω(R(X,Y )ei, ei)− 2ω

(
A(X, ei), A(Y, ei)

)

− ω
(
∇Xei, A(Y, ei)

)
− ω

(
ei, A(Y,∇Xei)

)

+ ω
(
∇Y ei, A(X, ei)

)
+ ω

(
ei, A(X,∇Y ei)

)
.

We can re-arrange this as

dξ(X,Y )− ω
(
R(X,Y )ei, ei

)
+ ω(R(X,Y )ei, ei) + 2ω

(
A(X, ei), A(Y, ei)

)

= −ω
(
∇Xei, A(Y, ei)

)
− ω

(
ei, A(Y,∇Xei)

)

+ ω
(
∇Y ei, A(X, ei)

)
+ ω

(
ei, A(X,∇Y ei)

)
.
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Notice that the terms on the left-hand side of this equation are tensorial
and so are independent of the choice of coordinates we use, and hence the
same must be true of the right-hand side. Therefore, at p, we may choose
geodesic normal coordinates, which then means that

∇Xei = ∇Y ei = 0 at p.

This forces all the terms on the right-hand side to vanish (as A is a tensor)
and we thus deduce the result. □

We can now combine these observations to compute LHω on L.

Proposition 2.8. There exists a smooth tensor C on L, depending only
on πLR, R and A, such that

ι∗d(H⌟ω) = ρ−∇∗∇ω + C⌟ω.(12)

Proof. We first notice that, by Proposition 2.5,

d(H⌟ω)(X,Y ) = −dd∗ω(X,Y ) + dξ(X,Y ).

Using the Weizenböck formula (11) and Proposition 2.7 gives us that

−dd∗ω(X,Y ) + dξ(X,Y ) = −∇∗∇ω − 1

2
R(ei, ej)ω · e∗i · e∗j

+ ω
(
R(X,Y )ei, ei

)
− ω(R(X,Y )ei, ei)

− 2ω
(
A(X, ei), A(Y, ei)

)
.

Applying Lemma 2.3 we can write

ω
(
A(X, ei), A(Y, ei)

)
= ω

(
πT ◦ πJA(X, ei), πT ◦ πJA(Y, ei)

)

− ω
(
πL ◦ JA(X, ei), πL ◦ JA(Y, ei)

)
.

Applying Lemma 2.4 we see that

ω
(
R(X,Y )ei, ei

)
= ω

(
πJR(X,Y )ei, ei

)
+ ω

(
πLR(X,Y )ei, ei

)

= ρ(X,Y ) + ω(πLR(X,Y )ei, ei).
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Overall we have that

d(H⌟ω)(X,Y ) = ρ(X,Y )−∇∗∇ω − 1

2
R(ei, ej)ω · e∗i · e∗j

+ ω
(
πLR(X,Y )ei, ei

)
− ω(R(X,Y )ei, ei)

− 2ω
(
πT ◦ πJA(X, ei), πT ◦ πJA(Y, ei)

)

+ 2ω
(
πL ◦ JA(X, ei), πL ◦ JA(Y, ei)

)
,

which gives the result. □

2.3. Lagrangian deformations

If ι : L → M is Lagrangian, then the normal bundle NL = J(TL) is isomet-
ric to TL and thus T ∗L, and the map is given by

JX 7→ ω(JX, .) = −g(X, .).

We thus can view (normal) deformations of L as 1-forms α and it follows
from Weinstein’s Lagrangian Neighbourhood Theorem that α defines a La-
grangian deformation of L if and only if α is closed. In other words, if L
is the space of Lagrangian immersions of L in M homotopic to ι, up to
reparametrisation, then

TLL = {α ∈ Λ1(L) : dα = 0}.

A particular normal deformation is given by the mean curvature vector
H. Therefore, if we want H to define a Lagrangian deformation of L then we
need the 1-form ι∗(H⌟ω) to be closed. We see from Proposition 2.5 and (9)
that

ι∗(H⌟ω) = −d∗ω + ξ = ξ

as ω = 0 because L is Lagrangian. Moreover, Proposition 2.8 shows that

dξ = ρ−∇∗∇ω + C⌟ω = ρ,

since ω = 0. Thus ξ is closed if and only if ρ = 0.
Now, if M is KE then ρ = λω, so ρ = ι∗ρ = λω = 0. Therefore, for La-

grangians L in KE manifolds, we have that ξ ∈ TLL, which we write as a
lemma, previously given for example in [27].
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Lemma 2.9. If L is a Lagrangian submanifold of a Kähler–Einstein man-
ifold, then H⌟ω = ξ is a closed 1-form on L and so H defines a Lagrangian
deformation of L.

This key calculation is a compelling reason (which turns out to be justi-
fied) to believe that MCF preserves Lagrangians in KE manifolds. It is not
however sufficient since it is only an infinitesimal deformation calculation.
It also shows that ξ is generally not closed if M is not KE, so one should
not expect Lagrangians to be preserved by MCF in general Kähler mani-
folds. This justifies the need for something more sophisticated, i.e. the use
of coupled flows.

2.4. Lagrangian MCF in Kähler manifolds

Let us suppose that a totally real submanifold ι : L → M evolves via mean
curvature flow (MCF) as in (1). This flow is known to have short-time exis-
tence, so we have a one-parameter family of solutions ιt : L → M with ι0 = ι
and we let Lt = ιt(L).

Let us also suppose that M is Kähler–Einstein, so ρ = λω for some
constant λ. We want to show that if L is initially Lagrangian then it remains
Lagrangian for all time. Precisely, we show the following, which coincides
with the first part of Theorem 2.1.

Theorem 2.10. Let L be a compact Lagrangian in a Kähler–Einstein man-
ifold. If L evolves via MCF then Lt is Lagrangian for all t.

Proof. If we let gt = ι∗t g and ωt = ι∗tω, we wish to calculate ∂
∂t
gt(ωt, ωt),

where we consider the metric extended to forms in the natural manner.
We first see that

∂

∂t
gt(ωt, ωt) =

(
∂

∂t
gt

)
(ωt, ωt) + 2gt

(
∂

∂t
ωt, ωt

)
.(13)

Now,

∂

∂t
ωt =

∂

∂t
ι∗tω = ι∗tLHt

ω = ι∗td(Ht⌟ω) + ι∗t (Ht⌟dω),(14)

using Cartan’s formula. Since dω = 0 the second term vanishes in (14). For
small t, ιt is a totally real immersion since the totally real condition is an
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open one, so we can apply Proposition 2.8 and deduce that

ι∗td(Ht⌟ω) = ρt −∇∗
t∇tωt + Ct⌟ωt,(15)

where ρt = ι∗tρ, ∇t is the Levi-Civita connection of gt and Ct is a smooth
tensor only depending on the second fundamental form and the Riemann
curvature tensor on Lt.

Now ρ = λω by the Kähler–Einstein condition, hence ρt = ι∗tρ = λι∗tω =
λωt. Plugging (15) in (14) gives us that

∂

∂t
ωt = ρt −∇∗

t∇tωt + Ct⌟ωt = −∇∗
t∇tωt + C ′

t⌟ωt.(16)

for some smooth tensor C ′
t. Therefore, we see that

gt

(
∂

∂t
ωt, ωt

)
= gt(−∇∗

t∇tωt + C ′
t⌟ωt, ωt)

= −1

2
∇∗

t∇t

(
gt(ωt, ωt)

)
− gt(∇tωt,∇tωt) + gt(C

′
t⌟ωt, ωt).(17)

Inserting (17) in (13) allows us to deduce that

∂

∂t
gt(ωt, ωt) = −∇∗

t∇t

(
gt(ωt, ωt)

)
− 2gt(∇tωt,∇tωt)(18)

+ 2gt(C
′
t⌟ωt, ωt) +

(
∂

∂t
gt

)
(ωt, ωt).

We see that gt(∇tωt,∇tωt) ≥ 0.
Choose a finite time T > 0 such that Lt is defined for all t ∈ [0, T ] and let

f = gt(ωt, ωt), which is non-negative and vanishes at t = 0. As L is compact,
(18) implies that f satisfies the parabolic inequality

(19)
∂

∂t
f ≤ −∇∗

t∇tf +Bf

for some constant B. Applying the maximum principle to (19) gives us that
f ≡ 0, and thus Lt is Lagrangian for all t. □

We see from the proof that without the KE assumption there is no reason
to suppose that Lagrangians are preserved by MCF in a Kähler manifold,
as we knew from the infinitesimal deformation calculation from the previous
subsection.

However, we now show that if M is any Kähler manifold evolving under
Kähler–Ricci flow then Lagrangians are still preserved under MCF. This of
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course contains our previous result as a special case because KE manifolds
are solitons for KRF, where the Kähler form simply evolves by dilations, and
hence the space of Lagrangian submanifolds stays the same for all time. The
idea is that KRF exactly “cancels out” d(H⌟ω), because ξ = H⌟ω is not
closed, thus ensuring that H becomes tangent to the space of Lagrangian
immersions (which now varies with t as the Kähler structure is varying).

Let us continue to suppose that L evolves by MCF but we also suppose
that simultaneously the Kähler structure (g, J, ω) on M is evolving via KRF
as in (2). Note that we fix the complex structure J and we let gt be the
metric such that gt(JX, Y ) = ωt(X,Y ) for all X,Y .

Since the complex structure J is fixed, the notion of totally real in M
is independent of t. Moreover, the condition for an immersion to be totally
real is an open one and both Ricci flow and MCF have short-time existence,
so for short time we know that ιt : L → M exists and remains totally real.
The following result coincides with the second part of Theorem 2.1.

Theorem 2.11. Let M be a Kähler manifold evolving under Kähler–Ricci
flow and let L be a compact submanifold of M evolving simultaneously under
mean curvature flow, which is Lagrangian for the initial Kähler structure.
Then Lt is Lagrangian for the Kähler structure ωt for all t.

Proof. Using the same notation as in the proof of Theorem 2.10 we see that

∂

∂t
ωt =

∂

∂t
ι∗tωt = ι∗tLHt

ωt + ι∗t
∂

∂t
ωt = ι∗td(Ht⌟ωt)− ι∗tρt,(20)

using Cartan’s formula, dωt = 0 (as they are Kähler forms) and the fact
that ωt evolves by Kähler–Ricci flow (2). As in the proof of Theorem 2.10
we have that (15) holds, but now with ρt = ι∗tρt. Substituting (15) in (20)
gives

∂

∂t
ωt = ρt −∇∗

t∇tωt + Ct⌟ωt − ρt = −∇∗
t∇tωt + Ct⌟ωt,

which is the same form as (16). The proof now proceeds just as for Theo-
rem 2.10. □

We observe a minor modification of the previous result. The proof is
similar.

Corollary 2.12. Let M be a Kähler manifold evolving under the normal-
ized Kähler–Ricci flow as in (3) and let L be a compact Lagrangian in M
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with respect to the initial Kähler structure. If L evolves simultaneously by
mean curvature flow then Lt is Lagrangian with respect to ωt for all t.

Concluding remarks. Before closing this section let us pause to reflect
upon two issues. First, notice the basic strategy underlying these proofs.
The goal is to show that, under certain conditions, the Lagrangian condition
is preserved. What could go wrong? Given that Lagrangians form a closed
subset of the space of totally real submanifolds, clearly the one thing we need
to rule out is that the initial submanifold “degenerates”, becoming totally
real. The strategy is thus to extend the study of the volume functional
and MCF from Lagrangians to totally reals. Compare however the formulae
for Lagrangians, appearing in Section 2.3, with those for general totally
real submanifolds, appearing in (5) and (12). The latter are clearly more
cumbersome, leading to additional complications in the final steps of the
proofs. Specifically,

• these extra terms lead to the parabolic inequality (19), forcing us to
use the maximum principle;

• the final result concerns only Lagrangians, not totally reals.

The calculations also rely crucially on the Kähler condition, without which
we could not say anything even about Lagrangians.

Secondly, Lemma 2.9 indicates that, in the appropriate context, the
mean curvature vector H has a double geometric description: both as the
negative gradient of the volume functional and as a primitive of the Ricci
form. Furthermore, it satisfies a certain differential equation: the 1-form
ι∗(H⌟ω̄) is closed.

In the following sections we will investigate both issues in depth. Specifi-
cally, we will initiate a study of totally real submanifolds which will indicate
that the standard Riemannian volume is not a particularly natural quantity
in this context. Replacing its role in the above proofs with its more natural
analogues will lead to uniformly simple formulae governing the flow both
of Lagrangians and of totally reals, yielding stronger results and simpler
proofs. Ultimately, it will be the second geometric description of the flow
which will take the lead.

3. Geometry of totally real submanifolds

Let (M,J) be a 2n-manifold endowed with an almost complex structure.
Given p ∈ M , recall that an n-plane π in TpM is totally real if J(π) ∩ π =
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{0}, i.e. if TpM is the complexification of π. We denote by TR+
p the Grass-

mannian of oriented totally real n-planes in TpM . The union of these spaces
defines a fibre bundle TR+ over M , whose fibre is GL(n,C)/GL+(n,R).

Now let ι : L → M be an immersion of an n-dimensional oriented mani-
fold L in M . As before, we will often identify L with ι and say that ι (or L)
is totally real if, for each p ∈ L, TpL is totally real in TpM . This determines
a decomposition

TpM = TpL⊕ J(TpL).

We let πL, πJ denote the projections from TpM onto TpL and J(TpL) respec-
tively as before. These are clearly the more natural projections in the context
of totally real geometry than the usual tangential and normal projections,
because they do not need the additional structure of a metric.

We let T denote the space of totally real immersions of L which are
homotopic to a given ι, modulo reparametrization. Notice that the totally
real condition is open in the Grassmannian of all n-planes, so it is a “soft”
condition. In particular, the space T is infinite-dimensional.

Given L ∈ T , we describe its tangent space TL T as follows. Infinitesi-
mal deformations of a given immersion L are determined by the space of
all sections of the bundle TM over L. At the infinitesimal level, quotient-
ing immersions by reparametrization amounts to taking the quotient of all
sections by those which are tangent to L. Thus TL T can be identified with
sections of the bundle TM/TL ≃ J(TL) ≃ TL over L, i.e. TL T ≃ Λ0(TL).
The key point here is that the totally real condition provides not only a
canonical space in TM which is transverse to TL, but also a canonical iso-
morphism with TL. In other words, the (extrinsic) “normal” bundle (defined
via quotients) is canonically isomorphic to the (intrinsic) tangent bundle.

In the next section we show that the totally real condition is closely
related to the geometry of the canonical bundle KM of M . This fact deter-
mines a “natural” (we call it canonical) geometry of totally real submani-
folds. This construction, which was motivated in part by work in [2], requires
some additional structure: a metric h and a unitary connection ∇̃ on KM .

3.1. Canonical data for totally real submanifolds

We can characterize totally real planes in TpM as follows: an n-plane π
in TpM is totally real if and only if α|π ̸= 0 for all (equivalently, for any)
α ∈ KM (p) \ {0}. This characterization clearly demonstrates the importance
of the canonical bundle KM for totally real geometry. Notice that n-planes
π in TpM which are not totally real (i.e. those which satisfy α|π = 0 for
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some α ∈ KM (p) \ {0}) contain a complex line: a pair {X, JX} for some
X ∈ TpM \ {0}. We call these n-planes partially complex. We also call n-
dimensional submanifolds partially complex if each of their tangent spaces
are partially complex.

Let π be an oriented totally real n-plane in TpM and let v1, . . . , vn be a
positively oriented basis. We may then define v∗j ∈ T ∗

pM ⊗ C by

v∗j (vk) = δjk and v∗j (Jvk) = iδjk.

This allows us to define a non-zero form v∗1 ∧ . . . ∧ v∗n ∈ KM (p).
However, the form we have constructed depends on the choice of basis

v1, . . . , vn. We can fix this by assuming that we have a Hermitian metric h
on the canonical bundle KM of M . We then define

ΩJ [π] =
v∗1 ∧ . . . ∧ v∗n

|v∗1 ∧ . . . ∧ v∗n|h
∈ KM (p).

This form has unit norm and is independent of the choice of basis: if we
choose another basis w1, . . . , wn, which is equivalent to choosing A ∈
GL+(n,R) such that w = Av (in matrix notation), then w∗

1 ∧ . . . ∧ w∗
n =

det(A−1)v∗1 ∧ . . . ∧ v∗n so

w∗
1 ∧ . . . ∧ w∗

n

|w∗
1 ∧ . . . ∧ w∗

n|h
=

v∗1 ∧ . . . ∧ v∗n
|v∗1 ∧ . . . ∧ v∗n|h

.

We have thus defined a map between bundles ΩJ : TR+ → KM covering the
identity map on M (in fact, ΩJ maps into the unit circle bundle in KM ).

Definition 3.1. The J-volume form on π ∈ TR+ is the real-valued n-form
volJ := ΩJ [π]|π obtained by restricting the form ΩJ [π] to π.

Now let ι : L → M be an n-dimensional totally real immersion. We can
then obtain global versions of the above constructions as follows.

Canonical bundle over L. Let KM [ι] denote the pull-back of KM over
L. This defines a complex line bundle over L which depends on ι. Specifically,
the fibre over p ∈ L is the fibre of KM over ι(p) ∈ M .

Observe that any complex-valued n-form α on TpL defines a unique n-
form α̃ on Tι(p)M by identifying TpL with its image via ι∗ and by setting,
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e.g.,

α̃[ι(p)](Jι∗(v1), . . . , Jι∗(vn)) := inα[p](v1, . . . , vn).

The totally real condition implies that this is an isomorphism: the bundle
KM [ι] is canonically isomorphic, via ι∗, with the (ι-independent) bundle
Λn(L,C) := Λn(L,R)⊗ C of complex-valued n-forms on L.

Canonical section. Now assume that L is oriented. Then Λn(L,R) is
trivial, so KM [ι] also is. We can build a global section of KM [ι] using our
previous linear-algebraic construction: p 7→ ΩJ [ι](p) := ΩJ [ι∗(TpL)]. We call
ΩJ [ι] the canonical section of KM [ι]. If we restrict the form ΩJ [ι] to ι∗(TpL)
we obtain a real-valued positive n-form on ι(L), thus a volume form volJ [ι] :=
ι∗(ΩJ [ι]) on L: we call it the J-volume form of L, defined by ι.

When L is compact we obtain a “canonical volume”
∫
L
volJ [ι], for ι ∈

P. If ϕ is an orientation-preserving diffeomorphism of L then volJ [ι ◦ ϕ] =
ϕ∗(volJ [ι]), just as for the standard volume form, thus

∫

L

volJ [ι ◦ ϕ] =
∫

L

ϕ∗ volJ [ι] =

∫

L

volJ [ι].

Hence the canonical volume descends to define the J-volume functional

VolJ : T → R, L 7→
∫

L

volJ .

Maslov 1-form. Now we assume we are given a unitary connection ∇̃ on
(KM , h). Such connections always exist. The canonical section then induces
a “connection 1-form” A[ι] ∈ Λ1(L,C) defined by the identity

∇̃ΩJ [ι] = A[ι]⊗ ΩJ [ι],

where we are using the pull-back connection on KL[ι]. Notice that

A[ι](X) · h(ΩJ [ι],ΩJ [ι]) = h(∇̃X ΩJ [ι],ΩJ [ι])

= −h(ΩJ [ι], ∇̃X ΩJ [ι])

= −A[ι](X) · h(ΩJ [ι],ΩJ [ι]),

where we are using the pull-back metric and the fact that h(ΩJ [ι],ΩJ [ι]) ≡ 1.
This calculation shows that A actually takes values in Im(C): we shall write
A[ι] = iξJ [ι], calling ξJ [ι] the Maslov 1-form on L, defined by ι. One sees
from the definition that if ϕ ∈ Diff(L), then ϕ∗ξJ [ι] = ξJ [ι ◦ ϕ].
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Remark. Of course, one must take into account the fact that this Maslov
1-form depends on the choice of connection. It really becomes “canonical”
only in situations where the connection itself is canonical. We will see below
that this happens, for example, in the context of Kähler and almost Kähler
manifolds.

Notation. We will often simplify notation by dropping the reference to
the immersion used. Since this is standard in other contexts, e.g. when dis-
cussing the Riemannian volume, we expect it will not create any confusion.

4. Canonical geometry in the Hermitian context

Let us now assume that (M,J) is almost Hermitian, i.e. we choose a Rie-
mannian metric g on M which is compatible with J , so J is an isometry
defining a Hermitian metric h on M . We also choose a unitary connection
∇̃ on M . Let L be an oriented totally real submanifold of (M,J).

The structures on M induce structures h, ∇̃ on KM , which we can use
to define the J-volume form and the Maslov 1-form on L. In this context we
can use this data to define two natural flows of totally real submanifolds.
The goal of this section is to introduce these flows and to compare them to
MCF.

Notice that, in contrast to the previous section where we were given only
a complex structure, in this section we will be able to also discuss Lagrangian
submanifolds, defined via the induced positive (1, 1)-form ω.

Let R̃ denote the curvature of ∇̃ and for X,Y ∈ TpM let

P̃ (X,Y ) = ω(R̃(X,Y )ej , ej),

where e1, . . . , e2n is an orthonormal basis for TpM . This defines a closed

2-form P̃ on M .
According to Chern–Weil theory, i

2π trM R̃ represents the first Chern
class of (M,J), where we take the complex trace (i.e. with respect to the
Hermitian metric) of the endomorphism part of R̃. Recall that for a skew-
Hermitian endomorphism E we can compare real and complex traces by
trR(E ◦ J) = 2i trCE. We deduce the following.

Lemma 4.1. The 2-form P̃ satisfies
[
1
2 P̃

]
= 2πc1(M).
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Notice that, because the Bianchi identity does not necessarily hold for
R̃, in general P̃ is not twice the “Ricci form”

ρ̃(X,Y ) = g(R̃(JX, ej)ej , Y )

and that, as ∇̃ is not necessarily the Levi-Civita connection ∇, the standard
Ricci form ρ usually does not represent the first Chern class.

4.1. J-volume versus the Riemannian volume

In the almost Hermitian context, given an immersion ι, we can define the
usual Riemannian volume form volg using the induced metric g. It is useful
to compare this with the J-volume form.

Let us identify TpL with its image plane in TpM using ι∗. Given a posi-
tively oriented basis v1, . . . , vn of TpL, recall that

volg|p :=
v∗1 ∧ · · · ∧ v∗n
|v∗1 ∧ · · · ∧ v∗n|g

,

where here v∗i denotes the standard dual basis of T ∗
pL. Comparing this to

volJ |p := ΩJ [TpL]|TpL, we see that, up to the canonical identifications with
KM discussed above, the two forms differ only by the choice of metric used
in the normalization. These definitions imply that

volg(v1, . . . , vn) =
√

det g(vi, vj) and volJ(v1, . . . , vn) =
√

detCh(vi, vj).

We can thus write volJ = ρJ volg, for ρJ determined by

ρJ : TR+ → R, ρJ(π) := volJ(e1, . . . , en) =
√

detChij

where e1, . . . , en is a positive orthonormal basis of π and hij = h(ei, ej). No-
tice that ρJ(π) is well-defined because it is independent of the orthonormal
basis chosen for π. Analogously,

(21) |e∗1 ∧ . . . ∧ e∗n|h = (detChij)
− 1

2 .

Since h = g − iω, if we set ωij = ω̄(ei, ej) we have that

detChij =

√
det

(
δij ωij

−ωij δij

)
.
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Since ωij = g(Jei, ej) and−ωij = g(ei, Jej), we deduce detC hij =
√

det(gab)
where gab is the matrix of g with respect to the basis {e1, . . . , en, Je1, . . . , Jen}.
Therefore

detChij = volg(e1, . . . , en, Je1, . . . , Jen).

We thus have a second expression for ρJ :

(22) ρJ(π) =
√

volg(e1, . . . , en, Je1, . . . , Jen).

Hence we see that ρJ(π) ≤ 1 with equality if and only if π is Lagrangian.
We can set ρJ(π) = 0 when π is partially complex and extend the map

Ω to all n-planes, just setting ΩJ [π] = 0 if π is partially complex. This is
particularly reasonable in this almost Hermitian setting, where there is a
natural topology on the Grassmannian of n-planes: this choice of extension
of Ω would be justified by the fact that it is the unique one which preserves
the continuity of Ω.

Applying these observations to submanifolds, we deduce that the J-
volume functional provides a lower bound for the standard volume.

Lemma 4.2. For any compact oriented n-dimensional submanifold L in
an almost Hermitian manifold (M,J, g), we have VolJ(L) ≤ Volg(L) with
equality if and only if L is Lagrangian. In particular the values of VolJ and
Volg and of their first derivatives coincide on Lagrangians.

Proof. The first statement follows from (22). To prove the second, let Lt be a
1-parameter family of totally real submanifolds such that L0 is Lagrangian.
Set f(t) := VolJ(Lt) and g(t) := Volg(Lt). Then f ≤ g so g − f ≥ 0. Equality
holds when t = 0: this is a minimum point, so it is necessarily critical. It
follows that f ′(0) = g′(0). The result follows. □

4.2. Formulae for the Maslov 1-form

For X ∈ TpL we can define an endomorphism JπJ ∇̃X : TpL → TpL, which
depends linearly on X. The fact that it really is an endomorphism depends
on the following calculation:

JπJ ∇̃X(fY ) = fJπJ ∇̃X Y + JπJX(f)Y = fJπJ ∇̃X Y

since πJ(Y ) = 0.
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Proposition 4.3. The Maslov 1-form ξJ is the trace of the endomorphism
JπJ ∇̃, i.e. for all X ∈ TpL,

ξJ(X) = trL(JπJ ∇̃X).

Proof. Let e1, . . . , en be a positively oriented orthonormal basis of TpL.
Recall that we defined the canonical section ΩJ of KM [ι] in terms of the
corresponding complexified dual forms in Λ1,0

p M . We can alternatively ex-
press it in terms of the standard dual basis corresponding to the basis
e1, . . . , en, Je1, . . . , Jen of TpM :

(23) ΩJ(p) =
(e∗1 + i(Je1)

∗) ∧ . . . ∧ (e∗n + i(Jen)
∗)

|(e∗1 + i(Je1)∗) ∧ . . . ∧ (e∗n + i(Jen)∗)|h
.

For our purposes it is simpler to perform computations using the dual bundle
K∗

M [ι]. Set

(24) ν := (e1 − iJe1) ∧ . . . ∧ (en − iJen),

so that σJ := ν/|ν| is a unit section of K∗
M [ι]. Observe that

∇̃X ν =

n∑

j=1

(e1 − iJe1) ∧ . . . ∧ (∇̃X ej − iJ ∇̃X ej) ∧ . . . ∧ (en − iJen),

using the fact that ∇̃X J = 0. Now,

∇̃X ej − iJ ∇̃X ej = πL ∇̃X ej − iJπL ∇̃X ej + πJ ∇̃X ej − iJπJ ∇̃X ej

= g(πL ∇̃X ej , ek)(ek − iJek)

+ g(πJ ∇̃X ej , Jek)(Jek + iek)

=
(
g(πL ∇̃X ej , ek)− ig(JπJ ∇̃X ej , ek)

)
(ek − iJek).

Hence,

(25) ∇̃X ν =
(
g(πL ∇̃X ej , ej)− ig(JπJ ∇̃X ej , ej)

)
ν.
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Furthermore,

∇̃X |ν|−1
h = −|ν|−3

h

2
∇̃X h(ν, ν)(26)

= −|ν|−3
h Re

(
h(∇̃X ν, ν)

)

= −|ν|−3
h g(πL ∇̃X ej , ej)h(ν, ν)

= −g(πL ∇̃X ej , ej)|ν|−1
h .

It follows that

∇̃X σJ = ∇̃X |ν|−1
h ν + |ν|−1

h ∇̃X ν

= −g(πL ∇̃X ej , ej)σJ +
(
g(πL ∇̃X ej , ej)− ig(JπJ ∇̃X ej , ej)

)
σJ

= −ig(JπJ ∇̃X ej , ej)σJ .

We conclude that

(27) ∇̃X σJ = −i trL(JπJ ∇̃X)σJ .

This implies that the connection 1-form of the dual section ΩJ has the
opposite sign, proving the claim. □

It follows from the definition that i dξJ is the curvature of the complex
Hermitian connection on KM [ι], thus −dξJ represents 2π c1(KM [ι]). The
next proposition makes this more explicit, providing one of the key formulae
for later results.

Proposition 4.4. For all X,Y ∈ TpL,

dξJ(X,Y ) = trL
(
JπJ R̃(X,Y )

)
=

1

2
P̃ (X,Y ).

Proof. By definition of the exterior derivative,

dξJ(X,Y ) = X · trL(JπJ ∇̃Y )− Y · trL(JπJ ∇̃X)− trL(JπJ ∇̃[X,Y ]).

If we let v1, . . . , vn denote a basis for TpL, we can write JπJ ∇̃Y as a
matrix E with respect to this basis. Letting v∗1, . . . , v

∗
n denote the natural

dual basis for T ∗
pL, we have

trL(JπJ ∇̃Y ) = v∗i (Evi),

using summation convention. As we observed, the unitary connection ∇̃ on
M induces a connection on L given by πL ∇̃. We can use the connection
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πL ∇̃ on L to extend the basis vi locally by parallel transport to compute

X · trL(JπJ ∇̃Y ) = πL ∇̃X

(
v∗i (Evi)

)
= v∗i

(
(πL ∇̃X E)vi),

where we extend the connection πL ∇̃ to endomorphisms.
Using the Leibniz rule, we see that for any Z ∈ TpL,

(
πL ∇̃X(JπJ ∇̃Y )

)
Z = πL ∇̃X(JπJ ∇̃Y Z)− JπJ ∇̃Y (πL ∇̃X Z)

= πLJ ∇̃X(∇̃Y Z − πL ∇̃Y Z)− JπJ ∇̃Y (πL ∇̃X Z)

= JπJ ∇̃X ∇̃Y Z − JπJ ∇̃X(πL ∇̃Y Z)

− JπJ ∇̃Y (πL ∇̃X Z).

The last two terms are symmetric in X and Y whereas dξJ is skew in X,Y ,
so

dξJ(X,Y ) = trL(JπJ ∇̃X ∇̃Y −JπJ ∇̃Y ∇̃X −JπJ ∇̃[X,Y ]),

from which the first part of the result follows.
We now notice that if e1, . . . , en is an orthonormal basis for TpL we can

extend it to a basis of TpM consisting of unit vectors by using Je1, . . . , Jen.
Then we see that

P̃ (X,Y ) = ω(R̃(X,Y )ej , ej) = g(JR̃(X,Y )ej , ej) = trM (JR̃(X,Y ))

= e∗i (JR̃(X,Y )ei) + (Jei)
∗(JR̃(X,Y )Jei)

= e∗i (πLJR̃(X,Y )ei) + (Jei)
∗(πJJR̃(X,Y )Jei)

= g(πLJR̃(X,Y )ei, ei) + g(πJJR̃(X,Y )Jei, Jei),

where the projections are included because {e1, . . . , en, Je1, . . . , Jen} is not
an orthogonal basis. Hence, since ∇̃ J = 0 (as the connection is complex),

P̃ (X,Y ) = g(JπJ R̃(X,Y )ei, ei)− g(JπJJ
2R̃(X,Y )ei, ei)

= 2g(JπJ R̃(X,Y )ei, ei)

= 2 trL(JπJ R̃(X,Y )),

so we have the final result. □

Notice that if M is Kähler and L is Lagrangian, ξJ coincides with the
1-form ξ = trL(Jπ⊥∇X) defined in Section 2.2, cf. (10). In Section 2.3 we



✐

✐

“5-Pacini” — 2020/7/3 — 18:53 — page 638 — #32
✐

✐

✐

✐

✐

✐

638 J. D. Lotay and T. Pacini

showed that if L is Lagrangian then ξ is directly related to the mean cur-
vature vector field; for general totally real submanifolds the relationship is
more complicated, cf. (5). This is reflected by the fact that MCF has good
properties for Lagrangians only in the Kähler setting, and it typically does
not for totally reals. The next proposition will show that, given a general to-
tally real submanifold, the proper quantity to consider is ξJ , not ξ. Likewise,
there is an appropriate replacement for H, which we now define.

Let us use the metric ḡ to define the transposed operators

πt
J : TpM → (TpL)

⊥, πt
L : TpM → (J(TpL))

⊥.

Observe that (J(TpL))
⊥ = J(TpL)

⊥ since X ∈ (J(TpL))
⊥ if and only if for

all Y ∈ TpL,

g(Y, JX) = −g(JY,X) = 0,

which means JX ∈ (TpL)
⊥ and thus X ∈ J(TpL)

⊥. Then, using the tangen-
tial projection πT defined using g, one may check that

πTJ ∇̃πt
L : TpL× TpL → TpL

is C∞-bilinear on its domain, so it is a tensor and its trace is a well-defined
vector on L. We now set

(28) HJ := −J(trL(πTJ ∇̃πt
L)).

This is a well-defined vector field on L.
Let T̃ denote the torsion of ∇̃:

T̃ (X,Y ) = ∇̃X Y − ∇̃Y X − [X,Y ].

We use it to define the vector field

(29) TJ := −ḡ(πLJT̃ (ej , ei), ei)Jej .

Both HJ and TJ take values in the bundle J(TL).
The following important result should be compared to Proposition 2.5.

Proposition 4.5. Let ξ♯J denote the vector field on L corresponding to the

1-form ξJ using the induced metric g. Then ξ♯J = JHJ + JTJ , so

ω(HJ + TJ , X) = ξJ(X).
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Proof. This result follows from elementary computations. We calculate:

ξJ(X) = g(JπJ ∇̃X ei, ei) = g(JπJ ∇̃ei X + JπJ T̃ (X, ei), ei)

since πJ [X, ei] = 0. Thus, as JπJ = πLJ by Lemma 2.2 and ∇̃ is a complex
connection we have that

g(JπJ ∇̃X ei, ei) = g(πLJ ∇̃ei X + πLJT̃ (X, ei), ei)

= g(∇̃ei JX, πt
Lei) + g(JT̃ (X, ei), π

t
Lei).

Since g(JX, πt
Lei) = g(πLJX, ei) = 0 we see that

g(∇̃ei JX, πt
Lei) = −g(JX, ∇̃ei π

t
Lei)

= g(X, J ∇̃ei π
t
Lei)

= g(X,πTJ ∇̃ei π
t
Lei) = g(X, JHJ).

Replacing X = g(X, ej)ej since e1, . . . , en is an orthonormal basis for TpL,
we deduce that

g(JT̃ (X, ei), π
t
Lei) = g(JT̃ (g(X, ej)ej , ei), π

t
Lei)

= g(X, ej)g(JT̃ (ej , ei), π
t
Lei)

= g(X, g(JT̃ (ej , ei), π
t
Lei)ej)

= g(X, g(πLJT̃ (ej , ei), ei)ej)

= g(X, JTJ).

We conclude that

ξJ(X) = g(JHJ , X) + g(JTJ , X).

The result follows. □

Remark. The key point in the definitions of ξJ and HJ is the identification
of quantities containing ∇̃ which are adapted to totally real geometry and
which exhibit tensorial behaviour analogous to the second fundamental form
π⊥∇ used in standard Riemannian geometry.

4.3. Canonical choices in special cases

The theory defined up to here depends on various choices: J , g, ∇̃. We have
tried to emphasize the role played by each of these structures on M .
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On a given manifold M there is usually no canonical choice of such
structures. Furthermore, even after making the choice of J and g, i.e. in an
almost Hermitian manifold, there is no canonical choice of unitary connec-
tion ∇̃. Even Gauduchon’s study of canonical connections [9] leaves us with
a 1-parameter family of connections to choose from.

However, there are two special cases where we can restrict the number
of arbitrary choices made. We present these below, starting with the obvious
one.

M Kähler. In this case J and g are chosen so as to have very strong al-
gebraic, geometric and analytic properties. There is then a canonical choice
of unitary connection: we may use the Levi-Civita connection ∇. The ad-
vantage of this choice is that it is also torsion-free, leading to several simpli-
fications in our formulae. Furthermore, (4) shows that

P̃ (X,Y ) = ω(R(X,Y )ej , ej) = 2ρ(X,Y ).

M almost Kähler. The Grassmannian of totally real n-planes in M de-
pends on the choice of J . Changing J will produce a different set of totally
real submanifolds. For example, a totally real submanifold may become par-
tially complex under a change of J .

This may appear to be in contrast with Section 3.1, where we character-
ized totally real planes π in terms of the line bundle KM . Indeed, it is known
that complex line bundles are completely determined by their first Chern
class c1. Since this is an integral class, it is for example invariant under con-
tinuous deformations of J . However, notice that our characterization does
not depend solely on the line bundle: it also depends on a particular pairing
between the line bundle and π, i.e. on the identification of the line bundle
with the space KM of (n, 0)-forms, and this identification does depend on
the choice of J .

Symplectic geometry provides a well-known framework within which c1 is
fixed: specifically, c1 can be defined using any J compatible with the given
ω. From the almost Hermitian point of view, this is the realm of almost
Kähler manifolds. Specifically, we start with a symplectic manifold (M,ω)
and we add a choice of a Riemannian metric g and an orthogonal almost
complex structure J such that ω(X,Y ) = g(JX, Y ) for all tangent vectors
X,Y on M .

We let ∇ denote the Levi-Civita connection of g. It is well-known (see,
for example, [1]) that

∇JXJ = (∇XJ)J = −J(∇XJ).
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In this setting all of Gauduchon’s connections coincide, defining a canon-
ical unitary connection known as the Chern connection. Let ∇̃ denote the
Chern connection and let T̃ denote the torsion of ∇̃. Specifically,

∇̃X Y = ∇XY +
1

2
(∇XJ)(JY )

and

T̃ (X,Y ) =
1

2
(∇XJ)(JY )− 1

2
(∇Y J)(JX).

Then

T̃ (JX, Y ) =
1

2
(∇JXJ)(JY )− 1

2
(∇Y J)(J

2X)

= −1

2
J(∇XJ)Y +

1

2
J(∇Y J)(JX)

= −JT̃ (X,Y ),

from which we deduce that T̃ (JX, Y ) = T̃ (X, JY ), i.e. the (1, 1) part of
the torsion of ∇̃ vanishes (in fact, this characterizes the Chern connection
amongst complex metric connections).

5. The J-volume functional

Proposition 4.5 relates the Maslov 1-form to a vector field HJ . In the analo-
gous Proposition 2.5 HJ coincided with the mean curvature vector field. We
thus want to further investigate the geometric content of HJ . To this end
we will use the variation formulae for the J-volume functional computed in
[18].

5.1. The gradient of VolJ

Recall that the J-volume functional VolJ is defined on the space T whose
tangent space, at a given totally real submanifold L ⊆ M , is isomorphic to
the space of vector fields of the form JY , where Y is tangent along L. In
computing the first variation of this functional it thus suffices to restrict to
such vector fields. The following formula is proved in [18].
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Proposition 5.1. Let ιt : L → Lt ⊆ M be compact totally real submani-
folds in an almost Hermitian manifold and let ∂

∂t
ιt|t=0 = JY for Y tangen-

tial. Then
∂

∂t
VolJ(Lt)|t=0 = −

∫

L

g(JY,HJ + SJ) volJ

where HJ is given by (28) and for p ∈ L and an orthonormal basis e1, . . . , en
for TpL we have

(30) SJ = −g(πLT̃ (Jej , ei), ei)Jej .

It follows that, with respect to the Riemannian metric G on T defined
as

GL(JX, JY ) :=

∫

L

g(X,Y ) volJ

for JX, JY ∈ TL T , we see HJ + SJ is the negative gradient of VolJ .

Comparison with the Maslov form. We now can compare the gradient
of the J-volume with the vector field−Jξ#J = HJ + TJ defined by the Maslov
form. From (28), (29) and (30) we see that

(HJ + SJ)− (HJ + TJ) = SJ − TJ = g(πL(JT̃ (ej , ei)− T̃ (Jej , ei)), ei)Jej ,

so in a general almost Hermitian manifold the two objects are different.
Futhermore, at this level the critical points of VolJ do not appear to have
particular geometric significance.

When M is an almost Kähler manifold endowed with the Chern con-
nection then T̃ (JX, Y ) = −JT̃ (X,Y ) so SJ = −TJ . In the Kähler case,
∇̃ = ∇ is the Levi-Civita connection and hence is torsion-free, i.e. T̃ = 0, so
SJ = TJ = 0. We deduce the following important result.

Theorem 5.2. In Kähler manifolds, the negative gradient of the J-volume
coincides with the vector field −Jξ#J defined by the Maslov form.

In particular, in the Kähler setting this result allows us to transfer to
either context any information already available for the other. For example,
we can now characterize critical points of the J-volume functional as those
for which ΩJ is parallel, and we discover that moving a submanifold in the
direction −Jξ#J produces a monotone change in a certain quantity, namely
the J-volume.
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Remark. The condition that ΩJ is parallel does not imply ρJ is constant.
Indeed, recall from (27) that

(∇̃X ΩJ)(e1, . . . , en) = iξJ(X)ΩJ(e1, . . . , en) = iξJ(X)ρJ .

As the right hand side is imaginary, so the condition ∇̃ΩJ = 0 affects only
the imaginary part of the left hand side. We can rewrite the left hand side
as

(∇̃X ΩJ)(e1, . . . , en) = ∇̃X(ΩJ(e1, . . . , en))−
n∑

i=1

ΩJ(e1, . . . , ∇̃X ei, . . . , en)

= X(ρJ)−
n∑

i=1

ΩJ(e1, . . . , ∇̃X ei, . . . , en).

The variation X(ρJ) of ρJ is real, so it is not affected by ΩJ being parallel.

Recall from Lemma 4.2 that the J-volume coincides with the standard
volume on Lagrangians and that, restricted to Lagrangians, the set of critical
points of the J-volume and of minimal Lagrangians coincide. In the appro-
priate context we can now improve this result by eliminating the Lagrangian
hypothesis.

Proposition 5.3. Let M be a Kähler–Einstein manifold with Ric ̸= 0.
Then the set of critical points of the J-volume coincides with the set of
minimal Lagrangian submanifolds.

Proof. Let ι : L → M be a critical point. According to Theorem 5.2 it follows
that ξJ = 0. Proposition 4.4 shows that dξJ = ι∗ρ. Since the Ricci form
ρ = λω for some λ ̸= 0, we see that ι∗ω = 0 and ι is Lagrangian. Lemma 4.2
now shows that H = 0. Conversely, if ι is minimal Lagrangian then it is a
critical point by Lemma 4.2. □

Proposition 5.3 shows that replacing the standard volume with the J-
volume serves to filter out all other critical points, leaving only the minimal
Lagrangians. We will see in Section 9 that this result is in marked contrast
to the Ricci–flat case, where we can have non-Lagrangian critical points for
VolJ (called STR submanifolds).

Remark. The stability of critical points of the J-volume turns out to be
an interesting issue, studied in [18]. The second variation formula shows
that, when M is Kähler with negative Ricci curvature, not only is it true
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that critical points are automatically stable, but also that the J-volume is
strictly convex with respect to a certain notion of geodesics on the infinite-
dimensional space of totally real submanifolds. An application of these re-
sults appears in [19].

5.2. Comments on the negative gradient flow

Given the above, it seems reasonable to study the J-mean curvature flow
(J-MCF) of totally real submanifolds, defined as the negative gradient flow
of VolJ :

∂ιt
∂t

= HJ [ιt] + SJ [ιt].

In certain situations one might expect this to coincide with standard MCF:
for example, if both flows preserved the Lagrangian condition, Lemma 4.2
would imply that they coincide on Lagrangians. However, in generic (i.e. non
KE) almost Kähler manifolds there is no reason why the Lagrangian condi-
tion should be preserved by these flows.

More importantly, in Section 7, we will see that the operatorHJ is highly
degenerate, making the existence theory for J-MCF rather challenging. It is
an appealing idea to try to rely on the existence theory of the (less degen-
erate) MCF to obtain results for J-MCF: we give examples of this line of
thought in §7. Overall, however, it seems difficult to prove strong results for
this flow.

In the next section we will define and study an alternative flow (the
Maslov flow) in terms of the Maslov 1-form which turns out to have better
analytic and geometric properties. It follows from Theorem 5.2 that in the
Kähler setting Maslov flow and J-MCF coincide, so any results concerning
the Maslov flow will hold also for J-MCF.

In any case it is interesting to speculate on the properties of J-MCF.
Although this flow seeks to find totally real submanifolds which minimize the
J-volume, it may happen that the flow converges to a submanifold for which
VolJ is zero, i.e. to a partially complex submanifold. For example, if we start
with a partially complex submanifold L′ and perturb it slightly to become
a totally real L, then VolJ(L) should be very small and hence it should flow
back to L′ under J-MCF. In other words, one should expect that J-MCF
can leave the totally real submanifolds T and reach the “boundary” of T .
Given that this behaviour would interrupt the flow, we should incorporate
it into any notion of “singularity formation” for J-MCF.
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6. The Maslov flow

Assume we are given a unitary connection ∇̃ on an almost Hermitian man-
ifold (M,J, ḡ). Consider the induced connection ∇̃ on KM : this allows us
to define the Maslov form ξJ [ι] of any totally real immersion ι. We can use
the induced metric g on L to view ξJ [ι] as a tangent vector field so that
Jι∗ξ

♯
J [ι] is a section of J(TL). The Maslov flow for a family of immersions

ιt : L → M such that ι0 = ι is given by:

(31)
∂

∂t
ιt = −Jιt∗ξ

♯
J [ιt] = HJ [ιt] + TJ [ιt].

Stationary points for the Maslov flow are immersions for which ξJ = 0 or
equivalently ∇̃ΩJ = 0, i.e. ΩJ is a parallel section. In particular the induced
connection is flat as dξJ = 0. Observe that if ιt satisfies Maslov flow then so
does ιt ◦ ϕ for any ϕ ∈ Diff(L), so Maslov flow defines a flow on submanifolds
in T .

The short-time existence of Maslov flow is highly non-trivial and will
be discussed in Section 7. In the course of this section we will thus simply
assume that solutions exist and concentrate instead on their geometric prop-
erties. We will show that this flow is particularly interesting in the context
of almost Kähler manifolds where its properties are strongly analogous to
those valid for standard MCF, when we restrict the latter to Lagrangians in
Kähler ambient spaces.

Let us start by reviewing an interesting ambient flow for almost Kähler
manifolds, introduced by Streets and Tian.

6.1. Introduction to symplectic curvature flow

Streets–Tian [33] consider the following flow of the almost Kähler structure
on M (up to a factor of 1

2):

(32)
∂

∂t
ω = −1

2
P̃ ,

∂

∂t
J = −1

2
∇∗∇J +

1

2
N +

1

2
R

where, if {ē1, . . . , ē2n} is a local orthonormal frame on M ,

g(N (X), Y ) = g
(
(∇ekJ)JX, (∇ekJ)Y

)
;

g(R(X), Y ) = Ric(JX, Y ) + Ric(X, JY ).
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Since P̃ is closed and (up to a constant multiple) represents the first Chern
class of M , this symplectic curvature flow (SCF) preserves the closedness of
the 2-form ω and is a natural extension of Kähler–Ricci flow: in the Kähler
case we see immediately that the flow reduces to Kähler–Ricci flow. The
flow of J ensures that the compatibility condition between g, J and ω is
preserved. In particular, we have that g(∇∗∇JX −N (X), Y ) is, up to a
constant factor, equal to the (2, 0) + (0, 2) part of P̃ (X,Y ). Moreover, the
induced flow on the metric g is Ricci flow plus some lower order terms which
vanish in the Kähler setting.

The stationary solutions (and the expanding and shrinking solitons) of
SCF are not fully understood: namely solutions to

P̃ = 2λω and ∇∗∇J −N −R = 0

for some constant λ. These can all be viewed as stationary points of what
one might call normalized symplectic curvature flow, namely:

∂

∂t
ω = −1

2
P̃ + λω,

∂

∂t
J = −1

2
∇∗∇J +

1

2
N +

1

2
R.

Kähler–Einstein metrics clearly solve these equations, but non-trivial solu-
tions are also possible: for example there exist compact non-Kähler solitons
for SCF with constant J , cf. [29]. Analogous examples do not exist in di-
mension 4: any such “static” solution is necessarily Kähler–Einstein [33,
Corollary 9.5]. The metrics obtained in [29] are not Einstein; actually, there
is a conjecture due to Goldberg stating that any compact almost Kähler
manifold whose metric is Einstein is necessarily Kähler–Einstein.

6.2. Maslov flow and symplectic curvature flow

As we have seen, in the almost Kähler setting we have a canonical choice of
complex Hermitian connection (the Chern connection), so the Maslov flow
provides a canonical way to deform totally real submanifolds.

We now show that the Maslov flow is “compatible”, in a precise way,
with symplectic curvature flow. Notice that the definitions of the two flows
are completely independent of each other, and each is based on its own
specific set of geometric considerations. This means the compatibility was
not “built into” the definitions: it reveals something interesting about both
flows.
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Theorem 6.1. Let ι : L → M be a totally real submanifold of an almost
Kähler manifold (M,J, ω). Suppose that (Jt, ωt) satisfies symplectic curva-
ture flow as in (32) with ω0 = ω and ιt : L → (M,Jt, ωt) satisfies Maslov
flow as in (31) with ι0 = ι. Then

∂

∂t
ι∗tωt = 0

for all t > 0 for which the flows exist; i.e. the 2-form ωt = ι∗tωt is preserved
along the coupled flow.

Proof. Recall the equation for the Maslov flow

∂

∂t
ιt = HJ + TJ ,

where HJ and TJ are computed using the Chern connection on (M,Jt, ωt)
via (28) and (29). Since ωt remains closed along SCF, we calculate

∂

∂t
ι∗tωt = ι∗tL(HJ+TJ)ωt + ι∗t

∂

∂t
ωt

= ι∗td((HJ + TJ)⌟ωt)−
1

2
ι∗t P̃t = 0

by Propositions 4.4 and 4.5. □

Remark. Our formulae for totally real submanifolds do not require the
almost Kähler condition: in particular, dξJ is always 1

2 P̃ . The only place in
the proof where we make specific use of the fact that ωt is closed is when we
simplify L(HJ+TJ)ωt using Cartan’s formula. This step makes it non-obvious
to see how similar results could hold in the more general setting of almost
Hermitian manifolds, coupling Maslov flow with ambient flows available in
the literature which include additional terms in the evolution of the almost
Hermitian structure.

In the special case of Lagrangian submanifolds, this allows us to gener-
alize Theorem 2.1 to almost Kähler manifolds, as follows.

Corollary 6.2. Let ι : L → M be a Lagrangian submanifold of an almost
Kähler manifold. If M evolves by symplectic curvature flow and L evolves
by Maslov flow then ιt : L → M is Lagrangian with respect to ωt for all t.

Concluding remarks. Let us pause to compare Theorem 6.1 with The-
orem 2.1. To simplify the comparison, let us start by assuming that M is
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Kähler. In this case SCF coincides with KRF and the Maslov flow coincides
with J-MCF (which is MCF on Lagrangians), so the two theorems are for-
mally analogous. Even here, Theorem 6.1 is significantly stronger than the
other, in two respects:

• it does not assume that L is compact;

• it proves that the 2-form ωt is preserved pointwise, regardless of its
initial value; in other words, it applies to all totally real submanifolds,
rather than only to Lagrangians.

Why is this true? Recall our concluding remarks at the end of Section 2.4.
On Lagrangians the J-volume and the standard volume coincide; our new
strategy is to choose the J-volume extension of this functional to T , rather
than the standard volume functional. This leads to the uniformly simple
formulae

(33) ξJ = ι∗ω(HJ , ·), dξJ =
1

2
ι∗P̃ ,

valid for both Lagrangians and totally real submanifolds. In turn these lead
to an ODE on ωt rather than a parabolic inequality such as (19), so we can
eliminate the maximum principle argument and the related compactness
assumption.

Equations (33) rely also on the Kähler assumption, which cancels the
quantity TJ which should have appeared. The generalization to almost Kähler
manifolds brings TJ back, and thus requires replacing the gradient flow with
the Maslov flow. This explains why the result, in its most general form,
concerns the coupling of SCF with Maslov flow, rather than with J-MCF.

On the other hand, even in the Kähler case, replacing Volg with VolJ
leads to a more degenerate operator governing the flow. This makes the
existence theory much more complicated: we will discuss this at length in
Section 7.

To close, it may be useful to emphasize a basic difference between J-
MCF (or MCF) and the Maslov flow. The former is generated by a func-
tional which is invariant under reparametrization. This implies that the cor-
responding flow is invariant: reparametrization adds tangential motions to
the flow, affecting its direction in TM but not the image submanifolds. In
other words, from the point of view of the functional, our definition of the
J-mean curvature vector field is not particularly canonical (and indeed, it
depends on the choice of an L2-type metric). Reparametrization, however,
will usually change ω (except in the case of Lagrangians). Preserving ω can
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be thought of as analogous to gauge-fixing: it is a strong condition on the
immersions, rather than on the image submanifolds. In this sense we can
think of the Maslov flow as a gauge-fixed version of the gradient flow. To
define this flow, the idea of replacing the more classical transverse space
TL⊥ with J(TL) is vital. Given that the two flows differ at most by only
lower-order terms (defined via the torsion), we start to notice the geometric
importance of a careful choice of such terms.

6.3. Flows in Kähler–Einstein manifolds

Recall the difference between Theorem 2.10 and Theorem 2.11: the former
manages to avoid the need for an ambient flow by assuming the KE condi-
tion. There is however an alternative way of thinking about this situation,
as in Corollary 2.12: if M is KE and we couple MCF with the normalized
KRF, the ambient remains static so we exactly recover Theorem 2.10.

Let us apply this same game to Theorem 6.1, using the normalized ver-
sion of SCF introduced in Section 6.1. The same proof then leads to the
following.

Theorem 6.3. Let ι : L → M be a totally real submanifold of an almost
Kähler manifold (M,J, ω). Suppose that (Jt, ωt) satisfies the normalized
symplectic curvature flow with respect to the constant λ and that ιt : L →
(M,Jt, ωt) satisfies Maslov flow.

Then, for all t > 0 for which the flow exists,

∂

∂t
ι∗tωt = λι∗tωt;

i.e. the 2-form ωt = ι∗tωt changes exponentially.

Let us apply Theorem 6.3 to the case in which M is KE with Ricci
form ρ = λω. Here the KE condition exactly counteracts the ambient flow,
leaving the structure on M static. Thus, we can judge the effect of the
Maslov flow (equivalently, of the J-mean curvature flow) on ωt, taken as
a single equation rather than as part of a coupled system: we see that ωt

changes exponentially.

Proposition 6.4. Let ι : L → M be a totally real submanifold in a Kähler–
Einstein manifold M and let ιt denote the solution to the Maslov flow with
ι0 = ι, for some maximal time interval [0, T ).
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• Assume Ric ≥ 0. If ι : L → M is not Lagrangian then it cannot become
Lagrangian under Maslov flow.

• Assume Ric < 0 and that ιt(L) = Lt converges to a smooth submani-
fold LT of the same dimension as t → T . Then LT ∈ T if and only if
T = ∞; in this case LT = L∞ is a minimal Lagrangian submanifold.
Conversely, LT is partially complex only if T < ∞.

Proof. Theorem 6.3 shows that ωt = eλtω0. Assume λ ≥ 0. If ι is not La-
grangian, there exist tangent vectors X,Y on L such that ω0(X,Y ) ̸= 0.
Then

|ωt(X,Y )| = eλt|ω0(X,Y )| ≥ |ω0(X,Y )|
for all t ≥ 0. This quantity is monotone increasing or constant, so in the
limit it cannot vanish.

Now assume λ < 0. If ιt converges within T then T = ∞ otherwise the
flow could be continued as LT is smooth so the time interval would not
be maximal. Now assume T = ∞ and Lt converges to some L∞. Since L∞

is smooth of the same dimension, the induced metric g∞ is smooth. Then
|ωt|gt = eλt|ω0|gt and

lim
t→∞

|ω0|gt = |ω0|g∞
is finite. Hence, as λ < 0 we see that |ω∞|g∞ = 0 and thus L∞ is Lagrangian,
so in particular L∞ ∈ T . It is clear that L∞ must also be stationary for the
Maslov flow, thus minimal. Notice that this agrees with Proposition 5.3. □

Loosely speaking, Proposition 6.4 says that the set L of Lagrangian
submanifolds is an unstable subset of T for the Maslov flow when Ric ≥ 0;
it is an attractor for the flow when Ric < 0. The latter statement makes
clearer the strict stability of the critical points in negative KE manifolds.

Proposition 6.4 also shows that if we are in a Ricci-positive KE manifold
M , where the only critical points are minimal Lagrangian by Proposition 5.3,
and we start with a non-Lagrangian totally real submanifold L then the
Maslov flow cannot converge. One possibility is that L becomes partially
complex so that the Maslov flow becomes undefined; i.e. the flow reaches
the “boundary” of the space T of totally real submanifolds in M .

6.4. Relation to other Lagrangian flows

To conclude this section we make some observations relating the Maslov
flow to other generalisations of Lagrangian MCF which have appeared in
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the recent literature. We emphasize however that the papers in question
consider only Lagrangians, while the Maslov flow applies to any totally real
submanifold.

Let L be a Lagrangian in an almost Kähler manifold M . Here we showed
that SJ = −TJ for any totally real, and hence by Lemma 4.2 on L we have
HJ + SJ = HJ − TJ = H. Therefore, on L,

HJ + TJ = H + 2TJ = H + 2g(JT̃ (ej , ei), ei)Jej = Ĥ,

where Ĥ is the “generalized mean curvature vector” on Lagrangians defined
in [32] (applied to the Chern connection). We thus see that Maslov flow
is a natural extension of the generalized Lagrangian mean curvature flow
introduced in [32]. However, in [32], they also extend Ĥ to totally reals
as a normal vector field, so the Maslov flow is not the Ĥ-flow except on
Lagrangians.

Now let H̃ = π⊥ ∇̃ei ei. Since HJ + SJ = H and HJ = H̃ on L, we see
that

H = HJ + SJ = H̃ + g(JT̃ (ej , ei), ei)Jej ,

so that the torsion terms

g(JT̃ (ej , ei), ei)Jej = H − H̃.

We can therefore deduce that TJ = H̃ −H so that, on L, HJ + TJ = 2H̃ −
H. Since M is almost Kähler, the Chern connection is related to the Levi-
Civita connection by

∇̃X Y = ∇XY +
1

2
(∇XJ)(JY ) =

1

2
∇XY − 1

2
J∇X(JY ),

and so we see that, on L,

HJ + TJ = 2H̃ −H = −π⊥J∇ei(Jei).

When M also has c1 = 0, this is referred to as the “complex mean curvature
vector” in [6]. So we see that the Maslov flow also generalizes this work.

7. Short-time existence

The existence of short-time solutions to parabolic equations is a standard
fact. Geometrically defined flows, however, are usually not parabolic: this is
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related to the fact that the underlying operators are invariant with respect to
some large group of transformations, generally known as the “gauge group”.

Consider the case of MCF for immersions ι : L → (M, g). The volume
functional is invariant under reparametrizations, i.e. under the action of the
group Diff(L). This is reflected in the fact that, given φ ∈ Diff(L), the mean
curvature vector has the property H[ι ◦ φ] = H[ι] ◦ φ. The non-ellipticity of
H[ι], viewed as a second order operator on ι, is another manifestation of this
fact. Its symbol with respect to the generic non-zero 1-form ζ ∈ T ∗

xL,

σ(H[ι])x(ζ) : Tι(x)M → Tι(x)M,

is only a semi-positive, rather than positive, endomorphism: its kernel is n-
dimensional, given by the subspace ι∗(TxL). It is thus not immediately clear
that MCF admits short-time solutions. This issue is generally resolved in
two ways: either restricting to normal variations, i.e. working transversely
to the gauge group, or via a standard argument known as “DeTurck’s trick”,
following [7] (though it was known before in other contexts).

In general, DeTurck’s trick consists of (i) modifying the operator to make
it elliptic, (ii) solving the corresponding parabolic equation using standard
theory, and (iii) showing that this solution can be modified to obtain a
solution to the original equation. Clearly, this final modification must be
built ad hoc for the specific flow, in a manner determined by the gauge
group.

Uniqueness of the solution of such “weakly parabolic” equations is also
an issue; an appropriate argument must be found for each case.

J-MCF has the same invariance property as MCF so one should expect
it to have a degenerate symbol, as above. The Maslov flow differs from J-
MCF only by torsion terms, which are first order. This implies they have
the same symbol, determined by the operator HJ . They thus share the same
degeneracies.

In computing this symbol, however, we will see that the kernel is much
larger than expected purely from invariance under reparametrization. In
particular, restricting to transverse variations will not suffice to obtain a
parabolic equation.

In special settings these equations do, nonetheless, admit solutions. For
example, assume the ambient manifold is KE. According to Theorem 2.10
MCF, applied to Lagrangian initial data, produces a curve of Lagrangian
submanifolds. Lemma 4.2 shows this family automatically solves J-MCF,
which thus admits a solution even though it is much more degenerate than
MCF. We now apply Theorem 5.2 to conclude that the Maslov flow is also
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solvable. Analogously, we could use Theorem 2.11 to prove that the coupled
systems J-MCF+KRF and MF+KRF admit solutions for Lagrangian initial
data in any Kähler manifold. Notice however that this method does not
prove that the Maslov flow or J-MCF admit solutions when considered as
self-standing equations.

In some sense we can view this method as an analogue of DeTurck’s
trick: we perturb the degenerate operator HJ to the less degenerate H,
obtain existence, then argue that the solutions coincide in certain situations:
cf. the second Remark following Corollary 7.4 for a similar (though slightly
more involved) argument. However, this method would certainly not extend
to general totally real submanifolds, nor to more general ambient spaces
in which MCF does not preserve Lagrangians. It is thus necessary to find
alternative ways to deal with the extra degeneracies of HJ .

For the above reasons we now present another method for proving short-
time existence, based on the Nash–Moser implicit function theorem as for-
malized by Hamilton [11]. This method completely bypasses the properties
of MCF, allowing us to extend the above existence results to a wider category
of ambient spaces: SCF solitons. The key ingredient will be the following,
which we may immediately deduce from Propositions 4.4-4.5:

(34) d(ι∗ω(HJ [ι] + TJ [ι], ·)) =
1

2
ι∗P̃ .

Notice that the third order operator in ι on the left-hand side equals a first
order one on the right, so (34) is clearly a strong condition. We already used
(34) in Section 6 for geometric purposes, to show that any initial tensor ω :=
ι∗ω̄ is preserved during the Maslov flow coupled with symplectic curvature
flow. Here instead we will show that it has analytic consequences: specifically,
equation (34) enables us to deal with the extra degeneracies in HJ + TJ by
providing the essential “integrability condition” required to implement the
results in [11] to prove short-time existence.

This approach has several consequences.

• Our method strongly relies on the properties of the full operator, not
only on its highest order terms. It thus applies only to the Maslov flow,
confirming that the existence of solutions to the J-mean curvature flow
seems more difficult, cf. Section 5.2.

• It indicates that the coupling with SCF might be an important ingredi-
ent in the general existence theory for the Maslov flow. Equivalently,
it shows the relevance of the preserved quantity ω for the existence
theory.
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• It indicates a new role for (34), thus also for its classical counterpart
(12).

Let us start by computing the symbol of the operator ι 7→ HJ [ι], viewed as
a second-order operator on the space of totally real immersions.

Proposition 7.1. Given x ∈ L, ζ ∈ T ∗
xL and a totally real immersion ι,

the symbol of the operator HJ is

σ(HJ [ι])x(ζ) : Tι(x)M → Tι(x)M, Z 7→ g(Jι∗ζ
#, πJZ)Jι∗ζ

#.

The kernel of this map is ι∗(TxL)⊕
(
⟨Jι∗ζ#⟩⊥ ∩ Jι∗(TxL)

)
, and thus has

dimension 2n− 1. Further, Z := Jι∗ζ
# is an eigenvector, with eigenvalue

|ζ|2.

Proof. Choosing local coordinates on L, let us identify ∂i with ι∗(∂i) and
write

JHJ [ι] = trg(πTJ ∇̃πt
L) = gijπTJ ∇̃∂i

πt
L(∂j) = ak∂k.

We can compute the coefficents ak explicitly by noticing, in general, that if
v = ak∂k then g(v, ∂l) = akgkl thus a

k = gklg(v, ∂l). It follows that

HJ [ι] = −gklgijg(πTJ ∇̃∂i
πt
L(∂j), ∂l)J∂k

= −gklgijg(J ∇̃∂i
πt
L(∂j), ∂l)J∂k

= −gklgijg(∂j , πL ∇̃∂i
J∂l)J∂k

= gklgijg(J∂j , πJ ∇̃∂i
∂l)J∂k.

If we choose ∂i to be orthonormal in x, this expression simplifies to

HJ [ι] = g(J∂j , πJ ∇̃∂j
∂k)J∂k.

We now need to linearize this operator. We can identify any variation of ι
as a vector field Z and, in terms of our local coordinates, we can write ∇̃
as the standard differential plus lower order terms. Notice that πJ is also
a first order operator on ι, so HJ is quasi-linear; in particular, πJ does not
contribute to the second order terms of the linearization. Thus, up to lower
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order terms, the linearized operator is

Z 7→ g(J∂j , πJ
∂2Z

∂j∂k
)J∂k.

This shows that the symbol with respect to ζ = ζidx
i is

σ(HJ [ι])x(ζ) : Z 7→ g(J∂j , πJZ)ζjζkJ∂k,

proving the claim. □

Proposition 7.1 shows that HJ is a particularly degenerate operator.
However, Propositions 4.4–4.5 show that HJ + TJ satisfies the differential
identity (34). To understand this identity better, let us define the first order
operator in two variables

(35) (ι, Z) 7→ Lι(Z) := d(ι∗ω(Z, ·)),

which is linear in Z. For fixed ι, the operator Z 7→ Lι(Z) has symbol

σ(Z 7→ Lι(Z))|x(ζ) : Tι(x)M → Λ2(T ∗
xL), W 7→ ζ ∧ ι∗ω(W, ·),

so its kernel is the (n+ 1)-dimensional space J(ι∗(TxL))
⊥ ⊕ ⟨Jι∗ζ#⟩.

Rewriting (34) as 2Lι(HJ [ι] + TJ [ι]) = ι∗P̃ , we see that the composition
of symbols on the left-hand side must vanish, and thus

σ(Z 7→ Lι(Z)) ◦ σ(ι 7→ HJ [ι]) = 0.

We can interpret this as a constraint on the dimension of the image of the
symbol of HJ . The key observation, however, is that ⟨Jι∗ζ#⟩ is precisely the
positive eigenspace of the symbol of HJ .

We thus find ourselves in a situation very closely related to one intro-
duced in [11, §5]: equation (34) corresponds to Hamilton’s “integrability
condition”. In order to apply that theory, however, it is necessary to “lin-
earize” the setting of the problem, rephrasing the space of immersions into
M as a space of sections of a fixed vector bundle. We can then view the non-
linear operator HJ + TJ as a non-linear operator acting on these sections.
We now review a standard way to achieve this. The bottom line will be
that the two formulations are equivalent; indeed, we will ultimately work in
terms of the original formulation so as to avoid the proliferation of pull-back
operations.
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The problem, reformulated. Let exp be the exponential map on (M, ḡ).
Given a totally real immersion ι0, consider the diffeomorphism

F : U ⊆ TL → V ⊆ M, F (x,X) := exp|ι0(x)(Jι0∗(X))

where U is an open neighbourhood of the zero section and V is an open
neighbourhood of ι0(L). Let G := F−1 be the inverse diffeomorphism. The
properties of exp imply that

∂F

∂X |(x,0)
(·) = Jι0∗(·) : TxL → Jι0∗(TxL).

This implies that

G∗|ι0(HJ [ι0]) = −ι−1
0∗ (JHJ [ι0]).

Set X := G(ι), so that ι = F (X). Then

∂X

∂t
= G∗|ι

(
∂ι

∂t

)
= G∗|ι(HJ [ι]) = H̃J [X]

X|t=0 = G(ι0) = 0,

where we set H̃J [X] := G∗|F (X)(HJ [F (X)]).

We now want to study the symbol of the operator X 7→ H̃J [X]. Notice
that F , respectively G, is defined pointwise, so it is of order zero in X,
respectively ι. This implies that

σ(G∗|ι(HJ [ι])) = G∗|ισ(HJ [ι]).

Since G∗ is an isomorphism, the kernel of the left-hand side has dimension
2n− 1. In theory, G∗|ι might affect positivity in the remaining direction.
However, when ι = ι0 we can compute the symbol explicitly:

σ(G∗|ι0(HJ [ι0]))|x(ζ) = σ(−ι−1
0∗ (JHJ [ι0]))|x(ζ) : TxL⊕ TxL → TxL⊕ TxL,

(Y1, Y2) 7→
(
0, g(Jι0∗ζ

#, Jι0∗Y2)ζ
#
)
= g(ζ#, Y2)(0, ζ

#).

This endomorphism has positive eigenvector with (Y1, Y2) = (0, ζ#), so it has
positive trace. This is an open condition, so the same holds for σ(G∗|ι(HJ [ι])),
for any ι sufficiently C2-close to ι0. Replacing ι with F (X) gives the follow-
ing.

Lemma 7.2. For any X sufficiently C2-small, the symbol of X 7→ H̃J [X]
has a (2n− 1)-dimensional kernel and one positive eigenvector.
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Up to here, X could be any immersion L → U , but we now restrict to
X ∈ Λ0(U), i.e. to sections of TL. Our main motivation for doing this is to
apply [11, Theorem 5.1] to HJ + TJ ; notice that it also corresponds to the
idea of reducing degeneracies through gauge-fixing. In order for the flow to
preserve sections, however, it will be necessary to project the operator onto
the distribution in TU determined by the fibres of the vector bundle TL.

We can also describe this space of sections in our original setting, given
by maps into M . The map F∗ sends the distribution in TU to an integrable
distribution D, contained in TM . Sections of the vector bundle then corre-
spond to the space of totally real immersions

S[ι0] := {ι : L → M such that ι0(x), ι(x) belong to the same leaf of D}.

In Hamilton’s framework the next step would be to pull the integrability
condition (34) back to U and show it is satisfied by the projected operator.
Given the above, however, it is clear that we can equivalently continue to
work in V, applying Hamilton’s result to our restricted space of immersions
S[ι0]. This will simplify some of the notation.

Existence of Lagrangian solutions. The first problem is to define the
projection of HJ + TJ so as to preserve the integrability condition (34). We
make use of the fact that Z 7→ LιZ given in (35) has a large kernel (reflected
in its symbol), given by sections of J(ι∗(TL)

⊥) = (Jι∗(TL))
⊥. When ι = ι0

this space is orthogonal to the distribution D, so for immersions C1-close
to ι0 it is transverse to the distribution. Given any such ι, we thus obtain a
splitting

Tι(x)M = Dι(x) ⊕ J(ι∗(TxL)
⊥).

Let π denote the corresponding projection onto the second factor. Notice
that the splitting, thus the projection, depends on first-order information in
ι.

Set KJ [ι] := π(HJ [ι] + TJ [ι]). Then HJ + TJ −KJ belongs to the distri-
bution and continues to satisfy the integrability condition (34).

We now show that this modification of the Maslov flow is well-posed.

Theorem 7.3. Let (M,J, ω̄) be an almost Kähler manifold. Let ι0 : L → M
be a totally real immersion. Then

∂ιt
∂t

= HJ [ιt] + TJ [ιt]−KJ [ιt], ιt|t=0 = ι0

admits a unique short-time solution in S[ι0].
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Proof. As already discussed, we linearize the setting (t-independently) for
this problem by applying G: S[ι0] then corresponds to the sections of TL,
setting us exactly in the correct framework for applying [11, Theorem 5.1].
We need only check that the positivity condition of that theorem is satisfied:
in terms of S[ι0], this corresponds to proving that the symmetric endomor-
phism σ(HJ [ι] + TJ [ι]−KJ [ι])(ζ)|ι(x) is positive for ι near ι0 when restricted
to

Ker (σ(Z 7→ Lι(Z))(ζ)) ∩ Dι(x).

When ι = ι0 this space coincides with ⟨Jι∗ζ#⟩: it has dimension one and
the positivity condition is fulfilled. For small perturbations of ι this dimen-
sion can only decrease. However, we know that it must always be at least
1-dimensional because HJ + TJ −KJ satisfies the integrability condition.
Furthermore, positivity is an open condition. This proves that Hamilton’s
criterion holds, so we can apply [11, Theorem 5.1] to obtain the existence
and uniqueness of the solution ιt within the class S[ι0]. □

Corollary 7.4. Assume (M,J, ω̄) is almost Kähler and satisfies P̃ = 2λω̄
for some λ ∈ R (as defined in Section 6.1) and that ι0 is Lagrangian. Then
the Maslov flow

∂ιt
∂t

= HJ [ιt] + TJ [ιt], ιt|t=0 = ι0

admits a unique short-time solution ιt : L → M in S[ι0], and it is Lagrangian.

Proof. Let ιt be the solution obtained in Theorem 7.3. The integrability con-
dition, together with the hypothesis P̃ = 2λω̄, shows that ∂

∂t
(ι∗t ω̄) = λι∗t ω̄,

so ιt is Lagrangian at each time as ι0 is Lagrangian. In turn, this implies
that KJ [ιt] is a tangent vector field, i.e.

KJ [ιt] = (ιt)∗(Xt),

for a curve of vector fields Xt on L. Let φt be the curve of diffeomorphisms
of L obtained by integrating Xt and set jt(x) := ιt(φt(x)). Then

∂jt
∂t

=
∂ιt
∂t |ϕt

+ (ιt)∗

(
∂φt

∂t

)
= HJ [ιt]|ϕt

+ TJ [ιt]|ϕt
−KJ [ιt]|ϕt

+ (ιt) ∗ (Xt)

= HJ [ιt ◦ φt] + TJ [ιt ◦ φt] = HJ [jt] + TJ [jt],

solving the equation. □

Remark. A key example of almost Kähler manifolds with P̃ = 2λω̄ are
solitons for symplectic curvature flow, so the previous sections suggest that
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Corollary 7.4 is yet another manifestion of the interaction between Maslov
flow and SCF. It would thus be interesting to extend Theorem 7.3 and
Corollary 7.4 to the (modified) coupled flow MF+SCF. Specifically, suppose
the structure (ḡt, Jt, ω̄t) on M moves by symplectic curvature flow (which
we know has short-time existence) with initial condition (ḡ, J, ω̄). In this
case we could define F , G, D and S[ι0] as before, with respect to the fixed
metric ḡ: this data serves only to linearize the setting, thus does not need to
depend on t. Since the totally real condition is open, for t sufficiently small
the maps in S[ι0] are also Jt-totally real and we can repeat our construction
to obtain a varying family of splittings

Tι(x)M = Dι(x) ⊕ Jt(ι∗(TxL)
⊥t)

for ι near ι0, thus t-dependent projections πt onto the second factor. We now
define Kt

J [ι] := πt(H
t
J [ι] + T t

J [ι]), where Ht
J and T t

J are computed using the
structure (ḡt, Jt, ω̄t), obtaining a modified Maslov flow.

The situation is thus very similar to the case above, but the existence
proof given there fails because now the integrability operator L depends
explicitly on t through ω̄t: this situation is more complicated than that
considered in [11], because of the extra terms generated by the t-derivative.

Remark. A short-time existence result similar to Corollary 7.4 was ob-
served in [32] (when applied to the Chern connection). There the authors
define a normal vector field Ĥ on any totally real submanifold, which agrees
up to first order terms with the mean curvature vector H. The Ĥ-flow is
thus weakly parabolic, and short-time existence follows from standard argu-
ments. A maximum principle method, as in Section 2, shows that the Ĥ-flow
preserves the Lagrangian condition if P̃ = 2λω̄. We observed in Section 6.4
that, on Lagrangians, Ĥ = HJ + TJ and thus the Ĥ-flow coincides with the
Maslov flow on Lagrangians. This does not, however, imply that the opera-
tors have the same symbol: indeed, we have shown that the symbols are very
different. On the one hand, the Ĥ-flow has a much easier existence theory.
On the other, it has no special geometric properties on generic totally real
submanifolds: it is neither a gradient flow (like J-MCF), nor does it couple
well with any ambient flow (like Maslov flow).

Comparison with MCF and uniqueness. It is useful to stress the
analogies and differences with the corresponding proof for MCF. Assume we
want to show

∂ι

∂t
= H[ι]
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admits a solution, which is unique. Let us first restrict to normal variations.
We use the initial immersion ι0 and the exponential map to build a local
diffeomorphism defined on (a neighbourhood of the pull-back of) the normal
bundle

F : U ⊆ ι∗0(ι0∗(TL)
⊥) → V ⊆ M

and restrict our attention to immersions obtained as sections of U . Notice
that, as above, the corresponding distribution D in TM will be normal
to ι∗(TL) only when ι = ι0, so to preserve such sections we must project
the equation onto D. This implies that, as a first step, we try to solve the
perturbed equation

∂ι

∂t
= H[ι]− π(H[ι]).

Once again, defining the projection requires the choice of a splitting of
Tι(x)M . In this case it is convenient to make the choice

Tι(x)M = Dι(x) ⊕ ι∗(TL),

because (i) the projected equation is parabolic, so we immediately obtain
existence and uniqueness within the class of sections, and (ii) for any initial
data, we find ourselves in the same situation as in Corollary 7.4: since the
perturbation is tangential, we can recover a solution to MCF via reparam-
etrization.

It is important to emphasise, however, that for MCF any choice of projec-
tion generates a parabolic equation when restricted to the space of sections:
we can thus make the choice that best allows for returning to the original
equation. For Maslov flow, the additional degeneracies make us use the in-
tegrability condition to obtain existence, thus forcing us to carefully choose
a projection which preserves this condition. This is the main difference be-
tween the two flows.

The final step is to prove uniqueness within the wider class of all im-
mersions. In this regard the two equations are very similar. The space of
sections is locally in 1:1 correspondence with the space of non-parametrized
submanifolds, i.e. with the space of immersions modulo reparametrization
via diffeomorphisms of L. The above uniqueness result within the space
of sections implies uniqueness of the corresponding flow in the space of
non-parametrized submanifolds. Any two solutions ιt, ι

′
t to MCF or to the

Maslov flow, given the same initial data, thus define the same image sub-
manifold Lt ⊆ M at each time: they differ only by a 1-parameter family of
reparametrizations, i.e. ι′t = ιt ◦ φt. It follows that the corresponding time
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derivatives differ only by a tangential term. On the other hand, the equa-
tions prescribe a motion which is transverse to the tangent space: orthogonal
in the case of MCF, in J(TL) in the case of the Maslov flow. In both cases,
this implies that such tangential terms must vanish, so φt ≡ Id.

8. Maslov form in Calabi–Yau manifolds

The class of Ricci-flat KE manifolds contains a special subclass: Calabi–Yau
manifolds. In this setting there is a classical notion of Maslov form, which we
review in this section and compare with the Maslov form introduced above.
This leads to a new characterization of the critical points of the J-volume
functional.

8.1. Classical Maslov form

Lagrangian Grassmannian. Consider the Grassmannian of all oriented
n-planes in Cn. The Lie group U(n) acts on it by rotation. Let Rn de-
note the n-plane spanned by the standard vectors ∂x1

, . . . , ∂xn
, with the

corresponding orientation. The Grassmannian Lag+ of oriented Lagrangian
planes can then be described as the orbit of Rn under this action. The sub-
group preserving Rn is SO(n): this shows that Lag+ can be identified with
the homogeneous space U(n)/ SO(n). Consider the map

(36) eiθ : Lag+ ≃ U(n)/ SO(n) → S1, π ≃ [U ] 7→ detC(U).

This defines the Lagrangian angle θ of the oriented Lagrangian plane, up to
multiples of 2π.

Now let V be any n-dimensional Hermitian vector space. Choose an
isomorphism φ : V → Cn which identifies corresponding structures. We can
then use φ to identify the oriented Lagrangian Grassmannian of V with
U(n)/ SO(n). Notice that φ is well-defined only up to left multiplication by
U(n), so the identification of Grassmannians is also well-defined only up to
left multiplication. This shows that, in this context, the Lagrangian angle is
not well-defined.

To obtain a Lagrangian angle for planes in V , we first observe that detC
can be identified with the n-form dz := dz1 ∧ · · · ∧ dzn on Cn. Let us thus
assume that V is further endowed with a complex n-form Ω, which is equal
to φ∗dz. Then the space of isomorphisms identifying all given structures is
well-defined up to left multiplication by SU(n), so the Lagrangian angle is
now well-defined.
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Totally real Grassmannian. Analogous considerations allow us to iden-
tify the Grassmannian TR+ of oriented totally real n-planes in Cn with the
homogeneous space GL(n,C)/GL+(n,R). Recall the standard Polar Decom-
position theorem: any M in GL(n,C) has a unique decomposition M = PU ,
where P is positive self-adjoint and U ∈ U(n). There is an explicit formula:
P =

√
MM∗, thus U = (

√
MM∗)−1M . Consider the composition

eiθ : TR+ ≃ GL(n,C)/GL+(n,R) → U(n)/ SO(n) → S1

π ≃ [M ] 7→ [U ] 7→ detC(U) =
detC(M)

|detC(M)| .

Again, this implicitly defines an angle θ(π); if π is Lagrangian, it coincides
with the Lagrangian angle.

Once again, in a Hermitian vector space V the identification of the ori-
ented totally real Grassmannian with GL(n,C)/GL+(n,R) is well-defined
only up to left multiplication by U(n). The projection map GL(n,C) → U(n)
defined by polar decomposition is equivariant with respect to this multipli-
cation. This implies that, as long as V is further endowed with a n-form Ω
as above, we can define the angle of any oriented totally real n-plane π. We
can also calculate this angle intrinsically, as follows:

eiθ(π) = Ω(e1, . . . , en) = Ω(v1, . . . , vn)/|Ω(v1, . . . , vn)|(37)

= Ω(v1, . . . , vn)/|v1 ∧ · · · ∧ vn|h,

where e1, . . . , en is a positive orthonormal basis for the Lagrangian plane
obtained from π via polar decomposition, whilst v1, . . . , vn is any positive
oriented basis of π.

Classical Maslov form. Now consider Cn as a manifold. The oriented
Lagrangian Grassmannian is a trivial fibre bundle over Cn; we can identify
it with U(n)/ SO(n)× Cn. Let ι : L → Cn be a Lagrangian immersion. The
Lagrangian angle of L is the function θL on L defined by θL(x) := θ(TxL).
Consider the corresponding map

(38) eiθL : L → S1.

The classical Maslov form is then the 1-form µL := (eiθL)∗dθ = dθL. Notice
that this is a well-defined closed form on L, even though the underlying
angle is only well-defined up to multiples of 2π.
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Extensions of the classical Maslov form. It is simple to extend the
definition of the classical Maslov form in two ways.

First, assume we have a totally real immersion ι : L → Cn. We can then
define an angle function as above, setting θL(x) := θ(TxL). The classical
Maslov form is then µL := (eiθL)∗dθ = dθL.

Second, assume M is an almost Hermitian manifold endowed with a
global non-zero smooth (n, 0)-form Ω, normalized to have length 1. In partic-
ular this implies thatKM is differentiably trivial. For each p ∈ M , V := TpM
is a Hermitian vector space endowed with a form Ω[p], isomorphic to Cn with
its standard structures. In this case the Grassmannians of oriented totally
real and Lagrangian planes are not trivial bundles over M , but they still
have standard fibres GL(n,C)/GL+(n,R) and U(n)/ SO(n), respectively.

Let ι : L → M be a totally real immersion. We can define the angle
function pointwise, as above. It will be smooth (though well-defined only
up to multiples of 2π) because the data on M is smooth. We then obtain a
form µL as above.

8.2. Comparison in Calabi–Yau manifolds

In Section 3.1 we defined a notion of Maslov form ξJ for a totally real
submanifold, valid in great generality: there, M was any almost complex
manifold endowed only with the additional structure of a Hermitian metric
and connection on KM . In Section 8.1 we reviewed the classical definition
of the Maslov form µL. We now want to compare these two definitions.

Before proceeding we should notice the following closely related facts.

• There is a discrepancy between the contexts of the two definitions:
the classical Maslov form requires an almost Hermitian structure on
M plus a choice of Ω. It therefore requires the topological restriction
c1(M) = 0. It does not however require a connection on KM . To com-
pare the two definitions, we will need to choose a common setting.

• In the classical setting the Maslov form is always closed, though usually
it is not exact because in general there will be no way to resolve the
fact that θL is well-defined only up to multiples of 2π. It thus defines
a cohomology class on L, known as the Maslov class. Notice that the
class of dθ is an integral class in the cohomology of S1 (at least up to
normalization). This implies that the Maslov class is also integral.

In our setting Proposition 4.3 shows that in general ξJ is not closed,
so there is no notion of Maslov class. In particular, integrating ξJ
along a loop in M depends on the specific curve, so it will not yield



✐

✐

“5-Pacini” — 2020/7/3 — 18:53 — page 664 — #58
✐

✐

✐

✐

✐

✐

664 J. D. Lotay and T. Pacini

integral values. Proposition 4.3 shows however that ξJ will be closed
if c1(M) = 0.

The previous comments show that we should concentrate on manifolds
for which c1(M) = 0. The most important such class is the following.

Definition 8.1. A Kähler manifold (M, g, J, ω) is Calabi–Yau (CY) if it is
endowed with a global section Ω of KM , parallel with respect to the Levi-
Civita connection and normalized to have constant length 1.

The existence of a parallel tensor implies a reduction of the holonomy
group of (M, g). In this case, the holonomy group is contained in SU(n), so
the metric is Ricci-flat. Furthermore Ω is holomorphic, so KM is holomor-
phically trivial.

Lemma 8.2. Let M be an almost Hermitian manifold endowed with a global
non-zero (n, 0)-form Ω, normalized to have length 1. Let ι : L → M be a
totally real submanifold with angle function θL. Let ΩJ denote the canonical
section of KM [ι], as in Section 3.1. Then

Ω = eiθLΩJ .

Proof. Choose x ∈ L and let v1, . . . , vn be an oriented basis of TxL. It suffices
to prove that

Ω(v1, . . . , vn) = eiθLΩJ(v1, . . . , vn).

Recall that ΩJ = v∗

1
∧···∧v∗

n

|v∗

1
∧···∧v∗

n|h
. Since

|v1 ∧ · · · ∧ vn|h · |v∗1 ∧ · · · ∧ v∗n|h = 1,

the result then follows from (37). □

Remark. Since both Ω and ΩJ have length 1, they are related by some
angle function. The above lemma shows that this angle function is precisely
θL.

Proposition 8.3. Let M be a CY manifold and ι : L → M be totally real.
Then ξJ = −µL.
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Proof. Since Ω is parallel, Lemma 8.2 shows that

0 = ∇Ω = d(eiθL)⊗ ΩJ + eiθL∇ΩJ .

Thus

iξJ ⊗ ΩJ = ∇ΩJ = −d(eiθL)

eiθL
⊗ ΩJ = −d(log eiθL)⊗ ΩJ = −idθL ⊗ ΩJ .

Since µL = dθL, the result follows. □

Using Proposition 4.5 leads to the following, interesting, characteriza-
tion.

Corollary 8.4. Let M be a CY manifold and ι : L → M be totally real.
Then HJ = J∇θL, so L is a critical point of the J-volume functional if and
only if θL is constant.

9. The Calabi–Yau calibration

Recall the standard setting of calibrated geometry. We start with a Rieman-
nian manifold (M, g). A differential k-form α on M is a calibration if:

• it is closed, i.e. dα = 0;

• it is bounded by the Riemannian volume in the following sense. Let
Gr+(k,M) denote the Grassmannian bundle of oriented k-planes in
M . We ask that, for any π ∈ Gr+(k,M),

(39) α|π ≤ volg[π],

where volg[π] denotes the induced volume form.

It is simple to check that −α is also a calibration.
A k-dimensional oriented submanifold ι : L → M is calibrated (by α)

if it achieves the equality: ι∗α ≡ volg. In this case a simple computation
(cf. Lemma 9.4 below) shows that L is volume-minimizing in its oriented
homology class. Notice that the same submanifold with the opposite orien-
tation is then calibrated by −α.

Calabi–Yau manifolds (M, g, J, ω,Ω) are a well-known example. Since Ω
is parallel, Re(Ω) is closed. Since |Ω|h ≡ 1, we have |Ω(e1, . . . , en)| ≤ 1 for
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orthonormal vectors e1, . . . , en. Hence |Re(Ω)(e1, . . . , en)| ≤ 1, so

(40) Re(Ω)|π ≤ volg[π].

The equality condition |Ω(e1, . . . , en)| = 1 is particularly interesting: one can
check that it is equivalent to the condition that the plane π generated by
these vectors is Lagrangian, thus providing a new characterization of La-
grangian planes. Splitting Ω into real and imaginary parts, it follows that if
equality holds in (40) then π must be Lagrangian and Im(Ω)|π ≡ 0. The con-
verse also holds, thus characterizing the submanifolds ι : L → M calibrated
by ±Re(Ω) as those for which ι∗ω ≡ 0 and ι∗ Im(Ω) ≡ 0.

More generally, for any fixed θ, eiθΩ has the same properties as Ω so we
get an S1-family of calibrations on M . The submanifolds calibrated by any
Re(eiθΩ) are called special Lagrangian (SL). We can characterize them as
follows.

Lemma 9.1. Let M be a CY manifold and ι : L → M be an immersion
with L connected. The following are equivalent characterizations of the SL
condition:

(a) ι∗Re(eiθΩ) ≡ volg (for some θ);

(b) ι∗ω ≡ 0 and ι∗ Im(eiθΩ) ≡ 0 (for some θ);

(c) ι∗ω ≡ 0 and the Lagrangian angle θL is constant;

(d) L is minimal Lagrangian.

Proof. The SL property is defined by (a). The equivalence of (a)-(c) follows
from the definitions. The equivalence with (d) follows from Corollary 8.4. □

9.1. J-volume and the CY calibration

Recall that in Section 3.1 we associated to any oriented totally real n-plane
π the n-form volJ [π]. We can use it to strengthen (40), thus decoupling the
two conditions in Lemma 9.1(b), as follows.

Lemma 9.2. Let M be an almost Hermitian manifold endowed with a global
non-zero (n, 0)-form Ω, normalized to have length 1. Fix π ∈ TR+. Then

Re(Ω)|π ≤ volJ [π] ≤ volg[π].

Furthermore, we have that equality holds
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• in the first relation if and only if Im(Ω)|π = 0 and Re(Ω)|π > 0;

• and in the second relation if and only if π is Lagrangian.

Proof. Choose a positively oriented basis v1, . . . , vn of π. We need to prove
that

Re(Ω)(v1, . . . , vn) ≤ volJ [π](v1, . . . , vn) ≤ volg[π](v1, . . . , vn).

This statement concerns numbers obtained by evaluating n-forms. Recall
that volJ is simply the restriction of the canonical section ΩJ and, cf.
Lemma 8.2, that Ω = eiθLΩJ . Thus the absolute values satisfy:

|Re(Ω)(v1, . . . , vn)| ≤ |Ω(v1, . . . , vn)| = | volJ(v1, . . . , vn)|.

The result now follows. □

Remark. Notice that the inequalities in Lemma 9.2 hold trivially for ori-
ented n-planes π /∈ TR+, i.e. partially complex n-planes, since Re(Ω)|π =
volJ [π] = 0.

Let us apply Lemma 9.2 when M is CY. We then find that

dRe(Ω) = 0, Re(Ω)|π ≤ volJ [π].

We will say that Re(Ω) is a calibration on M tamed by volJ . As before
Re(eiθΩ) also gives a calibration on M tamed by volJ for any constant θ.

Remark. The standard definition of calibration uses volg, thus a Rieman-
nian structure on M . It is interesting to notice that volJ is defined using only
complex data: J , Ω and h on KM . It follows that this notion of calibration
does not need a Riemannian structure on M .

We will say that an oriented totally real submanifold L is J-calibrated
if ι∗Re(Ω) = volJ . We say that it is special totally real (STR) if it is J-
calibrated by Re(eiθΩ), for some θ.

Using these definitions we have the following analogue of Lemma 9.1.

Lemma 9.3. Let M be a CY manifold and ι : L → M be an immersion
with L connected. The following are equivalent characterizations of the STR
condition:

(a) ι∗Re(eiθΩ) ≡ volJ (for some θ);
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(b) ι∗ Im(eiθΩ) ≡ 0 (for some θ);

(c) the angle θL is constant;

(d) L is a critical point for the J-volume.

Proof. Condition (a) is the definition of STR. The equivalence of (a) and
(b) is a consequence of Lemma 9.2. Lemma 8.2 implies the equivalence of
(b) and (c). The equivalence of (c) and (d) is Corollary 8.4. □

Remark. STR submanifolds were introduced in the special case of Cn in
[2]. Examples are given therein of STR submanifolds which are not SL.

As usual in the context of calibrations, our interest in this class of sub-
manifolds lies in the following calculation.

Lemma 9.4. Compact STR submanifolds minimize the J-volume in their
homology class. Furthermore, if L is compact STR and VolJ(L

′) = VolJ(L)
for some other L′ ∈ [L], then L′ is also STR.

Proof. Assume L is compact and STR. Then, for any compact L′ homologous
to L, ∫

L

volJ =

∫

L

Re(eiθΩ) =

∫

L′

Re(eiθΩ) ≤
∫

L′

volJ .

The result follows. □

Remark. One can also define STR submanifolds in the weaker setting of
almost Hermitian manifolds endowed with a global non-zero (n, 0)-form Ω,
normalized to have length 1 and such that Re(Ω) is closed. However, since
STR submanifolds have Im(eiθΩ)|L = 0 we see that there is an obstruction
to the local existence of STR submanifolds if d Im(Ω) ̸= 0. Hence, it is most
natural to study STR submanifolds in the situation where Ω is closed, which
forces J to be integrable and Ω to be holomorphic. Hence, M must be
Calabi–Yau.

Lemma 9.4 states that STR submanifolds minimize VolJ . However, par-
tially complex submanifolds have VolJ = 0 so we deduce the following.

Proposition 9.5. Let ι : L → M be a compact totally real submanifold in
a Calabi–Yau manifold M . Then the following statements are mutually ex-
clusive:

(a) [L] contains an STR submanifold;
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(b) [L] contains a partially complex submanifold.

Notice that the above follows alternatively from the fact that, on a par-
tially complex submanifold, Ω and thus Re(eiθΩ) vanishes.

The following corollary refers to a particular subclass of CY manifolds:
those which are hyperkähler, i.e. have holonomy contained in Sp(n)⊂SU(2n).

Corollary 9.6. (a) Let L be a compact special Lagrangian in a Calabi–
Yau manifold. Then L is not homologous to a partially complex sub-
manifold.

(b) Let L be a compact complex submanifold of (complex) dimension n
in a hyperkähler 4n-manifold. Then L is not homologous to a special
Lagrangian.

The first of these two statements has an interesting consequence.

Proposition 9.7. Let L be a compact oriented Lagrangian in a Calabi–
Yau manifold M . If [L] contains a partially complex submanifold, then La-
grangian mean curvature flow starting at L cannot converge to a special
Lagrangian.

9.2. Possible developments

Let ι : L → M be a Lagrangian submanifold in a CY manifold M . Clearly,
[ι∗ω] = 0 ∈ H2(L;R). Let us also assume [ι∗ ImΩ] = 0 ∈ Hn(L;R). Ideally,
under MCF such a Lagrangian will converge to an SL submanifold ι∞ :
L → M .

In practice however this will generally not happen, both because of the
development of singularities and because of possible further obstructions to
the existence of an SL in the given homology class. The first of these issues
might be solved using Lagrangian surgery near the singularity to create a
new smooth Lagrangian from which to restart the flow: notice that this
could however change the topology of L. The second issue is currently still
mysterious, and is conjectured to be related to some notion of “stability” of
the given homology class.

The simplest example of such a stability condition is a consequence of
Lemma 9.1(a), which implies the need for yet another initial homological
assumption:

∫
L
ReΩ > 0. A more elaborate notion of stability, motivated by

Mirror Symmetry, appears in [34]; in [35] this is conjectured to be related
to the long time existence of Lagrangian MCF, with convergence to an SL
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submanifold. Further notions of stability for Lagrangians and relations with
Lagrangian MCF are discussed in [14].

It is interesting to speculate whether the Maslov flow (or equivalently
J-mean curvature flow) of totally real submanifolds can be useful towards
this programme. The following idea indicates a possible link between La-
grangian MCF and the notion of stability for SLs, the Maslov flow and STR
submanifolds, and the work of Donaldson [8].

Assume the initial Lagrangian ι develops a singularity under MCF.
Rather than using surgery to restart the flow we could try to bypass this
problem by replacing the initial condition ι with a perturbed immersion
ι′ : L → M . This immersion would be totally real, and under the Maslov
flow would ideally converge to an STR. Of course in general the Maslov flow
might also develop singularities; however, one might at least hope that any
“non-essential” singularity, arising from a bad choice of ι′ rather than from
intrinsic issues and thus not requiring a topology change, might be avoided
via a generic choice of ι′.

The key point here would be the fact that, by relaxing the initial geo-
metric assumptions on the immersion from Lagrangian to totally real, we
would gain access to a much larger class of “generic” initial data. Notice that
in this context our initial assumption

∫
L
ReΩ > 0 can be seen as a mani-

festation of Lemma 9.3 and Proposition 9.5. In this process we would hope
that the evolution of ι′ does not stray too far from the evolution of ι: the
fact that the tensor ω is preserved under the flow may be some indication
of this.

Let us thus assume that ι′ has converged to an STR immersion ι′′. We
now need a second geometric flow evolving ι′′ towards an SL. It turns out
that such a flow exists: it is discussed in [8]. The notion of STR does not
appear there but fits in nicely. We summarize the idea as follows.

• The space of immersions M := {ι : L → M} can be viewed as an
infinite-dimensional manifold; its tangent space at ι is TιM :=
Λ0(ι∗TM), and thus inherits a complex structure from M . The in-
tegrability of J on M implies M is formally a holomorphic manifold.

• A priori M has no symplectic structure. Any choice of volume form σ
on L will however induce a symplectic form σ on M defined as follows:

σ[ι](X,Y ) :=

∫

L

ι∗ω(X,Y )σ.

This form is formally closed and compatible with the complex struc-
ture, so now M is Kähler.
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• Choose a complex volume form Ω0 on L. Consider the subset

MΩ0
:= {ι : L → M : ι∗Ω = Ω0}.

A vector X ∈ TιM is tangent to MΩ0
if and only if ι∗LXΩ = 0; this

is equivalent to ι∗LJXΩ = 0, showing that MΩ0
is a complex subman-

ifold of M, thus Kähler. In particular, if Ω0 = σ is a real form then
ι∗ ImΩ = 0 so Mσ is a subset of the space of STR immersions defined
by the pointwise volume constraint ι∗Re(Ω) = σ.

• As above, Mσ is Kähler. There is a natural action of the space of
volume-preserving diffeomorphisms G := Diff(L;σ), given by reparam-
etrization of the immersions. Donaldson shows that this action is Hamil-
tonian, thus endowed with a moment map µ : Mσ → Lie(G)∗. The
zero set of this moment map is the space of Lagrangian submanifolds
in Mσ, thus SLs. Donaldson suggests that one might use the negative
gradient flow of |µ|2 to locate SLs. This frames the existence problem
of SLs into a standard setting for stability conditions: we refer to [8]
for details.

Our idea is now clear: given the first limiting STR immersion ι′′, we choose
σ to be the induced J-volume form on L. This defines our space Mσ and
the corresponding moment map; we can run the gradient flow of |µ|2, with
initial data ι′′, to find a SL. This will live in the initially given homology
class.

It is currently not clear if replacing Lagrangian MCF with this combi-
nation of Maslov flow and moment map flow really represents a technical
improvement; however, it does serve to indicate a circle of ideas and possible
relationships.

Moduli spaces. It is well-known, cf. [28] for a comprehensive review, that
SL submanifolds generate smooth finite-dimensional moduli spaces. This is
a direct consequence of the ellipticity of the coupled conditions ι∗ω ≡ 0,
ι∗ Im(eiθΩ) ≡ 0. The condition defining STR submanifolds is not elliptic,
so moduli spaces will not be finite-dimensional. The fact that the Maslov
flow preserves ω = ι∗ω indicates that it may be interesting to couple the
STR condition with other conditions on ω and to study the corresponding
moduli spaces.

It is not known if SL moduli spaces are connected within a given homol-
ogy class. It may be that the convexity property of the J-volume, and the
existence of “larger” moduli spaces of STR submanifolds, will play a role in
this direction. In particular, notice the following construction.



✐

✐

“5-Pacini” — 2020/7/3 — 18:53 — page 672 — #66
✐

✐

✐

✐

✐

✐

672 J. D. Lotay and T. Pacini

Suppose we start with a special Lagrangian ι : L → M and perturb it
slightly to become totally real ι′ : L → M , but not Lagrangian. The stability
of critical points makes us expect that the flow will exist for all time and
converge to a smooth submanifold. However, Proposition 6.4 shows that this
submanifold will not be Lagrangian; it will also not be partially complex by
Proposition 9.5. We thus expect that L′ will flow to an STR submanifold.
Applying this construction to a family ι′t of initial submanifolds converging
to ι, we construct a limiting family of STR submanifolds converging to ι.
This suggests that any SL submanifold should arise as a limit of a family of
STR submanifolds.

Graphs. Suppose we have symplectic manifolds (M1, ω1) and (M2, ω2) and
we define (M,ω) to be the symplectic manifold with M = M1 ×M2 and
ω = π∗

1ω1 − π∗
2ω2, where πj : M → Mj are the obvious projections. Then,

as is well-known, the graph of a map F : (M1, ω1) → (M2, ω2) in (M,ω) is
Lagrangian if and only if F ∗ω2 = ω1. This observation is used in [23] to
study the problem of deforming symplectomorphisms via Lagrangian mean
curvature flow.

The totally real analogue of this situation is to consider almost com-
plex manifolds (M1, J1) and (M2, J2) and define (M,J) to be the almost
complex manifold with M = M1 ×M2 and J = (J1,−J2). If we have a map
F : (M1, J1) → (M2, J2) then its graph is totally real if and only if whenever

J(X,F∗(X)) = (Y, F∗(Y ))

for tangent vectors X,Y on M1 then X = Y = 0. This equation becomes

J1(X) = Y and − J2 ◦ F∗(X) = F∗(Y ) = F∗ ◦ J1(X),

and so the graph is totally real if and only if

J2 ◦ F∗ + F∗ ◦ J1

is injective. This is clearly an open condition, as one would expect. The
Maslov flow and J-mean curvature flow thus give tools for studying this
space of maps.

In the case when F : Cn → Cn (or even from Rn to itself), we see that
its graph is STR, and thus a critical point for the flow, if and only if

Im detC(I + iF∗) = 0 and Re detC(I + iF∗) > 0.

These are the same equations as for special Lagrangian graphs, except here
we remove the condition that F is given by the gradient of a scalar function.
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[23] I. Medoš and M.-T. Wang, Deforming symplectomorphisms of complex
projective spaces by the mean curvature flow, J. Differential Geom. 87
(2011), no. 2, 309–341.

[24] R. Müller, Ricci flow coupled with harmonic map flow, Ann. Sci. Éc.
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