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In this paper, we generalize the Cao-Yau’s gradient estimate for the
sum of squares of vector fields up to higher step under assumption
of the generalized curvature-dimension inequality. With its appli-
cations, by deriving a curvature-dimension inequality, we are able
to obtain the Li-Yau gradient estimate for the CR heat equation
in a closed pseudohermitian manifold of nonvanishing torsion ten-
sors. As consequences, we obtain the Harnack inequality and upper
bound estimate for the CR heat kernel.
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1. Introduction

One of the goals for differential geometry and geometric analysis is to under-
stand and classify the singularity models of a nonlinear geometric evolution
equation, and to connect it to the existence problem of geometric structures
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on manifolds. For instance in 1982, R. Hamilton ([H3]) introduced the Ricci
flow. Then by studying the singularity models ([H2], [Pe1], [Pe2], [Pe3]) of
Ricci flow, R. Hamilton and G. Perelman solved the Thurston geometriza-
tion conjecture and Poincare conjecture for a closed 3-manifold in 2002.

On the other hand, in the seminal paper of P. Li and S.-T. Yau ([LY])
established the parabolic Li-Yau gradient estimate and Harnack inequality
for the positive solution of heat equation

(
∆− ∂

∂t

)
u (x, t) = 0

in a complete Riemannian manifold with nonnegative Ricci curvature. Here
∆ is the time-independent Laplacian operator. Later, R. S. Hamilton ( [H1])
obtained the so-called Li-Yau-Hamilton inequality for the Ricci flow in a
complete Riemannian manifold with a bounded and nonnegative curvature
operator. Recently, G. Perelman ([Pe1]) derived the remarkable entropy for-
mula which is important in the study of the singularity models of Ricci flow.
The derivation of the entropy formula resembles the Li-Yau gradient esti-
mate for the heat equation. Since then, there were many additional works
in this direction which cover various different geometric evolution equations
such as the mean curvature flow ( [H4]), the Kähler-Ricci flow ([Ca]), the
Yamabe flow ([Ch] ), etc.

In the paper of [CKW], following this direction, we propose to study the
most important geometrization problem of closed CR 3-manifolds via the
CR torsion flow (1.1). More precisely, let us recall that a strictly pseudocon-
vex CR structure on a pseudohermitian 3-manifold (M,J, θ) is given by a
cooriented plane field ker θ, where θ is a contact form, together with a com-
patible complex structure J . Given this data, there is a natural connection,
the so-called Tanaka-Webster connection or pseudohermitian connection. We
denote the torsion of this connection by AJ,θ, and the Webster curvature by
W . We consider the torsion flow

(1.1)

{
∂J
∂t

= 2AJ,θ,
∂θ
∂t

= −2Wθ,

on (M,J, θ)× [0, T ). It is the negative gradient flow of CR Einstein-Hilbert
functional. Along this direction with the torsion flow (1.1), we have estab-
lished the CR Li-Yau gradient estimate ([CKL]) and the Li-Yau-Hamilton
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inequality ([CFTW], [CCF]) for the positive solution of CR heat equation

(1.2)

(
∆b −

∂

∂t

)
u (x, t) = 0

in a closed pseudohermitian (2n+ 1)-manifold with nonnegative pseudoher-
mitian Ricci curvature and vanishing torsion tensors (see next section for
definition). Here ∆b is the time-independent sub-Laplacian operator. One of
our goals in this paper is to find the CR Li-Yau gradient estimate in a closed
pseudohermitian (2n+ 1)-manifold with nonvanishing torsion tensors.

Let us start with a more general setup for the Li-Yau gradient estimate
in a closed manifold with a positive measure and an operator

(1.3) L =

d∑

j=1

e2j

with respect to the sum of squares of vector fields e1, e2, . . . , ed which satis-
fies Hörmander’s condition ([H]). More precisely, the vector fields e1, e2, . . . ,
ed together with their commutators Y1, . . . , Yh up to finite order span the
tangent bundle at every point of M with d+ h = dimM. It is to say that
the commutators of e1, e2, . . . , ed of order r ( or called step r as well) can be
expressed as linear combinations of e1, e2, . . . , ed and their commutators up
to the order r − 1. The very first paper of H.-D. Cao and S.-T. Yau ([CY])
follows this line, and considers the heat equation

(1.4)

(
L− ∂

∂t

)
u (x, t) = 0.

They derived the gradient estimate of sum of squares of vector fields of step
two (r = 2) in a closed manifold with a positive measure.

In this paper, with the help of a generalized curvature-dimension inequal-
ity explained below, we are able to obtain the Li-Yau gradient estimate for
the CR heat equation in a closed pseudohermitian manifold of the nonva-
nishing torsion tensor. As consequences, we obtain the Harnack inequality
and upper bound estimate for the heat kernel. With the same mentality, we
generalize the Cao-Yau’s gradient estimate for the sum of squares of vec-
tor fields up to order three and higher under assumption of a generalized
curvature-dimension inequality.

One of the key steps in Li-Yau’s method for the proof of gradient esti-
mates is the Bochner formula involving the (Riemannian) Ricci curvature
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tensor. Bakry and Emery ([BE], [BBBQ]) pioneered the approach to gen-
eralizing curvature in the context of gradient estimates by using curvature-
dimension inequalities. In the CR analogue of the Li-Yau gradient estimate
([CKL]), the CR Bochner formula ([G]) is

1

2
∆b |∇bf |2 = |Hess(f)|2 + ⟨∇bf,∇b(∆bf)⟩+ 2 ⟨J∇bf,∇bf0⟩(1.5)

+ (2Ric− (n− 2)Tor)((∇bf)C , (∇bf)C),

which involves a term ⟨J∇bf, ∇bf0⟩ that has no analogue in the Riemannian
case. Here f0 := Tϕ and T is the characteristic vector field. In order to deal
with the extra term ⟨J∇bf, ∇bf0⟩ in case of vanishing torsion tensors, based
on the CR Bochner formula (1.5), we can show the so-called curvature-
dimension inequality (see Lemma 3.1):

(1.6) Γ2(f, f) + νΓZ
2 (f, f) ≥

2

n
|∆bf |2 +

(
−2k − 8

ν

)
|∇bf |2 + 2n |f0|2

for any smooth function f ∈ C∞(M) and ν > 0 and the pseudohermitian
Ricci curvature bounded below by −k. Here

ΓZ
2 (f, f) := 2 |∇bf0|2

and

Γ2(f, f) := 4 |Hess(f)|2 + 8Ric((∇bf)C , (∇bf)C) + 8 ⟨J∇bf,∇bf0⟩ .

Before we introduce the generalized curvature-dimension inequality (1.7)
which was first introduced by Baudoin and Garofalo ([BG]) in the content
of sub-Riemannian geometry, it is useful to compare Cao-Yau’s notations
with pseudohermitian geometry.

Let J be a CR structure compatible with the contact bundle ξ = ker θ
and T be the characteristic vector field of the contact form θ in a closed
pseudohermitian (2n+ 1)-manifold (M,J, θ) . The CR structure J decom-
poses C⊗ ξ into the direct sum of T1,0 and T0,1 which are eigenspaces of J
with respect to i and −i, respectively. By choosing a frame {T, Zj i, Zj} of
TM ⊗ C with respect to the Levi form such that

J(Zj) = iZj and J(Zj) = −iZj ,

then Y1 will be the characteristic vector field T with α = 1, d = 2n and

Zj =
1

2
(ej − ie

j̃
) and Zj =

1

2
(ej + ie

j̃
)
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with j̃ = n+ j, j = 1, . . . , n. The operator that we are interested in this
paper will be

L =

n∑

j=1

(ej
2 + e

j̃
2) = 2 ∆b.

Definition 1.1. Let M be a smooth connected manifold with a positive
measure and vector fields {ei, Yα}i∈Id,α∈Λ spanning the tangent space TM .
For ρ1 ∈ R, ρ2 > 0, κ ≥ 0, m > 0, we say that M satisfies the generalized
curvature-dimension inequality CD(ρ1, ρ2, κ,m) if

(1.7)
1

m
(Lf)2 + (ρ1 −

κ

ν
)Γ(f, f) + ρ2Γ

Z(f, f) ≤ Γ2(f, f) + νΓZ
2 (f, f)

for any smooth function f ∈ C∞(M) and ν > 0. Here

Γ(f, f) :=
∑

j∈Id

|ejf |2 ,

ΓZ(f, f) :=
∑

α∈Ih

|Yαf |2 ,

Γ2(f, f) :=
1

2


L(Γ(f, f))− 2

∑

j∈Id

(ejf)(ejLf)


 ,

ΓZ
2 (f, f) :=

1

2

[
L(ΓZ(f, f))− 2

∑

α∈Ih

(Yαf)(YαLf)

]
.

Note that we also have

Γ2(f, f) =
∑

i,j∈Id

|eiejf |2 +
∑

j∈Id

(ejf)([L, ej ]f)

and

ΓZ
2 (f, f) =

∑

i∈Id,α∈Ih

|eiYαf |2 +
∑

α∈Ih

(Yαf)([L, Yα]f).

In Lemma 3.2, we will derive a curvature-dimension inequality (1.7) in
a closed pseudohermitian manifold of the nonvanishing torsion tensor. As a
result, we are able to obtain the following CR Li-Yau gradient estimate which
is served as a generalization of the CR Li-Yau gradient estimate in a closed
pseudohermitian (2n+ 1)-manifold with nonnegative pseudohermitian Ricci
curvature and vanishing torsion as in [CKL], [CCKL] and [BG].
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Theorem 1.1. Let (M,J, θ) be a closed pseudohermitian (2n+ 1)-manifold
with

(2Ric− (n− 2)Tor) (Z,Z) ≥ −k ⟨Z,Z⟩

and

max
i,j∈In

|Aij | ≤ A, max
i,j∈In

∣∣∣Aij,i

∣∣∣ ≤ B

for Z ∈ Γ (T1,0M), k ≥ 0 and A, B as positive constants. Suppose that
u (x, t) is the positive solution of (1.2) on M × [0, ∞) . Then there exist
δ0 = δ0(n, k,A,B) >> 1 such that f (x, t) = lnu (x, t) satisfies the following
gradient estimate

(1.8) |∇bf |2 − δft <
C1

t
+ C2

for δ ≥ δ0 and

C1 =
1

2
max

{
n (n+ 1) δ2 +

8
√
3 (n+ 1)2 δ2

(δ − δ0)
,

3n (n+ 1) δ2

4 (δ − δ0)
2

[(
k +

B
2

2 (n+ 1)

)
(δ − δ0)

2n (n+ 1)Aδ
+

16 (n+ 1)

n

]2}
.

C2 =
1

2
max

{(
k +

B
2

2 (n+ 1)

) √
3n (n+ 1) δ2

2 (δ − δ0)
+ 16

√
3 (n+ 1)2

δ3A

(δ − δ0)
2 ,

3 (n+ 1) δ

8nA (δ − δ0)

(
k +

B
2

2 (n+ 1)
+

32n (n+ 1) δA

(δ − δ0)

)2}
.

As a consequence, we have C2 = 0 if k = 0 and A = 0. Hence, we have

Corollary 1.1. Let (M, J, θ) be a closed pseudohermitian (2n+ 1)-
manifold with nonnegative pseudohermitian Ricci curvature and vanishing
torsion. If u (x, t) is the positive solution of (1.2) on M × [0, ∞). Then
f (x, t) = lnu (x, t) satisfies the following gradient estimate

(1.9) |∇bf |2 − δft <
C1

t
.

Remark 1.1. In fact, in [CCKL], we get the following CR Li-Yau gradient
estimate in a closed pseudohermitian (2n+ 1)-manifold with nonnegative
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pseudohermitian Ricci curvature and vanishing torsion. That is

|∇bf |2 −
(
1 +

3

n

)
ft +

n

3
t(f0)

2 <
( 9
n
+ 6 + n)

t
,

but where we can not deal with the case of nonvanishing torsion tensors.
The major different here is: we apply the generalized curvature-dimension
inequality, which holds as in Lemma 3.2, and Cao-Yau’s method ([CY]) to
derive the gradient estimate in a closed pseudohermitian (2n+ 1) -manifold
with nonvanishing torsion tensors.

Next we have the CR version of Li-Yau Harnack inequality and upper
bound estimate for the heat kernel as in [CFTW] and [CY].

Theorem 1.2. Under the same hypothesis of Theorem 1.1, suppose that u
is the positive solution of

(
∆b −

∂

∂t

)
u = 0

on M × [0,+∞). Then for any x1, x2 ∈ M and 0 < t1 < t2 < +∞, there ex-
ists a constant δ0(n, k,A,B) > 1 such that

u(x1, t1)

u(x2, t2)
≤
(
t2

t1

)C′

1(n,δ)

δ

exp

(
δ

4

dcc(x1, x2)
2

t2 − t1
+

C ′

2(n, k, δ, A,B)

δ
(t2 − t1)

)

for δ ≥ δ0(n, k,A,B). Here we denote the Carnot-Carathéodory distance in
(M,J, θ) by dcc.

Theorem 1.3. Under the same hypothesis of Theorem 1.1, suppose that
H(x, y, t) is the heat kernel of

(
∆b −

∂

∂t

)
u = 0

on M × [0,+∞). Then there exists a constant δ1 > 0 such that

H(x, y, t) ≤ C(ε)δ1
1√

vol
(
Bx(

√
t)
)
vol
(
By(

√
t)
)

× exp

(
C ′

2(n, k, δ, A,B)

δ
εt− d∗cc(x, y)

2

(4 + ε)t

)

for ε ∈ (0, 1) and C(ε) → +∞ as ε → 0+.
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In the Cao-Yau gradient estimate for a positive solution of an operator
with respect to the sum of squares of vector fields of step 2, the key estimates
are (2.10), (2.12) and (2.14) of ([CY]). This in fact, resembles the generalized
curvature-dimension inequality (1.7) with some certain ρ1, ρ2, κ and m.

However this is not the case for step 3 and up. Then, as in Theorem 1.4,
it was an important insight that one can use the generalized curvature-
dimension inequality as a substitute for the lower Ricci curvature bound on
spaces where a direct generalization of Ricci curvature is not available.

We start to setup the Li-Yau gradient estimate for a positive solution
of an operator with respect to the sum of squares of vector fields of higher
step. For simplicity, we assume that M is of step 3, i.e.

(1.10) [ei, [ej , [ek, el]]] = anijklen + b
η
ijklY

′

η + cAijklY
′′

A

for anijkl, b
η
ijkl, c

A
ijkl ∈ C∞ (M) with

{Yα}α∈Λ :=
{
Y ′

η = [ei, ej ]
}
i,j∈Id

∪
{
Y ′′

A = [ei, [ej , ek]]
}
i,j,k∈Id

.

We denote the supremum of coefficients as:




a = sup

∣∣∣anijkl
∣∣∣ , b = sup

∣∣∣bηijkl
∣∣∣ , c = sup

∣∣∣cAijkl
∣∣∣ ,

a′ = sup
∣∣∣ehanijkl

∣∣∣ , b′ = sup
∣∣∣ehbηijkl

∣∣∣ , c′ = sup
∣∣∣ehcAijkl

∣∣∣ .

Theorem 1.4. Let M be a smooth connected manifold with a positive mea-
sure satisfying the generalized curvature-dimension inequality CD(ρ1, ρ2,
κ,m) and let L be an operator with respect to the sum of squares of vec-
tor fields {e1, e2, . . . , ed} satisfying the condition (1.10). Suppose that u is
the positive solution of

(1.11)

(
L− ∂

∂t

)
u = 0

on M × [0,+∞). Then for all 1
2 < λ < 2

3 , there exists

δ0 = δ0 (λ, ρ1, ρ2, κ, d, h) > 1

such that for any δ > δ0

∑

j∈Id

|eju|2
u2

+
∑

α∈Λ

(
1 +

|Yαu|2
u2

)λ

− δ
ut

u
≤ C1

t
+ C2 + C3t

λ

λ−1 ,



✐

✐

“4-Chang” — 2020/7/3 — 18:52 — page 573 — #9
✐

✐

✐

✐

✐

✐

Li-Yau gradient estimate for sum of squares of vector fields 573

where C1, C2, C3 are all positive constants depending on d, λ, δ, a, a′, b, b′,

c, c′, ρ1, ρ2, κ,m.

Remark 1.2. 1. In the paper of [BG], they proved the Lp version of Li-
Yau type gradient estimates for 2 ≤ p ≤ ∞ under the assumption of the
generalized curvature-dimension inequality via the semigroup method in the
sub-Riemannian geometry setting.

2. We can obtain the Li-Yau Harnack inequality and upper bound es-
timate for the heat kernel of L− ∂

∂t
with respect to the sum of squares of

vector fields as in [CY]. We also refer to [JS], [KS1], [KS2] and [M] for some
details along this direction.

We briefly describe the methods used in our proofs. In section 3, we
derive a generalized curvature-dimension inequality in a closed pseudoher-
mitian (2n+ 1)-manifold. In order to gain insight for the estimate, we first
derive the CR Li-Yau gradient estimate and the Harnack inequality for the
CR heat equation in a closed pseudohermitian manifold as in section 4.
Then, for simplicity, we will derive the Li-Yau gradient estimate for the sum
of squares of vector fields of step three as in section 5. Similar estimates will
hold for the sum of squares of vector fields of higher step as well.

Acknowledgement. The authors would like to express their profound
gratitude to Prof. S.-T. Yau for bringing this project to them and his in-
spirations of the Li-Yau gradient estimate for the sum of squares of vector
fields.

2. Preliminary

We introduce some basic materials about a pseudohermitian manifold (see
[DT] , [CKL], and [L] for more details). Let (M, ξ) be a (2n+ 1)-dimensional,
orientable, contact manifold with contact structure ξ. A CR structure com-
patible with ξ is an endomorphism J : ξ → ξ such that J2 = −1. We also
assume that J satisfies the integrability condition: If X and Y are in ξ, then
so are [JX, Y ] + [X, JY ] and J([JX, Y ] + [X, JY ]) = [JX, JY ]− [X,Y ].

Let {T, Zα, Zᾱ} be a frame of TM ⊗ C, where Zα is any local frame of
T1,0, Zᾱ = Zα ∈ T0,1 andT is the characteristic vector field. Then {θ, θα, θᾱ},
the coframe dual to {T, Zα, Zᾱ}, satisfies

(2.1) dθ = ihαβθ
α ∧ θβ
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for some positive definite hermitian matrix of functions (hαβ̄). If we have this
contact structure, we also call such M a strictly pseudoconvex CR (2n+ 1)-
manifold.

The Levi form ⟨ , ⟩Lθ
is the Hermitian form on T1,0 defined by

⟨Z,W ⟩Lθ
= −i

〈
dθ, Z ∧W

〉
.

We can extend ⟨ , ⟩Lθ
to T0,1 by defining

〈
Z,W

〉
Lθ

= ⟨Z,W ⟩Lθ
for all Z,W ∈

T1,0. The Levi form induces naturally a Hermitian form on the dual bundle
of T1,0, denoted by ⟨ , ⟩L∗

θ
, and hence on all the induced tensor bundles. In-

tegrating the Hermitian form (when acting on sections) over M with respect
to the volume form dµ = θ ∧ (dθ)n, we get an inner product on the space of
sections of each tensor bundle.

The pseudohermitian connection of (J, θ) is the connection ∇ on TM ⊗
C (and extended to tensors) given in terms of a local frame Zα ∈ T1,0 by

∇Zα = ωα
β ⊗ Zβ , ∇Zᾱ = ωᾱ

β̄ ⊗ Zβ̄ , ∇T = 0,

where ωα
β are the 1-forms uniquely determined by the following equations:

dθβ = θα ∧ ωα
β + θ ∧ τβ ,

0 = τα ∧ θα,

0 = ωα
β + ωβ̄

ᾱ,

We can write (by Cartan lemma) τα = Aαγθ
γ with Aαγ = Aγα. The cur-

vature of Tanaka-Webster connection, expressed in terms of the coframe
{θ = θ0, θα, θᾱ}, is

Πβ
α = Πβ̄

ᾱ = dωβ
α − ωβ

γ ∧ ωγ
α,

Π0
α = Πα

0 = Π0
β̄ = Πβ̄

0 = Π0
0 = 0.

Webster showed that Πβ
α can be written

Πβ
α = Rβ

α
ρσ̄θ

ρ ∧ θσ̄ +Wβ
α
ρθ

ρ ∧ θ −Wα
βρ̄θ

ρ̄ ∧ θ + iθβ ∧ τα − iτβ ∧ θα

where the coefficients satisfy

Rβᾱρσ̄ = Rαβ̄σρ̄ = Rᾱβσ̄ρ = Rρᾱβσ̄, Wβᾱγ = Wγᾱβ .

Here Rγ
δ
αβ̄ is the pseudohermitian curvature tensor, Rαβ̄ = Rγ

γ
αβ̄ is the

pseudohermitian Ricci curvature tensor and Aαβ is the pseudohermitian
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torsion. Furthermore, we define the bi-sectional curvature

Rαᾱββ(X,Y ) = RαᾱββXαXαYβYβ̄

and the bi-torsion tensor

Tαβ(X,Y ) := i(Aβ̄ρ̄X
ρYα −AαρX

ρYβ̄)

and the torsion tensor

Tor(X,Y ) := hαβ̄Tαβ(X,Y ) = i(Aαρ̄X
ρY α −AαρX

ρY α)

for any X = XαZα, Y = Y αZα in T1,0.

We will denote the components of the covariant derivatives with in-
dices preceded by a comma; thus write Aαβ,γ . The indices {0, α, ᾱ} in-
dicate derivatives with respect to {T, Zα, Zᾱ}. For derivatives of a scalar
function, we will often omit the comma, for instance, uα = Zαu, uαβ̄ =
Zβ̄Zαu− ωα

γ(Zβ̄)Zγu.In particular,

|∇bu|2 = 2
∑

α uαuα, |∇2
bu|2 = 2

∑
α,β(uαβuαβ + uαβuαβ).

Also

∆bu = Tr
(
(∇H)2u

)
=
∑

α(uαᾱ + uᾱα).

Next we recall the following commutation relations ([L]). Let ϕ be a
scalar function and σ = σαθ

α be a (1, 0) form, ϕ0 = Tϕ, then we have

ϕαβ = ϕβα,

ϕαβ̄ − ϕβ̄α = ihαβϕ0,

ϕ0α − ϕα0 = Aαβϕ
β ,

σα,0β − σα,β0 = σα,γ̄A
γ
β − σγAαβ,γ̄ ,

σα,0β̄ − σα,β̄0 = σα,γA
γ
β̄ + σγAγ̄β̄,α,

and

(2.2)

(1)ϕejek̃
− ϕe

k̃
ej = 2hjkϕ0,

(2)ϕejek − ϕekej = 0,

(3)ϕ0ej − ϕej0 = ϕel ReA
l
j − ϕe

l̃
ImAl

j ,

(4)ϕ0ej̃ − ϕej̃0 = −ϕel ImAl
j − ϕ

el̃
ReAl

j .
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Finally we introduce the concept about the Carnot-Carathéodory dis-
tance in a closed pseudohermitian manifold.

Definition 2.1. A piecewise smooth curve γ : [0, 1] → M is said to be hor-
izontal if γ ′(t) ∈ ξ whenever γ ′(t) exists. The length of γ is then defined
by

l(γ) =

∫ 1

0

〈
γ ′(t), γ ′(t)

〉 1

2

Lθ
dt.

The Carnot-Carathéodory distance between two points p, q ∈ M is

dcc(p, q) = inf {l(γ)| γ ∈ Cp,q} ,

where Cp,q is the set of all horizontal curves joining p and q. By Chow
connectivity theorem [Cho], there always exists a horizontal curve joining p

and q, so the distance is finite. The diameter dc is defined by

dc(M) = sup {dc(p, q)| p, q ∈ M} .

Note that there is a minimizing geodesic joining p and q so that its length
is equal to the distance dcc(p, q).

3. A generalized curvature-dimension inequality

Now we proceed to derive a curvature-dimension inequality in a closed pseu-
dohermitian (2n+ 1)-manifold under the specific assumptions on the pseu-
dohermitian Ricci curvature tensor and the torsion tensor. In particular, in
the case of vanishing torsion tensors, we have the following lemma.

Lemma 3.1. If (M,J, θ) is a pseudohermitian (2n+ 1)-manifold of van-
ishing torsion with

(3.1) 2Ric (Z,Z) ≥ −k ⟨Z,Z⟩

for Z ∈ Γ (T1,0M), k ≥ 0, then M satisfies the curvature-dimension inequal-
ity CD(−k, 2n, 4, 2n).
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Proof. By the CR Bochner formulae (see [G])

1

2
∆b |∇bf |2 = |Hess(f)|2 + ⟨∇bf,∇b(∆bf)⟩

+ (2Ric− (n− 2)Tor)((∇bf)c, (∇bf)c) + 2 ⟨J∇bf,∇bf0⟩ ,

where (∇bf)c is the T1,0M -component of (∇bf), we have

1

4
Γ2(f, f) = |Hess(f)|2 + (2Ric− (n− 2)Tor)((∇bf)c, (∇bf)c)

+ 2 ⟨J∇bf,∇bf0⟩ .

With the equality

1

2
ΓZ
2 (f, f) = |∇bf0|2 + f0[∆b, T ]f,

we have

Γ2(f, f) + νΓZ
2 (f, f)(3.2)

= 4[|Hess(f)|2 + (2Ric− (n− 2)Tor)((∇bf)c, (∇bf)c)

+ 2 ⟨J∇bf,∇bf0⟩] + 2ν |∇bf0|2 + 2νf0[∆b, T ]f.

On the other hand, we have

(3.3) |Hess(f)|2 = 2



∑

i,j∈In

|fij |2 +
∑

i,j∈In

∣∣∣fij
∣∣∣
2


 ≥ 1

2n
|∆bf |2 +

n

2
|f0|2

and

(3.4) ⟨J∇bf,∇bf0⟩ ≥ −|∇bf |2
ν

− ν

4
|∇bf0|2 .

Now it follows from (3.2), (3.3), (3.4) and curvature assumptions

Γ2(f, f) + νΓZ
2 (f, f)(3.5)

≥
(
2

n
|∆bf |2 + 2n |f0|2

)
+ 4(2Ric− (n− 2)Tor)((∇bf)c, (∇bf)c)

− 8
|∇bf |2

ν
+ 2νf0[∆b, T ]f

≥ 2

n
|∆bf |2 +

(
−2k − 8

ν

)
|∇bf |2 + 2n |f0|2 + 2νf0[∆b, T ]f.
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Finally, it follows from the commutation relation ([CKL]) that

(3.6) ∆bf0 = (∆bf)0 + 2[(Aαβf
α)β + (Aαβf

α)β ].

But Aαβ = 0, hence

[∆b, T ] f = 0.

All these imply

Γ2(f, f) + νΓZ
2 (f, f) ≥

2

n
|∆bf |2 +

(
−2k − 8

ν

)
|∇bf |2 + 2n |f0|2 .

□

Remark 3.1. In a closed pseudohermitian (2n+ 1)-manifold of vanish-
ing torsion tensors, the CR Bochner formulae (1.5) is equivalent to the
curvature-dimension inequality (1.7) which also observed in the paper of
[BG].

As for the curvature-dimension inequality in a closed pseudohermitian
(2n+ 1)-manifold of nonvanishing torsion tensors, we have

Lemma 3.2. Let (M,J, θ) be a closed pseudohermitian (2n+ 1)-manifold
of

(2Ric− (n− 2)Tor) (Z,Z) ≥ −k ⟨Z,Z⟩

for Z ∈ Γ (T1,0M), k ≥ 0 and

max
i,j∈In

|Aij | ≤ A, max
i,j∈In

∣∣∣Aij,i

∣∣∣ ≤ B

for nonnegative constants A, B, Then M satisfies the curvature-dimension

inequality CD(−k − 2nNε1B
2
, 2n
m

− 2n2N
ε1

− 2mn2N2A
2

m−1 , 4, 2mn) for 1 < m <

+∞, 0 < ε1 < +∞ and smaller N > 0 such that

(
2n

m
− 2n2N

ε1
− 2mn2N2A

2

m− 1

)
> 0

and 0 < ν ≤ N .
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Proof. It follows from (3.2), (3.4) and (3.6) that

Γ2(f, f) + νΓZ
2 (f, f) ≥ 8



∑

α,β

(
|fαβ |2 +

∣∣∣fαβ
∣∣∣
2
)
−

(
2k +

8

ν

)
|∇bf |2

− 8ν |f0|
∑

α,β

∣∣∣(Aαβ,αfβ +Aαβfβα)
∣∣∣ .

Note that by using the Young inequality

|f0|
(∣∣∣Aαβ,αfβ

∣∣∣+
∣∣∣Aαβfβα

∣∣∣
)

(3.7)

≤ |f0|2
4ε1

+ ε1

∣∣∣Aαβ,αfβ

∣∣∣
2
+

|f0|2
4ε2

+ ε2

∣∣∣Aαβfβα

∣∣∣
2
,

for ε1, ε2 > 0. Choose

ε2 =
m− 1

mNA
2

for m > 1 and N with ν ≤ N . This implies that
(
1−Nε2A

2
)
= 1

m
.

It follows from (3.3) that

Γ2(f, f) + νΓZ
2 (f, f)

≥ 8
∑

α,β

∣∣∣fαβ
∣∣∣
2
+ 8
∑

α,β

(
1− νε2

∣∣∣Aαβ

∣∣∣
2
)
|fβα|2 −

(
2k +

8

ν

)
|∇bf |2

− 2ν
∑

α,β

(
1

ε1
+

1

ε2

)
|f0|2 − 8νε1

∑

α,β

∣∣∣Aαβ,αfβ

∣∣∣
2

≥ 8

m

∑

α,β

(∣∣∣fαβ
∣∣∣
2
+ |fβα|2

)
−
(
2k +

8

ν
+ 4Nε1nB

2
)
|∇bf |2

− 2n2N

(
1

ε1
+

1

ε2

)
|f0|2

≥ 4

m

(
1

2n
|∆bf |2 +

n

2
|f0|2

)
−
(
2k +

8

ν
+ 4Nε1nB

2
)
|∇bf |2

− 2n2N

(
1

ε1
+

1

ε2

)
|f0|2

≥ 1

2mn
(Lf)2 +

(
−k − 2nNε1B

2 − 4

ν

)
Γ (f, f)

+

(
2n

m
− 2n2N

ε1
− 2mn2N2A

2

m− 1

)
ΓZ (f, f) .
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Now we make N smaller such that

2n

m
− 2n2N

ε1
− 2mn2N2A

2

m− 1
> 0.

Then we are done. □

Remark 3.2. By choosing A = 0 = B, m → 1+, ε1 → +∞ and noting the
inequality (3.7) in Lemma 3.2, we are also able to have the same conclusion
in Lemma 3.1.

4. The CR Li-Yau gradient estimate

In this section, based on methods of [CY] and [CKL], we first derive the
CR Li-Yau gradient estimate and the Harnack inequality for the CR heat
equation in a closed pseudohermitian manifold. Let (M,J, θ) be a closed
pseudohermitian (2n+ 1)-manifold and u(x, t) be a positive solution of the
CR heat equation

(
∆b −

∂

∂t

)
u (x, t) = 0

on M × [0, ∞). We denote that f(x, t) = lnu(x, t). Modified by [CKL], we
define a real-valued function F (x, t, β, δ) : M × 0, T )×R+ ×R+ → R by

(4.1) F (x, t, β, δ) = t



∑

j∈Id

|ejf |2 + βt
∑

α∈Ih

|Yαf |2 − δft




for x ∈ M, t ≥ 0, β > 0, δ > 0. Note that β → 0+ if T → ∞ as in the proof.

Lemma 4.1. Let (M,J, θ) be a closed pseudohermitian (2n+ 1)-manifold
and u(x, t) be a positive solution of the CR heat equation

(
L− ∂

∂t

)
u (x, t) = 0
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on M × [0, ∞). We have the identity

(
L− ∂

∂t

)
F = −F

t
+ 2t[Γ2(f, f) + βtΓZ

2 (f, f)](4.2)

+ 4βt2
∑

j∈Id,α∈Ih

(ejf)(Yαf)([ej , Yα]f)

− 2
∑

j∈Id

(ejf)(ejF )− βt
∑

α∈Ih

|Yαf |2 .

Proof. It follows from definitions of Γ2(f, f) and ΓZ
2 (f, f) that

LF = t
[
L(Γ(f, f)) + βtL(ΓZ(f, f))− δLft

]

= t

{[
2Γ2(f, f) + 2

∑

j∈Id

(ejf) (ejLf)

]

+ βt

[
2ΓZ

2 (f, f) + 2
∑

α∈Ih

(Yαf) (YαLf)

]
− δLft

}
.

Then

(
L− ∂

∂t

)
F = −F

t
+ t

[
2Γ2(f, f)(4.3)

+ 2βtΓZ
2 (f, f) + 2

∑

j

(ejf) ej

(
L− ∂

∂t

)
f

+ 2βt
∑

α

(Yαf)Yα

(
L− ∂

∂t

)
f

− β
∑

α

(Yαf)
2 − δ

∂

∂t

(
L− ∂

∂t

)
f

]
.

Since

(
L− ∂

∂t

)
f = −

∑

j

|ejf |2 = −F

t
+ βt

∑

α

|Yαf |2 − δft,
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we obtain

2
∑

j

(ejf) ej

(
L− ∂

∂t

)
f + 2βt

∑

α

(Yαf)Yα

(
L− ∂

∂t

)
f

(4.4a)

− β
∑

α

(Yαf)
2 − δ

∂

∂t

(
L− ∂

∂t

)
f

= 2
∑

j

(ejf) ej

(
−F

t
+ βt

∑

α

|Yαf |2 − δft

)

+ 2βt
∑

α

(Yαf)Yα


−

∑

j

|ejf |2

− β

∑

α

(Yαf)
2 − δ

∂

∂t

(
L− ∂

∂t

)
f

= 2βt



∑

j

(ejf) ej

(
∑

α

|Yαf |2
)

+
∑

α

(Yαf)Yα


−

∑

j

|ejf |2





+ 2
∑

j

(ejf) ej

(
−F

t
− δft

)
− β

∑

α

(Yαf)
2 − δ

∂

∂t


−

∑

j

|ejf |2



= 4βt
∑

j,α

(ejf)(Yαf)([ej , Yα]f)−
2

t

∑

j

(ejf)(ejF )− β
∑

α

|Yαf |2 .

Substitute (4.4a) into (4.3), we have the identity (4.2). □

As a consequence of the identity (4.2), we have proposition 4.2.

Proposition 4.1. If M satisfies the curvature-dimension inequality
CD(ρ1, ρ2, κ,m) for ρ1 ∈ R, ρ2 > 0, κ ≥ 0,m > 0, then

(
L− ∂

∂t

)
F ≥ −F

t
+ 2t

[
1

m
(Lf)2 +

(
ρ1 −

κ

βt

)
Γ(f, f) + ρ2Γ

Z(f, f)

]
(4.5)

+ 4βt2
∑

j∈Id,α∈Il

(ejf)(Yαf)([ej , Yα]f)

− 2
∑

j∈Id

(ejf)(ejF )− βt
∑

α∈Ih

|Yαf |2 .

Now we proceed to prove Theorem 1.1 :
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Proof. Note that M satisfies the curvature-dimension inequality
CD(ρ1, ρ2, κ,m) with ρ1 < 0, ρ2 > 0, κ ≥ 0,m > 0 as in Lemma 3.2. Here
we follow the method as in ([CY]). Set





x =
(
δ0 |∇bf |2 − δft

)
(x0, t0) for δ > δ0 > 2

x = |∇bf |2 (x0, t0)
y = |f0| (x0, t0)

where δ0 and (x0, t0) will be chosen later and f0 = Tf with T := Yα. From
now on, T denotes a positive real number instead of a vector field.

If F attains its maximum at (x0, t0) ∈ M × [0, T ], then, by choosing a
normal coordinate at (x0, t0) and (2.2), (4.5) becomes

0 ≥ −F

t0
+ 2t0

[
1

m
(2∆bf)

2 + 2

(
ρ1 −

κ

βt0

)
x+ ρ2y

2

]
(4.6)

− 16nβt20Axy − βt0y
2

for d = 2n and h = 1. More precisely from the commutation relations (2.2),
we have at (x0, t0)

∑

α∈I2n

(eαf) (Tf) ([eα, T ] f) (x0, t0)

(4.7)

= f0
∑

α∈I2n

feα (eαTf − Teαf)

= f0
∑

α∈I2n

feα [(f0eα + (DeαT ) f)− (feα0 + (DT eα) f)]

= f0



∑

j∈In

fej
(
f0ej − fej0

)
+
∑

j∈In

fej̃

(
f0e

j̃

− fe
j̃
0

)
−

∑

α,β∈I2n

Γ
eβ
0eα

feαfeβ




= f0
∑

j,l∈In

fej
(
fel ReAjl − fe

l̃
ImAjl

)

+ f0
∑

j,l∈In

fej̃
(
−fel ImAjl − fe

l̃
ReAjl

)
− f0

∑

α,β∈I2n

Γ
eβ
0eα

feαfeβ

≥ − |f0|A
∑

j,l∈In

(∣∣fej
∣∣+
∣∣fej̃
∣∣) (|fel |+ |fẽl |)

≥ −4nAxy.
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We divide the discussion into the following two cases:
(I) Case I : x ≥ 0 :
By

(∆bf)
2 =

(
ft − |∇bf |2

)2
=

[
x

δ
+

(
1− δ0

δ

)
|∇bf |2

]2

≥ x2

δ2
+

(δ − δ0)
2

δ2

(
|∇bf |2

)2
,

we have

0 ≥ −F

t0
+

8t0
mδ2

x2 + t0ρ2y
2 +

8t0 (δ − δ0)
2

mδ2
x2 +

(
4t0ρ1 −

4κ

β

)
x(4.8)

+ t0 (ρ2 − β) y2 − 16nβt20Axy.

Let

A := t0

[
8 (δ − δ0)

2

mδ2
x2 +

(
4ρ1 −

4κ

βt0

)
x+ (ρ2 − β) y2 − 16nβt0Axy

]

and

A :=
8 (δ − δ0)

2

mδ2
.

We have

A = t0

{
A

(
x+

2ρ1 − 2κ
βt0

− 8nβt0Ay

A

)2

−

(
2ρ1 − 2κ

βt0
− 8nβt0Ay

)2

A
+ (ρ2 − β) y2

}

= t0

{
A

(
x+

2ρ1 − 2κ
βt0

− 8nβt0Ay

A

)2

+

(
ρ2 − β − 64n2β2t20A

2

A

)
y2

+
32nβt0A

A

(
ρ1 −

κ

βt0

)
y − 4

(
ρ1 − κ

βt0

)2

A

}
.

Choose

β = β1 := min

{
ρ2

4
,

√
Aρ2

16nTA

}
.
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This implies that

B :=

(
ρ2 − β − 64n2β2t20A

2

A

)
≥ ρ2

2
.

(i) Under the case

T ≥ T0 :=

√
Aρ2

4nρ2A
,

we have

A ≥ t0

{
By2 +

32nβt0A

A

(
ρ1 −

κ

βt0

)
y − 4

(
ρ1 − κ

βt0

)2

A

}

= t0

{
B

(
y +

16nβt0A

BA

(
ρ1 −

κ

βt0

))2

− 162n2β2t20A
2
+ 4BA

BA2

(
ρ1 −

κ

βt0

)2
}

≥ − 1

A

(
ρ1 −

16nκA√
Aρ2

T

t0

)2(
1 +

2t20
T 2

)
t0

≥ − 3

A

(
ρ1 −

16nκA√
Aρ2

T

t0

)2

t0,

Set

z = t0x.

(a) If x ≥ βt0 |f0|2, it follows from

F = t0

[
(2− δ0) |∇bf |2 + x+ βt0 |f0|2

]

that (4.8) becomes

0 ≥ −2t0x+
8

mδ2
(t0x)

2 − 3

A

(
ρ1t0 −

16nκA√
Aρ2

T

)2

and then

(
z − mδ2

8

)2

≤ mδ2

8

(
mδ2

8
+

3

A

(
ρ1t0 −

16nκA√
Aρ2

T

)2
)
.
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Thus

z ≤ mδ2

4
+

δ

4

√
6m

A

∣∣∣∣
(
ρ1t0 −

16nκA√
Aρ2

T

)∣∣∣∣ .

This implies

F ≤ 2t0x ≤ mδ2

2
+

δ

2

√
6m

A

(
−ρ1t0 +

16nκA√
Aρ2

T

)

and then

[2 |∇bf |2 + β1t |f0|2 − δft] (x, T ) ≤
C

′

1

T
+ C

′

2

with C
′

1 :=
mδ2

2 and

C
′

2 := −ρ1δ

2

√
6m

A
+

8nδκA
√
6m

A
√
ρ2

> 0.

(b) If x ≤ βt0 |f0|2, it follows that

0 ≥ −2βt0y
2 + t0ρ2y

2 − 3

A

(
ρ1 −

16nκA√
Aρ2

T

t0

)2

t0

and then

y2 ≤ 1

(ρ2 − 2β)

3

A

(
ρ1 −

16nκA√
Aρ2

T

t0

)2

.

Hence

F ≤ 2βt20y
2

≤ 6β

(ρ2 − 2β)A

(
ρ1t0 −

16nκA√
Aρ2

T

)2

≤ 3

4nA
√
Aρ2

(
ρ1

t0√
T

− 16nκA√
Aρ2

√
T

)2

.

Finally we have

[2 |∇bf |2 + β1t |f0|2 − δft] (x, T ) ≤ C
′′

2

(
ρ1, ρ2, κ,m, n, δ, A

)

with

C
′′

2 :=
3

4nA
√
Aρ2

(
−ρ1 +

16nκA√
Aρ2

)2

.
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(ii) Under the case

T ≤ T0 :=

√
Aρ2

4nρ2A
,

we have

β1 =
ρ2

4

and then

A ≥− 3

A

(
ρ1 −

4κ

ρ2t0

)2

t0.

(a) If x ≥ βt0 |f0|2, then

[2 |∇bf |2 + β1t |f0|2 − δft] (x, T ) ≤
C

′′

1

T
+ C

′′′

2

with C
′′

1 := mδ2

2 + 2δκ
ρ2

√
6m
A

and

C
′′′

2 := −δρ1

2

√
6m

A
> 0.

(b) If x ≤ βt0 |f0|2, then

[2 |∇bf |2 + β1t |f0|2 − δft] (x, T ) ≤
C

′′′

1

T

with

C
′′′

1 :=
3

A

(
ρ1
√
Aρ2

4nρ2A
− 4κ

ρ2

)2

.

(II) Case II : x ≤ 0 :
We may assume

(δ0 − 2) |∇bf |2 ≤ βt0 |f0|2 .

Otherwise,

F ≤ 0.

From (4.6)

(4.9) 0 ≥ −F

t0
+ 2t0

[
2(ρ1 −

κ

βt0
)

βt0y
2

(δ0 − 2)
+ ρ2y

2

]
− 16nβt20Axy − βt0y

2.
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Set

β = β2 := min

{
ρ2

2
,

1

nAT
,

1

T ∥f0∥M×[0,T ]

}
.

Hence

0 ≥ −2βt0y
2 + 2ρ2t0y

2 + ρ1
4βt20

(δ0 − 2)
y2 − 4κt0

(δ0 − 2)
y2 − 16nβAt20y

βt0y
2

(δ0 − 2)

= 2 (ρ2 − β) t0y
2 + t0y

2

[
ρ1

4βt0
(δ0 − 2)

− 4κ

(δ0 − 2)
− 16nβ2At20y

(δ0 − 2)

]

≥ t0y
2

[
2 (ρ2 − β) + ρ1

4

(δ0 − 2)A
− 4κ

(δ0 − 2)
− 16

(δ0 − 2)

]

≥ t0y
2

[
ρ2 + ρ1

4

(δ0 − 2)A
− 4κ

(δ0 − 2)
− 16

(δ0 − 2)

]
.

Choose δ0
(
ρ1, ρ2, κ, A

)
> 2 such that

(
ρ2 + ρ1

4

(δ0 − 2)A
− 4κ

(δ0 − 2)
− 16

(δ0 − 2)

)
> 0,

we obtain

y(x0, t0) = 0.

It follows that

F (x0, t0) ≤ 0

and then

2 |∇bf |2 + β2t |f0|2 − δft ≤ 0

on M × [0, T ]. So if we choose

β ≤ min

{
β1, β2,

1

4 (n+ 1)nT
,

1

2 (n+ 1)AT

}

and

m = n+ 1, ε1 = 1, N = βT

such that

2n

m
− 2n2N

ε1
− 2n2N2A

2
m

m− 1
> 0

with 0 < ν ≤ N as in Lemma 3.2, we obtain
[
|∇bf |2 −

δ

2
ft

]
≤ C1

t
+ C2.
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Here

C1 =
1

2
max

{
n (n+ 1) δ2 +

8
√
3
(
n+ 12

)
δ2

(δ − δ0)
,

3n (n+ 1) δ2

4 (δ − δ0)
2

[(
k +

B
2

2 (n+ 1)

)
(δ − δ0)

2n (n+ 1)Aδ
+

16 (n+ 1)

n

]2}
,

C2 =
1

2
max

{(
k +

B
2

2 (n+ 1)

) √
3n (n+ 1) δ2

2 (δ − δ0)
+ 16

√
3 (n+ 1)2

δ3A

(δ − δ0)
2 ,

3 (n+ 1) δ

8nA (δ − δ0)

(
k +

B
2

2 (n+ 1)
+

32n (n+ 1) δA

(δ − δ0)

)2}
.

Note that β → 0+ if T → ∞ and

max
{
C

′

1, C
′′

1 , C
′′′

1

}
≤ C1,

max
{
C

′

2, C
′′

2 , C
′′′

2

}
≤ C2.

These will complete the proof. □

The proof of Theorem 1.2 :

Proof. Define

η : [t1, t2] −→ M × [t1, t2]

t 7→ (γ (t) , t)

where γ is a horizontal curve with γ (t1) = x1, γ (t2) = x2. Let f = lnu,
integrate f ′(t) along γ, so we get

f (x1, t1)− f (x2, t2) = −
t2∫

t1

(f ◦ η)′ dt = −
t2∫

t1

(〈
γ′ (t) ,∇bf

〉
+ ft

)
dt.

By applying Theorem 1.1, this yields

f (x1, t1)− f (x2, t2) < −
t2∫

t1

〈
γ′ (t) ,∇bf

〉
dt+

t2∫

t1

1

δ

(
C1

t
+ C2 − |∇bf |2

)
dt

≤
t2∫

t1

(
δ

4

∣∣γ′ (t)
∣∣2 + C1

δt
+

C2

δ

)
dt.
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We could choose

∣∣γ′ (t)
∣∣ = dcc (x1, x2)

t2 − t1
;

we reach

u(x1, t1)

u(x2, t2)
<

(
t2

t1

)C1
δ

· exp
(
δ

4

dcc(x1, x2)
2

t2 − t1
+

C2

δ
(t2 − t1)

)
.

□

5. Li-Yau gradient estimates for sum of squares of

vector fields

In the paper of H.-D. Cao and S.-T. Yau ([CY]), they derived the gradient
estimate for step 2. Here we generalize the result to higher step under the
assumption of the curvature-dimension inequality. LetM be a closed smooth
manifold and L be an operator with respect to the sum of squares of vector
fields {e1, e2, . . . , ed}

L =
∑

j∈Id

e2j .

Suppose that u is the positive solution of

(
L− ∂

∂t

)
u = 0

on M × [0,+∞). Now we introduce another test function as in [CY] for
f(x, t) = lnu(x, t)

(5.1) G (x, t) = t



∑

j∈Id

|ejf |2 +
∑

α∈Λ

(
1 + |Yαf |2

)λ
− δft




for λ ∈
(
1
2 , 1
)
to be determined later. Note that the power λ in this test

function G is necessary due to (5.14).
By the same computation as in Lemma 2.1 of [CY], we have Lemma 5.1.

Lemma 5.1. Let M be a smooth connected manifold with a positive mea-
sure and L be an operator with respect to the sum of squares of vector fields
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{e1, e2, . . . , ed}. Suppose that u is the positive solution of

(
L− ∂

∂t

)
u = 0

on M × [0,+∞). Then the following equality holds:

(
L− ∂

∂t

)
G = −G

t
+ 2t



∑

i,j∈Id

|eiejf |2 +
∑

j∈Id

(ejf) ([L, ej ] f)




+ 2λt
∑

i∈Id,α∈Λ

(
1 + |Yαf |2

)λ−2
|eiYαf |2

[
1 + (2λ− 1) |Yαf |2

]

+ 2λt
∑

α∈Λ

(
1 + |Yαf |2

)λ−1
(Yαf) ([L, Yα] f)

+ 4λt
∑

i∈Id,α∈Λ

(
1 + |Yαf |2

)λ−1
(eif) (Yαf) ([ei, Yα] f)

− 2
∑

j∈Id

(ejf) (ejG) .

Then, as a consequence of Lemma 5.1, we get Proposition 5.2.

Proposition 5.1. If M satisfies the curvature-dimension inequality
CD (ρ1, ρ2, κ,m) for ρ1 ∈ R, ρ2 > 0, κ ≥ 0,m > 0, then

(
L− ∂

∂t

)
G ≥ −G

t
+

t

m
(Lf)2 + t

∑

i,j

|eiejf |2 + tρ2Γ
Z (f, f)

+ 2λ (2λ− 1) t
∑

i,α

(
1 + |Yαf |2

)λ−1
|eiYαf |2

+ t
∑

j

(ejf) ([L, ej ] f) + t
(
ρ1 −

κ

ν

)
Γ (f, f)− νtΓZ

2 (f, f)

+ 2λt
∑

α

(
1 + |Yαf |2

)λ−1
(Yαf) ([L, Yα] f)

+ 4λt
∑

i,α

(
1 + |Yαf |2

)λ−1
(eif) (Yαf) ([ei, Yα] f)

− 2
∑

j

(ejf) (ejG) .(5.2)
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Remark 5.1. With the help of the curvature-dimension inequality, we ob-
tain the extra positive term tρ2Γ

Z (f, f) in order to control some of the
remaining negative terms in the upcoming estimates. Note that there are
similar spirits as in [CY, (2.10)] and [CKL, (2.10)].

Now we are ready to prove the main theorem in this section.
The proof of Theorem 1.4 :

Proof. Here we follow the method as in ([CY, Proposition 2.1.]). We claim
that there are positive constants C1, C2, C3 such that

G ≤ C1 + C2t+ C3t
2λ−1

λ−1 .

If not, then for arbitrary such C1, C2, C3, we have

G > C1 + C2t+ C3t
2λ−1

λ−1

at its maximum (x0, t0) on M × [0, T ] for some T > 0. Clearly,

{
t0 > 0, (ejG) (x0, t0) = 0,
∂G
∂t

(x0, t0) ≥ 0, LG (x0, t0) ≤ 0,

for j ∈ Id.

Choosing

ν = λ (2λ− 1)
(
1 + max

α

(
|Yαf |2 (x0, t0)

))λ−1

and evaluating (5.2) at (x0, t0), we obtain

0 ≥ −G

t0
+

t0

m
(Lf)2 + t0

∑

i,j

|eiejf |2 + t0ρ2
∑

α

|Yαf |2(5.3)

+ t0
∑

j

(ejf) ([L, ej ] f)

+ λ (2λ− 1) t0
∑

j,α

(
1 + |Yαf |2

)λ−1
|ejYαf |2

+ λ (3− 2λ) t0
∑

α

(
1 + |Yαf |2

)λ−1
(Yαf) ([L, Yα] f)

+ 4λt0
∑

j,α

(
1 + |Yαf |2

)λ−1
(ejf) (Yαf) ([ej , Yα] f)

− t0κ

λ (2λ− 1)

∑

α

(
1 + |Yαf |2

)1−λ∑

j

|ejf |2 + t0ρ1
∑

j

|ejf |2 .
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By straightforward computation, we have

|[L, ej ] f | =
∣∣∣∣∣2
∑

i

ei [ei, ej ] f −
∑

i

[ei, [ei, ej ]] f

∣∣∣∣∣(5.4)

≤ 2
∑

i

|ei [ei, ej ] f |+
∑

α

|Yαf |

and

∣∣[L, Y ′

η

]
f
∣∣ =

∣∣∣∣∣2
∑

i

ei
[
ei, Y

′

η

]
f −

∑

i

[
ei,
[
ei, Y

′

η

]]
f

∣∣∣∣∣

(5.5)

≤ 2
∑

i,A

∣∣eiY ′′

Af
∣∣+ d


a
∑

j

|ejf |+ b
∑

η

∣∣Y ′

ηf
∣∣+ c

∑

A

∣∣Y ′′

Af
∣∣



≤ 2
∑

i,α

|eiYαf |+ da
∑

j

|ejf |+ d (b+ c)
∑

α

|Yαf | .

Similarly

∣∣[L, Y ′′

A

]
f
∣∣ =

∣∣∣∣∣
∑

i

ei
[
ei, Y

′′

A

]
f +

∑

i

[
ei, Y

′′

A

]
eif

∣∣∣∣∣(5.6)

≤
∑

i

∣∣∣ei
(
an(i,A)en + b

η

(i,A)Y
′

η + cB(i,A)Y
′′

B

)
f
∣∣∣

+ a
∑

i,n

|eneif |+ b
∑

i,η

∣∣Y ′

ηeif
∣∣+ c

∑

i,B

∣∣Y ′′

Beif
∣∣

≤ 2a
∑

i,j

|eiejf |+ 2b
∑

i,η

∣∣eiY ′

ηf
∣∣

+ 2c
∑

i,A

∣∣eiY ′′

Af
∣∣+ b

∑

i,η

∣∣[ei, Y ′

η

]
f
∣∣

+ c
∑

i,A

∣∣[ei, Y ′′

A

]
f
∣∣+ da′

∑

j

|ejf |

+ db′
∑

η

∣∣Y ′

ηf
∣∣+ dc′

∑

B

∣∣Y ′′

Bf
∣∣
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≤ 2a
∑

i,j

|eiejf |+ 2 (b+ c)
∑

i,α

|eiYαf |+ da′
∑

j

|ejf |+ db′
∑

η

∣∣Y ′

ηf
∣∣

+
(
dc′ + b

)∑

B

∣∣Y ′′

Bf
∣∣+ c

∑

i,B

∣∣∣
(
an(i,B)en + b

η

(i,B)Y
′

η + cA(i,B)Y
′′

A

)
f
∣∣∣

≤ 2a
∑

i,j

|eiejf |+ 2 (b+ c)
∑

i,α

|eiYαf |+ d
(
a′ + acd4

)∑

j

|ejf |

+ d
(
b′ + bcd4

)∑

η

∣∣Y ′

ηf
∣∣+
(
dc′ + b+ c2d4

)∑

B

∣∣Y ′′

Bf
∣∣

≤ 2a
∑

i,j

|eiejf |+ 2 (b+ c)
∑

i,α

|eiYαf |+ d
(
a′ + acd4

)∑

j

|ejf |

+
(
db′ + bcd5 + dc′ + b+ c2d4

)∑

α

|Yαf | .

Also

(5.7)
∣∣[ei, Y ′

η

]
f
∣∣ ≤

∑

α

|Yαf |

and

(5.8)
∣∣[ei, Y ′′

A

]
f
∣∣ ≤ a

∑

j

|ejf |+ (b+ c)
∑

α

|Yαf | .

Substituting (5.4)–(5.8) into (5.3) and noting that

(
L− ∂

∂t

)
f = −

∑

j

|ejf |2 ,

we have

0 ≥ −G

t0
+

t0

m



∑

j

|ejf |2 − ft




2

+ t0
∑

i,j

|eiejf |2 + t0ρ2
∑

α

|Yαf |2(5.9)

+ λ (2λ− 1) t0
∑

j,α

(
1 + |Yαf |2

)λ−1
|ejYαf |2

− d
(
a+ a′ + acd4

)
λ (3− 2λ) t0

∑

j,β

(
1 + |Yβf |2

)λ−1
|Yβf | |ejf |

−
(
db+ dc+ db′ + bcd5 + dc′ + b+ c2d4

)
λ (3− 2λ)

× t0
∑

α,β

(
1 + |Yαf |2

)λ−1
|Yαf | |Yβf |
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− 2t0
∑

i,j

|ejf | |ei [ei, ej ] f |
︸ ︷︷ ︸

(1)

− t0



∑

j

(ejf)



(
∑

α

|Yαf |
)

︸ ︷︷ ︸
(2)

− 2aλ (3− 2λ) t0
∑

i,j,β

(
1 + |Yβf |2

)λ−1
|Yβf | |eiejf |

︸ ︷︷ ︸
(3)

− 2 (1 + b+ c)λ (3− 2λ) t0
∑

i,α,β

(
1 + |Yβf |2

)λ−1
|Yβf | |eiYαf |

︸ ︷︷ ︸
(4)

− 4aλt0



∑

β

(
1 + |Yβf |2

)λ−1
|Yβf |





∑

j

|ejf |




2

︸ ︷︷ ︸
(5)

− 4 (1 + b+ c)λt0
∑

j,α,β

(
1 + |Yβf |2

)λ−1
|ejf | |Yαf | |Yβf |

︸ ︷︷ ︸
(6)

− t0κ

λ (2λ− 1)

∑

α

(
1 + |Yαf |2

)1−λ

·
∑

j

|ejf |2

︸ ︷︷ ︸
(7)

− t0ρ1
∑

j

|ejf |2 .

Now we estimate each term (1)–(7) in the right hand of (5.9) as follows:

∑

i,j

|ejf | |ei [ei, ej ] f | ≤
∑

i,j,α

|ejf | |eiYαf |(1)

≤ d2

λ (2λ− 1)



∑

j

|ejf |2


(
∑

α

(
1 + |Yαf |2

) 1−λ

2

)2

+
λ (2λ− 1)

4

∑

i,α

(
1 + |Yαf |2

)λ−1
|eiYαf |2

≤ ε



∑

j

|ejf |2



2

+
d4

ε (2λ− 1)2

(
∑

α

(
1 + |Yαf |2

) 1−λ

2

)4

+
λ (2λ− 1)

4

∑

i,α

(
1 + |Yαf |2

)λ−1
|eiYαf |2 .
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

∑

j

(ejf)



(
∑

α

|Yαf |
)

(2)

≤ 4d2 (1 + d)

ρ2



∑

j

|ejf |




2

+
ρ2

16d2 (1 + d)

(
∑

α

|Yαf |
)2

≤ 4d2 (1 + d)

ρ2



∑

j

|ejf |




2

+
ρ2

16

(
∑

α

|Yαf |2
)
.

t0


2aλ (3− 2λ)

∑

i,j,β

(
1 + |Yβf |2

)λ−1
|Yβf | |eiejf |


(3)

= t0




2aλ (3− 2λ)

∑

β

(
1 + |Yβf |2

)λ−1
|Yβf |





∑

i,j

|eiejf |






≤ t0



∑

i,j

|eiejf |2 + d2λ2 (3− 2λ)2 a2



∑

β

(
1 + |Yβf |2

)λ−1
|Yβf |




2
 .

2 (1 + b+ c)λ (3− 2λ) t0
∑

i,α,β

(
1 + |Yβf |2

)λ−1
|Yβf | |eiYαf |

(4)

= t0γ
∑

i,α,β

[(
1 + |Yβf |2

)λ−1
|Yβf |

(
1 + |Yαf |2

) 1−λ

2
(
1 + |Yαf |2

)λ−1

2 |eiYαf |
]

≤ t0γ
∑

i,α,β

[
d2 (1 + d) γ

2λ (2λ− 1)

((
1 + |Yβf |2

)λ−1
|Yβf |

)2 (
1 + |Yαf |2

)1−λ

+
λ (2λ− 1)

2γd2 (1 + d)

(
1 + |Yαf |2

)λ−1
|eiYαf |2]

≤ γ2d3 (1 + d)

2λ (2λ− 1)
t0



∑

β

(
1 + |Yβf |2

)λ−1
|Yβf |




2(
∑

α

(
1 + |Yαf |2

) 1−λ

2

)2

+
λ (2λ− 1)

2
t0
∑

i,α

(
1 + |Yαf |2

)λ−1
|eiYαf |2

for γ = 2 (1 + b+ c)λ (3− 2λ) .
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4aλt0



∑

β

(
1 + |Yβf |2

)λ−1
|Yβf |





∑

j

|ejf |




2

(5)

≤ ελt0



∑

j

|ejf |2



2

+
4λt0d

2a2

ε



∑

β

(
1 + |Yβf |2

)λ−1
|Yβf |




2

.

4 (1 + b+ c)λt0
∑

j,α,β

(
1 + |Yβf |2

)λ−1
|ejf | |Yαf | |Yβf |(6)

≤ t0
64d2 (1 + d) (1 + b+ c)2

ρ2

×



∑

β

(
1 + |Yβf |2

)λ−1
|Yβf |




2

∑

j

|ejf |




2

+ t0
ρ2

16d2 (1 + d)

(
∑

α

|Yβf |
)2

≤ t0
ε

d2



∑

j

|ejf |




4

+ t0
ρ2

16

(
∑

α

|Yαf |2
)

+ t0
1024d6 (1 + d)2 (1 + b+ c)4

ερ22



∑

β

(
1 + |Yβf |2

)λ−1
|Yβf |




4

≤ t0ε



∑

j

|ejf |2



2

+ t0
ρ2

16

(
∑

α

|Yβf |2
)

+ t0
1024d6 (1 + d)2 (1 + b+ c)4

ερ22



∑

β

(
1 + |Yβf |2

)λ−1
|Yβf |




4

.

t0κ

λ (2λ− 1)

∑

α

(
1 + |Yαf |2

)1−λ

·
∑

j

|ejf |2(7)

≤ t0


ε



∑

j

|ejf |2



2

+
1

4ε

κ2

λ2 (2λ− 1)2

(
∑

α

(
1 + |Yαf |2

) 1−λ

2

)4

 .
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Let

x =
∑

j

|ejf |2 (x0, t0) ,

x =


δ0

∑

j

|ejf |2 − δft


 (x0, t0) ,

y = max
α

|Yαf | (x0, t0) .

We may assume that y > 1; otherwise, the similar method adopted as follows
still holds for y ≤ 1. Now we divide it into two cases:

(I) Case I : x ≥ 0 :
In this case, we have

(5.10)



∑

j

|ejf |2 − ft




2

≥ x2

δ2
+

(δ − δ0)
2

δ2



∑

j

|ejf |2



2

.

Substituting (1)–(7) and (5.10) into (5.9), we obtain

0 ≥ −G

t0
+





t0

mδ2
x2 +

(δ − δ0)
2

mδ2
t0



∑

j

|ejf |2



2

+
7

8
ρ2t0

(
∑

α

|Yαf |2
)


(5.11)

− 2t0ε



∑

j

|ejf |2



2

− 2d4

ε (2λ− 1)2
t0

(
∑

α

(
1 + |Yαf |2

) 1−λ

2

)4

− 4d2 (1 + d)

ρ2
t0



∑

j

|ejf |




2

− t0d
2λ2 (3− 2λ)2 a2

(
∑

α

(
1 + |Yαf |2

)λ−1
|Yαf |

)2

− γ2d3 (1 + d)

2λ (2λ− 1)
t0



∑

β

(
1 + |Yβf |2

)λ−1
|Yβf |




2(
∑

α

(
1 + |Yαf |2

) 1−λ

2

)2
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− d
(
a+ a′ + acd4

)
λ (3− 2λ) t0

∑

j,β

(
1 + |Yβf |2

)λ−1
|ejf | |Yβf |

−
(
db+ dc+ db′ + bcd5 + dc′ + b+ c2d4

)

× λ (3− 2λ) t0
∑

α,β

(
1 + |Yαf |2

)λ−1
|Yαf | |Yβf | − t0ελ



∑

j

|ejf |2



2

− 4λt0d
2a2

ε



∑

β

(
1 + |Yβf |2

)λ−1
|Yβf |




2

− t0ε



∑

j

|ejf |2



2

− t0
1024d6 (1 + d)2 (1 + b+ c)4

ερ22



∑

β

(
1 + |Yβf |2

)λ−1
|Yβf |




4

− t0ε



∑

j

|ejf |2



2

− t0
1

4ε

κ2

λ2 (2λ− 1)2

(
∑

α

(
1 + |Yαf |2

) 1−λ

2

)4

− t0ρ1



∑

j

|ejf |2

 .

Because

∑

j,β

(
1 + |Yβf |2

)λ−1
|ejf | |Yβf |

≤ 1

4



∑

j

|ejf |




2

+

(
∑

α

(
1 + |Yαf |2

)λ−1
|Yαf |

)2

,

we could write the inequality (5.11) in x, y:

0 ≥ −G

t0
+

t0

mδ2
x2 +

3

4
ρ2t0y

2 + t0[
(δ − δ0)

2

mδ2
x2 − 2εx2 − 4d3 (1 + d)

ρ2
x

− d2
(
a+ a′ + acd4

)

4
(3− 2λ)λx− λεx2 − εx2 − εx2 − ρ1x]

+ t0

[
1

8
ρ2y

2 − 2d12(1 + d)4

ε (2λ− 1)2
y4(1−λ) − d6(1 + d)2λ2 (3− 2λ)2 a2y2(2λ−1)
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− γ2d11 (1 + d)5

2λ (2λ− 1)
y2λ − d5(1 + d)2

(
a+ a′ + acd4

)
λ (3− 2λ) y2(2λ−1)

− d4(1 + d)2
(
db+ dc+ db′ + bcd4 + dc′ + b+ c2d4

)
λ (3− 2λ) y2λ

− 4λd6(1 + d)2a2

ε
y2(2λ−1) − 1024d14 (1 + d)6 (1 + b+ c)4

ερ22
y4(2λ−1)

− 1

4ε

κ2d8(1 + d)4

λ2 (2λ− 1)2
y4(1−λ) − lower order terms

]
.

Choose

ε =
(δ − δ0)

2

10mδ2
,

we obtain

(5.12) 0 ≥ −G

t0
+

t0

mδ2
x2 +

3

4
ρ2t0y

2 − C4t0.

(i) If x ≥
∑

α

(
1 + |Yαf |2

)λ
, then by the definition

G (x0, t0) = t0


(1− δ0)

∑

j

|ejf |2 + x+
∑

α

(
1 + |Yαf |2

)λ



we have

0 ≥ −2t0x+ (t0x)
2

mδ2
− C4t

2
0

=⇒ t0x ≤ 2mδ2 + C5t0
=⇒ G ≤ 2t0x ≤ 4mδ2 + 2C5t0

=⇒



∑

j∈Id

|ejf |2 +
∑

α∈Λ

(
1 + |Yαf |2

)λ
− δft


 (x0, t0) ≤ 4dδ2

t0
+ C6.

(ii) If x ≤
∑

α

(
1 + |Yαf |2

)λ
, then

0 ≥ −2C7y
2λ +

3

4
ρ2t0y

2 − C4t0.

(a) If t0 < 1, then

y2
(
3

4
ρ2t0 − 2C7y

2(λ−1)

)
≤ C4t0,
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and

3

4
ρ2t0 ≤ (C4 + 2C7) y

2(λ−1),

and

y ≤ C2t
1

2(λ−1)

0 ,

and

t0y
2λ ≤ C2t

2λ−1

λ−1

0 .

(b) If t0 ≥ 1, then

0 ≥ −2C7y
2λ +

3

4
ρ2t0y

2 − C4t0

and

0 ≥ −2C7t0y
2λ +

3

4
ρ2t0y

2 − C4t0

and

0 ≥ −2C7y
2λ +

3

4
ρ2y

2 − C4

and

y ≤ C8

and

t0y
2λ ≤ C9t0.

Combining (a) and (b), we have

G ≤ 2t0
∑

α

(
1 + |Yαf |2

)λ
≤ C ′

2t0 + C ′

3t
2λ−1

λ−1

0

=⇒



∑

j∈Id

|ejf |2 +
∑

α∈Λ

(
1 + |Yαf |2

)λ
− δft


 (x0, t0) ≤ C2 + C3t

λ

λ−1

0 .

(II) Case II : x ≤ 0 :
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We may assume

(5.13) (δ0 − 1)
∑

j∈Id

|ejf |2 ≤
∑

α∈Λ

(
1 + |Yαf |2

)λ
;

otherwise,

G (x0, t0) ≤ 0.

By (1)–(4), (5.9) becomes

0 ≥ −G

t0
+

15

16
ρ2t0

(
∑

α

|Yαf |2
)

(5.14)

− 2d2

λ (2λ− 1)



∑

j

|ejf |2


(
∑

α

(
1 + |Yαf |2

) 1−λ

2

)2

− 4d2 (1 + d)

ρ2
t0



∑

j

|ejf |




2

− d2λ2 (3− 2λ)2 a2t0



∑

β

(
1 + |Yβf |2

)λ−1
|Yβf |




2

− γ2d3 (1 + d)

2λ (2λ− 1)
t0



∑

β

(
1 + |Yβf |2

)λ−1
|Yβf |




2

×
(
∑

α

(
1 + |Yαf |2

) 1−λ

2

)2

− d
(
a+ a′ + acd4

)
λ (3− 2λ) t0

∑

j,β

(
1 + |Yβf |2

)λ−1
|Yβf | |ejf |

−
(
db+ dc+ db′ + bcd5 + dc′ + b+ c2d4

)

× λ (3− 2λ) t0
∑

α,β

(
1 + |Yαf |2

)λ−1
|Yαf | |Yβf |

− 4aλt0



∑

β

(
1 + |Yβf |2

)λ−1
|Yβf |





∑

j

|ejf |




2
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− 4 (1 + b+ c)λt0
∑

j,α,β

(
1 + |Yβf |2

)λ−1
|ejf | |Yαf | |Yβf |

− t0κ

λ (2λ− 1)

∑

α

(
1 + |Yαf |2

)1−λ

·
∑

j

|ejf |2 − t0ρ1
∑

j

|ejf |2

≥ −G

t0
+

3

4
ρ2t0y

2 + t0

[
3

16
ρ2y

2 − C9

δ0 − 1
y2 − C10y

2λ

− C11y
2(2λ−1) − C12y

2λ − C13y
3λ−1 − C14y

2λ − C15y
4λ−1

− C16y
3λ − C17

δ0 − 1
y2 − C18y

2λ

]
.

If we choose

δ0 = 1 +
8

ρ2
(C9 + C17) > 1 and

1

2
< λ <

2

3
,

then we derive the inequality

(5.15) 0 ≥ −G

t0
+

3

4
ρ2t0y

2 − C19t0

for some constant C19 > 0. Utilizing the same deductions as precedes and
(5.15) instead of (5.12), the proof of this theorem is completed. □
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