COMMUNICATIONS IN
ANALYSIS AND GEOMETRY
Volume 28, Number 3, 565@ 2020

On Li-Yau gradient estimate for sum of
squares of vector fields up to higher step

DER-CHEN CHANG, SHU-CHENG CHANG, AND CHIEN LIN

In this paper, we generalize the Cao-Yau’s gradient estimate for the
sum of squares of vector fields up to higher step under assumption
of the generalized curvature-dimension inequality. With its appli-
cations, by deriving a curvature-dimension inequality, we are able
to obtain the Li-Yau gradient estimate for the CR heat equation
in a closed pseudohermitian manifold of nonvanishing torsion ten-
sors. As consequences, we obtain the Harnack inequality and upper
bound estimate for the CR heat kernel.
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1. Introduction

One of the goals for differential geometry and geometric analysis is to under-
stand and classify the singularity models of a nonlinear geometric evolution
equation, and to connect it to the existence problem of geometric structures
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on manifolds. For instance in 1982, R. Hamilton ([H3]) introduced the Ricci
flow. Then by studying the singularity models ([H2], [Pell], [Pe2], [Pe3]) of
Ricci flow, R. Hamilton and G. Perelman solved the Thurston geometriza-
tion conjecture and Poincare conjecture for a closed 3-manifold in 2002.

On the other hand, in the seminal paper of P. Li and S.-T. Yau ([LY])
established the parabolic Li-Yau gradient estimate and Harnack inequality
for the positive solution of heat equation

(A_gt>u(x,t):o

in a complete Riemannian manifold with nonnegative Ricci curvature. Here
A is the time-independent Laplacian operator. Later, R. S. Hamilton ( [H1])
obtained the so-called Li-Yau-Hamilton inequality for the Ricci flow in a
complete Riemannian manifold with a bounded and nonnegative curvature
operator. Recently, G. Perelman ([Pel]) derived the remarkable entropy for-
mula which is important in the study of the singularity models of Ricci flow.
The derivation of the entropy formula resembles the Li-Yau gradient esti-
mate for the heat equation. Since then, there were many additional works
in this direction which cover various different geometric evolution equations
such as the mean curvature flow ( [H4]), the Kéhler-Ricci flow ([Ca]), the
Yamabe flow ([Ch] ), etc.

In the paper of [CKW], following this direction, we propose to study the
most important geometrization problem of closed CR 3-manifolds via the
CR torsion flow . More precisely, let us recall that a strictly pseudocon-
vex CR structure on a pseudohermitian 3-manifold (M, J, 0) is given by a
cooriented plane field ker 8, where 6 is a contact form, together with a com-
patible complex structure J. Given this data, there is a natural connection,
the so-called Tanaka-Webster connection or pseudohermitian connection. We
denote the torsion of this connection by A;g, and the Webster curvature by
W. We consider the torsion flow

oJ
97 — 924
E - —QWQ,

on (M, J,0) x [0,T). It is the negative gradient flow of CR Einstein-Hilbert
functional. Along this direction with the torsion flow (1.1), we have estab-
lished the CR Li-Yau gradient estimate ([CKL]) and the Li-Yau-Hamilton
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inequality ([CETW], [CCE]) for the positive solution of CR heat equation

(1.2) <Ab - ;) u(z,t) =0

in a closed pseudohermitian (2n + 1)-manifold with nonnegative pseudoher-
mitian Ricci curvature and vanishing torsion tensors (see next section for
definition). Here A is the time-independent sub-Laplacian operator. One of
our goals in this paper is to find the CR Li-Yau gradient estimate in a closed
pseudohermitian (2n + 1)-manifold with nonvanishing torsion tensors.

Let us start with a more general setup for the Li-Yau gradient estimate
in a closed manifold with a positive measure and an operator

(1.3) L=) ¢

with respect to the sum of squares of vector fields ey, eo, ..., eq which satis-
fies Hormander’s condition ([H]). More precisely, the vector fields e;, ea, ...,
eq together with their commutators Yi,..., Y, up to finite order span the
tangent bundle at every point of M with d+ h = dim M. It is to say that
the commutators of ey, eg,...,eq of order r (or called step r as well) can be
expressed as linear combinations of eq, eg,...,eq and their commutators up
to the order r — 1. The very first paper of H.-D. Cao and S.-T. Yau ([CY])
follows this line, and considers the heat equation

(1.4) <L - ;) u(z,t) = 0.

They derived the gradient estimate of sum of squares of vector fields of step
two (r = 2) in a closed manifold with a positive measure.

In this paper, with the help of a generalized curvature-dimension inequal-
ity explained below, we are able to obtain the Li-Yau gradient estimate for
the CR heat equation in a closed pseudohermitian manifold of the nonva-
nishing torsion tensor. As consequences, we obtain the Harnack inequality
and upper bound estimate for the heat kernel. With the same mentality, we
generalize the Cao-Yau’s gradient estimate for the sum of squares of vec-
tor fields up to order three and higher under assumption of a generalized
curvature-dimension inequality.

One of the key steps in Li-Yau’s method for the proof of gradient esti-
mates is the Bochner formula involving the (Riemannian) Ricci curvature
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tensor. Bakry and Emery ([BE], [BBBQ]) pioneered the approach to gen-
eralizing curvature in the context of gradient estimates by using curvature-

dimension inequalities. In the CR analogue of the Li-Yau gradient estimate
(ICKL]), the CR Bochner formula ([G]) is

(1.5) %Ab IVof|? = [Hess(f)]* + (Vo f, Vo(Auf)) + 2 (IVof, Vi fo)
+ (2Ric — (n —2)Tor)((Vof)e » (Vo f) o),

which involves a term (JV,f, V;fo) that has no analogue in the Riemannian
case. Here fy := Ty and T is the characteristic vector field. In order to deal
with the extra term (JVyf, V;fo) in case of vanishing torsion tensors, based
on the CR Bochner formula , we can show the so-called curvature-
dimension inequality (see Lemma :

(16)  Talfof) +oTF (1 0) 2 = [AfP + (—% - f) Vof P +2nfol”

for any smooth function f € C*°(M) and v > 0 and the pseudohermitian
Ricci curvature bounded below by —k. Here

L7 (f, f) = 2|Vsfol?

and

Do(f, f):=4|Hess(f)]> +8Ric((Vof)e s (Vof)o) + 8 (TVuf, Vi fo) -

Before we introduce the generalized curvature-dimension inequality
which was first introduced by Baudoin and Garofalo ([BGI) in the content
of sub-Riemannian geometry, it is useful to compare Cao-Yau’s notations
with pseudohermitian geometry.

Let J be a CR structure compatible with the contact bundle £ = ker 6
and T be the characteristic vector field of the contact form 6 in a closed
pseudohermitian (2n + 1)-manifold (M, J,0) . The CR structure J decom-
poses C ® ¢ into the direct sum of 71 ¢ and Tp; which are eigenspaces of J
with respect to i and —i, respectively. By choosing a frame {T, Z;;, Z;} of
TM ® C with respect to the Levi form such that

then Y7 will be the characteristic vector field T with o = 1, d = 2n and
1

, 1 .
Zj = §(ej —ie;) and Z7 = §(€j +ie5)
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with }: n+j, j=1,...,n. The operator that we are interested in this
paper will be

n
L= Z(ejz + 632) =2 Ab.
j=1

Definition 1.1. Let M be a smooth connected manifold with a positive
measure and vector fields {e;, Y, }ier, aca spanning the tangent space T'M.
For p1 € R, pa >0, kK >0, m > 0, we say that M satisfies the generalized
curvature-dimension inequality CD(p1, p2, k, m) if

(L) (L +(pr = DID(F )+ pel?(f, f) STalf, £+ 005 (S, f)

1
m
for any smooth function f € C*°(M) and v > 0. Here

L(f, )= le;f,

J€lq
T2(f, f) =) [Yafl,
a€cly,
Do/, 1) =5 |G, 1) =23 (ei)esLh) |
Jj€lq
CE(, )= g (L2 1)~ 23 (VaVaL )|
L acly,

Note that we also have

To(f, £) = leiefI?+ > (e;£)([Le5]f)

ij€ls j€la

and

LE(f = D leYafl’+ D (Yaf)(L Yol f).

i€ly,a€l) a€cl)

In Lemma we will derive a curvature-dimension inequality in
a closed pseudohermitian manifold of the nonvanishing torsion tensor. As a
result, we are able to obtain the following CR Li-Yau gradient estimate which
is served as a generalization of the CR Li-Yau gradient estimate in a closed
pseudohermitian (2n + 1)-manifold with nonnegative pseudohermitian Ricci
curvature and vanishing torsion as in [CKL], [CCKL] and [BG].



570 D.-C. Chang, S.-C. Chang, and C. Lin

Theorem 1.1. Let (M, J,0) be a closed pseudohermitian (2n + 1)-manifold
with

(2Ric—(n—2)Tor)(Z,2) > —k{(Z,Z)
and

A=

17,4 <B

max |4;;] <4, max

i,j€l, 1,5€1l,
for ZeT (ThoM), k>0 and A, B as positive constants. Suppose that
u(z,t) is the positive solution of on M x [0, co). Then there exist
8o = 6o(n, k, A, B) >> 1 such that f (z,t) = Inu (x,t) satisfies the following
gradient estimate

C
(1.8) IVof)? = 6f < 71 + s

for & > 0y and

n 2 52
01:;max{n(n—f—l)éz—{—&/g(g_—;;)) 0 ,
— 2
3n(n+1)52 - B (6 — o) 16 (n+1)
4(5 — d6p)? 2(n+1) ) 2n(n+1)4s n '
1 B V3n (n+1) 52 , 0%A
Cg—2max{ k+2(n—|—1)) 200 — o) +16\/§(n—{—1) ((5—750)2’
3

(n+1)6 B 3o (n+1) 64\
<k+2(n+1)+ (6 —50) )}

As a consequence, we have Cy = 0 if k = 0 and A = 0. Hence, we have

Corollary 1.1. Let (M, J, 0) be a closed pseudohermitian (2n + 1)-
manifold with nonnegative pseudohermitian Ricci curvature and vanishing
torsion. If u(xz,t) is the positive solution of on M x [0, c0). Then
f(z,t) =Inwu(x,t) satisfies the following gradient estimate
C

(1.9) VoS = dfe < =

Remark 1.1. In fact, in [CCKL], we get the following CR Li-Yau gradient
estimate in a closed pseudohermitian (2n + 1)-manifold with nonnegative
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pseudohermitian Ricci curvature and vanishing torsion. That is

Q n
IV f|? — <1 + i) Je+ %t(fo)2 < (n+t6+),

but where we can not deal with the case of nonvanishing torsion tensors.
The major different here is: we apply the generalized curvature-dimension
inequality, which holds as in Lemma and Cao-Yau’s method (|CY]) to
derive the gradient estimate in a closed pseudohermitian (2n + 1) -manifold
with nonvanishing torsion tensors.

Next we have the CR version of Li-Yau Harnack inequality and upper
bound estimate for the heat kernel as in [CETW] and [CY].

Theorem 1.2. Under the same hypothesis of Theorem[1.1], suppose that u
is the positive solution of
0
Ay — — =0
< : at) ’

on M x [0, +00). Then for any 1,22 € M and 0 < t1 <tz < +o0, there ex-
ists a constant do(n, k, A, B) > 1 such that
(r1,11) (01,22)° | Chn,,0,4,B)
u .Il,tl t2 s 5dcc 1,2 02 n,k,d, ,B
BIL) (2 ‘ ty—t
U(CEQ,tQ) - <t1> P <4 tQ — tl + 5 ( 2 1)

for 6 > 6o(n, k, A, B). Here we denote the Carnot-Carathéodory distance in
(M, J,0) by dec.

Theorem 1.3. Under the same hypothesis of Theorem suppose that
H(x,y,t) is the heat kernel of

0

on M x [0,400). Then there exists a constant 61 > 0 such that
1
Vvol (Bx(vD)) vol (B,(v1))

Ch(n,k,6, A, B) dwcc(z,y)?
XeXp( 5 o

H(z,y,t) < O(e)™

fore € (0,1) and C(g) — 400 as e — 0F.
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In the Cao-Yau gradient estimate for a positive solution of an operator
with respect to the sum of squares of vector fields of step 2, the key estimates
are (2.10), (2.12) and (2.14) of (JCY]). This in fact, resembles the generalized
curvature-dimension inequality with some certain pi, p2,x and m.
However this is not the case for step 3 and up. Then, as in Theorem
it was an important insight that one can use the generalized curvature-
dimension inequality as a substitute for the lower Ricci curvature bound on
spaces where a direct generalization of Ricci curvature is not available.

We start to setup the Li-Yau gradient estimate for a positive solution
of an operator with respect to the sum of squares of vector fields of higher
step. For simplicity, we assume that M is of step 3, i.e.

(1.10) lei, [ej, [ex, el]]] = aiigien + b?jle,; + cfgleX
for afly,, bl ¢ € C°° (M) with
{Ya}aEA = {YW/ = [67;, 6]']}7;7].61[1 @] {YA/ = [61'7 [6]', ek]]}i,j,kefd .

We denote the supremum of coefficients as:

— — ul _ A
a =sup |aiy| b =sup bijk:l ; C=sup|Cipl

I n - Yl ) A
a’ = sup ‘ehaijkl‘ , b =sup ’ehbijkl‘ , ¢ =sup ’ehcijkl’ :

Theorem 1.4. Let M be a smooth connected manifold with a positive mea-
sure satisfying the generalized curvature-dimension inequality CD(p1, p2,
k,m) and let L be an operator with respect to the sum of squares of vec-
tor fields {ei1, ea,...,eq} satisfying the condition . Suppose that u is
the positive solution of

(1.11) (L—i) u=0

on M x [0,400). Then for all % <AL %, there exists
o = o ()\,pl, P2, K, d, h) >1
such that for any § > oy

A
ZLju'Z +> 1+ Yaul) " sue oGy e
2 02 = 2 3 )

u
j€l4 acA
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where C1,Cy,C3 are all positive constants depending on d,\,d,a,a’,b,V,
C7C/71017p2’l‘€7m'

Remark 1.2. 1. In the paper of [BG|, they proved the LP version of Li-
Yau type gradient estimates for 2 < p < co under the assumption of the
generalized curvature-dimension inequality via the semigroup method in the
sub-Riemannian geometry setting.

2. We can obtain the Li-Yau Harnack inequality and upper bound es-
timate for the heat kernel of L — % with respect to the sum of squares of
vector fields as in [CY]. We also refer to [JS], [KS1], [KS2] and [M] for some
details along this direction.

We briefly describe the methods used in our proofs. In section 3, we
derive a generalized curvature-dimension inequality in a closed pseudoher-
mitian (2n 4 1)-manifold. In order to gain insight for the estimate, we first
derive the CR Li-Yau gradient estimate and the Harnack inequality for the
CR heat equation in a closed pseudohermitian manifold as in section 4.
Then, for simplicity, we will derive the Li-Yau gradient estimate for the sum
of squares of vector fields of step three as in section 5. Similar estimates will
hold for the sum of squares of vector fields of higher step as well.

Acknowledgement. The authors would like to express their profound
gratitude to Prof. S.-T. Yau for bringing this project to them and his in-
spirations of the Li-Yau gradient estimate for the sum of squares of vector
fields.

2. Preliminary

We introduce some basic materials about a pseudohermitian manifold (see
IDT] , [CKL], and [L] for more details). Let (M, &) be a (2n + 1)-dimensional,
orientable, contact manifold with contact structure £&. A CR structure com-
patible with ¢ is an endomorphism .J : £ — ¢ such that J? = —1. We also
assume that J satisfies the integrability condition: If X and Y are in &, then
so are [JX,Y]+ [X,JY] and J([JX,Y] + [X,JY]) = [JX,JY] — [X,Y].

Let {T, Zy, Z5} be a frame of TM ® C, where Z, is any local frame of
T, Za = Zo € Tp1 and T is the characteristic vector field. Then {6, 6%, 0%},
the coframe dual to {T, Z,, Z5}, satisfies

i1 _po A B
(2.1) d9—zha/39 N
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for some positive definite hermitian matrix of functions (h,z). If we have this
contact structure, we also call such M a strictly pseudoconvex CR (2n + 1)-
manifold.

The Levi form (, ), is the Hermitian form on 77 defined by

(Z, W), = —i{d8,Z \W).

We can extend ( , ), to Ty by defining (Z, W>L9 =(Z,W);, forall Z,W €
T . The Levi form induces naturally a Hermitian form on the dual bundle
of T o, denoted by ( , ) Ly and hence on all the induced tensor bundles. In-
tegrating the Hermitian form (when acting on sections) over M with respect
to the volume form dy = 6 A (df)™, we get an inner product on the space of
sections of each tensor bundle.

The pseudohermitian connection of (.J,6) is the connection V on TM ®
C (and extended to tensors) given in terms of a local frame Z, € T} by

VZe=we’ ® 25, VZz=ws’®Z5 VI =0,
where w,? are the 1-forms uniquely determined by the following equations:

d6® = 6% N wo” + 0 N TP,
0="7ou NO%,
O:waﬁ—f—wBa,

We can write (by Cartan lemma) 7, = A,,07 with A, = Ay,. The cur-
vature of Tanaka-Webster connection, expressed in terms of the coframe
{60 =0°,0% 0%, is

Hga = Higé‘ = dWéa — w57 A wA/a,
Mo® = 11,0 = Tp” =T13° = T1,° = 0.

Webster showed that IIg* can be written
Ig™ = Rp® 607 NO7 + W5 0P NG — W350° A0 +ilg AT —iTg N O
where the coefficients satisfy
Rgaps = Ropop = Ragop = Rpagos  Weay = Waap-

Here RV&O&B is the pseudohermitian curvature tensor, R,3 = R,",5 is the
pseudohermitian Ricci curvature tensor and A,g is the pseudohermitian
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torsion. Furthermore, we define the bi-sectional curvature

R (X,Y) =R, 155XaXaYsY3

aaffs aafBB
and the bi-torsion tensor

T,5(X,Y) = i(A5,X Yo — Aap XPY)
and the torsion tensor

Tor(X,Y) = hT5(X,Y) = i(AgsX"Y ™ — A, X Y*)

forany X = X°Z,, Y =Y*Z, in T1 .

D75

We will denote the components of the covariant derivatives with in-
dices preceded by a comma; thus write A,g.. The indices {0,a,a} in-
dicate derivatives with respect to {1, Z,, Zs}. For derivatives of a scalar
function, we will often omit the comma, for instance, uq = Zau, uyz =

Z5Za0u — wo(Z5) Z~u.In particular,

Vou? =23, uatiw, |Viul* =2 Za,ﬁ(uaﬁuaB + Ugglas)-

Also
Apu=Tr ((VH)2U) = Za(uad + U&a)~

Next we recall the following commutation relations ([L]). Let ¢ be a

scalar function and o = 0,0% be a (1,0) form, g = Ty, then we have

Pap = PBas
Paf — Pia = thygpo,
P00 — Pa0 = Aap”,
0a,08 = Oa,B0 = O’aﬁAig — JVAaﬁ 5,

00,08~ %a,80 = Oa ’YA t+o A’yﬂ @’

and

1
(2

)‘Pe]e~ Pere; = thypo,
)‘Pe — Pere; = 0,

(2.2) B : ;
3) oe; — Pe;0 = pe, Re A — e Im A,

(3)
(4) 9006~ 906;0 = —Peg, Im Aé' — (peTRe Aé-.
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Finally we introduce the concept about the Carnot-Carathéodory dis-
tance in a closed pseudohermitian manifold.

Definition 2.1. A piecewise smooth curve 7 : [0,1] — M is said to be hor-
izontal if v /(t) € & whenever « (t) exists. The length of v is then defined
by

1 1
() = /O (v ()7 ()3 dt.
The Carnot-Carathéodory distance between two points p, ¢ € M is

dcc<pa Q) = inf U(V)’ v E Cpaq}7

where C),, is the set of all horizontal curves joining p and ¢. By Chow
connectivity theorem [Chol, there always exists a horizontal curve joining p
and ¢, so the distance is finite. The diameter d. is defined by

de(M) = sup {dc(p,q)| p,q € M}.

Note that there is a minimizing geodesic joining p and ¢ so that its length
is equal to the distance dg.(p, q).

3. A generalized curvature-dimension inequality

Now we proceed to derive a curvature-dimension inequality in a closed pseu-
dohermitian (2n + 1)-manifold under the specific assumptions on the pseu-
dohermitian Ricci curvature tensor and the torsion tensor. In particular, in
the case of vanishing torsion tensors, we have the following lemma.

Lemma 3.1. If (M, J,0) is a pseudohermitian (2n + 1)-manifold of van-
ishing torsion with

(3.1) 2Ric(Z,2) > —k(Z,Z)

for Z e T (T10M), k > 0, then M satisfies the curvature-dimension inequal-
ity CD(—k,2n,4,2n).
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Proof. By the CR Bochner formulae (see [Gl)

%Ab Vo f|? = [Hess(f)” + (Vo f, Vi(Apf))
+ (2Ric — (n —2) Tor) (Vs f)e, (Vo f)e) + 2(IVif, Vi fo)
where (Vyf)c is the Th g M-component of (Vyf), we have
2 ) = [Hess(D + (2Ric — (1.~ 2) Tor)((Vaf)e, (Vi)
+2(JVif, Vifo) -

With the equality

L204,0) = Vudol + ol T,
we have
(3.2) Do(f, ) + T3 (f, f)

= 4[|Hess(f)]” + (2Ric — (n — 2) Tor) (Vo f)e, (Vo))
+2(JVof, Vi fo)] + 20 [V fol* + 2v fo[ Ay, T] .

On the other hand, we have

(3.3) |Hess(f (Z £l

1,j€1 1,J€1,

2) > AP+ |fof

and

Vof®
14

(3.4) (JVof. Vofo) = - = Vafol.

Now it follows from (3.2)), (3.3)), (3.4) and curvature assumptions
(35)  To(f,f)+vI5(f, f)
2 .
> ( 801+ 2040 ) + 4(2Ric (0= ) Tor)(Taf)er (o))

sV /L AT

zﬁmbﬂ + (2= 2) s+ 2 ol + 20l 71
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Finally, it follows from the commutation relation ([CKL]) that

(3.6) Avfo = (Dof)o + 2[(Aapf*)’ + (Agzf™)].

But A, = 0, hence
[Ay, T) f =0.

All these imply

a(f, )+ 050 0) 2 2100fP + (<26 = 2) s+ 2m ol

Remark 3.1. In a closed pseudohermitian (2n + 1)-manifold of vanish-
ing torsion tensors, the CR Bochner formulae (1.5 is equivalent to the
curvature-dimension inequality (|1.7)) which also observed in the paper of
[BG].

As for the curvature-dimension inequality in a closed pseudohermitian
(2n + 1)-manifold of nonvanishing torsion tensors, we have

Lemma 3.2. Let (M, J,0) be a closed pseudohermitian (2n + 1)-manifold
of

(2Ric — (n—2)Tor) (Z,2) > —k (Z, Z)

for Z e ' (ThoM), k>0 and

max |A4;;| <A, max|A,.: <B
1,J€L, i,j€l, I

for nonnegative constants A, B, Then M satisfies the curvature-dimension
inequality CD(—k — 2nN51B2 2” — 2”2N 2mn? NZA” ,4,2mn) for 1 <m <

m—1

400, 0 < g1 < 400 and smaller N > O such that

( 2n  2n2N  2mn2N 222 )
— = — >0
m €1 m—1

and 0 <v < N.
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Proof. Tt follows from (3.2)), (3.4) and (3.6]) that
To(f, f)+vT5(f, £) =8> (

fﬁQ) <2k+ )IV fI?
a,B

—8v|fol > ‘(Aaﬁ,afﬁ + Agz/s0a)] -
a,B

Note that by using the Young inequality

(3.7) ol (|Aapafs| + [Aapfsal)
| fol® !fol 2
S T&‘l +é1 ‘Aaﬁafﬁ’ + — + &9 ‘Aaﬁfﬁa s
for €1,e9 > 0. Choose
m—1
€2 = ———5
mN A

for m > 1 and N with v < N. This implies that (1 - NeQZQ) 1
It follows from (3.3)) that

Ts(f, f)+vT4(f. f)

2 2
ZSZ f +82 <1—I/€2‘Aa5 )\fga\Q— <2k+ > Vo f|?
a’ﬂ a7/8

of
) 11\, . 4 2
- ”Z g+5 | fol —8%1&26:‘ aB,afﬁ)

8 _
> —Z < 5|+ \fgaP) - <2k+ - +4N51nB2> IV f]?
2 1 2
~ 2 N(+> ol
€1
4 8 — )
z IAbf! +5 |f0| — (264~ +4NewnB ) [V, f|

N ( T ) fol?
€1

> — (Lf)* + (- —2nNe1 B —) (f, f)

2mn
) TZ(f,f).

< on  2n2N  2mn? N222
+ - —
m €1 m—1
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Now we make N smaller such that

2 2°N omn2N2A>
m €1 m—1

> 0.
Then we are done. U

Remark 3.2. By choosing A =0= B, m — 1*,e; — 400 and noting the
inequality (3.7 in Lemma we are also able to have the same conclusion
in Lemma 3.1

4. The CR Li-Yau gradient estimate
In this section, based on methods of [CY] and [CKL], we first derive the
CR Li-Yau gradient estimate and the Harnack inequality for the CR heat
equation in a closed pseudohermitian manifold. Let (M, J,6) be a closed

pseudohermitian (2n + 1)-manifold and u(z,t) be a positive solution of the
CR heat equation

(Ab—gt)u(x,t) =0

on M x [0, oo0). We denote that f(x,t) = Inu(z,t). Modified by [CKL], we
define a real-valued function F(z,t,3,6): M x 0,T) x Rt x R™ — R by

(4.1) F(x,t,8,0) =t | Y lejfP+ Bt Y [Yafl> =4

jEId Oéelh

forz € M, t>0, >0, § > 0. Note that 5 — 07 if T" — oo as in the proof.

Lemma 4.1. Let (M, J,0) be a closed pseudohermitian (2n + 1)-manifold
and u(x,t) be a positive solution of the CR heat equation

(1= )t o
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on M x [0, c0). We have the identity

(4.2) <L - ;) F =" olo(s, )+ 64, P

+4667 Y (eif)(Yaf)(lej, Yol )

]GId,OJEIh
—2> (ejf)(e;F) =Bt [Yafl*.
Jj€lq a€ly

Proof. Tt follows from definitions of I'a(f, f) and I'Z(f, f) that

LF =t [L(T(f, f))+ BtL(TZ(f, f)) — 6L

{[m £ P 42> (e h)( eJLf)]

j€ly

+ 6t {ﬂ% (f. H+23° (Yaf) (YaLf)] - 6Lft}.

a€ely

Then

(4.3) <L - gt) F= —% +t|2Ta(f, f)
+28tT4 (f, f +22 (e;f) e]< - )f
+28tY " (Yaf) a( —i)f
_5Z(Yaf)2—5§t <L— ;) f].

Since

(L= 5) 7 =-Xlessl = =5+ 65 as P b5
J «
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we obtain

(4.4a)
2) (ejf)e; <L - i) f428t>  (Yaf) Ya (L - ;) ¥
J a
Y Vaf R 0 (L - ;) f
=2 (ejf)e; <—1; + Bt [Yufl? - 5ft>
J a

2663 (Yaf) Ya (Z ejf2) B Vaf) 60 <L - (ft) /

J

o {Z ef)e (Z|Y /| > +3 o af)a (;ejﬂ)}

J

+ 2Z (ejf)e; (—f - 5ft> - BZ (Yaf)? - 5; (Z €jf2)

=4ﬁtz<ejf><yaf><[ej,ya]f>—fZ (D)) = B Yaf

Substitute (4.4al) into (4.3), we have the identity (4.2). O

As a consequence of the identity (4.2]), we have proposition 4.2.

Proposition 4.1. If M satisfies the curvature-dimension inequality
CD(p1, p2,k,m) for pr € R pa >0,k >0,m >0, then

45) (L5 ) F2 =42 | @hP+ (- 5 ) DU+ (1)

+4ﬁt2 > (e HYaf)(es, Yol f)

jEId,ozEIl
—23 (i) e F) - Bt Yafl.
jeld 046[}1

Now we proceed to prove Theorem :
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Proof. Note that M satisfies the curvature-dimension inequality
CD(p1, p2, k,m) with p; <0,p2 >0,k >0,m >0 as in Lemma Here
we follow the method as in ([CY]). Set

x= (50 Vo f|? — 5ft> (z0,t0) for & >y > 2
T = |V f[? (zo, o)
y = |fol (w0, t0)

where 0y and (zg,t9) will be chosen later and fo = T'f with T := Y. From
now on, 1" denotes a positive real number instead of a vector field.
If F attains its maximum at (xo,%) € M x [0,T], then, by choosing a

normal coordinate at (xg,%y) and (2.2)), (4.5) becomes

F ]. 2 K — 2
. > — — - —
(4.6) 0> o + 2ty [m(QAbf) +2 <p1 ,8750) T+ p2y :|
— 16nﬁt3A§y — Btoy?

for d = 2n and h = 1. More precisely from the commutation relations ({2.2]),
we have at (zg, to)

(4.7)
> (eaf) (TF) ([easT) £) (w0, to)
a€ls,
=fo Y fe. (eaTf —Teqaf)
a€lsy,
= fo > feu [(foen + (De,T) f) = (feuo + (Drea) f)]
acls,
= Jo | D ey oo, = fer0) + 3 Jos (Joo = fe0) = D0 TG feutes
JjEL, jeI, a,B€l,
=fo > fe, (fa ReAj — fo Im Ay)
5lel,
+fo Y fo (—fo ImAj — foRe Ay) — fo > TG fe, fes
5lel, a,B€lL,

v

- |fO|Z Z (’fe]»

Jlel,
> —4nAzy.

+ ‘fe;D (|fel| + |fez~’)
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We divide the discussion into the following two cases:
(I) Case I :2>0:

By
2 2\ 2 x do 517
(Apf)" = (fi = IVofl7) = |5+ (1= —=)IVofl
) 1)
22 (6 —8)? )
> 2
=4 + 52 <’vbf‘ ) )
we have
F 8t 8to (5 — 59)% 4k _
(48) 0> & - m—;zx? + topay® + O(W;?O)xQ + <4t0,01 — ﬁ> T
+1to (p2 — B) y° — 16nBL5ATY.
Let
8 (8 — 8p)? 4k _
A=ty [ (m52°) T2+ <4p1 - Bto> T+ (po — B) y? — 16nSt ATy
and
4. 80— 00)’
T me?
We have
21 — 25 SnBtoAy\ >
A:to{A<x+ pr— 2 0 y)
A
9 _ 2
(2p1 — B—g) — 8nﬁt0Ay) X
- A + (:02 - 6) Y
2p1 — 25 — Snpto Ay ” 64n25%12 A"
—td AT+ Pla + [ p2— - —E0 ) 2
A A
2
Jomsad (o ny (0o
A L= )Y A ‘
Choose

Bzﬁyzmm{” W“Q}
' 4716nTAJ
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This implies that

64n252t3A2 P2
B .= — B — > —.
(” 2 A =2
(¢) Under the case
T > 0-=— Apia
dnps A
we have
<\ 2
32nStyA K (pl B E)
> tod By? + 0 (- )y 4 )
A= 0{ vt (m ﬂt())y 1

- 2
_ 167’LﬁtoA K
—tO{B <y+BA (Pl BtO>>

162n26%24° + ABA w0\
BA? P B
S 1 16nnzz 2 14 2i% .
=7 1 A, to 72 )0
o3 ( _16nkKAT 2t
=\ P1 sz t 05
Set

z =tox.

(a) If 2 > Bty | fol?, it follows from
F =ty (2= 8) IV 2 + 2 + fto | o]

that (4.8) becomes

8 , 3
0> -2t — (¢ - — tg — —F—
> —2tor + 5 (tox)” — (Pl 0 oy

and then

o985
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mé% 5§ [6m 16nkA
< —+ 0/ — — T)].
=1 AKMO VApa >‘

F<2t:c<—m52+§\/6—m ity 20EA L
= 20T = o\ 4 P10 Aoy

2Vuf? + ut fol? — 64 (. T) < 1+

Thus

This implies

and then

with C] = %52 and

) J SkA
ol P10 [om | SnoedVEm
2 A A/p2

(b) If = < Bto | fol?, it follows that

— 2

3 16nkA T
0> —2Btoy? +t 2—( —>t
Btoy 0p2y” = 4 | P1 oy 1) T

and then
9 1 3 ( 16n/£AT>2
V< ——ma T =)
(p2 —28) A VApa to
Hence

F < 2Bt3y>
— 2
63 < 16nkA >
<0 (- 24y
=2 —28) A\ Vap

— 2
3 to 16nkA ﬁ>

< - = B — T .

= UnAvVAp, (p "WT VA

Finally we have
[2 |vbf|2 + /Blt ‘f0|2 - 5ft] <$7T) S C; (plap?a K, m,n, 672)

with
3 (_ . 167mA)2
2 4nAAps P VAps )
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(74) Under the case

T <y VP2,
dnps A
we have
B = %
and then

(a) If 2 > Bty | fol?, then

"
111

2 Vo + But|fol> — 0fe] (2, T) < % + Cy

. " 2
with O = ™" 4 %\/6% and

" 6 6
02 = *% Im > 0.

(b) If z < Bto | fo]?, then

111

21Vof " + Bit ol = 6£] (2. T) < =X

with

11 3 <p1\/Ap2 _ 4/{1)2

C, = — -
! A\ 4np A P2

(II) Case Il : ©<0:
We may assume

(80 — 2) Vo fI* < Bto | fol*-

087

Otherwise,
F <O.
From (4.6)
F K. Bty 2 27~ 2
4. > —— 42t |2 - — -1 te ATy — Btoy”.
(4.9) 0> L (p1 Bto)(50_2)+P2y 6nBto ATy — Sloy
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Set

)2 1 1
B =P :=min{ —, ——, :
2 nAT' T HfOHMX[O,T]

Hence

(60 — 2)y (60 —2)

_ B 2 2 4tg 4k L6n3* Atgy
=2(p2 — B)toy” + toy {Pl((;o_g) - (00—-2) (%-2) }

Btoy?

2 _ 16nBAt:
Y B Y (50— 2)

0 > —2Btoy* + 2patoy® + p1

4 4K 16
> toy? [2(/)25)+P1(50_2)A_(50—2)_(50—2)}
- [p T 4 B 4K _ 16 ]
2l T T T 60—2)  (Ge—2))

Choose dgy (pl, 02, H,Z) > 2 such that

(p2+p1 44w 16 >>0
(bo—2)A (00—2) (d0—2) ’

we obtain

y(zo,t0) = 0.
It follows that

F(zo,t9) <0
and then

2|VofI” + Bat | ol — £ <0

on M x [0,T]. So if we choose

1 1
< min , B2, , —
fs {51 & 4(n+1)nT 2(n+1)AT}
and
m=n+1,e =1,N=pT

such that

o2n  2n?N 2n2N222m

— = — >0

m €1 m—1
with 0 < v < N as in Lemma we obtain

1) C
[‘be|2 - 2ft:| < 71 + Ch.
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Here

8v/3 (n + 12) 6
(6—d0)

Cl—;max{n(n+1)52+

3n (n+ 1) 6> - B (6 — do) +16(n+1) ?
4(5 — (50) 2(n+1) ) 2n(n+1) A n ’
§3A

1 ’I’l+1 (52 2
= — 1 —_—
Oy 2max{ ( n+1 ) 200 — 3y) + 6\[( +1) (5_50)2,

N2
3(n+1)0 B 32n(n+1)J5A
S (5 — o) (""+2<n+1>+ o~ b0) )}

Note that 3 — 07 if T — oo and

11

max{Cl,C’l,Cl } < Cy,

111

max{02,02,02 } <Oy,

These will complete the proof. O
The proof of Theorem :
Proof. Define

n: [tl,tQ] — M X [tl,tg]
t (v(t),1)
where v is a horizontal curve with v (t1) = x1, 7 (t2) = z2. Let f =Inu,
integrate f’(t) along v, so we get

ta to

f(nty) — f (ants) = —/ (fon)dt= —/ (7 (£), Vof) + fi) dt

tl tl
By applying Theorem this yields

t2 t2

f(ivl,tl)f(ﬂfz,t2)</< (t), be>dt+/5 (Cl+02—|vbf|>
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We could choose

dcc (‘731 332)
/ t — 9 .
1 (1)) ot
we reach
(w1, t1) [\ * § deo(a1,22)2  C
u(ry,t1 2\ ° cc\T1, T2 2
—b (2. —eT D L 2ty — 1) ).
’U,(ﬂfg,tg) < <t1> exp (4 tg —tl + ) (2 1)> O

5. Li-Yau gradient estimates for sum of squares of
vector fields

In the paper of H.-D. Cao and S.-T. Yau ([CY]), they derived the gradient
estimate for step 2. Here we generalize the result to higher step under the
assumption of the curvature-dimension inequality. Let M be a closed smooth
manifold and L be an operator with respect to the sum of squares of vector

fields {e1, eo,...,eq}
L= Ze?.

J€lq

Suppose that u is the positive solution of

0
L— 2 \u=
( 8t>u 0

on M x [0,+00). Now we introduce another test function as in [CY] for
fz,t) = Inu(z, 1)

61 G =t Y e+ Y (1 varP) -,

jEId QGA

for A € (%, 1) to be determined later. Note that the power A in this test
function G is necessary due to (5.14)).
By the same computation as in Lemma 2.1 of [CY], we have Lemma 5.1.

Lemma 5.1. Let M be a smooth connected manifold with a positive mea-
sure and L be an operator with respect to the sum of squares of vector fields
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{e1, ea,...,eq}. Suppose that u is the positive solution of

0

on M x [0,400). Then the following equality holds:

(Li)G—i—%(Zelejf +> (e f) ([L.e)] ))

i,j€I4 Jj€l,

+tox Y (1+|Yc,f|2)H|ez-Yaf|2 14+ @A = 1) YafP]

i€lq,aEA

+2e) (1 Waf ) ) (LYl )

a€EA

b0 3 (L R) T (@) () (e Yal )

i€lq,a€EA

—2) (ef) (&G

j€l4
Then, as a consequence of Lemma we get Proposition 5.2.

Proposition 5.1. If M satisfies the curvature-dimension inequality
¢D (p17p27’%a m) fO?" p1E Ra p2 > O7H > 07m > 07 then

<L - ;) G > —% + % (L) + 13 leie; fI* + ool (f, )
7

+2X(2A - 1)) (1 + |Yaf|2)H leiYafI”

1Y (o) (L)1) ¢ (o - CYLU ) = rE (£ )
R (L ) ) (el )

+4)\tz (1+\Y /] ) (eif) (Yaf) ([ei, Yal f)

(5.2) —22 ejf) (e;G
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Remark 5.1. With the help of the curvature-dimension inequality, we ob-
tain the extra positive term tpoI'Z (f, f) in order to control some of the
remaining negative terms in the upcoming estimates. Note that there are
similar spirits as in [CY], (2.10)] and [CKL (2.10)].

Now we are ready to prove the main theorem in this section.
The proof of Theorem :

Proof. Here we follow the method as in (JCY], Proposition 2.1.]). We claim
that there are positive constants C7, Co, C'5 such that

G < Ci+ Cot + Cyt > 1.
If not, then for arbitrary such Ci,Csy, C3, we have
G > Cy+ Cot + Cat >+
at its maximum (zg,to) on M x [0,T] for some T' > 0. Clearly,

to >0, (e;G) (wo,t0) = 0,
9 (19,t9) > 0, LG (w0, to) <0,

for j € 1.
Choosing
-1

v=A2\-1) (1 + max (IYO{J“"I2 (iﬂo,to)))

and evaluating (5.2)) at (z,to), we obtain

G
(63) 02—+ LH’+ to; s+ tapa ) o P
10> (e ) ([Les] f)
J
A - 6Y (1 ¥afP) T leYarP
7,

@203 (14 arP) " () (Ll )

F MY (14 1Yal ) (o) (Vo) (les. Yol 1)
Jha

- M;;”‘_UZ (1+ \Yaf|2)1_AZ leifI* +tom Y lesfI
“ j

J
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By straightforward computation, we have

(5.4) I[L,e;] f| =

2262 el,ej - Z €i, ezaej |
SQZ\Q eis €] f’+Z\Yaf\
7 «

and
(5.5)
= 22(% lei, Vo] f — Z lei, [eq, Y]] f‘
<2Y |eYif|+d (az le; fl 4+ [Yafl+e) Y;{f)
i,A J n A
<2 leYafl+dad leifl+d(b+c)D  [Yafl.
2,00 7 o
Similarly
(5.6) \[L,YA] f Zez les, YA] f + Z lei, Y] e f

>
+ az leneif] + bz Yyeif| + e [Yheif|
< 2aZ\ele]f|+2bZ‘elY f] v
+2cZ]eZYj{f\+bZ\ e, Y]

+CZ\ leq, Y] f\+daZ!e]f|
+db’2\y fy+ch\Y

ei (s ayen + WYy + cf o YE) f|
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<2a) leie; fl+2(b+¢) Y leiYaf|+da"y_ le;f|+db"y |V, f]
,J 7,0 i n
+ (d +0) STVES| + ST | (ol men + b gy Vi + el YA) ]
B i,B
< 2aZ|eiejf| +2(b+C)Z\eiYaf] +d (a' + acd) Z|ejf\

7] 7,00

+d (b + bed) Z Yo f| + (dc + b+ Pd*) > |vE \
B

<2aZ|eZe]f|—|—2 b+ c) Z\ezy fl+d(a + acd") Z@f\

1,J

+ (db' + bed® +dd + b+ 02d4 ) IYafl.

Also

(5.7) |[en, Y1) f] < ZIY fl

and

(5.8) |[ei, YA £] < aZ|ejf\ +(b+0))  Yafl.

Substituting (5.4 into (| and noting that
(L - ) - Slaf

we have

G

2
to 2
(5.9) 0= -2+ (; e f|” - ft) +toizj: leiej fI? +topzza:\Yaf|2
A—1
AR = DY (14 [YalP) legYafP
o

A-1
—d(a+d +acd ) A3 2010y (1 + |Ygf\2> Vaflle; f]
— (db+ dc+ db + bed® + dc’ + b+ *d*) A (3 — 2))
A—1
xtod (1+1Yafl?) [YaflVaf]
a?ﬁ
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— 20 e fl leifes e5) f| — to (Z 6]f) <Z|Y f|)

,J J

(1) (2)

A—1
—2aA(3 =2\ t0)_ (1+[¥a/P) " YVafllewesf]
i’j’ﬂ

®3)

A—1
—2(1+b+)AB =20t (1) 1Yaflleial]
i,

(4)

— da)ty (Z (1 + |Yﬁf|2>k_1 Yﬁf) (Z ejf)

B

(5)
A—
—4(1+b+c) Mo (1 + |Y5f|2> les 1Yo fl1¥af

j7a’/6

(©)
B A(ztim—m S (1 atP) S et Y e s

-~

(7)

Now we estimate each term (1)—(7) in the right hand of (5.9) as follows:

(1) Z’leHez ei, 5] f| < Z’leHezY [l

7.]7

S (Zejf ) (Z (1+Yaf\2)1?>2

+ABPZDS (g yarP) ™ v P

(e

2 2 & L vafP) T 4
€ ;ejf’ +W ;(‘i“aﬂ)

+ A0S (1 yasP) T v

(e
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@ (z (ejf)) ()
_ A (1+4d) (Zejf> +16d2 1+d <Z|Yf|>
< 4“;“” (Z ejf) 2 (Z rm?) .

J

1,5,

~ 1y (m 203 (1+vrP) Yﬁf) (Z yf)]
L Z"]

B

®) o |2006 203 (14 YaP) T Yas ez'ejf]

- 2
<t |3 lewes f + N7 (3 - 20)° a2 (Z (14 mas) Y,Bf) .

| i B

(4)

2145+ 0A3- 2000 (14 ¥arP) ¥ lei¥as]
i,

1-=X

=3 (1 r ) vt (1 vas?) (+|Yaf|2)x2l|eiyaf|]
o,

d2(1+d A—1 2 1-\
Sto’yi;ﬁ[w (e war)™ vant) (1 was)

N A(2A—1)
2vd? (1 +d)

2 2
243 (1 +d A-1 =
< ot (; (1+1vasP) Y,Bf) (Z (1+ vasP) )
P AP S () s

fory=2(1+b+c)A(3—-2)).

(1 af ) v
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(5)  dakto (Z (1+ IYBfIQ)H Y,Bf) (Z ejf)

B

2 2
2.2 —
< Xty (Zeij) +4M°€d“ (Z <1+|Yﬁf’2>>\ 1Y5f) .
J

B

© a0ty (1Y) e flYaf Ve
J,o8
64d% (14 d) (1 +b+c)?

P2

X (Z (1+ |Y6f|2)H Yﬁf) (Z ejf)

B

e d 1642 ( 1 +d) (Z |Y5f|)

<t (Zf) + ol (DY fl)

4
1024d° (1 + d +b+c) A-1
to ( )2 ( 1+ Ve fP) Y,ef>

<to

%)

(
< toe (Zeﬂ”) +to (Z|Y6f2>
(

4

1024d6 1+d)?*(1+b+c) A-1

L d ( L+ 3 7) YBf) .
2

(7) \ (2t,(\m_ ); (1 + \Yocf\z)l_A ‘ ; lej fI?

<t {g (Ze]f ) 45A2(2’;2) (Z (1+Yaf2)?>4] .

«
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Let

T = Z e]f| antO

J

= (502 e fI* - 5ft) (0, 0)
i

y = max |Yo f| (20, 0) -

We may assume that y > 1; otherwise, the similar method adopted as follows
still holds for y < 1. Now we divide it into two cases:

(I)Case I :xz>0:

In this case, we have

2 2
5.10 2 A Gl d0)” 2
(5.10) Z’ejf’ — fi _62+T Z’ejﬂ .
J J
Substituting (1 ) and ({ into , we obtain

(5.11)
G to 2 (5 50 7 2
0= _%—i_ {m(gzx + mo2 (Zejf ) +§P2t0 <;‘Yaf‘

2 4
2d* =N
<w> (g

] «

_4d® 1+d (Z ]f)

2
— tod? A% (3 — 2))? @ (Z (1 + |yaf|2)H |Yaf]>

[0}

2 13 . 2 L 2
- (g (14 vsr)’ lYﬁf) (Z (14 vas?) )

[0}
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A—1
—d(a+d +acd)AB-20) 1> (1 + |Ygf\2) le; 1 1Yaf]
j?ﬁ
— (db+dc+ db + bed® + dc’ + b+ 2d)

< AB-22) 1) (1+ yYafP)H Yot | Vo f| — toeh | 3 les P2
a,f J

2
4)\t0d2a2 2 A-1 2
- S (s sl o [ D e
B J
2 4 4
1024d8 (1+d)°* (1 +b+c A1
to 1+d | ) > (1 + !Yﬂf\z) Vs f]

2
B

EP;
2

1 K2 52 !
— tpe ; yejf|2 — t045m (Z <1 + ’Yaf’2) )

«

—lop1 Z lej fI?

J

Because

S (1 rP) el 1Yas
7.8
2

2
<1 [ Sl +<Z(1+\Yaf|2)A_llYaf|>7

7 «
we could write the inequality (5.11) in 7, y:

G 3 6 —d&p)?
0> + ?ﬂf + 4,02750y2 + to[gﬁ
al2 (a+d + acd*)
4
1o 2421 +d) 4aoy
| opoy? —
0 8P2y 5(2>\—1)2

3
mo2 P2

(3 =20\ AT — \eT? — €T — €T — p1T)

_ d6(1 + d)2)\2 (3 _ 2)\)2 2y2(2)\ 1)
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2 911 5
YA (1+d)” o s 2 / 4 2(22—1)
L L e A A ST —2
YOy vy —d’(1+d)? (a+d +acd* ) N(3—2)\)y
—d*(1+d)* (db+ dc+ db/ + bed* + dc’ + b+ 2d*) X (3 — 2X) y**
ANC(1 4 d)%a® yon ) 1024d™ (14+d)° (1 40+ )" 4on 1)
-y - 5 y
€ £p;
_ LR+ oy
4e N2 (21 —1)?

— lower order terms|.

Choose
_ (6 — do)?
10mé2
we obtain
G t 3
(5.12) 0> —% + mi?)?xz + Zthon — Cyto.

A
(i) If x> Z (1 + \Yaf]2> , then by the definition

J

G (aorto) =to [(1 =) Y les P+ + 3 (14 ¥arP)

we have

0> —2tgz + WI° _ 02
t0$ < 2771(52 + C5t0

—
= G < 2oz < 4md? + 2Csty

— (St S s ) o < 4

(i7) If x < Z <1 + ]YafIQ)/\, then

3
0> —2C7y* + ZPQton — Cytp.

(a) If ty < 1, then

3 _
y? <4P2to — 2072 1)> < Cyto,
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and
3 200—1)
szto < (C4+2C7)y )
and
Yy S 02t8<)\71)5
and
22 —1
A—

toy™ < Oatg .

(b) If tg > 1, then

3
0> —2C7y** + = patoy® — Cato

4
and
0> —2Cqtoy™ + %PQtOZf — Cuto
and
0> —2C7y* + prz - Cy
and
y < Cs
and

toy™ < Cot.
Combining (a) and (b), we have

22—1

A P2
G <200y (1+[Yaf?)" < Chto+Chtg
(6%

- Z ’€jf|2 + Z (1 + ‘Yaf|2))\ — 5ft (Cﬂo,to) < CQ + Cgt(ﬁ.

jEId OCEA

(II) Case Il : . <0:
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We may assume

0 -1) Y lesf? < 30 (14 varP?) s

j€lq acA

G (iL‘o, to) S 0.

4), (5.9) becomes

(5.14) 0> —g + —pzto (Z Yo f] )

1—X 2
sy (o) (£
2
_ Mto (Z ejf)

P2 ;

2
— 252 (3 - 20)% a%tg (Z (1 + |Y5f\2) ! Yﬁf)

B
2
v2d3 (1 +d) 2\t
— mto (; (1 + ’Yﬁﬂ ) Yﬁf>

x (Z (1+ Yaf\Q)?>2

«

A—
d(atd +aed) A3 - 20103 (14 V3 fP?)
3B
— (db+de+ db + bed® + dc’ + b+ *d*)

X A(B=2\)1t» (1 + |Yaf|2>)\_1 Yo/ [Ysf]
a8

— 4adty (Z <1 + |Y6f’2)/\_1 Yﬁf) (Z 6jf)

B

1
Ysflle;jf]
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>

— C1y> —

A—1
—4(1+b+e) Moy (1 + |Y5f|2) lej fIYaflYsfl
j7a7ﬁ

K -
- A(;;—UE ) (1+ \Yaf|2)1 D leif P —topr ) lesf

G 3 2 3 2 09 2 2
—Z 4 2ot to|—=poy? — ——? - C
o + g p2toy” + 0[16P2y 50— 1 10Y

— Cy? D - Cray® — Cray® ! — Cray® — Crsy™ !
Ci7
Y’ — 018y2)\] :

dp—1

If we choose

8 1 2
50:1+f(69+017)>1 and — <A< -,
P2 2 3

then we derive the inequality

G 3
(5.15) 0> ——+ Zpatoy® — Coto
to 4
for some constant Cig > 0. Utilizing the same deductions as precedes and
(5.15) instead of ((5.12)), the proof of this theorem is completed. O
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