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The purpose of this article is to investigate the structure of com-
plete non-compact quasi-Einstein manifolds. We show that com-
plete noncompact quasi-Einstein manifolds with λ = 0 are con-
nected at infinity. In addition, we provide some conditions under
which quasi-Einstein manifolds with λ < 0 are f -non-parabolic. In
particular, we obtain estimates on volume growth of geodesic balls
for such manifolds.

1. Introduction

A fascinating problem in differential geometry is to study Einstein mani-
folds. In large part, this is because Einstein manifolds have connections
with mathematics and physics. In the last decades, much efforts have been
devoted to study the geometry and classifications of Einstein manifolds.
There is a wealth of classical literature in this subject, we refer the readers
to the book [4] for a comprehensive treatment of Einstein manifolds. The
m-Bakry-Emery Ricci tensor, which appeared previously in [1] and [21] as
a modification of the classical Bakry-Emery tensor

Ricf = Ric+∇2f,

is a powerful tool to study Einstein warped product. More precisely, the
m-Bakry-Emery Ricci tensor is given by

(1.1) Ricmf = Ric+∇2f − 1

m
df ⊗ df,

where f is a smooth function on Mn and ∇2f stands for the Hessian of f.
It is also used to study the weighted measure dµ = e−fdx, where dx is the
Riemann-Lebesgue measure determined by the metric.
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According to [3, 7, 12, 22, 24] and [26], a Riemannian manifold (Mn, g),
n ≥ 2, will be called m-quasi-Einstein manifold, or simply quasi-Einstein

manifold, if there exist a smooth potential function f on Mn and a constant
λ satisfying the following fundamental equation

(1.2) Ricmf = Ric+∇2f − 1

m
df ⊗ df = λg.

It is easy to see that a ∞-quasi-Einstein manifold means a gradient Ricci
soliton. Ricci solitons model the formation of singularities in the Ricci flow
and correspond to self-similar solutions, i.e., solutions which evolve along
symmetries of the flow, see [6] and references therein for more details. In
this article, we focus in the case m <∞. Moreover, when m is a positive
integer it corresponds to a warped product Einstein metric (cf. [7] and [12]).
Following the terminology adopted in [3, 7, 22, 24] and [26], an m-quasi-
Einstein manifold will be called trivial if its potential function f is constant,
otherwise it will be nontrivial. Notice that the triviality implies that Mn is
an Einstein manifold.

The remarkable motivation to study quasi-Einstein metrics on a Rie-
mannian manifold is its direct relation with Einstein warped product, which
also have different properties compared with the gradient Ricci solitons. In
this approach, it is interesting to recall that, on a quasi-Einstein manifold,
there is a crucial constant µ so that

(1.3) ∆f − |∇f |2 = mλ−mµe
2

m
f .

We refer to [3, 4, 8, 12, 22] and [26] for more details. It is also important
to mention that some examples of m-quasi-Einstein manifolds with λ < 0
and arbitrary µ as well as quasi-Einstein manifolds with λ = 0 and µ > 0
were built in [2, 4] and [26]. In [8], Case has shown that m-quasi-Einstein
manifolds with λ = 0 and µ ≤ 0 are trivial. While Qian [21] proved that
m-quasi-Einstein manifolds with λ > 0 must be compact. Moreover, by Kim
and Kim [12] the converse statement is also true. Thereby, it follows that
a nontrivial quasi-Einstein manifold is compact if and only if λ > 0. An
example of nontrivial m-quasi-Einstein manifold with λ > 0, m > 1 and µ >
0 was obtained in [18], see also [23] for further related results.

For our purposes it is very important to recall some known terminology.
First of all, we consider a compact subset D of a complete noncompact
manifold Mn. So, we would like to recall that an end of Mn with respect to
D is a connected unbounded component ofMn\D. The number of ends with
respect to D is the number of unbounded connected component of Mn\D.
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Moreover, if {Ωi} is a compact exhaustion of Mn, then the number of ends
with respect to Ωi is a monotonically nondecreasing sequence. In particular,
Mn is said to have finitely many ends if there exists 1 ≤ k <∞, such that,
for any D ⊂M, the number of ends is at most k. We further recall that a
Green’s function G(x, y) is a function defined on

(M ×M)\{(x, x)}

such that G(x, y) = G(y, x) and ∆yG(x, y) = −δx(y), for all x ̸= y.

It is well-known that every complete manifold admits a Green’s function.
In addition, a complete manifold Mn is said to be non-parabolic if it admits
a positive Green’s function. Otherwise, it is said to be parabolic. A manifold
is non-parabolic if and only if there exists a positive superharmonic function
whose infimum is achieved at infinity (cf. [16]).

In order to proceed, let us also point out that a complete manifold Mn

is non-parabolic if and only if Mn has a non-parabolic end. Notice that
the definition of parabolicity is essentially analytic, but there are geometric
descriptions of parabolicity; for more details see, for instance, [11]. We also
remark that the same definitions can be extended for f -Laplacian

∆f = ∆−∇f,

which is a self-adjoint operator on the space of square integrable functions on
Mn with respect to the measure e−fdx. In particular, a function h is called
f -harmonic if ∆fh = 0. For a comprehensive reference on such a subject, we
indicate, for instance [15].

In [31], S.-T. Yau proved brightly that every smooth positive harmonic
function defined on a complete manifold with nonnegative Ricci curvature
must be constant. This stimulated many interesting works. In fact, it is
definitely important issue to investigate the existence of harmonic functions
on complete manifolds. It is known that the existence of certain classes of
harmonic functions is related to the existence of ends of the manifold. For
instance, when the manifold Mn is non-parabolic the number of ends is
bounded from above by dimension of the space spanned by the set of all
positive harmonic function on Mn(cf. [16]). For the purpose of application,
it is important to recall that X.-D. Li [17] was able to show that every
smooth positive f -harmonic function defined on a complete manifold with
Ricmf ≥ 0 must be constant. These results play crucial role in this work.
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1.1. Structure of Complete quasi-Einstein Manifolds

Inspired by the historical development on the study of Einstein warped
products, in this article, we shall investigate the geometry of complete, non-
compact, quasi-Einstein manifolds, that is, complete noncompact manifolds
satisfying (1.2) and (1.3). In this case, as it was previously mentioned, λ
must be nonpositive.

A classical result obtained by Cheeger and Gromoll [9] asserts that if
Mn has nonnegative Ricci curvature, then either Mn = N × R, for some
compact manifold N with nonnegative Ricci curvature, or M has only one
end. It has been shown that a complete manifold M satisfying Ricmf ≥ 0 is
either

1) a product N × R with N compact, or

2) Mn is connected at infinity.

For more details see [10], see also [29, 30]. Here, we shall improve this con-
clusion by showing that a nontrivial complete noncompact m-quasi-Einstein
manifold with λ = 0 and m ∈ (1,∞) must be connected at infinity.

After these preliminary remarks we may state our first result as follows.

Theorem 1. Let
(

Mn, g, f
)

be a nontrivial complete noncompact m-quasi-

Einstein manifold with λ = 0 and m ∈ (1,∞). Then Mn is connected at

infinity.

One question that naturally arises from the previous result is to de-
termine whether a similar result occurs for λ < 0. An example obtained
by Wang (cf. [26], Example 2.1) indicates that, in special cases, noncom-
pact quasi-Einstein manifold with λ < 0 can be connected at infinity. In
2012, Wang [27] has shown a splitting theorem for complete smooth mea-
sure manifolds whose m-Bakry-Emery tensor is bounded from below by a
negative multiple of the lower bound of the weighted spectrum. More pre-
cisely, he proved that given a complete noncompact manifold Mn satisfying

Ricmf ≥ −m+ n− 1

m+ n− 2
λ1(∆f ),

where λ1(∆f ) stands for the positive lower bound of the spectrum of the
weighted Laplacian onMn, then eitherMn has at most one end with infinite
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weighted volume, or M = R×N with the product metric

gM = dt2 + cosh2
√

λ1(M)

m+ n− 2
tg2N ,

where N is an (n− 1)-dimensional compact manifold.
Following up on our previous discussion we proceed to deal with the case

λ < 0. In this case, we have established the following result.

Theorem 2. Let
(

Mn, g, f
)

be a nontrivial complete noncompact m-quasi-

Einstein manifold with λ < 0, m ∈ (1,∞) and µ ≥ 0. Then Mn is f -non-

parabolic.

Before to announce our next results let us mention that it is possible for
a non-parabolic manifold to have many parabolic ends. Moreover, the key
fact here that should be emphasized is that when λ < 0 and µ ≥ 0 we have
a linear pinching estimate for sup

∂Bp(r)
e−

f

m , which allows us to deduce that

lim sup
x→∞

e−
f

m = +∞.

However, if λ < 0 and µ < 0, it is not hard to verify that

f ≤ m

2
ln

(

mλ

µ

)

on Mn (cf. Wang [26]). Therefore, in this case, we are not able to guarantee

that e−
f

m converge to infinity.
For what follows, we remember that the scalar curvature R of a quasi-

Einstein manifold with λ ≤ 0 must to satisfy R ≥ λn (cf. [26]). Here, we
shall use this data to obtain the following result.

Theorem 3. Let
(

Mn, g, f
)

be a nontrivial complete noncompact m-quasi-

Einstein manifold with λ < 0, m ∈ (1,∞) and µ < 0. Then Mn is f -non-

parabolic or Einstein.

Our next result concerns the number of ends of a noncompact m-quasi-
Einstein manifold with λ < 0. More precisely, we have the following result.
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Theorem 4. Let
(

Mn, g, f
)

be a nontrivial complete noncompact m-quasi-

Einstein manifold with λ < 0 and m ∈ (1,∞). Suppose that

R ≥ λ
(

n− m

m− 1

)

.

Then Mn has only one f -non-parabolic end.

1.2. Bounds on Volume Growth

A remarkable result by Calabi [5] and Yau [32] asserts that the geodesic
balls of complete noncompact manifolds with nonnegative Ricci tensor have
at least linear growth, that is,

(1.4) V ol(Bp(r)) ≥ cr

for any r > r0, where r0 is a positive constant, Bp(r) is the geodesic ball
of radius r centered at p ∈Mn and c is a positive constant that does not
depend on r. Indeed, volume growth rate is an important piece of geometric
information. In this spirit, Munteanu and Sesum [19] showed that gradient
Ricci solitons with λ = 0 must to satisfy (1.4). Recently, Barros, Batista
and Ribeiro [3] were able to prove the same result for m-quasi-Einstein
manifolds with λ = 0. Moreover, they showed that a noncompact m-quasi-
Einstein manifold with λ < 0, m ∈ (1,∞) and µ ≤ 0, such that its potential
function is bounded from below, must also to satisfy (1.4).

As an application of Theorem 2, we obtain the following result con-
cerning the growth of f -volume (or weighted volume) of geodesic balls for
noncompact quasi-Einstein manifolds with λ < 0.

Theorem 5. Let
(

Mn, g, f
)

be a nontrivial complete noncompact m-quasi-

Einstein manifold with λ < 0, m ∈ (1,∞) and µ ≥ 0. Then there exist posi-

tive constants c and r0 such that for any r > r0

(1.5) V olf (Bp(r)) ≥ cr2.

Next, we shall show that when µ = 0 the assumption on the potential
function considered by Barros et al. [3] (cf. Theorem 3 in [3]) can be removed.
More precisely, in this case, we have the following estimate for volume growth
of geodesic balls on noncompact quasi-Einstein manifolds with λ < 0.
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Theorem 6. Let
(

Mn, g, f
)

be a nontrivial complete noncompact m-quasi-

Einstein manifold with λ < 0, m ∈ (1,∞) and µ = 0. Then there exist posi-

tive constants c and r0 such that for any r > r0

(1.6) V ol(Bp(r)) ≥ ce
−

√

−λ

m−1
r
.

2. Proof of the Main Results

2.1. Proof of Theorem 1

Proof. Firstly, since m ∈ (1,∞), we may set the function

u = e−
f

m

on Mn. Notice moreover that

∇u = − u

m
∇f

and

(2.1) ∇2f − 1

m
df ⊗ df = −m

u
∇2u.

Therefore, for some a > 0 (to be chosen later) we have

∆fu
−a = ∆u−a − ⟨∇u−a,∇f⟩

= −au−a−1∆u+ a(a+ 1)|∇u|2u−a−2 + au−a−1⟨∇u,∇f⟩.

Substituting the trace of fundamental equation (1.2) into (2.1) we arrive at

∆u =
u

m
R,

where R stands for the scalar curvature ofMn. This substituted in the above
expression yields

∆fu
−a = − a

m
u−a−1uR+ a(a+ 1)|∇u|2u−a−2(2.2)

−mau−a−2|∇u|2,

which can be written succinctly as

(2.3) ∆fu
−a = − a

m
u−aR− a

(

m− (a+ 1)
)

|∇u|2u−a−2.
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Lower bound estimates for scalar curvatures of noncompact quasi-
Einstein manifolds were obtained in [26]. Among those estimates, we al-
ready know that if λ ≤ 0, then R ≥ λn. From this, every noncompact quasi-
Einstein manifold with λ = 0 has nonnegative scalar curvature. In particular,
choosing a = m−1

2 , which is positive, we immediately deduce from (2.3) that

∆fu
−a ≤ 0.

Proceeding, we remember that Wang [28] was able to show that the
potential function of a noncompact quasi-Einstein manifold with λ = 0 and
m > 1 must to satisfy

(2.4)
m− 1

n+m− 1
ln r − C1 ≤ sup

x∈∂Bp(r)
(−f)(x) ≤ m ln r + C2,

for r > 1, where C1 and C2 are constants. Of which we easily see that

(2.5) c0r
m−1

m(m+n−1) ≤ sup
x∈∂Bp(r)

u(x) ≤ C0r,

where c0 and C0 are positive constants.
Therefore, u−a is a positive function on Mn such that

∆fu
−a ≤ 0,

and from (2.5) we also have

lim inf
x→∞

u−a(x) = 0.

So, it suffices to apply Li-Tam theorem [16] to conclude that Mn is f -
non-parabolic. This means that Mn has one f -non-parabolic end (cf. [15]).
Next, since Ricmf = 0 we immediately have Ricf ≥ 0 and then we may invoke
Lemma 4.1 in [20] to conclude that Mn has only one f -non-parabolic end.

On the other hand, a result by X.-D. Li (cf. [17], Theorem 1.3) guarantees
that every complete manifold Mn satisfying

Ricmf ≥ 0

must to satisfy the strong Liouville property, that is, every smooth positive
f -harmonic function on Mn must be constant. At the same time, we recall
that Li and Tam [16] showed that when the manifoldMn is non-parabolic the
number of ends is bounded from above by dimension of the space spanned
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by the set of all positive harmonic function on Mn. Hence, it follows that
Mn has only one end and then Mn is connected at infinity. So the proof is
completed. □

2.2. Proof of Theorem 2

Proof. First of all, we take trace of fundamental equation (1.2) jointly with
(2.1) to infer

∆u =
u

m
(R− λn).

This immediately gives

(2.6) ∆fu
−a = − a

m
u−a(R− λn)− a

[

m− (a+ 1)
]

|∇u|2u−a−2.

We again recall that, by Wang [26], if λ ≤ 0, then R ≥ λn, which com-
bined with (2.6) ensures

∆fu
−a ≤ 0,

provided that a = m−1
2 . Therefore, it remains to prove that

lim inf
x→∞

u−a(x) = 0.

To that end, we recall that the potential function of a noncompact quasi-
Einstein manifold with λ < 0, m > 1 and µ > 0 satisfies

2m√
n+ 5m− 1 +

√
n+m− 1

√
−λr − c ≤ sup

x∈∂Bp(r)
(−f)(x)(2.7)

≤ m√
m− 1

√
−λr + C

for r > 1, where c and C are constants (cf. [28], Theorem 3.1). Moreover, if
µ = 0, we then have, for r > 1, the following estimate

(2.8)
m√

n+m− 1

√
−λr − c0 ≤ sup

x∈∂Bp(r)
(−f)(x) ≤ m√

m− 1

√
−λr + C0,

where c0 and C0 are constants (cf. [28], Theorem 4.4).
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Rearranging these inequalities we achieve

(2.9) C1e
C2r ≤ sup

x∈∂Bp(r)
u(x) ≤ C3e

C4r,

where u = e−
f

m and Ci′s are positive constants. From this it follows that

lim inf
x→∞

u−a(x) = 0.

Now, it suffices to apply again Li-Tam theorem [16] to conclude that Mn is
f -non-parabolic. The proof is completed. □

2.3. Proof of Theorem 3

Proof. Firstly, for a = m−1
2 , one easily verifies that

∆fu
−a = − a

m
u−a(R− λn)− a[m− (a+ 1)]|∇u|2u−a−2

= −m− 1

2m
(R− λn)u−a − (m− 1)2

4
|∇u|2u−a−2

≤ −m− 1

2m
(R− λn)u−a.(2.10)

We then invoke [14] to infer

(2.11)

∫

M

m− 1

2m
(R− λn)φ2e−f ≤

∫

M

|∇φ|2e−f ,

for all compactly supported function φ ∈ C∞

0 (M). But weighted Poincaré in-
equalities are known to be equivalent to the manifold being f -non-parabolic,
provided that R− λn is not identically zero; for more details see [14].

On the other hand, it is now well-known that every quasi-Einstein man-
ifold satisfies

1

2
∆R− m+ 2

2m
⟨∇f,∇R⟩ = −m− 1

m

∣

∣

∣

∣

Ric− R

n
g

∣

∣

∣

∣

2

− n+m− 1

mn
(R− nλ)

(

R− n(n− 1)

n+m− 1
λ

)

,(2.12)

(cf. [26] and [7]). Therefore, if R− λn is identically zero, we may use (2.12)
to conclude that Mn is Einstein. This finishes the proof of the theorem. □
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2.4. Proof of Theorem 4

Proof. The first part of the proof looks like that one of the previous theorem.
For a = m− 1, which is positive, we immediately have

∆fu
−a = −m− 1

m
(R− λn)u−a.

On the other hand, it is not hard to check that our assumption on the
scalar curvature yields R > λn. Therefore, we may use [14] to deduce

(2.13)

∫

M

[m− 1

m
(R− λn)

]

φ2e−f ≤
∫

M

|∇φ|2e−f ,

for all φ ∈ C∞

0 (M).Moreover, using once more our assumption on the scalar
curvature we achieve

m− 1

m
(R− λn) ≥ −λ,

and hence, we invoke (2.13) (see also, for instance, [14]) to get

(2.14) λ1(∆f ) ≥
m− 1

m
(R− λn) ≥ −λ.

We already know from Theorem 2 that there is at least one f -non-
parabolic on Mn. From now on we argue by contradiction, assuming that
there are at least two f -non-parabolic ends onMn. Then, there is a bounded
nonconstant f -harmonic function h on Mn such that

∫

M

|∇h|2e−f <∞.

Next, from the Böchner formula we have

(2.15)
1

2
∆f |∇h|2 = |∇2h|2 +Ricf (∇h,∇h) + ⟨∇h,∇∆fh⟩.

Moreover, the well known Kato’s inequality states

|∇2h|2 ≥ |∇|∇h||2.

This jointly with (2.15) and using that h is f -harmonic we infer

1

2
∆f |∇h|2 ≥ |∇|∇h||2 +Ricf (∇h,∇h).
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Hence, it follows from the fundamental equation (1.2) that

(2.16)
1

2
∆f |∇h|2 ≥ |∇|∇h||2 + λ|∇h|2.

At the same time, one easily verifies that

1

2
∆f |∇h|2 = |∇|∇h||2 + |∇h|

(

∆f |∇h|
)

and hence, we may use this data into (2.16) to deduce

∆f |∇h| ≥ λ|∇h|.

Therefore, it suffices to repeat the same arguments developed in [13] to
deduce

(2.17) λ1(∆f ) ≤ −λ.

Consequently, it follows from (2.17) and (2.14) that

R = λ

(

n− m

m− 1

)

.

In order to obtain a contradiction it therefore suffices to use (2.12). This
contradiction argument finishes the proof of Theorem 4. □

2.5. Proof of Theorem 5

Proof. To begin with, we invoke Theorem 2 to deduce that Mn is f -non-
parabolic. So, we can apply Varapoulos [25] to infer

(2.18)

∫

∞

1
A−1

f (r)dr <∞,

where Af (r) = Areaf (∂Bp(r)). Therefore, for r > 1, we use Cauchy-Schwarz
inequality to arrive at

r − 1 =

∫ r

1
A

−
1

2

f (r)A
1

2

f (r)dr

≤
(
∫ r

1
A−1

f (r)

)

1

2
(
∫ r

1
Af (r)

)

1

2

≤ C(V olf (Bp(r)))
1

2 .(2.19)
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Hence, for all r ≥ 2, we obtain

(2.20) V olf (Bp(r))
1

2 ≥ cr,

where c is a constant. This gives the requested result. □

2.6. Proof of Theorem 6

Proof. We start combining the trace of the fundamental equation (1.2) with
(1.3) to obtain

(2.21) R+
m− 1

m
|∇f |2 + (m− n)λ = mµe

2f

m .

Remember that for λ < 0 and µ = 0 we have

R ≥ λn,

which allows us to deduce

(2.22) |∇f | ≤ m√
m− 1

√
−λ.

From here it follows that

(2.23) − f(x) ≤ m√
m− 1

√
−λr(x) + c1.

On the other hand, by means of (1.3) it is easy to show that

(2.24) ∆e−f = (−∆f + |∇f |2)e−f = −λme−f .

Upon integrating (2.24) over Bp(r) we use (2.22) to achieve

−λm
∫

Bp(r)
e−fdσ =

∫

Bp(r)
∆e−fdσ

=

∫

∂Bp(r)

∂

∂η
(e−f )ds

≤ m
√
−λ√

m− 1

∫

∂Bp(r)
e−fds.(2.25)

Let us set

(2.26) ψ(r) := V olf (Bp(r)) =

∫

Bp(r)
e−fdσ.
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Thus, we may invoke (2.25) to get

(2.27) ψ′(r) ≥
√

−λ(m− 1)ψ(r).

Then, by integrating this inequality from 1 to r we deduce

ψ(r) =

∫

Bp(r)
e−fdσ ≥ ce

√
−λ(m−1)r.

This immediately yields

Ce
m
√

−λ

m−1
r
V ol(Bp(r)) ≥ sup

Bp(r)
e−f

∫

Bp(r)
dσ

≥
∫

Bp(r)
e−fdσ

≥ ce
√

−λ(m−1)r,(2.28)

where we have used (2.23). Finally, (2.28) can be written succinctly as

(2.29) V ol(Bp(r)) ≥ ce
−

√

−λ

m−1
r
,

which finishes the proof of the theorem. □
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