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Generalizing previous constructions, we present a dual pair of de-
compositions of the complement of a link L into bipyramids, given
any multicrossing projection of L. When L is hyperbolic, this gives
new upper bounds on the volume of L given its multicrossing pro-
jection. These bounds are realized by three closely related infinite
tiling weaves.

1. Introduction

The standard planar projections of links embedded in S3 are 2-crossing

projections, which means that strands only cross one another two at a time
in the projection—or equivalently, that the vertices of the projection graph
G all have degree 4. Recently, 2-crossing projections have been generalized
to n-crossing projections, which are projections of a link in which all strands
cross one another n at a time; equivalently, G is 2n-regular.

Every link has a projection consisting solely of n-crossings for every
n ≥ 2, and many of the ideas that apply to 2-crossing projections can be
generalized to n-crossing projections. See for instance [1], [3], and [4]. More
generally, multicrossing projections are projections P in which crossings of
varying multiplicities are permitted, and the vertices of G need only be of
even degree.

A particular case of interest is the übercrossing projections, which are the
link projections consisting of a lone multicrossing. When the multiplicity of
the lone multicrossing is odd and each strand is connected to both of its
neighboring strands in the multicrossing, it is a petal projection of a knot.
Petal knot projections and übercrossing projections were shown to exist for
any knot and link (respectively) in [7], and further studied in [6] and [9].

When referencing an n-crossing c in a projection of a link, it will be
useful to refer in a standard way to the strands s1, . . . , sn and the levels
l1, . . . , ln at which each of the strands passes through the n-crossing. These
labels are shown in Figure 1. Throughout we refer to the levels of adjacent
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strands li, li+1 and the strands corresponding to adjacent levels si, si+1; the
‘wraparound cases’ ln, l1 and sn, s1 are implied. We keep track of a particular
multicrossing by noting the permutation l1, . . . ln obtained by considering the
levels of its strands clockwise from above, starting on the top level of the
crossing.

(a) A general multicrossing c of size n,
with strands and associated strand levels
labelled.

(b) The specific multicrossing 13524,
which appears in an übercrossing projec-
tion of the figure-eight knot.

Figure 1. multicrossings are represented by their strands and the levels at
which the strands enter the crossing. The levels of the strands give a per-
mutation on n elements that encodes the multicrossing.

By work of W. Thurston [13], the complements of many knots and links
admit a hyperbolic metric, and when this is the case, the Mostow-Prasad
Rigidity Theorem says the metric is uniquely determined. This implies that
geometric invariants of a link complement derived from its hyperbolic met-
ric are topological invariants of the link. The hyperbolic volume of a link,
defined to be vol(L) = vol(S3 \ L), is a particularly discerning invariant for
distinguishing among hyperbolic knots and links. Additionally, it offers an
interesting measure of the complexity of a link.

As hyperbolic 3-manifolds, the complements of links produce polyhe-
dral fundamental domains in the universal covering space H

3, where the
components of the link correspond to collections of ideal points on ∂H3 “at
infinity”. The corresponding decompositions of the manifold S3 \ L into hy-
perbolic polyhedra contain ideal vertices and edges that extend to them.
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Decompositions can also contain finite vertices, which correspond to points
in the interior of the link complement. For any such combinatorial polyhe-
dron P, there is an upper bound on the hyperbolic volume vol(P) in H

3

which holds across all embeddings of P in H
3 with geodesic faces and edges.

We make special use of the maximal hyperbolic volume across all octahedra,
voct ≈ 3.6639, which is realized by the ideal regular octahedron.

Since each polyhedron has a maximum achievable volume when em-
bedded in H

3, a decomposition of a link complement into combinatorial
polyhedra provides an upper bound on the volume of the link.

D. Thurston showed that given a 2-crossing projection P of a link L,
the complement S3 \ L can be constructed by placing an octahedron at
each crossing, where each octahedron’s top and bottom vertices are ideal
points in the cusps of the upper and lower strands of its crossing, as in
Figure 2(a) (see [12]). These octahedra are crossing-centered bipyramids,
which are bipyramids in the complement of a link with finite equatorial
vertices and top and bottom vertices that are ideal points at the cusps of
adjacent-level strands in a multi-crossing. The equatorial vertices of each
octahedron are pulled up and down to finite vertices U and D, which sit
above and below the projection plane in the complement of the link. The
edges extending from the ideal top and bottom vertices of the octahedra
become “vertical” semi-finite edges from U or D to the cusps after gluing,
and the finite equatorial edges of the octahedra become “vertical” edges
between U and D that pass through each face in the projection. The edge
labellings in Figure 2 depict these operations. The faces of the crossing-
centered octahedra glue to the faces of the octahedra at adjacent crossings on
the strand, and they together form a decomposition of the link complement
into octahedra. This gives an upper bound of

vol(L) ≤ c(L)voct,

where c(L) is the crossing number.
This decomposition and associated bounds have been applied and mod-

ified, as in [2], [10] and [11]. These and other bounds are described in [5],
where the octahedra are each cut into four tetrahedra as in Figure 2(b),
then recombined about the finite “vertical” edges that pass perpendicularly
through the faces of the projection graph G in the projection plane with
endpoints U and D. The tetrahedra glue together about each of these edges
to form a bipyramid that we call a face-centered bipyramid, with finite top
and bottom vertices at U and D and ideal equatorial vertices corresponding
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(a) The crossing-centered octahedron. (b) The octahedron is split into tetrahedra.

Figure 2. Decomposing the 2-crossing-centered octahedra into tetrahedra to
form the face-centered bipyramid decomposition.

to the cusps. For a given 2-crossing projection the face-centered bipyra-
mid decomposition offers a more stringent upper bound on the volume of
a link than the octahedral decomposition. This is because the volume of a
maximum-size hyperbolic bipyramid grows logarithmically in |B|, where |B|
is the number of equatorial edges of B, and is referred to as the size of B.
The volume bound derived from this face-centered bipyramid decomposition
is referred to as the FCB bound.

In Section 2, given any multicrossing projection of L, we develop a dual
pair of bipyramid decompositions of the complement of L. These are the
multicrossing generalizations of the 2-crossing projection decompositions
into octahedra at the crossings and into face-centered bipyramids described
above.

In Section 3, we consider upper bounds on hyperbolic volume that these
decompositions yield in the case when L is hyperbolic. In Section 4, we apply
these upper bounds, together with properties of the infinite square weave, in
order to establish two new planar tiling weaves that contain multicrossings.
These are the triple weave, consisting of 3-crossings, and the right triangle

weave, consisting of 2- and 4-crossings. Like the square weave, the triple
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weave and the right triangle weave realize the maximum possible volume per
crossing in any link with these types of crossings. Somewhat surprisingly, the
complement manifolds of the minimal finite representations of these three
weaves in a thickened torus are homeomorphic to one another.

We would like to thank the referees, who substantially helped to im-
prove the readability of this paper, especially with regard to the proof of
Theorem 4.

2. The construction

We first develop the face-centered bipyramid decomposition, which holds for
all multicrossing projections of all links. The face-centered bipyramids in
this decomposition have finite top and bottom vertices and ideal equatorial
vertices. We then demonstrate how, as in the 2-crossing case, these face-
centered bipyramids can be cut into tetrahedra and reglued into a dual
decomposition of the complement into crossing-centered bipyramids.

2.1. Face-centered bipyramid construction

(a) A face of the projection
graph.

(b) The equatorial edges of
a face-centered bipyramid.

(c) The face-centered bi-
pyramid.

Figure 3. The construction of a face-centered bipyramid.

We begin with a particular fixed multi-crossing projection of L and as-
sociated projection graph G. In each face F of G, such as in Figure 3(a),
we produce a cycle of edges, shown dashed, bounding a polygon PF , as in
Figure 3(b). Each strand of the link around the boundary of F contributes
a vertex for PF and at each crossing on the boundary of F , each strand
that is between the heights of the two edges of the face at that crossing
also contributes a vertex of PF . Then we add a finite vertex U above the
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projection plane and a finite vertex D below the projection plane, and cone
each polygon up to U and down to D. The result is a bipyramid BF corre-
sponding to each face of the projection, including the outermost face, as in
Figure 3(c). We call PF the equatorial polygon of BF .

We now describe how to glue the faces of these bipyramids together to
fill the complement of the link. We depict the construction in detail for a
triple-crossing, but the general case is similar. In Figure 4(a), we see the top
view of a triple crossing with part of each equatorial polygon corresponding
to the adjacent face-centered bipyramids. We have also added in the top
edges of the bipyramids, which meet at U . In Figure 4(b), we see a side view
of the same crossing.



























 













(a) The view from above of how the face-
centered bipyramids around a 3-crossing fit
together.











































(b) The view from the side of how the face-
centered bipyramids around a 3-crossing fit
together.

Figure 4. The face-centered bipyramid decomposition.

Here we can see how the various faces of the top half of the bipyramids
glue together. For instance, representing faces by the edge classes on their
boundaries, we see face bxd of I will glue to face dxb of III. And face dye
of I glues to face eyd of II. Note that a vertical edge can slide along its link
strand if there is no obstruction from another strand to doing so-this is why
the two vertical edges coming out of strand 1 are both labelled with b.

In general, consider any face-centered bipyramid BF adjacent to a mul-
ticrossing c, with F bounded by strands that enter c at levels j and k, where
the faces and strands about the multicrossing are considered in clockwise
order. Consider an upper face pqr of BF , where p extends from U down to
the strand in c at level i+ 1, q lies between the strand at level i+ 1 and
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the strand at level i, and r extends from the strand at level i back up to U ,
where j ≤ i < i+ 1 ≤ k. This face will glue to its partner face rqp of BF ′ ,
where BF ′ is the next face-centered bipyramid encountered such that F ′ is
bounded by strands entering c at levels k′ and j′, where j′ ≤ i < i+ 1 ≤ k′.
All upper faces will either be one such pqr or the rqp partner of some pqr,
and so all upper faces will be paired and glued to fill space above the link.

Finally, the faces of the bottom halves of the face-centered bipyramids
glue together in a similar fashion, filling the entire complement of the link.

The discussion above is summarized in the following theorem:

Theorem 1. Given any link L and any multicrossing projection of L with

projection graph G, the complement of L can be decomposed into a collection

of bipyramids BL = {BF : F a face of G}. Furthermore, the size of each

BF ∈ BL is given by

(1) |BF | =
∑

ci∈∂F

|l(si, ci)− l(si+1, ci)| ,

where ∂F = s1, c1, . . . , sm, cm is the boundary of F and l(s, c) is the level at

which strand s enters crossing c.

Note that in general a multi-crossing face-centered bipyramid may con-
sist of more tetrahedra than there are edges bounding the face, whereas in
the 2-crossing case |BF | necessarily equals the number of edges of F .

2.2. Crossing-centered bipyramid construction

From the face-centered decomposition we derive the crossing-centered bipyra-

mid decomposition by first cutting each face-centered bipyramid BF into its
constituent |BF | tetrahedra. These tetrahedra share an edge from U to D in
the center of BF , and the opposite edge of each tetrahedron lies between two
adjacent-level strands in a multicrossing in ∂F . For a given multi-crossing c,
consider the constituent tetrahedra from all face-centered bipyramids neigh-
boring c which have an edge passing between adjacent-level strands of c. The
3-crossing case is shown in Figure 5(a) and (b). We divide these tetrahedra
into groups according to which of the edges between adjacent-level strands
in c they touch. Hence, for each i, the edge between the level i and i+ 1
strands is shared by all of the tetrahedra in the corresponding group. We can
glue each of these groups of tetrahedra together about this shared edge to
form a bipyramid with top vertex at the level i strand and bottom vertex at
the level i+ 1 strand. The size of this crossing-centered bipyramid between
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(a) The tetrahedra at one crossing coming
from the 3-crossing face-centered decom-
position of a link complement (two pairs
of tetrahedra appear identified along faces
and four are individual).

(b) The 3-crossing crossing-centered de-
composition of a link complement obtained
by gluing the tetrahedra from (A) around
the dotted vertical edges.

Figure 5. The crossing-centered and face-centered bipyramid decomposi-
tions. The dotted edges in (a) are identified to become the dotted edges
in (b).

levels i and i+ 1 of c is determined by the number of faces neighboring c
that contribute tetrahedra to it, since each such face contributes exactly
one. This is captured by the following theorem:

Theorem 2. Given any link L and any projection P of L with multi-

crossings C, the complement of L can be decomposed into a collection of

bipyramids BC = {Bc,i : c ∈ C, i ∈ {1, . . . , |c| − 1}}. Furthermore, the sizes

of these bipyramids are given by

(2) |Bc,i| = 2 |{j ∈ {1, . . . , |c|} : min{lj , lj+1} < i+ 1/2 < max{lj , lj+1}}| ,

where c is a multicrossing composed of the strands s1, . . . , sj , . . . , sn at cross-

ing levels l1, . . . lj , . . . , ln.
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Proof. The crossing-centered bipyramid Bc,i can be cut into a collection of
|Bc,i| tetrahedra that share the bipyramid’s central vertical diagonal and
glue face-to-face around it. Each of these tetrahedra comes from exactly one
face-centered bipyramid BF , where c is in ∂F . By the construction of the
face-centered bipyramids above, if the boundary of F is of the form ∂F =
. . . , sj+1, c, sj , . . . , then BF contributes a tetrahedron to Bc,i exactly when
either lj+1 < i+ 1/2 < lj or lj+1 > i+ 1/2 > lj . Therefore as the adjacent
pairs of strands at levels i and i+ 1 of c are considered in turn, for the
two face-centered bipyramids in the two faces bounded by sj and sj+1 and
opposite c from one another, either both face-centered bipyramids contribute
a tetrahedron to Bc,i or neither does.

This shows that these collections of tetrahedra are of the stated size; it
remains to show that they glue together to form bipyramids. But the gluings
that merge these tetrahedra into bipyramids are exactly the gluings that de-
scribe how the face-centered bipyramids glue up to fill the complement of L.
The pairs of triangular faces that meet around the central vertical diagonal
of each face-centered bipyramid are alternating pairs of the partnered up-
per faces and lower faces of the face-centered bipyramids surrounding c. In
the construction of the crossing-centered bipyramids from the face-centered
bipyramids, the equatorial edges of each become the central diagonals of the
other. □

For convenience, the criterion for whether a given face-centered bipyra-
mid BF with face boundary ∂F = . . . , sj , c, sj+1, . . . contributes a tetrahe-
dron to the crossing-centered bipyramid Bc,i can be reframed in terms of
interval containment in the following way. The interval [i, i+ 1] represents
the position of Bc,i in the crossing, and [lj , lj+1] represents the range of levels
of c that are spanned by BF . Then BF contributes a tetrahedron to Bc,i if
and only if [i, i+ 1] ⊆ [lj , lj+1].

Corollary 3. For any multicrossing c, |Bc,1| = |Bc,|c|−1| = 4 and the sizes

of adjacent crossing-centered bipyramids must satisfy

||Bc,i| − |Bc,i+1|| = 0 or 4

Proof. To see that |Bc,1| = |Bc,|c|−1| = 4, first consider Bc,1. If the top strand
in c is si with level li = 1, then [li−1, li] and [li, li+1] are the only adjacent-
strand level intervals containing [1, 2]. Therefore by Theorem 2, Bc,1 is com-
posed of 4 tetrahedra glued face-to-face and sharing a common edge, and it
is therefore an octahedron. The bottom bipyramid Bc,|c|−1 is an octahedron
for the same reason.
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(a) 1234 (b) 1243 (c) 1324

Figure 6. The six 4-crossing configurations, identified up to reflection by
their permutations, and their crossing-centered bipyramid decompositions,
with edges labelled by their edge classes.

Within c, the sizes of two neighboring crossing-centered bipyramids Bc,i

and Bc,i+1 correspond to the frequency with which the intervals [i, i+ 1]
and [i+ 1, i+ 2] are contained in the strand level intervals [lj , lj+1]. If sk is
the strand with lk = i+ 1 that passes between these two bipyramids, then
the intervals [lj , lj+1] will contain either both [i, i+ 1] and [i+ 1, i+ 2] or
neither, unless sj = sk or sj+1 = sk. Therefore, the difference between |Bc,i|
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and |Bc,i+1| is determined by how the tetrahedra are allocated from the
four face-centered bipyramids around c that are bordered by sk and corre-
spond to the strand level intervals [lk−1, i+ 1] and [i+ 1, lk+1]. If lk−1 < lk
and lk+1 < lk, then these four face-centered bipyramids will contribute four
tetrahedra to Bc,i and none to Bc,i+1, and |Bc,i| = |Bc,i+1|+ 4. If lk−1 > lk
and lk+1 > lk, then these four tetrahedra will be allocated to Bc,i+1, and
|Bc,i| = |Bc,i+1| − 4. And if lj−1 < lj < lj+1 or lj−1 > lj > lj+1, then the con-
tributions to the two bipyramids will be the same, so |Bc,i| = |Bc,i+1|. □

In Figure 6, we see the crossing-centered bipyramid decompositions for
all six 4-crossing configurations (identified up to reflection). This includes
the first instance of a non-octahedral crossing-centered bipyramid, shown in
Figure 6(c). In light of the constraints on crossing-centered bipyramid sizes
given by Corollary 3, it is natural to ask which sequences of crossing-centered
bipyramid sizes are realizable. It turns out that these conditions constitute
a classification of the realizable crossing-centered bipyramid size sequences:

Theorem 4. Every sequence m1,m2, . . . ,mn−1 of positive integers such

that

m1 = mn−1 = 4 and |mi −mi+1| = 0 or 4 is realized as the signature of

crossing-centered bipyramid sizes for some n-crossing.

In order to prove this theorem, we first prove two lemmas.

Lemma 5. If m1,m2, . . . ,mn−1 is realized, so is 4,m1 + 4,m2 + 4, . . . ,
mn−1 + 4, 4.

Proof. Let c be the n-crossing that realizes m1,m2, . . . ,mn−1 with level se-
quence l1, l2, . . . , ln. We create an (n+ 2)-crossing c′ by adding a strand
above and below c in the following manner. Add the new overstrand clock-
wise from the understrand of c and the new understrand just clockwise from
the new overstrand. The contributions of the intervals [lj , lj+1] to the sizes
of the bipyramids between strands remain unchanged, except for in three
cases. Moving clockwise from the old understrand of c, the interval between
the old understrand of c and the new overstrand of c′ will contribute to
every bipyramid except the bipyramid above the very bottom strand of c′.
The interval between the new overstrand and the new understrand will con-
tribute to every bipyramid between strands in c′. And the interval between
the new understrand of c′ and the strand that was clockwise from the un-
derstrand in c will contribute to the same set of bipyramids it did before,
as well as to the bottom bipyramid above the new understrand. Since each
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such contribution is doubled when we consider the intervals on the opposite
side of the crossing, this means that the sequence of bipyramid sizes for c′

is 4,m1 + 4,m2 + 4, . . . ,mn−1 + 4, 4. □

Lemma 6. If sequences p1, p2, . . . , pu−1 and q1, q2, . . . , qv−1 are realized,

then so is p1, p2, . . . , pu−1, q2, . . . , qv−1.

Proof. Note that both realized sequences begin and end with 4’s, so in the
concluding sequence, the last 4 of the first sequence given by pu−1 is identified
with the beginning 4 of the second sequence, given by q1. Let c1 and c2 be
multicrossings realizing the two given sequences. Construct a new (n+ q −
2)-crossing c3 by starting with the first crossing and then placing directly
beneath it the second crossing, such that from above, the entire second
crossing appears in the two opposite regions just clockwise from the bottom
strand in c1. Moreover, do so such that the topmost strand of c2 is clockwise
from the bottom strand of c1. (See Figure 7.) Now remove the bottom strand
of c1 and the top strand of c2 to obtain our new crossing c3.

1
s

r

n

j

k

c
1

c
2

s+n-2r+n-2

j

k

j

k

s+n-2
r+n-2

Figure 7. Creating crossing c3 from c1 and c2 to “concatenate” bipyramid
size seqences.

Let j and k be the heights of the strands counterclockwise and clockwise
from the bottom strand in c1. Let r and s be the heights of the strands
counterclockwise and clockwise from the top strand in c2. In c3, the only
intervals originally from c1 with their contributions to bipyramids between
strands affected are [j, n] and [k, n]. Similarly, the only intervals originally
from c2 with their contributions to bipyramids between strands affected
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are [1, r] and [1, s]. In c3, we also have the new intervals [j, s+ n− 2] and
[k, r + n− 2]. Then the contributions to the sizes of bipyramids by [j, n] and
[1, s] in c1 and c2 are exactly replaced by the contributions from [j, s+ n− 2],
with the exception that there is a single intermediate bipyramid that is
contributed to rather than separate bipyramids at the bottom of c1 and the
top of c2.

The same holds for replacing the contributions of intervals [k, n] and
[1, r] by [k, r + n− 2]. Hence c3 realizes the desired sequence. □

Proof of Theorem 4. We induct on the sum of the bipyramid size sequence
∑n−1

i=1 mi in a sequence {mi}. We can realize the single integer sequence {4}
with a 2-crossing. Suppose that we can realize all sequences {mi} such that

1) m1 = mn−1 = 4,

2) |mi −mi+1| ≤ 4 for all i , and

3)
∑n−1

i=1 mi ≤ 4t .

Then given a sequence {mi} satisfying (1) and (2) and for which
∑n−1

i=1 mi = 4(t+ 1), either {mi} contains a 4 that is not at the beginning or
end, or it does not. If it does, then {mi} is of the form p1, . . . , pk−1, q2, . . . , ql−1

for two sequences {pi} and {qi} that both satisfy (1), (2), and (3). These
sequences are therefore realizable, and so {mi} is realizable by Lemma 6.

If {mi} does not contain a 4 in its interior, then it is of the form
4, p1, 4 + p2, . . . , 4 + pn−1, 4 for some sequence {pi} satisfying (1), (2), and
(3). Therefore {pi} is realizable, and so by Lemma 5 {mi} is realizable as
well. □

This crossing-centered bipyramid decomposition agrees with the con-
struction used in [1] Theorem 5.2, which shows that for a link L in a 3-
crossing projection, the complement can be decomposed into pairs of octa-
hedra positioned between the strands of each 3-crossing, as in Figure 5(B).

3. Hyperbolic volume bounds

In hyperbolic space H
3, for each fixed n there is a maximum n-bipyramid

volume. Therefore, given a decomposition of a hyperbolic link complement
S3 \ L into bipyramids, the volume of the entire manifold S3 \ L is bounded
above by the sum of the maximum possible volumes of each of its constituent
bipyramids. We pursue this strategy in order to develop upper bounds for



✐

✐

“1-Adams” — 2020/6/16 — 18:08 — page 512 — #14
✐

✐

✐

✐

✐

✐

512 C. Adams and G. Kehne

volumes of hyperbolic link complements, given their multicrossing projec-
tions and the corresponding bipyramid decompositions developed in Sec-
tion 2. To begin, we know from [5] Theorem 2.2 that the volumes of these
maximally sized n-bipyramids, here denoted Bn, grow logarithmically in n:

Theorem 7. vol(Bn) < 2π log(n/2) for n ≥ 3 and vol(Bn) grows asymp-

totically like 2π log(n/2):

lim
n→∞

vol(Bn)

2π log(n/2)
= 1.

Here we note that the multicrossing-centered bipyramid decomposition
for a hyperbolic link L in a multi-crossing projection, the derived crossing-
centered bipyramids Bc give an upper bound on the volume of L. This bound
is

(3) vol(L) <
∑

B∈BC

vol(B|B|),

where for B ∈ BC , |B| is given by Theorem 2. This multicrossing crossing-
centered bipyramid bound will be referred to as the MCCB bound on vol-
ume.

Similarly, the multicrossing face-centered bipyramid decomposition also
gives us an upper bound on volume. For a given link L in a multi-crossing
projection with derived face-centered bipyramids BF , this bound is

(4) vol(L) <
∑

B∈BF

vol(B|B|),

where for B ∈ BC , |B| is given by Theorem 1. This multicrossing face-
centered bipyramid bound will be referred to at the MFCB bound on volume.

Note that for both the face-centered and crossing-centered bipyramid
decompositions, the specific configurations of the n-crossings affect the sizes
of the bipyramids, and as a result the MCCB and MFCB bounds depend
on the crossing configurations. Certain crossing configurations yield larger
volumes and volume upper bounds than others. Note also that if we apply the
Thurston 2-crossing octahedral upper bound on volume to a multi-crossing
projection, then for each n-crossing it gives an upper bound of

(

n
2

)

voct. This
is because each n-crossing must be perturbed into

(

n
2

)

2-crossings. On the
other hand, the MCCB bound applied to an n-crossing gives an upper bound
of (n− 1)voct in the best case, and an upper bound that is O(n log n) in the
worst case. Table 1 compares these bounds for some values of n.
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n Best-case MCCB bound Worst-case MCCB bound Octahedral bound

3 7.32772 7.32772 10.9916

4 10.9916 15.1827 21.9832

5 14.6554 23.0377 36.6386

10 32.9747 81.6887 164.874

100 362.722 2,183.09 18,136.1

Table 1. Contribution to best-case, worst-case, and octahedral upper bounds
on volume from n-crossings.

4. Maximal weaves

In [8] Champanerkar, Kofman, and Purcell introduced the infinite weave

W, which is the unique infinite alternating link embedded in R
3 with the

(44) regular tiling of the Euclidean plane as its projection graph, as in Fig-
ure 8(A). They also study the volume density of hyperbolic links, which is
defined for a link L to be

(5) Dvol(L) =
vol(L)

c(L)
,

and they considered W as the limit of an infinite sequence of finite links
that contain increasingly large patches of the square weave.

In this manner, they showed that W is geometrically maximal, meaning
that in the limit it attains the maximal value of Dvol(W) = voct, which re-
alizes D. Thurston’s octahedral upper bound on volume. Since each face of
W has 4 sides, it also realizes the face-centered bipyramid upper bound of
[5].

We now apply these new decompositions and corresponding volume up-
per bounds to the triple weave WT corresponding to the (36) regular tiling,
shown in Figure 8(b), and to the isoceles right triangle weave WR, corre-
sponding to the [4.82] Laves tiling, shown in Figure 8(c). These are periodic
infinite links embedded in R

3. The triple weave has triple crossings of type
123 and 132 in alternate rows. The right triangle weave has an equal ratio
of 2-crossings and 4-crossings, with 4-crossings given by the permutation
1243, where the top strand in the 4-crossing passes through the 2-crossing
as an understrand and the bottom strand in the 4-crossing passes through
the 2-crossing as an overstrand.

For all three weaves we can take the quotient of R3 by Z
2, its discrete

subgroup of translational isometries, to obtain a link in a thickened torus
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(a) Square weave. (b) Triple weave. (c) Right triangle weave.

Figure 8. Three weaves.

T × (0, 1). Equivalently, we can view these as links in S3, where we have
added two components, each of which is a core curve of one of the solid
tori to either side of the projection torus, so the complement of these two
components is T × (0, 1).

For the square weave, we denote this six-component link complement in
S3 by W ′. There are four 2-crossings on the projection torus and the pro-
jection of the four components coming from the square weave is alternating
on the torus, which is apparent from Figure 9(a). The core curves of the
solid torus are shown in pink and light blue. The four link components of
W ′ each bound a twice-punctured disk in the complement in S3, and two of
these twice-punctured disks are shown here shaded.

For the triple weave, we denote the link complement by W ′
T . There are

two 3-crossings on the torus, as in Figure 9(b). And for the isoceles right
triangle weave, the corresponding link complement is denoted W ′

R and there
is a single 2-crossing and a single 4-crossing on the torus, as in Figure 9(d).

Theorem 8. W ′,W ′
T and W ′

R are all isometric with volume equal to 4voct.

Proof. By cutting W ′ open along the two thrice-punctured spheres high-
lighted in Figure 9(a), introducing a full twist on each, and regluing them,
we obtain W ′

T , as shown in Figure 9(b). The resulting manifold is isometric
to the original and therefore has the same volume.

Similarly, introducing a full twist to each of the thrice-punctured spheres
highlighted in Figure 9(c) yields W ′

R as shown in Figure 9(d). Therefore all
three are isometric. Using either results of [8] as applied to W ′ or the decom-
position of any of these link complements into four ideal octahedra meeting
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(a) The link complement W ′, with a pair
of twice-punctured disks highlighted.

(b) The link W
′

T on the torus, derived
from Figure 9(a).

(c) The link complement W
′ with a

different pair of twice-punctured disks
highlighted.

(d) The link W
′

R on the torus, derived
from Figure 9(c).

Figure 9. On the left, two pairs of twice-punctured disks in the complement
of W ′. The core curves are shown in pink and blue. On the right, the rep-
resentations of W ′

T and W ′
R generated by cutting open, twisting full twists,

and regluing on these pairs of disks.

four along each edge yields a volume, via the Mostow-Prasad Rigidity The-
orem, of 4voct. □

For all three weaves, the volume of this shared manifold achieves both the
MFCB bound and MCCB bound. In the case ofW ′, there is one ideal regular
octahedron corresponding to each of the crossings of the link in T × (0, 1).
In the case of W ′

T , there are two regular ideal octahedra at each of the two
triple crossings in T × (0, 1). In the case of W ′

R, there is one ideal regular
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octahedron at the 2-crossing and three octahedra at the single 1243-crossing
in T × (0, 1). For the MFCB bound, we consider the bipyramids coming from
the faces of the projection onto the torus, and we obtain one regular ideal
octahedron per face for the four faces, in each of these three cases, again
realizing the upper bound on volume. Note that we must remove additional
link components in order to be in T × (0, 1) and make all vertices ideal on
the octahedra, which is necessary in order to realize the upper bounds on
volume.

Corollary 9. WT is geometrically maximal among all 3-crossing links in

T × (0, 1).

Proof. From the preceding theorem, vol(WT ) = 4voct. Since it contains two
3-crossings on the torus, its triple-crossing number is c3(WT ) = 2. This im-
plies that the triple volume density of WT is

(6) D3
vol(WT ) =

vol(WT )

c3(WT )
= 2voct

This also realizes the MCCB bound for 3-crossings in general, where the
region surrounding each 3-crossing can be decomposed into two octahedra.
From the MCCB bound it follows that no link embedded in T × (0, 1) can
have a higher 3-crossing volume density. □

For finite links with 3-crossing planar projections in S3, the MCCB
bound of 2voct per crossing given by [1] (and the equivalent decomposi-
tion above) certainly holds. However volume bound improvements can be
made by collapsing the finite U and D vertices to the cusp, so equality is
unattainable. In [8] Champanerkar, Kofman, and Purcell were able to show
that certain sequences of finite links that contain ever-increasing patches of
the square weave also approach the infinite square weave in volume density.
Their argument used lower bounds on volume attained by guts, which were
derived from the essentiality of the checkerboard surfaces that came from
the alternating projections that they considered. We expect analogous se-
quences of finite links containing increasing patches of the triple weave as in
Figure 10 to similarly approach D3

vol(WT ) = 2voct in triple volume density,
but the corresponding theory for links in triple-crossing projections is not
yet developed enough to permit a similar argument.
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Figure 10. Links containing ever larger patches of the triple weave should
have volume density approaching 2voct.

Conjecture 1. For links L in a 3-crossing projection on the plane, the

triple-crossing volume density bound

D3
vol(L) < 2voct

is sharp, and is realized by a sequence of links as in Figure 10.
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