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We use the LMO invariant to find constraints for a knot to admit a
purely or reflectively cosmetic surgery. We also get a constraint for
knots to admit a lens space surgery, and some information about
characterizing slopes.

1. Introduction

For a knot K in S3 and r = p/q ∈ Q ∪ {∞}, let S3(K, r) be the oriented
closed 3-manifold obtained by Dehn surgery on K along the slope r. We
denote the 3-manifold M with opposite orientation by −M , and we write
M ∼= M ′ if two 3-manifolds are homeomorphic by an orientation preserving
homeomorphism.

Two Dehn surgeries along a knot K with different slopes r and r′ are
purely cosmetic if S3(K, r) ∼= S3(K, r′) and reflectively cosmetic (or, chirally
cosmetic) if S3(K, r) ∼= −S3(K, r′).

Two slopes are called equivalent if there exists a homeomorphism (which
may reverse the orientation) of S3 \K that sends one slope to the other. A
famous cosmetic surgery conjecture (for a knot in S3) [Kir, Problem 1.81]
states that the Dehn surgeries along inequivalent slopes are never purely cos-
metic. By the knot complement theorem [GoLu], for a non-trivial knotK two
different slopes r and r′ are always inequivalent unlessK is amphicheiral and
r = −r′. For an amphicheiral knot K, S3(K, r) ∼= −S3(K,−r) ̸∼= S3(K,−r).
Therefore for a knot in S3 the cosmetic surgery conjecture can be rephrased
that a non-trivial knot does not admit a purely cosmetic surgery.
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There are various constraints for two Dehn surgeries to be purely cos-
metic. Among them, using Heegaard Floer homology theory in [NiWu, The-
orem 1.2] the following strong restrictions are shown.

If S3(K, p/q) ∼= S3(K, p′/q′),

then p′/q′ = ±p/q and q2 ≡ −1 (mod p).
(1.1)

The cosmetic surgery conjecture can be regarded as a statement say-
ing that when we fix a knot K then Dehn surgery gives an injective map
S3(K, ∗) : {Slopes} = Q ∪ {∞} → {(oriented) 3-manifolds} except in the
case where K is the unknot. From this point of view, it is natural to ask
about the injectivity of the Dehn surgery map when we fix a slope; Is the
Dehn surgery map S3(∗, r) : {Knots} → {(oriented) 3-manifolds} injective
? A slope r is a called a characterizing slope of K if near K the answer is
affirmative, meaning that S3(K, r) ∼= S3(K ′, r) implies K = K ′.

Compared with purely cosmetic surgeries, the situation for characteriz-
ing slopes is more complicated. There are various examples of non-
characterizing slopes. Among them, in [BaMo] hyperbolic knots with in-
finitely many (integral) non-characterizing slopes are given. On the other
hand, if K is the unknot [KMOS, OzSa2], the trefoil, or the figure-eight
knot [OzSa1] then all the slopes are characterizing. Moreover, if K is a torus
knot, a slope r is characterizing provided r is sufficiently large [NiZh, The-
orem 1.3], whereas some small slopes are not characterizing.

In this paper we use the LMO invariant to study Dehn surgery along
knots. We obtain various constraints for a knot to admit a purely or reflec-
tively cosmetic surgery, or, a slope r to be characterizing.

The LMO invariant is an invariant of closed oriented 3-manifolds which
takes values in a certain graded algebra A(∅). In this paper, we restrict our
attention to the case where M is a rational homology sphere, and we use a
normalization as in [BGRT3] for the LMO invariants of rational homology
spheres – see section 2). For rational homology spheres, the degree one part
λ1 of the LMO invariant, under the normalization as in [BGRT3], is 1

4λCW

[LMMO], where λCW denotes the Casson-Walker invariant with Walker’s
normalization [Wal]. By the surgery formula of the Casson-Walker invariant
[BoLi, Wal] we have

(1.2) λ1(S
3(K, p/q)) = a2(K)

q

2p
+ λ1(L(p, q)).

Here a2(K) denotes the coefficient of z2 in the Conway polynomial, and
L(p, q) = S3(Unknot, p/q) denotes the (p, q)-lens space.
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Using (1.1) and the surgery formula (1.2) we immediately get the fol-
lowing constraint for cosmetic surgery and characterizing slopes. (In [BoLi],
this is proved without using (1.1) – instead they used the Casson-Gordon
invariant to get an additional constraint.)

Theorem 1.1. [BoLi, Proposition 5.1] Let K and K ′ be knots in S3 and
r, r′ ∈ Q \ {0} with r ̸= r′.

(i) If S3(K, r) ∼= S3(K ′, r) then a2(K) = a2(K
′).

(ii) If S3(K, r) ∼= S3(K, r′) then a2(K) = 0 (= a2(Unknot)).

Our purpose is to get further constraints that generalize Theorem 1.1
by looking at higher order parts of the LMO invariants.

Two knots K and K ′ are called Cn+1-equivalent if v(K) = v(K ′) for all
finite type invariant v whose degree is less than or equal to n. A knot which
is Cn+1 equivalent to the unknot is called a Cn+1-trivial knot. In [Gou, Hab]
it is shown that two knots are Cn+1-equivalent if and only if they are related
by a sequence of certain local moves, called Cn+1-moves.

In this terminology and knowing that a2 is the only finite type invariant
of degree 2 up to constant multiple, Theorem 1.1 can be understood to say
that Dehn surgery characterizes a knot or a slope up to C3-equivalence: (i)
says that if Dehn surgeries on two knots K and K ′ along the same slope
are homeomorphic then K and K ′ are C3-equivalent, and (ii) says that the
cosmetic surgery conjecture is true unless K is C3-trivial.

In [BaL] Bar-Natan and Lawrence gave a rational surgery formula for
the LMO invariant. First we write down a rational surgery formula for the
degree two and three parts of the (primitive) LMO invariants of S3(K, r).

Theorem 1.2 (Surgery formula for λ2 and λ3). Let K be a knot in S3.
We have

λ2(S
3(K, p/q)) =

(
v2(K)2 +

1

24
v2(K) +

5

2
v4(K)

)
q2

p2
− v3(K)

q

p

+
v2(K)

24

(
1

p2
− 1

)
+ λ2(L(p, q))

=

(
7a2(K)2 − a2(K)− 10a4(K)

8

)
q2

p2
− v3(K)

q

p

+
a2(K)

48

(
1−

1

p2

)
+ λ2(L(p, q))



✐

✐

“4-Ito” — 2020/4/30 — 22:13 — page 324 — #4
✐

✐

✐

✐

✐

✐

324 Tetsuya Ito

λ3(S
3(K, p/q))

= −

(
35

4
v6(K)+

5

24
v4(K)+10v2(K)v4(K)+

4

3
v2(K)3+

1

12
v2(K)2

)
q3

p3

−

(
5

24
v4(K) +

1

288
v2(K) +

1

12
v2(K)2

)
q

p3

+

(
5

2
v5(K) + 2v3(K)v2(K) +

1

24
v3(K)

)
q2

p2
+

v3(K)

24

(
1

p2
− 1

)

−

(
w4(K)−

1

12
v2(K)2 −

1

288
v2(K)−

5

24
v4(K)

)
q

p
+ λ3(L(p, q))

The formula for λ2(L(p, q)) and λ3(L(p, q)) will be given (2.3). In par-
ticular λ3(L(p, q)) = 0.

Here v2(K), v3(K), v4(K), w4(K), v5(K) and v6(K) are certain finite type
invariants of the knot K (see Section 2 for details – as we will see in Lemma
2.1, except v5 they are determined by the Alexander and the Jones polynomi-
als). Also, a2n(K) is the coefficient of z2n in ∇K(z), the Conway polynomial
of K.

The degree two part of the LMO invariant (combined with (1.1)) gives
rise to the following.

Corollary 1.3. Let K and K ′ be knots in S3, and r, r′ ∈ Q \ {0} with
r ̸= r′.

(i) If S3(K, r) ∼= S3(K, r′) then v3(K) = 0.

(ii) If S3(K, r) ∼= −S3(K,−r) then v3(K) = 0.

(iii) If S3(K, r) ∼= −S3(K, r′) for r′ ̸= ±r then either
(iii-a) v3(K) = 0, or,

(iii-b) v3(K) ̸= 0 and
rr′

r + r′
=

7a2(K)2 − a2(K)− 10a4(K)

8v3(K)
.

(iv) If S3(K, r) ∼= S3(K ′, r) then either
(iv-a) a4(K) = a4(K

′), v3(K) = v3(K
′), or,

(iv-b) a4(K) ̸= a4(K
′), v3(K) ̸= v3(K

′), and r =
5(a4(K)− a4(K

′))

4(v3(K)− v3(K ′))
.

(i) was proven in [IcWu] by a similar argument using Lescop’s surgery
formula for the Kontsevich-Kuperberg-Thurston invariant [Ko2, KuTh] (see
Remark 3.2).

We note that the degree two part gives the following constraint for a
knot to admit a lens space surgery.
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Corollary 1.4. If S3(K, p/q) is a lens space, then

(
7a2(K)2 − a2(K)− 10a4(K)

8

)
q2

p2
− v3(K)

q

p
+

a2(K)

48

(
1−

1

p2

)
= 0.

By the cyclic surgery theorem [CGLS], if K is not a torus knot, then
q = 1 hence we get

(1.3) a2(K)p2 − 48v3(K)p+
(
42a2(K)2 − 7a2(K)− 60a4(K)

)
= 0.

Combined with the fact that a2(K), 4v3(K) and a4(K) are integers, (1.3)
brings some interesting information. For example, the integer p must be a
solution of the quadratic equation (1.3) so 576v3(K)2 − a2(K)(42a2(K)2 −
7a2(K)− 60a4(K)) is a perfect square. If a non-torus knot K admits more
than one lens space surgeries, the surgery slopes are successive integers
[CGLS, Corollary 1] so such a knot has a2(K) ̸= ±1.

The formula for the degree three part is more complicated. Fortunately,
as for cosmetic surgery, using (1.1) we get the following simple constraints.

Corollary 1.5. Let K and K ′ be knots in S3 and r = p/q ∈ Q \ {0}.

(i) If S3(K, r) ∼= S3(K, r′) for r′ ̸= r, then

p2(24w4(K)− 5v4(K)) + 5v4(K) + q2(210v6(K) + 5v4(K)) = 0.

(ii) If S3(K, r) ∼= −S3(K,−r), then v5(K) = 0.

In [IcWu], the cosmetic surgery conjecture is confirmed for all prime
knots with less than or equal to 11 crossings, with eight exceptions. Corol-
lary 1.5 (i) shows that seven of them do not admit purely cosmetic surgery
so we conclude the following.

Corollary 1.6. The cosmetic surgery conjecture is true for all prime knots
with less than or equal to 11 crossings, possibly except 10118.

Using the higher degree parts of the LMO invariant, adding suitable Cn-
equivalence assumptions we prove the following more direct generalizations
of Theorem 1.1.

Theorem 1.7. Let K and K ′ be knots in S3 and r, r′ ∈ Q \ {0} with r ̸= r′.

(i) Assume that K and K ′ are C2m+2-equivalent. If S
3(K, r) ∼= S3(K ′, r)

then a2m+2(K) = a2m+2(K
′).
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(ii) Assume that K is C4m+2-trivial. If S
3(K, r)∼=S3(K, r′) then a4m+2(K)

= 0.

We say that a (complex-valued) finite type invariant v is of odd type
if v(K) = −v(mirror of K) for every knot K. For example, v3 and v5 in
Theorem 1.2 are finite type invariants of odd type. We say that K and
K ′ are odd Cn+1-equivalent if v(K) = v(K ′) for all finite type invariant v
of odd type with degree ≤ n, and that K is odd Cn+1-trivial if it is odd
Cn+1-equivalent to the unknot.

In a similar spirit, as a corollary to the general argument based on the
higher degree parts of the LMO invariant (Theorem 3.4), we also prove a
vanishing of certain finite type invariants that come from the colored Jones
polynomials (Quantum sl2 invariant). Let Vn(K; t) be the n-colored Jones
polynomial, normalized so that Vn(Unknot; t) = 1. The colored Jones poly-
nomials have the following expansion called the loop expansion, or Melvin-
Morton expansion [MeMo].

Vn(K; e−h) =
∑

e≥0


∑

k≥0

je,k(K)(nh)k


he.

It is known that the coefficient je,k(K) ∈ Q is a canonical finite type invari-
ant of degree e+ k, a finite type invariant that has some nice theoretical
properties (see Section 2.2 for definition). In particular, je,k is a finite type
invariant of odd type if e+ k is odd.

Corollary 1.8. Let K and K ′ be knots in S3 and r ∈ Q \ {0}.

(i) Assume that K and K ′ are C2m+1-equivalent. If S
3(K, r) ∼= S3(K ′, r)

and a2m+2(K) = a2m+2(K
′), then j1,2m(K) = j1,2m(K ′).

(ii) Assume that K is odd C4m+1-trivial. If S
3(K, r) ∼= −S3(K,−r) then

j1,4m(K) = 0.

(iii) Assume that K is odd C4m+3-trivial. If S
3(K, r) ∼= ±S3(K,−r) then

j1,4m+2(K) = 0.

By definition, if K is amphicheiral then v(K) = 0 for all finite type in-
variants of odd type. It is conjectured that the converse is true (this is related
to a more familiar conjecture that finite type invariants do not detect the
orientation of knots [Kir, Problem 1.89]). Corollary 1.3 (i), Corollary 1.5 (ii),
and Corollary 1.8 (ii),(iii) say that if S3(K, r) ∼= −S3(K,−r) then various



✐

✐

“4-Ito” — 2020/4/30 — 22:13 — page 327 — #7
✐

✐

✐

✐

✐

✐

LMO invariant constraint for surgery problems 327

finite type invariants of odd type vanish for K. Thus, they bring supporting
evidence for an affirmative answer to the following question.

If S3(K, r) ∼= −S3(K,−r) for some r ̸= 0,∞, then is K amphicheiral?
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2. LMO invariant and rational surgery formula

In this section we briefly review the basics of the Kontsevich and the LMO
invariants. We use the Århus integral construction of the LMO invariant
developed in [BGRT1, BGRT2, BGRT3] and a rational surgery formula for
the LMO invariant due to Bar-Natan and Lawrence [BaL]. For basics of the
Kontsevich and the LMO invariants we refer to [Oht].

2.1. Open Jacobi diagrams

An (open) Jacobi diagram or (vertex-oriented) uni-trivalent graph is a graph
D whose vertex is either univalent or trivalent, such that at each trivalent
vertex v a cyclic order on the three edges around v is given. The degree of
D is half the number of vertices. We will often call a univalent vertex a leg,
and denote the number of legs of a Jacobi diagram D by k(D). For a Jacobi
diagram D, let e(D) = −χ(D) be minus the euler characteristic of D. We
call e(D) the euler degree of D. Then deg(D) = e(D) + k(D).

Let B (resp. A(∅)) be the vector space over C spanned by Jacobi dia-
grams (resp. Jacobi diagrams without a univalent vertex), modulo the AS
and IHX relations given in Figure 1.

Figure 1: The AS and IHX relations: we understand that at each trivalent
vertex, the cyclic order is defined by the counter-clockwise direction.
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By taking disjoint union ⊔ as the product, both B and A(∅) have the
structure of graded algebras. Since the IHX and the AS relations and the
disjoint union product respect both k(D) and e(D), we view B as a bi-
graded algebra. For X ∈ B we denote by Xe,k the part of X whose bigrading
is (e, k). Strictly speaking, we will use the completion of B and A(∅) with
respect to degrees which we denote by the same symbol B and A(∅) by abuse
of notation.

Let exp⊔ : B → B (or, A(∅) → A(∅)) be the exponential map with re-
spect to the ⊔ product operation, defined by

exp⊔(D) = 1 +D +
1

2
D ⊔D + · · · =

∞∑

n=0

1

n!
(D ⊔ · · · ⊔D)︸ ︷︷ ︸

n

.

We will simply denote (D ⊔ · · · ⊔D)︸ ︷︷ ︸
n

by Dn.

For a Jacobi diagram C, let ∂C : B → B be the differential operator de-
fined by

∂C(D) =

{
0 if k(C) > k(D)∑

(glue all the legs of C to some legs of D) if k(C) ≤ k(D)

In a similar manner, we define the pairing ⟨C,D⟩ ∈ A(∅) of C,D ∈ B by

⟨C,D⟩ =

{
0 if k(C) ̸= k(D)∑

(glue the legs of C to the legs of D) if k(C) = k(D)

Thus ∂C(D) = ⟨C,D⟩ if k(C) = k(D). In both cases, the summation runs
over all possible ways of gluing all the legs of C to some legs of D. We
denote this summation by a box, as in Figure 2. It is known that ∂C⊔C′ =
∂C′ ◦ ∂C . Thus if C ∈ B is invertible (with respect to the ⊔ product) then
∂C is invertible with ∂−1

C = ∂C−1 (see [BGRT2, BLT, BaL] for details).

(i) (ii)

C D C D

Figure 2: (i) Differential operator ∂C(D) (ii) Pairing ⟨C,D⟩.
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Let b2i be the modified Bernoulli numbers, defined by

(2.1)
1

2
log

sinh(x2 )
x
2

=

∞∑

i=0

b2ix
2i = 1 +

1

48
x2

1

5760
x4 +

1

362880
x6 + · · · .

For q ∈ Z \ {0}, let

Ωq = exp⊔




∞∑

n=1

b2n
q2n

2n︷ ︸︸ ︷



= 1 +
1

48q2
−

1

5760q4
+

1

4608q4
+ · · · .

The element Ω = Ω1 is called the wheel element.

2.2. Wheeled Kontsevich invariant

The Kontsevich invariant Z(K) is an invariant of a framed knot, which
takes values in A(S1), the space of Jacobi diagrams over S1 [Ko1, Bar].
Throughout the paper, we will always assume that the knot K is zero-
framed. The target space A(S1) is isomorphic to B as a graded vector space,
by the Poincaré-Birkhoff-Witt isomorphism χ : B → A(S1). Let σ : A(S1) →
B be the inverse of χ. In the rest of the paper, we will always view the
Kontsevich invariant as taking values in B, by defining

Zσ(K) = σ(Z(K)) ∈ B.

We will denote by Zσ(K)e,k the bigrading (e, k) part of the Kontsevich
invariant. See [GR] for a topological meaning of this bigrading.

Let Vn be the vector space spanned by C-valued finite type invari-
ants of degree ≤ n. The Kontsevich invariant gives a map Z : (Bdeg=n)

∗ →
Vn, by Z(w)(K) = w(Zσ(K)deg=n). Here w : Bdeg=n → C is an element of
(Bdeg=n)

∗, the dual space of the degree n part of B and Zσ(K)deg=n ∈ Bdeg=n

denotes the degree n part of Zσ(K). On the other hand, there is a map called
symbol Symb : Vn → (Bdeg=n)

∗ (see [Bar, BaGa] for definition). A finite type
invariant v ∈ Vn is called

– canonical, if v = Z(Symb(v)).

– primitive, if v(K#K ′) = v(K) + v(K ′).
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For a canonical finite type invariant v of degree d, v(K) = (−1)dv(mirror of
K) for all knots K. Thus, a canonical finite type invariant is of odd type if
and only if its degree is odd.

The wheeled Kontsevich invariant ZWheel(K) ∈ B is a version of the
Kontsevich invariant defined as follows.

Let ∂Ω = 1 + 1
48∂ + · · · be the differential operator defined by the

wheel element Ω. The wheeling map Υ = χ ◦ ∂Ω : B → A(S1) is the compos-
ite of ∂Ω and the Poincaré-Birkhoff-Witt isomorphism χ. The wheeling map
Υ gives an isomorphism of algebras [BLT, Wheeling theorem], whereas the
Poincaré-Birkhoff-Witt isomorphism χ only gives an isomorphism of vector
spaces.

The wheeled Kontsevich invariant is the image of the Kontsevich invari-
ant under the inverse of the wheeling map Υ:

ZWheel(K) = Υ−1(Z(K))

= (∂Ω)
−1 ◦ σ(Z(K))

= ∂Ω−1Zσ(K).

The wheel element Ω is equal to the Kontsevich invariant of the unknot
[BLT, Wheel theorem]: Zσ(Unknot) = Ω. Therefore instead of Zσ or ZWheel,
it is often useful to use Zσ(K) ⊔ Ω−1 since Zσ(Unknot) ⊔ Ω−1 = 1.

The Kontsevich invariant is group-like, so Zσ(K) = exp⊔(z
σ(K)), where

zσ(K) denotes the primitive part of Zσ(K). By taking a basis of the primitive
subspace of Be,k for e+ k

2 ≤ 3 (see [Kni] for the dimension of these spaces)
we express the low degree part of the primitive Kontsevich invariant as

Zσ(K) ⊔ Ω−1

= exp⊔

(
v2(K) + v3(K) + v4(K) + w4(K) + v5(K)

+ v6(K) + (bigrading (e, k) parts with e+
k

2
> 3)

)
.

Here v2(K), v3(K), v4(K), w4(K), v5(K), v6(K) are canonical, primitive fi-
nite type invariants of degree 2, 3, 4, 4, 5, 6, respectively.

Thus the bigrading (e, k) parts of Zσ(K) with e+ k
2 ≤ 3 are explicitly

written as
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Zσ(K) = 1 +
(
v2(K) + b2

)
+ v3(K) +

1

2

(
v2(K) + b2

)2

+ (v4(K) + b4) + w4(K) + v3(K)(v2(K) + b2)

+ v5(K) +
1

6

(
v2(K) + b2

)3

+
(
v2(K) + b2

)(
v4(K) + b4

)
+
(
v6(K) + b6

)

+

(
bigrading (e, k)parts with e+

k

2
> 3

)

Here b2i denotes the modified Bernoulli numbers given by (2.1).
Except v5(K), these finite type invariants can be expressed in terms

of the Conway polynomial and the Jones polynomial. Let a2i(K) be the
coefficient of z2i in the Conway polynomial ∇K(z) of K, and let jn(K)
be the coefficient of hn in the Jones polynomial VK(eh) of K, putting the
variable as t = eh. Then we have the following (see Section 4 for proof).

Lemma 2.1. (i) v2(K) = −1
2a2(K).

(ii) v3(K) = − 1
24j3(K).

(iii) v4(K) = −1
2a4(K)− 1

24a2(K) + 1
4a2(K)2.

(iv) w4(K) = 1
96j4(K) + 3

32a4(K)− 9
2a2(K)2.

(v) v6(K) = −1
2a6(K)− 1

12a4(K)− 1
720a2(K) + 1

24a2(K)2

+ 1
2a2(K)a4(K)− 1

6a2(K)3.

Since the Jones polynomial is an integer coefficient polynomial, j3(K) ∈
6Z so 4v3(K) ∈ Z. The degree three finite type invariant v3 takes the value
1
4 for a right-handed trefoil.

In general, the euler degree zero part of the Kontsevich invariant can be
expressed in terms of the Alexander polynomial, using the following formula
(this is a consequence of the Melvin-Morton-Rozansky conjecture [BaGa] as
discussed in [Kri]).

Proposition 2.2. Let −1
2 log∆K(ex) =

∑∞
n=0 d2n(K)x2n where ∆K(t) is

the Alexander polynomial of K, normalized so that ∆K(t) = ∆K(t−1),
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∆K(1) = 1. Then the euler degree zero part of the Kontsevich invariant is

exp⊔

(
∞∑

k=0

d2k(K)

2n︷ ︸︸ ︷)
.

In particular, since ∇K(t
1

2 − t−
1

2 ) = ∆K(t), if a2(K) = a4(K) = · · · =
a2m(K) = 0 for some m ≥ 0 then d2(K) = d4(K) = · · · = d2m(K) = 0 and
d2m+2(K) = −1

2a2m+2(K).

2.3. The LMO invariant and the rational surgery formula

The LMO invariant ẐLMO(M) is an invariant of an oriented closed 3-
manifold M that takes values in A(∅). In the rest of the paper we restrict
our attention to the case where M is of the form M = S3(K, r) for some
knot K in S3 and r ̸= 0,∞. In particular, we will always assume that M
is a rational homology sphere. We use the Århus integral normalization
of the LMO invariant of rational homology spheres [BGRT3]: ẐLMO(M)
is |H1(M ;Z)|− degΩ(M), where Ω(M) is the LMO invariant as defined in
[LMO] and |H1(M ;Z)|− deg is the operation that multiplies any degree m
elements in A(∅) by |H1(M ;Z)|−m.

To make computation simpler, we will use the following simplification.
Let be the theta-shaped Jacobi diagram which generates the degree one
part of A(∅).

Let Ared be the quotient of A(∅) by the ideal generated by , and
let π : A(∅) → Ared be the quotient map. We call π(ẐLMO(M)) ∈ Ared the
reduced LMO invariant and denote it by ZLMO(M). By abuse of notation,
we will simply refer to the reduced LMO invariant as the LMO invariant.
When we change the orientation, the (reduced) LMO invariant changes as

ZLMO
n (−M) = (−1)nZLMO

n (M)

where ZLMO
n (M) denotes the degree n part of the LMO invariant.

The low degree part of the (reduced) LMO invariant is written as

ZLMO(M) = 1 + λ2(M) + λ3(M) + (degree > 4 parts).

where λ2(M), λ3(M) ∈ C are finite type invariant of rational homology
spheres. In the rest of the arguments, unless otherwise specified, we will
always work in Ared. For example, we will always view the pairing ⟨D,D′⟩
so that it takes values in Ared, by composing with the quotient map π.
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Using the simplification = 0, the (reduced) LMO invariant of the 3-
manifold obtained by rational Dehn surgery along a knot K is given by
the following simpler formula. Let be the strut, the Jacobi diagram
homeomorphic to the interval.

Theorem 2.3 (Rational surgery formula [BaL]). Let K be a knot in
S3. Then the (reduced) LMO invariant of the (p/q)-surgery along K is given
by

ZLMO(S3(K, p/q)) =

〈
ZWheel(K) ⊔ Ωq , exp⊔

(
−

q

2p

)〉
.

As an application of the rational surgery formula above, in [BaL, Propo-
sition 5.1] it is shown that the (reduced) LMO invariant of the lens space
L(p, q) is given by

(2.2) ZLMO(L(p, q)) = ⟨Ω,Ω−1 ⊔ Ωp⟩.

Thus the (reduced) LMO invariant of the lens space only depends on p.
In particular,

(2.3) λ2(L(p, q)) =
1

24

(
1

48p2
−

1

48

)
, ZLMO

2m+1(L(p, q)) = 0 (m ∈ Z).

3. Proofs of Theorems

First of all we determine which part of the Kontsevich invariant contributes
to the degree n part of the (reduced) LMO invariant.

Proposition 3.1. The degree n part of the LMO invariant for S3(K, p/
q) is determined by the slope p/q and the bigrading (e, k) part Zσ(K)e,k of
Zσ(K) with e+ k

2 ≤ n.

Proof. By definition of the pairing, for D ∈ Be,k we have ⟨D, exp⊔(−
q
2p )⟩

∈ A(∅)e+ k

2

. Thus the degree n part of the LMO invariant of S3(K, p/q) is

determined by the bigrading (e, k) part of ZWheel(K) ⊔ Ωq, with e+ k
2 = n.

The bigrading (e, k) part of ZWheel(K) ⊔ Ωq is determined by the bigrad-
ing (e′, k′) part of ZWheel(K) with (e′, k′) ∈ {(e, k), (e, k − 2), (e, k − 4), . . .}.
Also, by definition of ∂D, if D ∈ Be,k and D′ ∈ Be′,k′ , ∂D(D

′) ∈ Be′+e+k,k′−k.
This shows that the bigrading (e, k) part of ZWheel(K) is determined by
the bigrading (e′, k′) part of Zσ(K) with (e′, k′) ∈ {(e, k), (e− 2, k + 2), (e−
4, k + 4), . . .}.
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These observations show that the degree n part of the LMO invariant
of S3(K, p/q) is determined by the bigrading (e, k) part of Zσ(K)e,k with
e+ k

2 ≤ n (and the surgery slope p/q). □

Proof of Theorem 1.2. By Proposition 3.1, to compute the degree 2 and 3
part of the LMO invariant for S3(K, p/q), it is sufficient to consider the
bigrading (e, k) part of Zσ(K) for e+ k

2 ≤ 3. As we have already seen, this
is given by

Zσ(K) = 1 +
(
v2(K) + b2

)
+ v3(K) +

1

2

(
v2(K) + b2

)2

+ (v4(K) + b4) + w4(K) + v3(K)(v2(K) + b2)

+ v5(K) +
1

6

(
v2(K) + b2

)3

+
(
v2(K) + b2

)(
v4(K) + b4

)
+
(
v6(K) + b6

)

+

(
bigrading (e, k) parts with e+

k

2
> 3

)
.

Here b2 =
1
48 , b4 = − 1

5760 , b6 =
1

362880 are modified Bernoulli numbers. Since





∂Ω−1

( )
= − 2b2 , ∂Ω−1

( )
= − 2b2 ,

∂Ω−1

( )
= − 8b2 +

(
bigrading (e, k) parts with e+ k

2 >3
)

∂Ω−1

( )
= − 10b2 +

(
bigrading (e, k) parts with e+ k

2 > 3
)
,

the wheeled Kontsevich invariant is given by

ZWheel(K) = 1 +
(
v2(K) + b2

)
+ v3(K) +

1

2

(
v2(K) + b2

)2

+ (v4(K) + b4) + w4(K) + v3(K)(v2(K) + b2) + v5(K)

+
1

6

(
v2(K) + b2

)3
+
(
v2(K) + b2

)(
v4(K) + b4

)

+
(
v6(K) + b6

)
+
(
− 2b2

)(
v2(K) + b2

)
+ (−2b2v3(K))

+

(
−8b2

1

2

(
v2(K) + b2

)2
− 10b2v4(K)

)

+

(
bigrading (e, k) parts with e+

k

2
> 3

)
.
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Thus ZWheel(K) ⊔ Ωq is equal to

ZWheel(K) ⊔ Ωq = 1 +

(
v2(K) + b2 +

b2
q2

)
+ v3

+

{
1

2

(
v2(K) + b2

)2
+ (v2(K) + b2)

b2
q2

+
b22
2q4

}

+

(
v4(K) + b4 +

b4
q4

)
+
(
w4(K)− 4b2

(
v2(K) + b2

)2
− 10b2v4(K)

)

+

(
v3(K)(v2(K) + b2) + v3(K)

b2
q2

)
+ v5(K)

+

(
1

6

(
v2(K) + b2

)3
+ (v2(K) + b2)

2 b2
2q2

+ (v2(K) + b2)
b22
2q4

+
b32
6q6

)

+

((
v2(K) + b2

)(
v4(K) + b4

)
+ (v4(K) + b4)

b2
q2

+ (v2(K) + b2)
b4
q4

+
b2b4
q6

)

+

(
v6(K) + b6 +

b6
q6

)
+
(
− 2b2

)(
v2(K) + b2

)
+ (−2b2v3(K))

+

(
bigrading (e, k) parts with e+

k

2
> 3

)
.

By direct computations (or, by using the sl2 weight system evaluations as
we will do in Section 4), the pairing with struts (in Ared) are given by





⟨ , ⟩ = 2 , ⟨ ,
2
⟩ = 16 , ⟨ ,

2
⟩ = 20 ,

⟨ ,
2
⟩ = 2 , ⟨ ,

2
⟩ = 16 , ⟨ ,

2
⟩ = 20 ,

⟨ ,
3
⟩ = 384 , ⟨ ,

3
⟩ = 480 ,

⟨ ,
3
⟩ = 420 .

Consequently, we get

λ2(S
3
K(p/q)) = v3(K)

(
−

q

2p

)
· 2

+

(
(v2(K) + b2)

2

2
+

(v2(K) + b2)b2
q2

+
b22
2q4

)
1

2

(
−

q

2p

)2

· 16

+

(
v4(K) + b4 +

b4
q4

)
1

2

(
−

q

2p

)2

· 20+
(
− 2b2

)(
v2(K) + b2

))
,
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and

λ3(S
3(K, p/q)) =

(
w4(K)− 4b2

(
v2(K) + b2

)2
− 10b2v4(K)

)(
−

q

2p

)
· 2

+

(
(v3(K)(v2(K) + b2) +

v3(K)b2
q2

)
1

2

(
−

q

2p

)2

· 16 + v5(K)
1

2

(
−

q

2p

)2

· 20

+

((
v2(K) + b2

)3

6
+

(v2(K) + b2)
2b2

2q2
+

(v2(K) + b2)b
2
2

2q4
+

b32
6q6

)

·
1

6

(
−

q

2p

)3

· 384

+

((
v2 + b2

)(
v4 + b4

)
+

(v4(K) + b4)b2
q2

+
(v2(K) + b2)b4

q4
+

b2b4
q6

)

·
1

6

(
−

q

2p

)3

· 480

+

(
v6(K) + b6 +

b6
q6

)
1

6

(
−

q

2p

)3

· 420 + (−2b2v3(K)).

Thus we conclude

λ2(S
3(K, p/q))− λ2(L(p, q))

=

(
v2(K)2 +

1

24
v2(K) +

5

2
v4(K)

)
q2

p2
− v3(K)

q

p
+

v2(K)

24

(
1

p2
− 1

)

=

(
7a2(K)2 − a2(K)− 10a4(K)

8

)
q2

p2
− v3(K)

q

p
+

a2(K)

48

(
1−

1

p2

)
,

λ3(S
3(K, p/q))− λ3(L(p, q))

= −

(
35

4
v6(K) +

5

24
v4(K) + 10v2(K)v4(K) +

4

3
v2(K)3 +

1

12
v2(K)2

)
q3

p3

−

(
5

24
v4(K) +

1

288
v2(K) +

1

12
v2(K)2

)
q

p3

+

(
5

2
v5(K) + 2v3(K)v2(K) +

1

24
v3(K)

)
q2

p2
+

v3(K)

24

(
1

p2
− 1

)

−

(
w4(K)−

1

12
v2(K)2 −

1

288
v2(K)−

5

24
v4(K)

)
q

p

□
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Remark 3.2. In [Les, Theorem7.1] Lescop proved a similar formula

λKKT
2 (S3(K, p/q)) = λ

′′KKT
2 (K)

q2

p2
+ w3(K)

q

p
+ c(p/q)a2(K)(3.1)

+ λKKT
2 (L(p, q))

for the degree two part λKKT
2 of the Kontsevich-Kuperberg-Thurston uni-

versal finite type invariant ZKKT , which is defined by configuration space
integrals [Ko2, KuTh]. Assuming the conjectural equality ZKKT = ZLMO,
we have λKKT

2 = 2λ2 (note that in [Les] Lescop used the coefficient of the

Jacobi diagram = 1
2 ) and Theorem 1.2 gives formulae for the invari-

ants in Lescop’s formula (3.1), namely,

λ
′′KKT
2 (K) =

7a2(K)2 − a2(K)− 10a4(K)

4
,

w3(K) = −2v3(K), c(p/q) =
1

24
−

1

24p2
.

Indeed, the equality w3 = −2v3(K) is confirmed in [IcWu], without assuming
λKKT
2 = 2λ2.

Proof of Corollary 1.3.

(i, ii): By (1.1), it is sufficient to consider the case r′ = −r. Assume that
S3(K, p/q) ∼= ±S3(K,−p/q). Since λ2(M) = λ2(−M) for any rational ho-
mology sphere M , by Theorem 1.2

λ2(S
3(K, p/q))− λ2(±S3(K,−p/q)) = −2v3(K)q/p = 0

Therefore v3(K) = 0.

(iii): Assume that S3(K, p/q) ∼= ±S3(K,−p′/q′). Since H1(S
3(K, p/q)) ∼= Z/

pZ, we have p = p′. By Theorem 1.2

0 = λ2(S
3(K, p/q))− λ2(−S3(K, p/q′))

=

(
7a2(K)2 − a2(K)− 10a4(K)

8

)
q2 − q′2

p2
− v3(K)

q − q′

p
.

Since q′ ̸= ±q, either v3(K) ̸= 0 (and 7a2(K)2 − a2(K)− 10a4(K) = 0), or,

p

q + q′
=

7a2(K)2 − a2(K)− 10a4(K)

8v3(K)
.
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(iv): Assume that S3(K, p/q) ∼= ±S3(K ′, p/q). By Theorem 1.1 (i), we have
a2(K) = a2(K

′). By Theorem 1.2

0 = λ2(S
3(K, p/q))− λ2(S

3(K ′, p/q))

=
5

4
(a4(K)− a4(K

′))
q2

p2
− (v3(K)− v3(K

′))
q

p
.

□

Proof of Corollary 1.4. Assume that S3(K, p/q) ∼= L(p′, q′). Then

|H1(S
3(K, p/q);Z)| = p = p′ = H1(L(p

′, q));Z)

so p = p′. By (2.3) λ2(L(p, q)) = λ2(L(p, q
′)) so Theorem 1.2 gives the desired

equality. □

Proof of Corollary 1.5. (i): By (1.1), it is sufficient to consider the case r′ =
−r. By Theorem 1.1 (ii) and Corollary 1.3 (i), a2(K) = v2(K) = v3(K) = 0.
Thus by Theorem 1.2

0 = λ3(S
3(K, p/q))− λ3(S

3(K,−p/q))

= −

(
35

2
v6(K) +

5

12
v4(K)

)
q3

p3
−

5

12
v4(K)

q

p3
−

(
2w4(K)−

5

12
v4(K)

)
q

p
.

(ii): If S3
K(p/q)) ∼= −S3

K(−p/q) then by Corollary 1.3 (ii) v3(K) = 0. There-
fore by Theorem λ3(S

3(K, p/q))− λ3(−S3(K,−p/q)) = 5v5(K) = 0. □

Proof of Corollary 1.6. By Lemma 2.1 and Corollary 1.5 (i), if S3(K, p/q) ∼=
S3(K,−p/q) then we get

(3.2) (19a4(K) + j4(K))p2 − 10a4(K)− (420a6(K) + 80a4(K))q2 = 0.

According to [IcWu], the cosmetic surgery conjecture was confirmed for
prime knots with less than or equal to 11 crossings, with 8 exceptions

1033, 10118, 10146, 11a91, 11a138, 11a285, 11n86, 11n157

in the table KnotInfo [ChLi].
For these knots, the values of a4, j4 and a6 are given as follows.

1033 10118 10146 11a91 11a138 11a285 11n86 11n157

a4 4 2 2 0 2 2 -2 0

j4 -12 -6 -6 0 -6 -6 6 0

a6 0 3 0 -2 -2 -2 -1 -1
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Note that (3.2) gives a diophantine equation of the form ap2 − bq2 = c,
whose solvability can be checked algorithmically [AnAn]. For these knots
the equation (3.2) has no integer solutions, except in the case K = 10118
(The author used the computer program at [Sol]. In the case K = 10118 we
get the equation 32p2 − 20− 1420q2 = 0 which has the solutions p = 20u+
1065v and q = 3u− 160v, where (u, v) are the solutions of Pell’s equation
u2 − 2840v2 = 1.) □

Next we proceed to see the higher degree part. To use the Cn-equivalence
assumption, we observe the following.

Lemma 3.3. If K and K ′ are C2m+1-equivalent, then for e+ k
2 ≤ m+ 1,

(ZWheel(K) ⊔ Ωq − ZWheel(K ′) ⊔ Ωq)e,k

= (Zσ(K) ⊔ Ω−1)e,k − (Zσ(K ′) ⊔ Ω−1)e,k

=

{
(Zσ(K)− Zσ(K ′))e,k if (e, k) = (0, 2m+ 2), (1, 2m)

0 otherwise

Similarly, if K and K ′ are odd C2m+1-equivalent, then for e+ k
2 ≤ m+ 1

with odd e+ k,

(ZWheel(K) ⊔ Ωq − ZWheel(K ′) ⊔ Ωq)e,k

= (Zσ(K) ⊔ Ω−1)e,k − (Zσ(K ′) ⊔ Ω−1)e,k

=

{
(Zσ(K)− Zσ(K ′))e,k if (e, k) = (1, 2m)

0 otherwise

Proof. By definition of ∂Ω−1 and the wheel element Ω, for D ∈ Be,k, ∂Ω−1(D)
is of the form

∂Ω−1(D) = D(3.3)

+
∑(

Jacobi diagram D′ with e(D′) +
k(D′)

2
> e(D) +

k(D)

2

)

Since K and K ′ are C2m+1-equivalent, if e+ k ≤ 2m then Zσ(K)e,k −
Zσ(K ′)e,k = 0. Therefore, for (e, k) with e+ k

2 ≤ m+ 1 we have Zσ(K)e,k −
Zσ(K ′)e,k = 0, unless (e, k) = (0, 2m+ 2), (1, 2m).
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By (3.3), this shows that if e+ k
2 ≤ m+ 1 then we have

ZWheel(K)− ZWheel(K ′) = ∂Ω−1(Zσ(K)− Zσ(K ′))e,k

= (Zσ(K)− Zσ(K ′))e,k.

For (e, k) with e+ k
2 ≤ m+ 1, and (Zσ(K)− Zσ(K ′))e,k = 0 unless (e, k) =

(0, 2m+ 2), (1 + 2m). On the other hand,

D ⊔ Ωq = D +
∑(

Jacobi diagram D′ with k(D′) ≥ k(D) + 2
)
.

Hence we have

(
(Zσ(K)− Zσ(K ′)) ⊔ Ωq

)
e,k

= (Zσ(K)− Zσ(K ′))e,k

= (Zσ(K) ⊔ Ω−1)e,k − (Zσ(K ′) ⊔ Ω−1)e,k.

Therefore for (e, k) with e+ k
2 ≤ m+ 1 we conclude

(ZWheel(K) ⊔ Ωq − ZWheel(K ′) ⊔ Ωq)e,k

=
((

ZWheel(K)− ZWheel(K ′)
)
⊔ Ωq

)
e,k

=
((
Zσ(K)− Zσ(K ′)

)
⊔ Ωq

)
e,k

= (Zσ(K) ⊔ Ω−1)e,k − (Zσ(K ′) ⊔ Ω−1)e,k

=

{
(Zσ(K)− Zσ(K ′))e,k if (e, k) = (0, 2m+ 2), (1, 2m)

0 otherwise.

To see the latter assertion, we note that both ∂Ω−1 and ⊔Ωq preserve
the parity of the degree of D. Namely, if D ∈ Bodd, where we denote by Bodd

the odd degree part of B, then ∂Ω−1(D), D ⊔ Ωq ∈ Bodd. Therefore the same
argument, restricted to bigrading (e, k) with odd e+ k, proves the desired
result. □

Proof of Theorem 1.7.

(i): By the proof of Proposition 3.1, the degree m+ 1 part of the LMO
invariant of S3(K, p/q) is determined by (ZWheel(K) ⊔ Ωq)e,k with e+ k

2 =
m+ 1. Since K and K ′ are C2m+2-equivalent, by Lemma 3.3, for (e, k) with
e+ k

2 = m+ 1,

(ZWheel(K) ⊔ Ωq − ZWheel(K ′) ⊔ Ωq)e,k = 0

unless (e, k) = (0, 2m+ 2), (1, 2m).
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In the current situation, we are assuming the slightly stronger condition
that K and K ′ are C2m+2-equivalent. Thus (Z

Wheel(K) ⊔ Ωq − ZWheel(K ′) ⊔
Ωq)1,2m = 0 as well. By Proposition 2.2 we have

(Zσ(K) ⊔ Ω−1)0,2m+2 − (Zσ(K ′) ⊔ Ω−1)0,2m+2

= −
1

2
(a2m+2(K)− a2m+2(K

′))

2m+2︷ ︸︸ ︷

Therefore

ZLMO
m+1 (S3(K, p/q))− ZLMO

m+1 (S3(K ′, p/q))

(3.4)

=

〈
−
1

2
(a2m+2(K)− a2m+2(K

′))

2m+2︷ ︸︸ ︷
,

1

(m+ 1)!

(
−

q

2p

)2m+1
m+1

〉

= −
a2m+2(K)− a2m+2(K

′)

2(m+ 1)!

(
−

q

2p

)m+1
〈 2m+2︷ ︸︸ ︷

,

m+1

〉

.

As we will see in Lemma 4.1,

〈 2m+2︷ ︸︸ ︷
,

m+1

〉
̸= 0. This shows that

S3(K, p/q) ∼= S3(K ′, p/q) implies a2m+2(K) = a2m+2(K
′).

(ii) By (3.4), when K is C4m+2-trivial, then

ZLMO
2m+1(S

3(K, p/q))− ZLMO
2m+1(L(p, q))

=

〈
−
1

2
a4m+2(K)

4m+2︷ ︸︸ ︷
,

1

(2m+ 1)!

(
−

q

2p

)2m+1
2m+1

〉

.

By (1.1), if S3(K, p/q) ∼= S3(K, p′/q′) then

p/q = −p′/q′ and ZLMO
2m+1(L(p, q))− ZLMO

2m+1(L(p
′, q′)) = 0

hence

0 = ZLMO
2m+1(S

3(K, p/q))− ZLMO
2m+1(S

3(K,−p/q))

= −
a4m+2(K)

(2m+ 1)!

(
−

q

2p

)2m+1
〈 4m+2︷ ︸︸ ︷

,

2m+1

〉

.
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Therefore a4m+2(K) = 0. □

A similar argument shows the following. Let Ke,k ⊂ Be,k denotes the ker-

nel of the Århus integration (diagram pairing) ⟨∗,
k

2 ⟩ : Be,k → A(∅)e+ k

2

(See Section 2). Then we have similar vanishing results.

Theorem 3.4. Let K and K ′ be a knot in S3 and r ∈ Q \ {0}.

(i) Assume that K and K ′ are C2m+1-equivalent. If S3(K, r) ∼=
S3(K ′, r) and a2m+2(K) = a2m+2(K

′), then (Zσ(K) ⊔ Ω−1)1,2m −
(Zσ(K) ⊔ Ω−1)1,2m ∈ K1,2m.

(ii) Assume that K is odd C4m+1-trivial. If S
3(K, r) ∼= −S3(K,−r) then

(Zσ(K) ⊔ Ω−1)1,4m ∈ K1,4m.

(iii) Assume that K is odd C4m+3-trivial. If S
3(K, r) ∼= ±S3(K,−r) then

(Zσ(K) ⊔ Ω−1)1,4m+2 ∈ K1,4m+2.

Proof. (i): By the same argument as in Theorem 1.7 (i), Lemma 3.3 and
Proposition 2.2 show that

ZLMO
m+1 (S3(K, p/q))− ZLMO

m+1 (S3(K ′, p/q))

=

〈
−
1

2
(a2m+2(K)− a2m+2(K

′))

2m+2︷ ︸︸ ︷
,

1

(m+ 1)!

(
−

q

2p

)m+1
m+1

〉

+

〈
(Zσ(K) ⊔ Ω−1)1,2m − (Zσ(K ′) ⊔ Ω−1)1,2m

,

1

m!

(
−

q

2p

)m
m

〉

.

Thus, if S3(K, p/q) ∼= S3(K ′, p/q) and a2m+2(K) = a2m+2(K
′) then

〈(
(Zσ(K) ⊔ Ω−1)1,4m+2 − (Zσ(K ′) ⊔ Ω−1)1,4m+2

)
,

2m+1
〉
= 0.

(ii) Assume that K is odd C4m+1-trivial. Since

ZLMO
2m+1(S

3(K, p/q))

=

m∑

e=0

〈
(ZWheel(K) ⊔ Ωq)2e,4m+2−4e

,

1

(2m+ 1− 2e)!

(
−

q

2p

)2m+1−2e
〉

+

m∑

e=0

〈
(ZWheel(K) ⊔ Ωq)2e+1,4m−4e

,

1

(2m− 2e)!

(
−

q

2p

)2m−2e
〉



✐

✐

“4-Ito” — 2020/4/30 — 22:13 — page 343 — #23
✐

✐

✐

✐

✐

✐

LMO invariant constraint for surgery problems 343

we get

0 = ZLMO
2m+1(S

3(K, p/q))− ZLMO
2m+1(−S3(K,−p/q))

= ZLMO
2m+1(S

3(K, p/q)) + ZLMO
2m+1(S

3(K,−p/q))

= 2

m∑

e=0

〈
(ZWheel(K) ⊔ Ωq)2e+1,4m−4e

,

1

(2m− 2e)!

(
−

q

2p

)2m−2e
〉

.

By Lemma 3.3, (ZWheel(K) ⊔ Ωq)2e+1,4m−4e = 0 unless e = 0, and we have

(ZWheel(K) ⊔ Ωq)1,4m = (ZWheel(Unknot) ⊔ Ωq)1,4m + (Zσ(K) ⊔ Ω−1)1,4m

− (Zσ(Unknot) ⊔ Ω−1)1,4m.

Since for any X ∈ B and q ∈ Z \ {0}, (X ⊔ Ω±1
q )1,k = X1,k we have

(ZWheel(Unknot) ⊔ Ωq)1,4m = (Zσ(Unknot) ⊔ Ω−1)1,4m.

Thus we get

(ZWheel(K) ⊔ Ωq)1,4m = (Zσ(K) ⊔ Ω−1)1,4m.

Hence

0 =
2

(2m)!

(
−

q

2p

)2m〈
(Zσ(K) ⊔ Ω−1)1,4m ,

2m
〉
.

(iii) is proved similarly.
□

Proof of Corollary 1.8. By Theorem 3.4, under the assumptions (i),(ii), and
(iii) of Corollary 1.8 we have (Zσ(K) ⊔ Ω−1)1,2m − (Zσ(K) ⊔ Ω−1)1,2m ∈
K1,2m, (Zσ(K) ⊔ Ω−1)1,4m = 0, and (Zσ(K) ⊔ Ω−1)1,4m+2, respectively.
By Lemma 4.2 in the next section, if (Zσ(K) ⊔ Ω−1)1,2m ∈ K1,2m then
j1,2m(K) = 0. Thus under the assumptions (i),(ii), and (iii) of Corollary
1.8, we have j1,2m(K) = j1,2m(K ′), j1,4m(K) = 0, and j1,4m+2(K) = 0 re-
spectively. □

4. Some sl2 weight system computations

In this section we use the (sl2, Vn) weight system, which is a linear map
W(sl2,Vn) : B (or, A(∅)) → C[[h]] that comes from the Lie algebra sl2 and its
n-dimensional irreducible representation, to confirm some assertions used in
previous sections.
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The image of W(sl2,Vn) can be calculated recursively by the following
relations [ChVa]:

(i) W(sl2,Vn)( ) = 2h
(
W(sl2,Vn)( )−W(sl2,Vn)( )

)

(ii) W(sl2,Vn)( ) = 4hW(sl2,Vn)( ).

(iii) W(sl2,Vn)( ) = 3.

(iv) W(sl2,Vn)(D ⊔ ) = hn2−1
2 W(sl2,Vn)(D).

Note that deghW(sl2,Vn)(D) = deg(D) and the relations (i)–(iii) do not
depend on n. Thus for D ∈ A(∅), W(sl2,Vn)(D) does not depend on n so we
will simply write by Wsl2(D).

The colored Jones polynomial is a knot invariant from quantum sl2 with
its n-dimensional irreducible representation. By the Drinfel’d-Kohno theo-
rem [Dri, Koh], which shows the equivalence of quantum braid group rep-
resentation from quantum groups and the monodromy representation from
the KZ equation, we have

W(sl2,Vn)(Z
σ(K) ⊔ Ω−1) = Vn(K; e−h)(4.1)

=
∑

e≥0


∑

k≥0

je,k(K)(nh)k


he.

We remark that we put the variable t in the colored Jones polynomial equal
not to eh but to e−h, due to the difference of normalization of the colored
Jones polynomial and quantum sl2 invariants.

We use this to check that some finite type invariants which we used can
be written in terms of the Jones and the Conway polynomials.

Proof of Lemma 2.1. (i),(iii) and (v) follow from Proposition 2.2 so we prove
(ii) and (iv). The degree three and four parts of (Zσ(K) ⊔ Ω−1) are given

v3(K) and 1
8a2(K)2 − 1

2a4(K) + w4(K) , respectively. Thus

by (4.1) applying W(sl2,V2) we get

j3(K)(−h)3 = v3(K)W(sl2,V2)( ) = 24v3(K)h3
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j4(K)(−h)4 =
1

8
a2(K)2W(sl2,V2)( )−

1

2
a4(K)W(sl2,V2)( )

+ w4(K)W(sl2,V2)( )

=
1

8
a2(K)236h4 −

1

2
a4(K)18h4 + w4(K)96h4

=

(
9

2
a2(K)2 − 9a4(K) + 96w4(K)

)
h4.

□

For two Jacobi diagrams D and D′ we write D ≡ D′ if D is equal to
D′ by using the sl2 weight system relations (i)–(iii) which are independent
of Vn. By the sl2 weight system relations (i)–(iii) we can remove all the
trivalent vertices of a Jacobi diagram when the number of univalent vertices
is even.

Lemma 4.1. Wsl2

(〈 2m︷ ︸︸ ︷

,

m
〉)

= 2(2h)m(2m+ 1)!. In particular,

〈 2m︷ ︸︸ ︷

,

m
〉
̸= 0.

Proof. First we observe that

2m︷ ︸︸ ︷
≡ (2h)m

∑

e=(e1,...,em)∈{0,1}m

(−1)e1+···+emDe

Here for e = (e1, . . . , em) ∈ {0, 1}m, De denotes the Jacobi diagram

e

1

e

2

e

m

1

0

Then the pairing
〈
De,

m〉
= is given by

(4.2) =





if e1 = e2 = · · · = em = 0

otherwise
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By definition, Wsl2

( )
= Wsl2

(〈
m
,

m
〉)

= (2m+ 1)!

(see [BLT, Lemma 6.1]). Therefore by (4.2)

Wsl2

(〈 2n︷ ︸︸ ︷
,

m
〉)

= 2(2h)m(2m+ 1)!
□

Lemma 4.2.

Wsl2

(〈
(Zσ(K) ⊔ Ω−1)1,2m,

m
〉)

= 2mhm+1(2m+ 1)!j1,2m(K)

Proof. Let us put (Zσ(K) ⊔ Ω−1)e,2k ≡ ce,2k(K)he+k k
. Then

W(sl2,Vn)((Z
σ(K) ⊔ Ω−1)e,2k) = ce,2k(K)he+2k

(
n2 − 1

2

)k

=
ce,2k(K)

2k
he(nh)2k −

ce,2k(K)

2k
khe+2(nh)2k−2

+
ce,2k(K)

2k

(
k

2

)
he+4(nh)2k−4 − · · · .

By (4.1) we conclude that j1,2m(K) = c1,2m(K)
2m . Then the sl2 weight system

evaluation of the desired pairing is

Wsl2

(〈
(Zσ(K) ⊔ Ω−1)1,2m,

m
〉)

= 2mj1,2m(K)hm+1Wsl2

( )

= 2mhm+1(2m+ 1)!j1,2m(K)
□
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