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We define the Wirtinger number of a link, an invariant closely
related to the meridional rank. The Wirtinger number is the min-
imum number of generators of the fundamental group of the link
complement over all meridional presentations in which every re-
lation is an iterated Wirtinger relation arising in a diagram. We
prove that the Wirtinger number of a link equals its bridge num-
ber. This equality can be viewed as establishing a weak version of
Cappell and Shaneson’s Meridional Rank Conjecture, and suggests
a new approach to this conjecture. Our result also leads to a com-
binatorial technique for obtaining strong upper bounds on bridge
numbers. This technique has so far allowed us to add the bridge
numbers of approximately 50,000 prime knots of up to 14 cross-
ings to the knot table. As another application, we use the Wirtinger
number to show there exists a universal constant C with the prop-
erty that the hyperbolic volume of a prime alternating link L is
bounded below by C times the bridge number of L.

1. Introduction

This work was inspired by an old problem due to Cappell and Shaneson,
1.11 on the Kirby List [14]:

Question 1.1. Is every knot whose group is generated by 2 meridians ac-
tually a 2-bridge knot? Same for n meridians and n-bridge knots.

The above question has become known as the Meridional Rank Conjec-
ture, and has been answered in the affirmative for many classes of links. The
case of n = 2 was settled in 1989 by Boileau and Zimmermann [6]. The con-
jecture has also been shown to hold for generalized Montesinos links [5], [16],
torus links [17], iterated cables [11], links of meridional rank 3 whose double
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branched covers are graph manifolds [4] and knots whose exteriors are graph
manifolds [3]. There are no known counter-examples, and the general case
remains open.

The present work originated from the following simple observation about
the conjecture. Denote the bridge number and meridional rank of a link L
by β(L) and µ(L), respectively. Let us recall the classical argument which
establishes β(L) ≥ µ(L). Assume β(L) = m. Then, L admits a diagram with
exactly m local maxima x1, ..., xm (with respect to some axis in the plane).
The Wirtinger generators corresponding to the m arcs containing the xi are
then easily seen to generate the group of the link complement, by applying
the Wirtinger relations in this diagram successively at crossings of decreasing
height.

What is obvious yet intriguing about this argument is that it does not
directly compare the bridge number to the number of meridional generators
in a presentation of the link group in which arbitrary valid relations are
allowed. Rather, only very particular, diagrammatic, relations are consid-
ered. This motivates studying the intermediate link invariant which arises
by, intuitively speaking, considering only presentations with the property
that the generators are meridional elements and the relations are Wirtinger
relations that can simultaneously be realized in a diagram.

To formalize this notion, we introduce the combinatorial tool of coloring
a link diagram according to the following set of rules. Recall that if L is a link
in R

3 and p : R3 → R
2 is the standard projection map given by p(x, y, z) =

(x, y), then p(L) is a link projection if p|L is a regular projection. Hence
a link projection is a finite four-valent graph in the plane, and we refer to
the vertices of this graph as crossings. A link diagram is a knot projection
together with labels at each crossing that indicate which strand goes over
and which goes under. By standard convention, these labels take the form
of deleting parts of the under-arc at every crossing, and thus we think of
a link diagram as a disjoint union of closed arcs, or strands, in the plane,
together with instructions for how to connect these strands to form a union
of simple closed curves in R

3.
Let D be a diagram of a link L with n crossings. Denote by s(D) the set

of strands s1, s2,..., sn and let v(D) denote the set of crossings c1, c2,..., cn.
Two strands si and sj of D are adjacent if si and sj are the under-strands
of some crossing in D. There exists a unique knot diagram up to planar
isotopy for which there exists a strand si of D for which si is adjacent to
itself, see Figure 1. In all cases we consider, adjacent arcs are understood to
be distinct.
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Figure 1: The only knot diagram in which a strand is adjacent to itself.

We call D k-partially colored if we have specified a subset A of the
strands of D and a function f : A → {1, 2, . . . , k}. We refer to this partial
coloring by the tuple (A, f). Given k-partial colorings (A1, f1) and (A2, f2)
of D, we say (A2, f2) is the result of a coloring move on (A1, f1) if

1) A1 ⊂ A2 and A2 \A1 = {sj} for some strand sj in D;

2) f2|A1
= f1;

3) sj is adjacent to si at some crossing c ∈ v(D), and si ∈ A1;

4) the over-strand sk at c is an element of A1;

5) f1(si) = f2(sj).

Denote the above coloring move from one k-partially colored diagram to
another by (A1, f1) → (A2, f2). See Figure 2.

1 The move (A1, f1) → (A2, f2)
captures the fact that if the Wirtinger generators corresponding to si and sk
belong to the subgroup of π1(S

3 − L, x0) generated by some set of meridians
of L, then, by applying the Wirtinger relation at c, sj is seen to belong to
this subgroup as well.

We say D is k-meridionally colorable if there exists a k-partial coloring
(A0, f0) = ({si1 , si2 , . . . , sik}, f0(sij ) = j) and a sequence of c(D)− k col-
oring moves (A0, f0) → (A1, f1) → · · · → (Ac(D)−k, fc(D)−k), where c(D) de-
notes the crossing number of D. In particular, Ac(D)−k = s(D), that is, at
the end of the coloring process every strand is assigned a color. By design,
the set {si1 , si2 , . . . , sik} corresponds to meridional elements that generate
the link group via iterated application of the Wirtinger relations in D, so
we refer to it as a Wirtinger generating system, and we call its elements seed
strands. The minimum value of k such that D admits a Wirtinger generating
system with k elements (equivalently, D is k-meridionally colorable) is the
Wirtinger number of D, denoted ω(D). Of course, this number will depend
on the choice of diagram, but it can be used to define an invariant of L.

1Thanks to Patricia Cahn for creating Figure 2.
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Figure 2: Two coloring moves on the knot 817, corresponding to the shaded
crossings. The coloring process terminates at this stage. More generally, this
diagram can not be colored using only two seeds. 817 is a three-bridge knot.

Definition 1.2. Let L ⊂ S3 be a link. The Wirtinger number of L, denoted
ω(L), is the minimal value of ω(D) over all diagrams D of L.

It is easy to see that ω(L) has the property µ(L) ≤ ω(L) ≤ β(L). The
first inequality follows from the fact that a Wirtinger generating system is
by definition a meridional generating set. The second one is implied by the
classical argument relating bridge number to meridional rank. Our main
result is to show that this inequality is in fact an equality.

Theorem 1.3 (Main Theorem). Let L ⊂ S3 be a link. The Wirtinger
number and the bridge number of L are equal.

An immediate consequence of this result is that it provides a novel ap-
proach to computing bridge numbers of links. Although the question of find-
ing the minimum of ω(D) over all diagrams D of a given link L is subtle,
calculating ω(D) itself is algorithmic. This has allowed us to implement the
calculation of ω(D) in Python. In the Appendix, we outline our algorithm
for computing ω(D) from a Gauss code for D. The algorithm runs extremely
fast in practice. We have used this computational approach to complete the
tabulation of bridge number for all prime knots up to 12 crossings and the
vast majority of knots with crossing number 13 and 14, thereby adding the
bridge numbers of approximately 50, 000 knots to the knot table. Due to
the fact that we can not assume that ω(L) is always realized in a minimal
diagram of L – although this turns out to be the case for all prime knots
of 12 crossings or less – tabulating these bridge numbers requires proving
that the upper bounds provided by the Wirtinger number are sharp. Our
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argument to this effect is presented in Section 3, together with a discussion
of our findings relating ω(L) to ω(D) where D is a minimal diagram of L.

In the second place, the Wirtinger number allows us to relate β(L) to
other diagrammatic link invariants, such as the twist number. Recall that in
the sphere of projection containing the link diagram, a twist region is either
a maximal collection of bigons in the knot projection stacked end to end or a
neighborhood of a crossing which is not contained in any bigon. The integer
t(D) denotes the number of twist regions of D. Lackenby [15] showed that
if a hyperbolic link has a prime alternating diagram D, then the hyperbolic
volume of that link is bounded above and below by linear functions of t(D).
We can elevate t(D) to a link invariant by declaring that t(L) be equal to
the minimum of t(D) over all diagrams D of L. We obtain:

Corollary 1.4. Given a link L, β(L) ≤ 2t(L).

Corollary 1.4 has an immediate application to the the study of hyperbolic
volumes of links. Closed 3-manifolds and link complements with a complete
hyperbolic structure can be assigned a well-defined hyperbolic volume. The
Heegaard genus of a closed 3-manifold M , denoted g(M), is the minimum
genus of any Heegaard surface for that manifold. Due to a theorem of Jor-
gensen and Thurston, there exists a constant C such that if M is a closed
hyperbolic 3-manifold, then Cg(M) ≤ vol(M), where vol(M) denotes the
hyperbolic volume of M . Bridge number can be regarded as the analogue
of Heegaard genus in the world of links. Recently, it was shown that there
does not exist a C such that for any hyperbolic link Cβ(L) ≤ vol(L) where
vol(L) is the hyperbolic volume of the complement of L [7], [10]. It is a chal-
lenging open question to establish for what classes of links the analogue of
Jorgensen and Thurston’s theorem holds. As a consequence of Corollary 1.4
and the main result from [15], we prove the following analogue of Jorgensen
and Thurston’s theorem for prime alternating hyperbolic links:

Theorem 1.5. There exists a universal constant C with the property that
every prime alternating hyperbolic link L satisfies the inequality

Cβ(L) < vol(L).

2. Proof of the main theorem

Let D be a k-meridionally colorable diagram of some link L. Our proof
strategy will be to construct from D a Morse embedding of L into R

3 with
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exactly k local maxima. This will be carried out in two steps. First, we
will study the process of extending a partial coloring of D across the entire
diagram. The purpose is to extract geometric information about the link L
from the sequence of coloring moves. Secondly, we will use the information
obtained to construct the desired embedding. It will prove useful to record
the order in which strands are colored, as follows.

Definition 2.1. Suppose D is a link diagram with crossing number c(D).
Assume D can be k-meridionally colored by starting with a Wirtinger gen-
erating system {si1 , si2 , . . . , sik} and performing coloring moves (A0, f0) →
(A1, f1) → · · · → (Ac(D)−k, fc(D)−k). We associate to this succession of

moves the coloring sequence {αj}
c(D)
j=1 given by αj = sij for 1 ≤ j ≤ k and

αj ∈ Aj−k \Aj−(k+1) for k + 1 ≤ j ≤ c(D)− k. Furthermore, given a color-
ing sequence {αj} we define its height function h : s(D) → Z by h(αj) := −j.

Introducing the negative sign here serves merely to indulge the authors’
mild preference for focusing on local maxima, rather than local minima, in
our construction. We also remark that any diagram D of a non-trivial link
can give rise to a multitude of distinct coloring sequences. When a collection
of seeds suffices to extend a partial coloring across all of D, the order in
which moves are performed involves making arbitrary choices; the color a
strand attains can also vary depending on the chosen order. However, once
a succession of coloring moves is chosen, the associated coloring sequence is
unique.

We review a couple of terms used in the proof of the next proposition.
Let A be some subset of s(D). We say the strands of A are connected if
there exists a reordering of the strands si1 , si2 , . . . , sia in A such that sij is
adjacent to sij+1

for all j, 1 ≤ j ≤ a− 1. Note the set of all strands in D is
connected if K is a knot. In this case, if A = s(D), then sia is adjacent to si1 .

Secondly, let {si}
n
i=1 be a sequence of adjacent strands ordered by ad-

jacency and let g : {s1, s2, . . . , sn} → R be a one-to-one map. We say g
has a local maximum at sj if the function g′ : {1, 2, . . . , n} → R defined by
g′(i) := g(si) has a local maximum at j.

We now summarize the relevant properties of the functions fi and h.
Because links require some additional considerations, we begin by studying
the case of knots.

Proposition 2.2. Let D be a diagram of a non-trivial knot. Assume D can
be k-meridionally colored via the moves (A0, f0) → · · · → (An, fn), where

n = c(D)− k, and let {αm}
c(D)
m=1 and h be as above. The following hold:
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1) For every j ∈ {1, 2, . . . , k}, δ ∈ {0, 1, . . . , n}, f−1
δ (j) is connected.

2) For any j ∈ {1, 2, . . . , k}, h has a unique local maximum on {si| si ∈
f−1
n (j)} when this set is ordered sequentially by adjacency.

3) Let sp, sq ∈ s(D) be adjacent understrands at a crossing in D, and
denote the overstrand at this crossing by sr. If fn(sp) = fn(sq), then
h(sr) > min{h(sp), h(sq)}.

Proof. Since D is the diagram of a nontrivial knot, whenever sp, sq ∈ s(D)
are adjacent understrands at a crossing in D, sp ̸= sq. However, it is possible
for the overstrand and an understrand at a crossing of D to be the same
strand (i.e. take D to be the result of a type one Reidemeister move that
increases crossing number).

(1) Colloquially, the assertion here is that at every stage δ of the coloring
process, each color in the diagram corresponds to a connected arc of K.
We verify this claim by induction on u, where u denotes the stage of the
coloring process. For u = 0, f−1

0 (j) = {sij} is connected. Now assume f−1
u (j)

is connected for all u < t, and let u = t with t > 0. By definition of the
coloring move, ∃si ∈ s(D) such that si is the unique strand to which a color
is assigned at stage t. That is, {si} = At \At−1 and si is adjacent to some
sl ∈ At−1. Moreover, by definition of the coloring move, ft(si) = ft−1(sl) = c.
Therefore, f−1

t (c) = f−1
t−1(c) ∪ {si} is connected since f−1

t−1(j) is connected by

assumption, and si is adjacent to a strand in f−1
t−1(c). Similarly, by definition

of the coloring move, ∀r ̸= c, f−1
t (r) = f−1

t−1(r), which is connected by the
inductive hypothesis.

(2) The statement is that h attains a unique local maximum along each
color; in fact, the local maximum in every color is the seed strand. Intuitively,
this follows from the fact that, by the definition of h, at every stage u > 0
of the coloring process, the single strand {sa} = Au \Au−1 has the property
that h(sa) = min{h(sc)| sc ∈ Au}, so sa can not possibly introduce a new
local maximum in its color. We formalize this argument by induction on u. At
stage u = 0, each color j ∈ {1, 2, . . . , k} corresponds only to its seed strand.
That is, f−1

0 (j) = {sij}, and h trivially attains a single local maximum on
this set. Now assume that for u < t, h has a unique local maximum on
f−1
u (j). Set u = t. There exists a strand {si} = At \At−1 with the property
that si is adjacent to some sl ∈ At−1 and ft(si) = ft(sl) = c. But h(si) = −t
and h(sl) > −t, since sl was colored before stage t of the coloring process.
Because si and sl are adjacent, si is not a local maximum in f−1

t (c) and the
number of local maxima in each color remains unchanged.
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(3) This claim can be rephrased by saying that if sp and sq, two strands
adjacent at a crossing, have been assigned the same color, then the over-
strand sr at this crossing cannot have been the last one of the three to
attain a color. The intuitive reason is that the definition of the coloring
move dictates that sr must have been assigned a color in order for the col-
oring to be extended from sp to sq or vice-versa. To prove this assertion,
let h(sc) = τc for c ∈ {p, q, r} and assume for contradiction that h(sr) ≤
min{h(sp), h(sq)}. Recall that sq ̸= sp. Hence, without loss of generality, we
can assume τp > τq ≥ τr. Denote fn(sp) = fn(sq) = j and consider iq such
that {sq} = Aiq \Aiq−1. By definition of the coloring move, at stage δiq , the
color j was extended to the strand sq from an adjacent strand sl. That is,
∃sl ∈ Aiq−1 such that sl is adjacent to sq and fiq−1(sl) = j. By assumption,
τr ≤ τq, so sr /∈ Aiq−1. In particular, since D is the diagram of a non-trivial
knot, sl ̸= sp. Moreover, sq is adjacent to both sl and sp. Additionally, since
τp > τq, we have sl, sp ∈ f−1

iq−1(j) whereas sq /∈ f−1
iq−1(j). But we know from

(1) that f−1
iq−1(j) is connected. Thus, since D is the diagram of a knot,

f−1
iq−1(j) must contain all arcs in D except sq. If sr and sq are distinct
strands, this contradicts the assumption that sr has not been colored by
stage iq − 1. If sr = sq, it follows that, at stage iq, the entire diagram is
colored and f(si) = j for all i ∈ {0, 1, . . . , n}. This implies that ω(D) = 1,
so the meridional rank of K is 1, contradicting our assumption that D is a
diagram of a non-trivial knot. □

Remark. The connectedness of K plays an essential role in the proof of
(3), and this argument does not generalize without modification to the case
of links. In fact, the Hopf link violates (3).

In order to extend Proposition 2.2 to links, we need to tackle links which
exhibit the above exception.

Definition 2.3. A link L in S3 is cut-split if there exists an unknotted
component U of L such that U bounds an embedded disk B2 in S3 with
int(B2) ∩ L = ∅ or L meets int(B2) transversely in a single point. We call
U the splitting component of L. A link diagram D is cut-split if there exists
sp, sq ∈ s(D) that are adjacent at some crossing of D such that sp = sq or if
there exists an element of s(D) that is a simple closed curve.

The standard diagram of the Hopf link is cut-split, with either of the
link components as a splitting component. More generally, if D is a cut-split
diagram of a link L, then L is cut-split. Indeed, a self-adjacent strand of D
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corresponds to a component of L that bounds a disk B2 ⊂ S3 whose interior
meets L transversely in one or zero (see Figure 1) points. We leave it to the
reader to verify the following easy facts about cut-split links and diagrams.

Remark 2.4. Let L ⊂ S3 be a link.

1) If L is cut-split with splitting component U , then β(L) = β(L \ U) + 1.

2) If D is a cut-split link diagram of L, U is the splitting component of
L that projects to the self adjacent strand sp or to a simple closed
curve, and D′ is the the natural diagram of L \ U corresponding to
the removal of sp from D, then ω(D) = ω(D′) + 1.

Proposition 2.5. Let D be a diagram of a link L such that D is not cut-
split. Assume D can be k-meridionally colored via (A0, f0) → · · · → (An, fn),

where n = c(D)− k, and let {αm}
c(D)
m=1 and h be as above. The following hold:

1) For every j ∈ {1, 2, . . . , k}, δ ∈ {0, 1, . . . , n}, f−1
δ (j) is connected.

2) For any j ∈ {1, 2, . . . , k}, h has a unique local maximum on {si| si ∈
f−1
n (j)} when this set is ordered sequentially by adjacency. (In the spe-
cial case when {si| si ∈ f−1

n (j)} is the set of all strands corresponding
to the projection of a single component of L, this set is ordered cycli-
cally by adjacency.)

3) Let sp, sq ∈ s(D) be adjacent understrands at a crossing c in D, and
denote the overstrand at this crossing by sr. If fn(sp) = fn(sq), then
one of the following holds:
a) h(sr) > min{h(sp), h(sq)};
b) the set {f−1

n (fn(sp))} corresponds to the projection of one compo-
nent U of L, and c is the unique crossing incident to p(U) with the
property that h(sr) ≤ min{h(sp), h(sq)}.

Proof. (1) and (2) follow without modification from the proof of Proposi-
tion 2.2 parts (1) and (2).

(3) First, we reestablish the setup for the proof of Prop. 2.2 part (3).
Let h(sc) = τc for c ∈ {p, q, r} and assume that h(sr) < min{h(sp), h(sq)}.
Recall that sq ̸= sp since D is not cut-split. Hence, without loss of generality,
we can assume τp > τq ≥ τr. Denote fn(sp) = fn(sq) =: j and let iq be such
that {sq} = Aiq \Aiq−1. By definition of the coloring move, at stage δiq , the
color j was extended to the strand sq from an adjacent strand sl. That is,
∃sl ∈ Aiq−1 such that sl is adjacent to sq and fiq−1(sl) = j. By assumption,
τr ≤ τq, so sr /∈ Aiq−1.
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If sl = sp, then sp is the only strand adjacent to sl, and {sp, sq} =
{f−1

n (j)} is the set of all strands corresponding to the projection of a single
component U of L. The projection p(U) is then incident to exactly two cross-
ings, c and c′. Moreover, by the definition of coloring move, the overstrand
at c′ is contained in Aiq−1. This establishes that situation (b) described in
the proposition holds.

Now assume that sl ̸= sp and note that sq is adjacent to both sl and sp.
Additionally, since τp > τq, as in the proof of Proposition 2.2 (3), we have
sl, sp ∈ f−1

iq−1(j) whereas sq /∈ f−1
iq−1(j). But we know from (1) that f−1

iq−1(j)

is connected. Thus, f−1
iq−1(j) must contain all strands corresponding to the

projection of a single component U of L except sq. Hence, iq is the first stage
of the coloring process at which every strand of f−1

n (j) is colored.
Assume that there exists a second crossing c′ such that h(s′r) ≤

min{h(s′p), h(s
′

q)} where s′r is the overstrand at c′, s′p and s′q are adjacent
understands at c′ and s′p, s

′

q ∈ f−1
n (j) (i.e. s′p and s′q are contained in the

projection of U). By repeating the above argument for the strands incident
to the crossing c′, at stage δi′q , the color j was extended to the strand s′q
from an adjacent strand s′l and i′q is the first stage of the coloring process at
which every strand of f−1

n (j) is colored. Thus, i′q = iq and s′q = sq. By defi-
nition, the strand sq is an understrand at the crossings c and c′. Moreover,
sq is an understrand at exactly two crossings, one of which has an uncolored
overstrand at stage iq and one of which has a colored overstrand at stage iq.
Since both c and c′ have uncolored overstands at stage iq, then c = c′. □

Proof of the Main Theorem. We prove the theorem by induction on N , the
number of components of L.

Step I. Let N = 1, that is, L =: K is a knot. If K is trivial, then ω(K) =
β(K) = 1, so we can assume K is non-trivial. It suffices to show that, if K
admits a diagram D which is k-meridionally colorable, then β(K) ≤ k. We
use Proposition 2.2 to construct from D a smooth embedding of K in R

3

with exactly k local maxima.
We begin by embeding D in the plane z = −c(D)− 2 in R

3. By as-
sumption, D can be k-meridionally colored via some succession of coloring

moves (A0, f0) → · · · → (An, fn), where n = c(D)− k. Let {αm}
c(D)
m=1 be the

associated coloring sequence and let and h be its height function, as in Def-
inition 2.1. Note that the range of h is the set {−1,−2, . . . ,−c(D)}.

Next, embed a copy, denoted ŝi, of each strand si of D in the plane
z = h(si) in such a way that the orthogonal projection of R3 to the plane
z = −c(D)− 2 maps ŝi to si. We call ŝi the lift of si. In what follows, we
show that the strands ŝi can be connected in such a way that the resulting
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knot has D as the diagram of its projection to the plane z = −c(D)− 2.
That is, we construct arcs sij in R

3 connecting the lifts ŝi and ŝj of adjacent

strands si, sj ofD, in such a way that (∪
c(D)
r=1 ŝr)

⋃
(∪

c(D)
r=1 srr+1 mod c(D)) ∼= S1

and the sij correspond to the arcs of K which are not visible in D, i.e. to
the deleted underpasses at each crossing.

Set-up: Let c be an arbitrary crossing in D. Label the overstrand at
c by sk and the understrands by si and sj , in some order. Pick a small
ε > 0 in such a way that the ball B2

ε (c) in the plane z = −c(D)− 2 has
non-trivial connected intersection with each strand si, sj , sk and is disjoint
from all other strands of D. Consider the infinite cylinder B2

ε (c)× R, where
R denotes the z direction. By construction, this cylinder intersects ŝi, ŝj and
ŝk and is disjoint from the lifts of the remaining strands. We will embed an
arc sij into B2

ε (c)× R in such a way that ŝi ∪ sij ∪ ŝj is a continuous arc and
the orthogonal projection of ŝk ∪ (ŝi ∪ sij ∪ ŝj) to the plane z = −c(D)− 2
coincides with the corresponding section of D. (Informally, sij will connect
ŝi to ŝj , and it will pass “under” ŝk.)

Case 1: Assume fn(si) = fn(sj), that is, at the end of the coloring
process, the strands si and sj are assigned the same color. Let sij be a
smooth, monotonically decreasing curve which connects the endpoints of
ŝi and ŝj that are contained in the cylinder B2

ε (c)× R and which has the
property that sij itself is contained entirely within the cylinder. Recall that,
by Proposition 2.2, h(sk) > min{h(si), h(sj)}. This implies that sij can be
chosen so that the orthogonal projection of ŝk ∪ (ŝi ∪ sij ∪ ŝj) to the plane
z = −c(D)− 2 is the subset of D, as desired. (Precisely, for any ε1 ∈ (0, ε),
one can guarantee that the intersection of sij and half-space z ≥ h(sk) is
contained entirely outside the cylinder B2

ε1
(c)× R.) See Figure 3.

Case 2: Assume fn(si) ̸= fn(sj), that is, at the end of the coloring pro-
cess, the strands si and sj are assigned distinct colors. Let xij denote the
point in (B2

ε (c)× R) ∩ {z = −c(D)− 1} with the property that the orthog-
onal projection of xij to the plane z = −c(D)− 2 coincides with the cross-
ing c in the diagram. Construct sij as the union of two smooth, mono-
tonic arcs, contained entirely within B2

ε (c)× R, connecting xij to those end-
points of ŝi and ŝj which are themselves contained in the cylinder. Because
h(sk) ≥ −c(D) > −c(D)− 1, these two monotonic arcs can be chosen so that
the orthogonal projection of ŝk ∪ (ŝi ∪ sij ∪ ŝj) to the plane z = −c(D)− 2
is once again a subset of D. (Precisely, for any ε1 ∈ (0, ε), one can guaran-
tee that the intersection of sij and the cylinder B2

ε1
(c)× R is contained in

B2
ε1
(c)× [−c(D)− 1, c(D)− 1

2 ].) See Figure 4.
In both Case 1 and Case 2, the above construction amounts to a care-

ful way of joining a pair of adjacent strands in the diagram so that the
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Figure 3: The construction of sij in Case 1.

Figure 4: The construction of sij in Case 2.

overstrand at the crossing where they meet is preserved. Performing this
construction at every crossing of D therefore reconstructs an embedding of
K. In order to produce from here an embedding with the desired number of
local extrema, we perturb each lift ŝi to obtain a new lift ŝ′i in the following
way. Let cii+1 denote the point in sii+1 that projects to a vertex of p(K). If
h(si) is not the unique local maximum of h on the set f−1

n (fn(si)), we let the
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subarc of si−1i ∪ ŝ′i ∪ sii+1 from ci−1i to cii+1 be a smooth monotonic arc,
strictly increasing or strictly decreasing as dictated by the values of h(si−1)
and h(si+1). On the other hand, if h(si) is the unique local maximum of h
on the set f−1

n (fn(si)), we let the subarc of si−1i ∪ ŝ′i ∪ sii+1 from ci−1i to
cii+1 be a smooth arc increasing monotonically to the midpoint of ŝ′i and
decreasing monotonically thereafter.

This construction produces a smooth embedding of K in R
3 with exactly

k local maxima, corresponding to the seed strands in each color. The local
minima correspond to the points xij , and thus project to those crossings in
D at which the diagram changes color.

Step II. Now let L be a link of N > 1 components, and assume that
ω(L′) = β(L′) for all links L′ of fewer than N components. First consider
the case that L has a diagram with ω(D) = ω(L) and such that D is not
cut-split. In this situation, Proposition 2.5 applies. A minor adaptation of
the proof given in Part I will establish that ω(L) = β(L). We adopt the
identical setup and begin by re-examining the cases.

Case 1: Assume fn(si) = fn(sj) and h(sk) > min{h(si), h(sj)}. Con-
struct sij exactly as in Case 1 of Step I.

Case 2: Assume fn(si) ̸= fn(sj). Construct sij exactly as in Case 2 of
Step I.

Case 3: Assume fn(si) = fn(sj) and h(sk) ≤ min{h(si), h(sj)}. By
Proposition 2.5, the set {f−1

n (fn(si))} corresponds to the projection of a
single component U of L and c is the unique crossing incident to p(U) with
the property that h(sk) ≤ min{h(si), h(sj)}. Then, exactly as in Case 2 of
Step I, we construct sij as the union of two smooth, monotonic arcs, con-
necting xij to endpoints of ŝi and ŝj . Moreover, these two monotonic arcs
can be chosen so that the orthogonal projection of ŝk ∪ (ŝi ∪ sij ∪ ŝj) to the
plane z = −c(D)− 2 is once again a subset of D. Note that U is monochro-
matic, and the arc sij contains the unique local minimum in this color of
the constructed embedding.

Performing the above construction at every crossing of D reconstructs
an embedding of L. As in Step I, we can perturb this embedding slightly to
produce a smooth embedding of L in R

3 with exactly ω(D) local maxima,
corresponding to the seed strands in each color. This completes the proof of
the main theorem in the case when L is a link with a diagram D that is not
cut-split and with ω(D) = ω(L).

Now allow L to be an arbitrary link of N components and let D be a
diagram of L such that ω(L) = ω(D). If D is not cut-split, then ω(L) =
β(L) by our previous argument. Hence, we can assume both D and L are
cut-split with splitting component U . Recall that, by Remark 2.4, β(L) =
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β(L \ U) + 1. Moreover, U is the splitting component of L that projects to
a self-adjacent strand or a simple closed curve in s(D). By Remark 2.4,
if D′ is the the natural diagram of L \ U corresponding to the removal
of the self-adjacent strand or simple closed curve from D, then ω(D) =
ω(D′) + 1. Hence, ω(L \ U) ≤ ω(D)− 1 = ω(L)− 1. By the induction hy-
pothesis, we have ω(L \ U) = β(L \ U) = β(L)− 1. Thus, β(L)− 1 = ω(L \
U) ≤ ω(L)− 1. Since ω(L) ≤ β(L) for all L, it follows that β(L) = ω(L),
completing the proof. □

3. Applications and further questions

We begin with the proofs of Corollary 1.4 and Theorem 1.5, which relate
the bridge number to the twist number of links and the hyperbolic volume
of prime alternating links. Subsequently, we discuss applications of Theo-
rem 1.3 to the tabulation of bridge number. The Wirtinger number also
plays a key role in the proof [1] of the Meridional Rank Conjecture for new
infinite classes of links.

Proof of Corollary 1.4. Given a link L, it follows from the definition of t(L)
that L admits a diagram D with exactly t(L) twist regions. These twist-
regions are connected via 2t(L) strands to form D. In other words, there
are at most 2t(L) strands in D which are not properly contained in a twist
region. Declare each of these 2t strands to be a seed strand. This defines
a 2t(L)-partial coloring of D with the property that all four strands of D
incident to the boundary of any given twist region of D have received a color.
Recall that a twist region constitutes either a single crossing or a collection
of bigons. Therefore, the coloring move by definition allows us to extend
the coloring of strands incident to the boundary of a twist region across the
entire region. It follows that β(L) = ω(L) ≤ ω(D) ≤ 2t(L), as claimed. □

Proof of Theorem 1.5. Let L be a prime alternating link and let D be a
reduced alternating diagram for L. By [15], 1

2v3(t(D)− 2) ≤ vol(L), where
v3 is the volume of a regular hyperbolic ideal 3-simplex. By Corollary 1.4,
β(L) ≤ 2t(L). Hence, 1

2v3(
1
2β(L)− 2) ≤ vol(L). In order to eliminate the

constant term in the previous inequality, we note that Cao and Meyer-
hoff have shown that the minimum volume of any hyperbolic knot is 2v3
[8]. Hence, we can set C = 1

6v3 to insure that Cβ(L) ≤ max(12v3(
1
2β(L)−

2), 2v3) ≤ vol(L) for all values of β(L). □

The Wirtinger number can also be used to compute bridge numbers of
links. Since for any diagram D of a link L we have ω(D) ≥ ω(L) = β(L),
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the Wirtinger number provides an approach to calculating upper bounds on
the bridge number of L. Moreover, as previously noted, the ω(D) for a given
diagram D is readily computed; for knot diagrams, this can be done via the
computer algorithm outlined in the Appendix. The upper bounds obtained
in this manner have turned out to be astonishingly strong. At the start of
this project, according to KnotInfo [9], bridge numbers were tabulated for
prime knots up to and including 11 crossings. By comparing these bridge
numbers to the Wirtinger numbers of minimal diagrams, we verified that
for all prime knots with up to 11 crossings the upper bounds on β obtained
by computing ω(D) for representative minimal diagrams are sharp.

We computedWirtinger numbers for minimal diagrams of all 12-, 13- and
14- crossing knots as well. The number of knots among them whose minimal
diagrams have Wirtinger number 2 coincided exactly with the number of
two-bridge knots of 12, 13 and 14 crossings [12]. Therefore, our calculations
identify all two-bridge knots in this range. It also follows that all diagrams
D with ω(D) = 3 represent three-bridge knots. To complete the tabulation
of bridge number for prime 12-crossing knots, we calculated that all such
knots have Wirtinger number at most 4, and we checked that the knots
whose minimal diagrams have Wirtinger number 4 are not three-bridge.
This was done by hand using methods of Jang [13]. (We believe that the
same method would allow us to complete the tabulation of bridge number
for knots of 13 crossings as well.) Altogether, our computations so far have
newly determined the bridge number of approximately 50, 000 prime knots
of less than 15 crossings. In addition, as a corollary of these computations, we
have verified that for all prime knots of less than 13 crossings, the Wirtinger
number of some minimal diagram realizes the bridge number. We propose
the following:

Question 3.1. (Property M) For which links L is ω(L) realized in a
minimum-crossing diagram of L?

Our calculations show that all prime knots of up to and including 12
crossings have Property M. We conjecture that all prime 13-crossing knots
do as well, and that the Wirtinger numbers of the diagrams in the knot
table in fact equal the bridge numbers of the underlying knots. Furthermore,
by taking connected sums of two-bridge knots, one can construct families
of knots which have Property M and whose crossing number and bridge
number are unbounded. In [2] it is shown that there exist prime knots which
admit minimal crossing diagrams that do not realize the Wirtinger number.
On the other hand, there are no known examples of knots whose Wirtinger
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number is not realized in any minimal crossing diagram. The question of
completely characterizing knots with Property M remains open.

Let us now turn an eye back to the Meridional Rank Conjecture. The
main theorem of this paper reduces the Conjecture to the following:

Question 3.2. Does every link admit a minimal meridional presentation
in which all relations arise as iterated Wirtinger relations in a diagram?

A positive answer to this question for a class of links would mean that
µ(L) = ω(L), which, together with our result β(L) = ω(L), would imply
the conjecture for these links. In particular, our point of view casts the
Meridional Rank Conjecture as a question about the type of relations in a
meridional presentation.

4. Appendix: Computing ω(D)

We sketch the algorithm by which we obtained the computational results
discussed previously. From now on we work only with knots. Furthermore,
we make the following simplifying assumption. Note that coloring a knot
diagram D in several colors allowed us to study the combinatorics of the
coloring process, which in turn enabled us to count the number of local
maxima in the knot embedding we reconstructed from D. This analysis is
a bit more subtle than what we need if we are merely asking whether a set
A of meridional elements generates the knot group via iterated application
of the Wirtinger relations in D. Therefore, for the purpose of calculating
ω(D), we do not keep track of the different colors. Instead, we simply ask
if a given partial coloring of D can be extended to all of D. (Formally,
we compose the function f : A → {1, 2, . . . , k} with the constant function
c : {1, 2, . . . , k} → {1}, then we define the coloring move as before.) The
algorithm can be broken down into three steps.

1) From the Gauss code of a non-trivial knot diagram D, extract informa-
tion about which strands are over- and under-strands at every crossing
of D.

2) Given a subset A of set of strands s(D), determine if choosing the
strands in A as seeds would allow the entire diagram to be colored by
iterating the coloring move.

3) Running across all subsets of size k ≥ 2 of s(D), determine if D admits
a Wirtinger generating system of size k. The algorithm terminates as
soon as the first valid coloring occurs.
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Now we describe in some detail how these steps are performed.
(1) Creating a knot dictionary. Let K be a knot with diagram D. By

convention, we label the strands of D by letters. Represent each crossing
of D by the (unordered) tuple (a, b), where a and b are the understrands
at that crossing. The knot dictionary DK is a map which assigns to each
element c of s(D) a subset of the crossings of D. The map is given by
DK(c) = {(a, b) | c is the overstrand of (a, b)}. In terms of data structures,
the knot dictionary is a map whose keys are the strands of the knot diagram
and whose values are subsets of v(D).

Example 4.1. The trefoil has knot dictionary

D31
= {a → {(b, c)}, b → {(a, c)}, c → {(a, b)}}.

We can derive the knot dictionary DK of a knot K by examining its
Gauss code GK , using a function we call knot-dictionary(GK). To illus-
trate how this function works, we return to the diagram of the trefoil, which
has Gauss code G31

= [−1, 3,−2, 1,−3, 2]. Since the negative numbers in the
Gauss code correspond to a strand going under a crossing, we see that each
strand is described by a subsequence of G31

beginning and ending with a
negative number (“wrapping around” the sequence if needed). Since there
are three strands in this diagram of the trefoil, there are three corresponding
subsequences of G31

, which we have labeled to be consistent with the knot
dictionary representation in the example above. These three subsequences
are a = [−1, 3,−2], b = [−2, 1,−3], and c = [−3, 2,−1].

Once we have determined which subsequences correspond to which
strands, we next determine the crossings at which they are overstrands.
We do this by examining the positive integers in each subsequence. For ex-
ample, since a = [−1, 3,−2], the strand labeled a is the overstrand at the
crossing labeled 3. Then, since b and c contain −3, this indicates that they
are under this same crossing and are thus the two strands under strand
a at crossing 3. We then assign the tuple (b, c) to a. Since a contains
no more positive integers, we have found all the crossings a is over and
have completed the knot dictionary entry for a, which is D31

(a) → {(b, c)},
as in our above example. Repeating this process for the remaining sub-
sequences results in the same knot dictionary as in our above example:
D31

= {a → {(b, c)}, b → {(a, c)}, c → {(a, b)}}.
(2) Extending a partial coloring. Once we have a knot dictionary DK ,

we can determine whether a given set of seed strands A leads to a coloring
of every strand in the diagram. We do this using a function called color.
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Consider a crossing (p, q) of the diagram and assume that p is not colored.
The partial coloring can be extended at this crossing if and only if both q
and the overstrand are colored. Running through the list of crossings of D
in any order allows us to determine if a coloring move can be performed.

The function color works as follows. Make a copy, C, of the seed strands
A, and iterate through the keys of DK that are in C. For each of these keys
in C, say a, examine each crossing in DK(a). For each (b, c) ∈ DK(a), if C
contains either of b or c, add the other one to C. Repeat this step until either
all the strands of D are added to C (in which case, A has been shown to be
a Wirtinger generating system) or one entire iteration through all a ∈ C and
all (b, c) ∈ DK(a) is completed without adding new strands to C (in which
case, A has been shown to not be a Wirtinger generating system).

(3) Finding a minimal coloring. We define a function calculate-w

which determines the Wirtinger number for a knot diagram D. Given Gauss
code GK , we first call knot-dictionary(GK) to create the corresponding
knot dictionary DK . Then, for n ranging from 1 to DK .size (the number of
keys in DK , i.e., the number of strands in the knot diagram), we repeat the
following: we call combinations(DK .keys, n), which returns X, the set of
all combinations of n strands; then, for each set of seed strands A ∈ X, we
call color(DK , A). If color(DK , A) results in coloring the entire diagram,
we return A.size, the number of strands in A. Otherwise, we pick a new set of
seed strands A′ from X and repeat this process. If none of the combinations
in X lead to a complete coloring, we increment n and repeat the process
until such a combination is found. Note that every non-trivial knot diagram
is colorable by c(D)− 1 strands, so this algorithm is guaranteed to return
DK .size− 1 in the worst case.

Since the function color is applied to every subset of s(D) of a given
size k ≤ ω(D), the algorithm runs in factorial time. However, ω(D) << c(D)
in general, and the algorithm terminates when the first valid coloring occurs.
As a result, the running time is short in practice. Computing the Wirtinger
numbers of all diagrams in the Knot Table of up to 14 crossings took approx-
imately 10 minutes on a weak fashionable laptop. That said, it is evident
that the algorithm performs many redundant checks, and its efficiency can
definitely be improved, should the running time increase unreasonably with
c(D). We also remark that the above procedure for calculating ω(D) can be
extended to link diagrams, after implementing a few modifications to handle
Gauss code for multiple-component links.
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des entrelacs de Montesinos, Comment. Math. Helv. 60 (1985), no. 2,
270–279.

[6] M. Boileau and B. Zimmermann, The π-orbifold group of a link, Math.
Z. 200 (1989), no. 2, 187–208.

[7] R. S. Bowman, S. Taylor, and A. Zupan, Bridge spectra of twisted torus
knots, Int. Math. Res. Not. IMRN (2015), no. 16, 7336–7356.

[8] C. Cao and G. R. Meyerhoff, The orientable cusped hyperbolic 3-
manifolds of minimum volume, Invent. Math. 146 (2001), no. 3, 451–
478.

[9] J. C. Cha and C. Livingston, Knotinfo: Table of knot invariants, http:
//www.indiana.edu/~knotinfo, (December 5, 2016).

[10] A. Champanerkar, D. Futer, I. Kofman, W. Neumann, and J. S. Purcell,
Volume bounds for generalized twisted torus links, Math. Res. Lett. 18
(2011), no. 6, 1097–1120.

[11] C. R. Cornwell and D. R. Hemminger, Augmentation rank of satellites
with braid pattern, preprint (2014), arXiv:1408.4110.

[12] D. De Wit, The 2-bridge knots of up to 16 crossings, Journal of Knot
Theory and Its Ramifications 16 (2007), no. 8, 997–1019.

http://www.indiana.edu/~knotinfo
http://www.indiana.edu/~knotinfo


✐

✐

“2-Kjuchukova” — 2020/4/30 — 21:59 — page 262 — #20
✐

✐

✐

✐

✐

✐

262 Blair, Kjuchukova, Velazquez, and Villanueva

[13] Y. Jang et al., Classification of 3-bridge arborescent links, Hiroshima
Math. J. 41 (2011), no. 1, 89–136.

[14] R. Kirby and E. R. Kirby, Problems in Low-Dimensional Topology, in:
Proceedings of Georgia Topology Conference, Part 2. Citeseer, (1995).

[15] M. Lackenby, The volume of hyperbolic alternating link complements,
Proc. London Math. Soc. (3) 88 (2004), no. 1, 204–224. With an ap-
pendix by Ian Agol and Dylan Thurston.

[16] M. Lustig and Y. Moriah, Generalized Montesinos knots, tunnels and
n-torsion, Math. Ann. 295 (1993), no. 1, 167–189.

[17] M. Rost and H. Zieschang, Meridional generators and plat presentations
of torus links, J. London Math. Soc. (2) 35 (1987), no. 3, 551–562.

Department of Mathematics, CSULB

Long Beach, CA, 90840, USA

E-mail address: ryan.blair@csulb.edu

Max Planck Institute for Mathematics

Vivatsgasse 7, 53111 Bonn, Germany

E-mail address: sashka@mpim-bonn.mpg.de

2226 NE Thorncroft Dr. Apt 532, Hillsboro OR, 97124, USA

E-mail address: romanvelazquez04@yahoo.com

Department of Agricultural and Biosystems Engineering

Iowa State University, 1340 Elings Hall, 605 Bissell Road

Ames, IA 50011-3270, USA

E-mail address: pev@iastate.edu

Received May 4, 2017

Accepted October 30, 2017


	Introduction
	Proof of the main theorem
	Applications and further questions
	Appendix: Computing (D)
	Acknowledgement
	References

